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JORDAN RINGS WITH INVOLUTION
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ABSTRACT.   Let  /  be a Jordan ring with involution *   in which   2x = 0

implies  x = 0   and in which   2J = J.   Let the set  S  of symmetric elements of
2

J  be periodic and let  N  be the Jacobson radical of /.   Then  N   =0   and

J/N  is a subdirect sum of   * -simple Jordan rings of the following types (1) a

periodic field, (2) a direct sum of two simple periodic Jordan rings with ex-

change involution, (3) a 3 X 3 or 4 X 4 Jordan matrix algebra over a periodic

field, (4) a Jordan algebra of a nondegenerate symmetric bilinear form on a vec-

tor space over a periodic field.

1. Introduction. Recently, Osborn and S. Montgomery both indepen-

dently determined the structure of an associative ring with involution in which

each symmetric element is periodic.  They proved:

Theorem 1.1 (Osborn [3,p. 363] or Montgomery [1]). Let R bean

associative ring with involution in which  2a = 0 implies a = 0 and in which

2R = R. Let the set H of symmetric elements of R be periodic and let TV

be the Jacobson radical of R.   Then TV2 = 0 and R/N is a subdirect sum

of rings with involution each of which is one of the following types:

(i) a periodic field,

(ii) a direct sum of two periodic fields interchanged by the involution,

(iii) a 2 x 2 matrix algebra over a periodic field.

The main object of this paper is to generalize the above result to a Jordan

ring with involution.  For convenience we adopt the following convention:

Convention.  Throughout this paper, the letter / will represent a Jordan

ring with involution  *  in which 2a = 0 implies a = 0 and in which 2J = J

and the letters S and K will represent the set of symmetric elements and the

set of skew elements respectively.
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We shall show first that if / is *-prime and S is periodic then S cannot

contain more than four orthogonal idempotents. We classify / according to the

number of orthogonal idempotents that S contains.  Then we prove our main

theorem as stated in the abstract.

2. Preliminary results.  By a Jordan ring R, we shall mean a nonassociative

ring satisfying x • y =y * x, (x2 • y) • x = x • (y2 • jc), 2x = 0 implies

x = 0. If R  is also a vector space over a field F of characteristic not two such

that  (fx) - y = (xf) • v = x • (fy) for all x, y in R  and / in F, then R

is called a Jordan algebra over F.  We define  Ua b = (a • x) • b + (b • x) •

a - (a • b) • x and abbreviate  Uaa - Ua  in any Jordan ring R. The follow-

ing identities are important (see Jacobson [1, p. 34]).

(a> (b • c))-d + (a - (b •<!))' c + (a' (cd))- b

= ((«•&)• c)-d + ((a • rf) • c)-b+a- ((b -d)- c)

= (a • b) • (c • d) + (a - d) - (b ' c) + (a ' c) - (b - d)   (Jordan identities),

uaub = ubuaub.

An element a  of a Jordan ring R  is said to be invertible if Ua  is bijective and

a is an absolute zero divisor if Ua = 0. A Jordan division ring is a Jordan ring

in which each nonzero element is invertible. An involution  *  on a nonassociative

ring D is a map of D to D which satisfies (a + b)* = a* + b*, (ab)* =

b a*, (a*)* = a for all a and b in D.  Let D be an arbitrary nonassociative

algebra of characteristic not two with identity 1 and involution  *, and let Dn

be the algebra of « x«  matrices with entries in   D. Define Jax = a~1(x*)ta

where a = diag-Oj, • • • ,an]  and the a¡ satisfy  a* = a¡, a¡ GN(D), the

nucleus of D and af1  exists in N(D).  Let H(Dn,Ja) be the set of sym-

metric elements relative to the involution Ja. Then H(Dn,Ja) will be called

the « x «  Jordan matrix algebra. We will have occasions to use the following

theorems.

Theorem 2.1 (Shirshov-Cohn) (Jacobson [1, p. 77]).   Let R be a

Jordan algebra with   1  which is generated by two elements.   Then R is iso-

morphic to a Jordan algebra S(C,*) where C is an associative algebra with   1

and an involution  *, S(C, *) is the symmetric part of the involution  *.

Theorem 2.2 (Jacobson [1, p. 61]).   Let D be an algebra over a field

of characteristic not two with an identity element and an involution  *, and let

Ja  be a canonical involution in Dn.   Then H(Dn, Ja) for n>3 is Jordan if

and only if either D is associative or n = 3 and D is alternative with symmetric

elements in the nucleus.
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Theorem 2.3 (Jacobson [1, p. 129]). Let R = H(Dn,Ja),n > 3, be a

Jordan matrix algebra.   Then the mapping I —► R C\ In  is a lattice isomorphism

of the lattice of * ideals of D onto the lattice of ideals of R. Also I2 = 0

if and only if (R n In) • (R n In) = 0.

Theorem 2.4 (Jacobson [1, p. 119]).  Let R = R¡(e) + R¡Á(e) + R0(e)

be the Peirce decomposition of a Jordan ring R relative to the idempotent e.

Then

(1)

(2)

0)

(4)

Rj ÇR.   (i = 0, 1),      RiA • (R0 + *,) Ç RVi,

R^CRq+R,, Rq-R^O.

XH ' (ai • b¿) = (*>/* ' «/) ' bi + (xVz ' b¡) ' ai

if x^ERVi, at, b¡ ER. for i = 0, 1.

(xVi ■ a0) • flj = (xVi - ax) • aQ

if a¡ E R. for i = 0, 1  and x,A ER1/t.

(xv2 • y%> • zi = (i** •z/) -yyJ - ei + (0"a -z/) • *w) • ei

if z¡ER. for i = 0, 1  and xt/i,y^ ER%.

An element z in a Jordan algebra R  over a field F is quasi-invertible

with quasi-inverse w in R if  1 — z is invertible with inverse   1 - w in the

Jordan algebra R1 = F\ + R.   An ideal is quasi-invertible if all its elements are

quasi-invertible.  For any Jordan algebra there is a unique maximal quasi-invertible

ideal called the Jacobson radical containing all quasi-invertible ideals (see

McCrimmon [2] ). We call a Jordan algebra semisimple if its Jacobson radical is

zero.

Theorem 2.5 (McCrimmon [3]). For any idempotent e in a Jordan

algebra R, the Jacobson radical of Peirce subalgebra Rt(e) = R U e is

rad(i? U e) = (R U e) n rad R = (rad R) U e.

Theorem 2.6 (Tsai [1]).   The intersection of all prime ideals of a Jordan

ring R is defined as the prime radical of R. If R contains a maximal nil-

potent ideal TV, then the prime radical of R is equal to TV.

An element a of a Jordan ring is said to be periodic if a"^ = a for

some positive integer n(a) greater than one. A periodic Jordan ring is a Jordan

ring in which each element is periodic.
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Theorem 2.7 (Osborn [3, p. 342]). A periodic Jordan division ring is a

periodic field.

Theorem 2.8 (Osborn  [3, p. 343]). Let ß and v be elements of a

periodic field F of characteristic p ¥= 2.  Then there exists elements a, b, c G

F not all zero such that a2 + b2ß + c2v — 0.

Theorem 2.9 (Osborn [3, p. 351]). Let R be a periodic Jordan ring and

let e, f, g be pairwise orthogonal idempotents of R such that e and f are

connected.   Then RVl(g) n RVl(e) = 0.

Theorem 2.10 (Osborn [3, p. 345]).  Let R be a simple periodic Jordan

ring.   Then R is either a periodic field or R is isomorphic to the Jordan algebra

!ra bß~\     a, b, c are elements of a perodic      )

[b   c J    field F and -ß isa nonsquare in F\

Theorem 2.11 (Osborn [2]). If all elements of a Jordan ring are either

invertible or nilpotent, then the set of all nilpotent elements forms an ideal.

Theorem 2.12 (Jacobson [1, p. 170]). Let R be a * -simple alternative

algebra with involution and identity element such that every nonzero symmetric

element of R is invertible and in the nucleus and let T be the subset of R of

symmetric elements of the center.   Then R is one of the following:

(1) a direct sum of two associative division algebras interchanged by the

involution,

(2) an associative division algebra with involution,

(3) a 2x2 matrix algebra over T with standard involution, i.e.

C K 1>
(4) a Cayley-Dickson algebra over T with standard involution.

Conversely, any algebra in the classes (1) to (4) satisfy the given conditions.

Two orthogonal idempotents e1   and e2  in a Jordan ring R  are said to

be connected if there exists an element in Rl2 = Ry2(ei) n Ry2(e2^ invertible

in RUe +e   =/?n + Ri2 +^22-  If I = ei + e2> ^u   ana" ^22  are Jor-

dan division rings, then R is said to be of capacity two.

Theorem 2.13 (Osborn [1]). Let R be a simple Jordan algebra of

capacity 2.  Then either R is isomorphic to the Jordan algebra of a nondegener-

ate symmetric bilinear form f on a vector space over an extension field T of

the base field F, such that f(x, x) = 1 for some x, or R is isomorphic to a

Jordan matrix algebra H(D2,Ja) where (D, j) is either of the form B © B,
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B an associative division algebra which is not commutative, j, the exchange invo-

lution or D is a division algebra which is not commutative and is not a quater-

nion algebra over its center with j the standard involution.

Theorem 2.14(Coordinatization Theorem) (Jacobson [l,p. 133]).

Let R = 2"^- R„ be the Peirce decomposition with respect to the e¡ and

n > 3. Assume that for j = 2, 3, • • • , n there exists an element w¡ • G R¡ ■

which is invertible in Rtl + /?,-.• + Ry.   Then there exists a Jordan matrix alge-

bra H(Dn,Ja) and an isomorphism f of R onto H(Dn,Ja) suchthat

/(*/) = & [A], /(«!/)- Hfl.

3.  Classification of semisimple Jordan rings when S is a periodic Jordan

division ring. We shall show in this section that the set of elements of the type

a = s + k where s   = s, k* = - k, s ¥• 0  and k2 # 0  determines the struc-

ture of / in case / is semisimple and 5 is a periodic Jordan division ring.  If

they are all invertible, then J is a periodic field. If not, then / is a direct sum

of two isomorphic periodic fields or a Jordan algebra of a nondegenerate sym-

metric bilinear form over a periodic field. We first prove the following theorem:

Theorem 3.1.  // / contains no nonzero ideal I such that I2 = 0 and

no nonzero s ES, s2 = 0, then the identity of S is the identity of J.

Proof.   Let e be the identity of S  and let  / — Ji + JYl + J0  be the

Peirce decomposition of / with respect to e. Then S CJ1, since e • s = s

for all s G S.   If we write x0 EJ0  as a sum of symmetric and skew elements

s + k, then  0 = xo'e = s-e + k'e = s + k'e and - s = k • e is both

skew and symmetric. Thus s = 0.  By the same argument, we can show all ele-

ments in Jjj  are skew.  But

J2oCSnjQ = 0,   JVl • /0 C J1/2 n S = 0,   J1'Jo = 0,

and so J0  is an ideal whose square is equal to zero. Thus JQ = 0  and J =

Jl+J'A-
Let x EJVi. Then x is skew and x2 ES EJ1. Since x3 = (x2 • e) • x

= x2 • (e-x) = 2~1x3, we have x3 = 0 = x4. But S has no trivial elements,

so x2 = 0.  This implies J22 = 0  and Jy2   is a trivial ideal of /.   Therefore

Jfi = 0 and e is the identity of /.

Lemma 3.2. Let J be generated by two elements s and k where s* =

s ¥= 0, k* = - k and k2 ¥* 0 and let S be a periodic Jordan division ring.

Then

(i) J is isomorphic to the set of symmetric elements of an associative ring

C with involution j, which is generated by two elements s and k.
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// we use juxtaposition for multiplication in C and a dot for multiplication

in J, then the following are true.

(ii) sh = hs in the associative ring C where s and h are arbitrary ele-

ments of S.

(iii) S = S(+) + S(~) where S(+)= [hes\hk = kh} ={hes\(h • k) •

k = h • k2} and S(~) = {« G S\- hk = kh} = {« G SI« • k = 0} such that

S(+) • S(+) C S(+), S(~) • S(~) C S(+), S(+) • S(-) C S(~).

(iv) / is a finite dimensional Jordan algebra over S(+).

Proof,   (i) This follows easily from Theorem 2.1.

(ii) S forms a periodic field by Theorem 2.7.  Let <s, « > be the Jordan

subring of S generated by s  and h. The (s, «> is a finite field. Thus s =

Sj, h = sm   for some Sj G (s, h)   and positive integers i  and m  and so

sh =hs = s[+m   in the associative ring C.

(iii) From part (ii), it follows that any element w ec is of the form

w = s0 + 2"=1 s¡kh¡ where { s0, s¡, h¡}"=1 C S. But 0 # k2 G S and S

is a periodic field, so k2p+2 = 1   for some p > 0. Thus

w = s0 + Z Sikhikk'1 = s0 + Z s^khfrk2*'*1 = s0 + ¿ s^kh^k^k.
i= 1 ¿= 1 1= 1

This means C = S + Sk is a two dimensional left vector space over S. But for

any q G S, j(qk) = j(k)j(q) = kq= kqkk~l = (kqk)k2p + 1 = (kqk)(k2p)k G

Sk. Thus any qkeSk can be written as qk = (q(+) + q(-))k satisfying j(q(+)k =

q(+)k = kq(+) and j(q(-)k) =- q(-)k = kq(-). q -q(+) + q(-), since k is in-

vertible. But q(+) commutes with s by part (1) and C is generated by s and

k, so q(+) e the center of C.   Hence we have proved that any q es can be

written as q = q(+) + q(r) suchthat q(+)k = kq(+) and q(-)k = - kq(~).

If hv h2 eS(+), then (h^h^k = h1(h2k) = hl(kh2) = k(hyh2) and so

S(+)S(+)C £(+)• The same arguments show S(+)S(-)C S(-),S(-)S(+) C

S(-), -S(-)5(-)C S(+). Hence we have 5(+) • S(+) ç 5(+), 5(+)-5'(-)Ç

S(-),5(-)-5(-)Ç S(+).
(iv)  Since  C = S(+) + S(+)h + S(+)k + S(+)(hk) where h G S(-) is

finite dimensional over S(+) and / is a subspace of C, so / is a finite dimen-

sional Jordan algebra over S(+).

Theorem 3.3.  Let J be a Jordan division ring and S be periodic.   Then

J is a periodic field.

Proof.   Let a = s + k where  0 =£ s G S and 0 =/= k G K and let A

be the Jordan subring generated by s  and k.   Let H denote the set of *

symmetric elements in A.  Then by Lemma 3.2, A  is isomorphic to the sym-
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metric part of an associative ring C with involution /  generated by s and k,

such that H = H (+) + H(-) and A  is a finite dimensional algebra over H(+).

Suppose a satisfies an equation x" + bk • xn~l + • • • + bn = 0 with coef-

ficients in H(+). Let B = (bx,•'• ,bn>   be the finite subfield of H(+)

generated by b1,b2,'",bn. Then   B [a]     is a finite associative division ring

and a is periodic.  Therefore / is a periodic field by applying Osborn's Theo-

rem 2.7.

Lemma 3.4. Let F be a finite field and G, H be two subfields. If

[F:G]= [F: H] = 2, then  G = H.

Proof.   Let p  be the characteristic of F and   \G\-p". If G =£ H, then

xp   - x EF[x]   has more than p"   roots in F. This cannot happen.

Lemma 3.5.  Let F be a periodic field a id G, H be two subfields.  If

[F: G] = [F: H] = 2, then  G = H.

Proof.   Let p  be the characteristic of F. Suppose  G + H and g EG,

g G H.   Let / and / be the involutions of F over H and F over G re-

spectively. The elements g,  i(g), j(i(g)), i(j(i(g))), ' ' ' , satisfy an algebraic

equation of g over // [p]   and so they are finite in number.  Let  W1   be the

subfield generated by these elements. Then  Wy   is a finite subfield which is in-

variant under i and /.  Similarly if h EH, h G G, we can construct another in-

variant subfield  W2, h EW2. Then the finite subfield  W generated by  W2

and  W2  has two involutions i and / and so by Lemma 3.4, G n W = H D W.

This contradicts g G G n W but g <Ë H n H/.

Lemma 3.6. j4nv rwo quadratic extensions of a periodic field are isomor-

phic.

Proof.   Let F be a periodic field, F [x]   and F [y]   by any two quad-

ratic extensions of F such that x2 - ax + b = 0 and v2-cv+d = 0

where a, b, c, d G F.   Let 5 denote the subfield of F generated by a, b, c,

d.   Then B is a finite field and so B[x]   is isomorphic to B[y]. We can find

w in B[x]   such that w2 - cw + d = 0.  Hence F[x]   and F[y]   are the

splitting fields of the same polynomial. Therefore they are isomorphic.

Lemma 3.7. Let J be a Jordan ring with involution and S be a periodic

division ring. Let 0¥=sES,  kEK and k2 = 0.  Then  (s + k)m = 1 for

some positive integer m.

Proof.   By Shirshov's Theorem 2.1, the Jordan subring <s, k) generated

by s and k is a subring of C+  where  C is an associative ring.  Since

k(ksk) = k2sk = 0 in C and ksk is invertible or zero, we have ksk = 0.
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This implies

a2 =(s+ k)2 =s2 +ks+sk in C,

a3 = s3 + ks2 + sks + s2k,

a" =s" +ksn~l -fsfa"-1 +s2ksn~1 +••• +S"-1*;   inC

Let «  be any positive integer such that s" = 1. Then,

a" = 1 -f-fa"-1 +sfa"-2 + ••• +S"-1*:,

a2" = 1 + 2(fe"-1 + sifcs"-2 + • • • + s""1*:),

•  •  •

aPn = i +p(ks"-1 +••• +Sn~lk)

= 1    if p is the characteristic of C.

Lemma 3.8.   Let J be a Jordan ring with involution and S be a periodic

Jordan division ring.   Then for any k eK,  k2 ¥= 0, we can decompose S =

S(+) + S(~) where S(+) = {ses\(s, k, k) = 0}  and S(~) = {s G 5Is • k = 0}

such that

(1) S(+)2CS(+), S(+)-S(-)CS(-), S(-)2CS(+),

(2) (s • ft) • k = s • (h • k) for s, h G 5(+).

Proof.  We have shown in Lemma 3.2 that any s G S can be written as

s = s+ + s_ such that (s+ ,k,k) = 0 and s_ • k = 0 relative to an invertible

skew element k.  Thus S = S(+) + S(-). Let s, h G 5(+), s_ G S(-). We

now show s ' he S(+), si  G S(+), s • s_ G 5(-).

Let  IV be the Jordan subring generated by s, h  and s_. Then  W is a

finite field and so s = wm, h =w", s_ = w1 for some positive integers m,

n, I and w eW. Consider the Jordan subring <vv, k) generated by w and k.

Then H = S(Mw,k) can be decomposed as H = i/(+) +#(-) where //(+) =

{r eH\(t, k, k) = 0}, H(-) = {t\t • k = 0}  by Lemma 3.2. But s, h G

#(+), s_ G #(-).  Hence by Lemma 3.2, s • h eH(+) C S(+), s • s_ G

^(~) £ S(~), si e H(+), and also (s • h) • k = s ' (h • k).

Lemma 3.9. Let J be a simple Jordan ring with involution and S be a

periodic Jordan division ring. Let S = S(+) + S(-) be a decomposition relative

to an invertible skew element kl. If A:2 = s2 for some s eS(+), then J is

a Jordan algebra of a nondegenerate symmetric bilinear form over a sub field of S.

Proof.   Let e1 = %(l - kl • s"1) and e2 = lA(\ + k1 • s~l). Then

ex   and e2  are two orthogonal idempotents such that   1 = e1 + e2  and el =
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e2. Let J = J1 + Jy2 + Jq  be the Peirce decomposition of / with respect to

t?j. We claim ax • aVl = a* • aJ/2  for all a1EJl   and ayj Ejy2. If SCiJy2=0,

then all elements of JVl  are skew and so (ax - a*) • a% G S n/% = 0.  Hence

assume Sn/^^ 0. We first prove it is true for any h E S n Jy% + 0.

From (flj + a*) • [(«! + a*) • ft] = (ax + a*)2 • h, it follows that

Cj • («j • A) + flj • (a* • A) + a* • (ax • h) + a* • (a* • A)

- a2 * h + a*2 - h = 2(ax • h) • flj + 2(a* • A) • a*   (Theorem 2.4)

and so  (ax - a*) • [(ax - a*) • A] = 0.  If we write A = A(+) + A(-) relative

to  0 = ax - a*, then (ax - a\)2 • h(+) = 0. This gives us A = A(-) and

h • (pl - a*) = 0. Let k be any skew element in JVi. Since  (ax - a*) • k

is symmetric, (at - a*) • [(ax - a*) • k] =0. But

- - fr, - a*)2 - A:2 + 2[(ax - a*) • (* • (a, - a*))]

• A: + [(»j - a*) • k2] • (ak — a*)   by the Jordan identity,

= - {ay - a*)2 -k2+k2. (aL - a*)2 - 0.

This implies  [(a2 - a*) • k] 2 = 0 and so (ax - a*) • k = 0.

»„Let A G 5 n /^  and fc G ÜT n /y2.  Since h ' kEJy + JQ  and is skew,

we can assume A • fc = ax - a* where a1 = [h • k]t. Then  (A • k) • & = 0

and so 2[A • k] • [A • jfc] = - A2 • k2 + 2[A • (it • A)] • k + (A • k2) • A - 0.

Therefore    (A  • fc)2 = (a!  - a*)2 = (ax  + a*)2 - 0    which implies

a± = a* = 0 and A • ft = 0.

We next prove  T = {ax + a* \at EJt}  is contained in the center of /.

The nontrivial verifications required to establish this are (1) (bt, x^, ax + a*) =

0, (2) (bVl,xltat+ a*) = 0, (3) (bVl, xVl, ax + a*) = 0,

(¿>i»*V4.fli + a*) = (¿>i>*v4>fli)   (Theorem 2.4)

= (Pi ' Xyj ' at - Aj • (xVi • a{) = f>, • Xy2) • a* - Aj • (xi/t • fll)

= (<** • **) ' Aj - Aj • (^ví • <*i) = («i • Jfvi) ' bi - bi ' C*a * ûi) = 0>

(b¥ltxi,al +«î) = (iV4 -JÍ!). (ax + a*)-Aa ♦ (*i • («i +«*))•

But V! • v% = v* • v%  for all Vj G/j   and v^ G/^. Thus

(*%**!»«! + <**) = (&>/, **l)' (fll +a*)-6V4 ' (*1 ,fll)

= 2(AW • Xj) • ax - (Aw • xt) - ax - (Ay2 • ax) • jcx    (Theorem 2.4)

= 0    by (bl,xVi,al) = 0;
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Q>k, Xk, ax + a*) = (b1A • xVl) • (a, + a*) - b,Á • (xl/t • (a, + a*))

= Q><a ' %) # ai + (Pk ' xvJ -at-by,- Ofy • at) - ft^ • (xl/t • a*)

= ((*Vi * al) * x'/i) * el + (C*Vi ' al) • *%) * el

+ ((by2 • a*) • x%) - e2 + ®cH • a*) • ft^) ■ e2

~ bVi ' (*Vi ' ai) - bVi ' (*V4   * a*)   °y Theorem 2.4

= (*i - e2) ' (@a ' «i) * **) + (e2 - ei) ' (.(by, ' a*) • x,A) = 0

Therefore J = T + T(ex - e2) + /^  is a Jordan algebra of a nondegener-

ate symmetric bilinear form on a vector space over the periodic field  T =

{an + a*1\all G/x}   with the skew element  et - e2  suchthat (el - e2)2
= 1.

Lemma 3.10. Let J be semisimple and S be a periodic Jordan division

ring. If (S, k) is a periodic field for every invertible skew element k, then J

is a periodic field.

Proof.  We know from Lemma 3.7 that all elements of / are either

invertible or nilpotent. Hence by Theorem 2.11, the set of all nilpotent elements

forms an ideal /.  Since J is semisimple, 1=0. Hence / is a periodic field.

Lemma 3.11. Let J be a Jordan ring with involution and S be a periodic

Jordan division ring. If S = S(+) relative to an invertible skew element k and

k2 is a nonsquare in S(+),the <S, k) is a periodic field.

Proof.  We know by Lemma 3.8 that <5, k) is associative.  Since k2  is

a nonsquare in S(+), <5, k) is a field. Hence <5, k) is a periodic field by

Theorem 3.3.

Lemma 3.12.   Let J be semisimple and S be a periodic Jordan division

ring. If k2 =£ 0 is a nonsquare in its corresponding S(+) for all invertible skew

elements k and S + S(+) for at least one such k, then the decomposition is

unique in the sense that: If S = S(+) + S(~) is a decomposition relative to an

invertible k, then it is a decomposition relative to any other invertible skew

element.

Proof. Since / is semisimple, K2 ¥> 0. Hence the set of all invertible

skew elements is nonempty. Let S = S(+) + S(-) be a decomposition relative

to an invertible skew element k suchthat S^S(+) and S = H(+) + H(~)

be a decomposition relative to another invertible skew element fcx G K. Then

either H(+) = S or [S: H(+)] = 2. But [S: H(+)] = [S: S(+)] = 2 im-

plies H(+) = S(+) by Lemma 3.5. Hence we assume H(+) = S.

Consider k + fcx  and k-kl. Suppose (k + kt)2 = 0 and (k - kt)2
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= 0. We have k2 + k] - Î4((jt + k2)2 + (k - k2)2) = 0.  Since  - 1, k2 E

S(+), we can apply Lemma 3.6 to find a, b E S such that a2 = - 1  and

A2 = k2. This implies k\ = (a • A)2  and (kt + a • b) • (ky-a ' b) = 0.  But

<5, k2 > is a periodic field by Lemma 3.11.  Hence ^=±«-¿£50^ = 0

contrary to kx # 0. Without loss of generality, we assume  (k + fcx)2 ̂  0.  If

<5, A: + k2 > is not a periodic field, then s_ • (k + k2) = 0  for any s_ G

S(~). This gives us (s_) • k = ~(s_) • fcj = 0 which contradicts our assumption

that   (S, kt) is a periodic field.  Hence (S, k + kx) is a periodic field.  But

(O • (Ä: + kt) = (s_) • *,. Then k + k± = C1 * (*_ * (* + kt)) = si1

• (s_ • Jfej) » ^j     contrary to    & =£ 0.    This completes the proof

of the above lemma.

Lemma 3.13. Let S = S(+) + S(-) be the unique decomposition in Lemma

3.12. 77ien we have

(l)S(-)-K = 0.

(2) k2ES(+) for all kEK.

(3) S(+)2 CS(+), S(+) • S(-)CS(-), S(-)2 CS(+).

(4) (Sj • s2) ' k = Sj • (s2 • fc) /ora// s1( s2 G5(+), fcEK.

(5) // ^i • k2 = 0, rAe« (s • jfcj) • /fej -0 /ora// £,, fc2 GÄ", s G5(+).

(6) (s, fcj, fc2) = 0 for kv k2 EK, sES(+\

(7) 5(4-) lies in the center of J.

Proof. Since (k2, k, k) = 0, k2 ES(+). This proves (2). (3) is clear from

Lemma 3.12 and Lemma 3.8. To prove (1) we need only show s • k = 0 when

sES(-), kEK and k2 = 0. We know already that not both (k + fcj)2 = 0 and

(k - kk)2 = 0 for an invertible skew element kL. Otherwise 2k\ = (k + kt)2 +

(k - fcj)2 = 0. Without loss of generality, assume (k + kL)2 ¥= 0. Then s •

(k + k1) = 0 and so s • k = -s • k1=0.

To prove (4), we need only show (sv s2, k) = 0 when k2 = 0.  But

(k + kt)2 and (k-kL)2 are not both equal to zero when k\¥=0. Assume

(fcj, + k)2 ± 0. Then we have (sx • s2) • (kL + k) = sx • (s2 • (k2 + k)) and

(Sj • s2) • kt m St • (s2 • fcj).  Hence  (sx • s2) • fc = sx • (s2 • £)■

2((s • A:,) • fc2) • fci = 2(s - fci) • (fc2 - fc^ + (s • fc2)

(5) • k\ — (k2 • k\) • s    by the Jordan identity

= 0 + (k2 . k\) • s - (k2 • k\) • s = 0.

Thus (s-k2)-k2ES(+)nS(-)-0.

(6) We first show (s, *1# k2) = 0 when A:| + 0. If fcx • k2 = 0, then

(s, kv k2) = 0 follows from Lemma 3.13 (5). Hence assume k2 • fc2 # 0. Let

r = jtx - [(fc2 • fcj) • k22] • k2. Then t • k2 = 0 by Lemma 3.13 (2) and so



122 NG SEONG-NAM

That is (s • fcj) • fc2 = (s • (fc2 • kt) • k2l) • k2 • k2 = s • (k2 • fcj).  Similarly

k\ =£ 0 implies (s, ki, k2) = 0.  Hence, we assume k\=k\ = 0 and kt •

k2 * 0. Then (kl + k2)2 # 0 and so (s, k1,k2) = (s, kv fcj + k2) = 0.

(7) follows immediately from (1) to (6).

Lemma 3.14. Let J be semisimple with an identity element 1, and S be

simple.   Then J is simple or a direct sum of two simples with exchange involu-

tion.

Proof.   Let / be any * ideal of /.  Then I C\ S = (0) or I n S = S.

If [HS- (0), then IÇK and so I2 CK n S = (0).  Thus 7=0 from the

fact that / -is semisimple. If m S = S, then  1 GI and I = J.  Hence / is

*-simple.  If / is not simple, let I be any nonzero ideal of /, then I + I    and

in I* are * ideals.  Therefore I +1* = J and I n I* = (0) if / is not simple.

Theorem 3.15. Let J be semisimple and S be a periodic Jordan division

ring.   Then J is one of the following:

(1) a periodic field;

(2) a direct sum of two periodic fields with exchange involution,

(3) a Jordan algebra of a nondegenerate symmetric bilinear form f on a

vector space over a subfield of S.

Proof.   We know from Lemma 3.14 that / is    *-simple.  If / isa

direct sum of two simples interchanged by the involution, then / is a direct sum

of two periodic fields with exchange involution.  Hence, we assume J is simple.

Let k be any invertible skew element.  If k2  is a square in its correspond-

ing S(+), then / is a Jordan algebra of a nondegenerate symmetric bilinear form

over a subfield of 5 by Lemma 3.9. Hence assume k2  is a nonsquare in its

corresponding S(+) for all invertible skew elements k. Then two cases arise.

Either 5 = S(+) for all invertible skew elements or S ¥= S(+) for at least one

invertible skew element. / is a periodic field in case one by Lemma 3.10 and

Lemma 3.11.  If S ¥= S(+), then by Lemma 3.12 and Lemma 3.13, we can de-

compose S = S(+) + S(~) such that S(+) lies in the center of /, S(-) •

K = 0 and K2 C S(+). This means / is a Jordan algebra of a symmetric bi-

linear form over S(+).

4. Classification of *-prime Jordan rings when S is periodic and contains

at least two orthogonal idempotents. A nonassociative ring is said to be *-prime

if given by any two  * ideals B and C such that BC = 0, then B = 0 or

C = 0. We need the following theorem.
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Theorem 4.1 (Britten [1]). Let R be a nonassociative ring with involu-

tion *. Then R is *-prime if and only if R is prime or R contains a prime

ideal P such that PnP* = 0.

In this section, we show any ""-prime Jordan ring / with periodic symmetric

elements contains no more than four orthogonal idempotents.  Then we classify

J according to the number of orthogonal idempotents that S contains. The

following two theorems were done by Osborn [3] when / is a periodic Jordan

ring.

Theorem 4.2. Let J be a Jordan ring with involution  * and S be

periodic. Let e and f be two symmetric orthogonal idempotents. If b G

Jy¡ (e) rt Jyi (/) IS skew (or symmetric) such that b" = e + f for some positive

integer n greater than 1, then for any symmetric idempotent u eJ1 (e), there

exists an integer m such that  [(2b • u)2 • u]m = u.

Proof.   Let B be the Jordan subring generated by b and u. B has the

identity element e + f, so by Shirshov's theorem, B is isomorphic to the set of

symmetric elements of an associative ring C with involution.  Let C = Ctl +

C10 + C0l + C00 be the Peirce decomposition relative to the idempotent u.

Since b G /1/4 (e) C Jxfi (u) + J0(u) we have b G C10 + C01 + C00  and ubu = 0

where juxtaposition indicates multiplication in C and

(2b • u)2 • u = (bu + ub)2 • u = (bub + ub2u) • u = ub2u.

Hence   [(2b • u)2 • u]m = w for some m if and only if (ub2u)m = u.

We now show ub2u # 0.  If ub2u = 0 then (bub)2 = 0.  But bub is a

periodic symmetric element of /, so bub = 0. This implies bnubn =

(e +f)u(e +/) = « = 0 which contradicts u ¥= 0.

Since ub2u is a nonzero  * symmetric element of /, we have  (ub2u)m + 1

= ub2u  for some m  greater than zero. We now show (ub2u)m = u.  Let

t = 2(u- (ub2u)m) -b = ub+bu- (ub2u)mb - b(ub2u)m .

We calculate that

t2 = ub2u + bub + (ub2u)2m + * + b(ub2u)2mb

-2(ub2u)m + 1 -2b(ub2u)mb

= bub - b(ub2u)mb,

t4 = bub2ub - 2b(ub2u)m + 1b + b(ub2u)2m + lb = 0.

But any symmetric element is periodic, so t1 = 0.  Then
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uUb - (ub2u)mUb,      uU"b = (ub2u)mUnb.

Therefore u = (wA2w)m.

Theorem 4.3. Let J be a Jordan ring with involution  * and S be peri-

odic.  Let e and f be two symmetric orthogonal idempotents. If b E

¿H (e) n Jy2 CO & skew (or symmetric) such that bn = e + f for some positive

integer n greater than 1, then for any symmetric idempotent uEJx(e), there

exists a positive integer I such that (2b • u)1 = u + v where v is a symmetric

idempotent in J^f), also  2b • u E J^(u) n J1/2(v).

Proof.  Since J% (e) C J^ (u) + /0(w), we have

2A • « G (JlA(u) +./»)./» CJu(u)Jx(u) EJVl(u).

Similarly  2A • « G J1/2 (/). This implies 2A • u E J^ (u) n J^ (/).  But

[(2A • u)2 • u]m = u =£ 0 for some integer m and so (2A • u)2 =£ 0. We can find a

positive integer / such that (2A • u)1 = u2 + v where ut EJ2(u), and v E

J2(f) are idempotents. Then «x + v = (2b • u)21 = [(2b • u)2]1. Since

(2A • u)2 G/j(u) +Jy(f),   [(2b • u)2 • u]1 - uv Hence «x = um =

[(2b • u)2 • u]lm =ul = u.

To prove the last part we know A G JVi (f) Ç_ J¡A (v) + /x (v) from v G

/j(/). Thus  2A • u G (/^(ü) + /x(u))/0(u) Ç/^^) and so  2A -aG^n

We mention the following theorem of Jacobson which will be used in the

proof of the next theorem.

Theorem 4.4 (Jacobson [1, p. 122]). Let eve2,ez  be pairwise orthog-

onal idempotents in a Jordan ring A. If ev e2 are connected by an element

b G/y2(ej) C\Jy2(e2), e2 and e3 are connected by c EJi/2(e2) C\JV2(e3),

then e2  and e3 are connected by A • c G/^(ej) n/1/2(e3).

Theorem 4.5.  Let J be *-prime and S be periodic.   Then J has an

identity element.

Proof.  Let e be any idempotent in S.  If e is the only idempotent,

then S is a periodic field and by Theorem 3.1, e is the identity of /. Hence

assume S0(e) ¥= 0.  Let / = Jx(e) + Jy2(e) + J0(e) be the Peirce decomposition

relative to the idempotent e. Since / is *-prime, (Ji/2(e))2 # 0, we can find

x E Jy2 (e) which is symmetric or skew depending on 51/2 (e) ^0 or Sy2 (e) = 0,

such that xn = ex + e2  where ex   and e2  are symmetric orthogonal idempo-

tents.  If t?j + e2  is not the identity element of S, we now show that we can

find three orthogonal symmetric connected idempotents.



JORDAN RINGS WITH INVOLUTION 125

Consider / = Jl(e1 + e2) + /y2(ex 4- e2) + /„(ej + e2) which is equal to

J = Jfei) + Ji(e2) + Jy¿ei) n ^2)

+ /0(«i) n As(ea) + 7%<ei) n 7o(e2) + -V«i) n -V'a)

and so /y2(cx + e2) = ^(Pj) n /„(e2) + /Ä(s2) n /„(éí), /0(ei + e2) =

/0(e|)O/0(e2). (SeeOsborn [3, p. 224].) Let b = b1 +b2ejy¡(e1 + e2)

where ft2 G/^fej) nJ0(e2), b2eJVi(e2)nJ0(el) and ft2 ¥= 0. We can

assume ft  is either symmetric or skew.  But b2 = b\ + b\ + 2ft j • b2  is sym-

metric and 2ft 2 • 62 G/,/2(ej)n/y2(e2). Therefore ftj^O or ft|#0. Otherwise

ô2G/1(e1+e2) and ((e, +e2) • ft2) • b = b3 = ((el +e2) • ft) • b2 = 2~1ft3

give ft4 = 0 which contradicts the fact that ft2  is a nonzero periodic symmetric

element. We assume ft2 + 0. Then there exists a positive integer n  such that

ft2" = u + «j   where «€/,(«,) and ux G J0(e{) nJ0(e2) are symmetric

orthogonal idempotents. Applying Theorem 4.3, (2x •«)' = «+ u2  for some

positive integer / where u2  is a symmetric idempotent in Jx(e2). Hence u,

ul,u2  are three symmetric orthogonal connected idempotents.

It can be shown by induction that

/*(«, + e2 + • • • + en) = Jy^eJ n-> n JQ(en)

+ JQ(ßl) n JVi(e2) n--n J0(en) + • • •

+ JQ(el)n-.-nJ0(en_l)njVi(en)

and

/„<«, + •.. + e„) = /0(Cl) n--n J0(en)

for arbitrary n  orthogonal idempotents el, e2, • • • , en. Then by the same

argument as in the last paragraph, we can find five orthogonal connected sym-

metric idempotents {v1, v2, • • • , vs]  if we assume S has no identity element.

We now prove this cannot happen.

Suppose Uj   and  v2  are connected by a symmetric element ft12. Then

v2  and v3  are connected by a skew element ft23, v3  and u4  are connected

by a symmetric element ft34 * u4  and vs   are connected by a skew element

ft4S  by Theorem 2.9. But this implies v2  and ys  are connected by the sym-

metric element  (ft23 • ft34) • ft4S  which contradicts Theorem 2.9.

Similarly if ux   and v2  are connected by a skew, we get a contradiction.

Hence S has an identity 1 and by Theorem3.1  / has the same identity 1.

Theorem 4.6. Let J be *-prime and S be periodic.  Then S contains

no more than four orthogonal idempotents.

Proof.  We have shown in the previous theorem that / has the identity
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1.  Suppose S contains more than four orthogonal idempotents. Then there

exists five orthogonal idempotents such that  1 = ex + e2 + e3 4- e4 + e5. If

Ai(ei) n Jv*(ei) ~° Í0TsSl i = 2> 3> 4> 5>tnen

/■/1(e1)+/1(ea +c3 +e4 +es)

which contradicts our assumption that   /   is *-prime.   Hence   J^(et) n

Ji/,(e^ if* 0 for at least one     i.     For  convenience, assume    J^i) ^

Jy1(e2) — J\2 ^0.  Since J1(e1 + e2) is semisimple by Theorem 2.5, J22 + 0.

Then we can find A12 G/12  which is skew or symmetric such that A"2 =

«j + u2  where uiEJ1(ei) (i = 1,2) and so uv u2, ev e4, es are five orthog-

onal idempotents.   We can assume   1 = wx + u2 + e3 + e4 4- es  without loss

of generality. Then JVz(ul 4- u2) D JYl(e3 + e4 + e5) i= 0. Assume JVi(u2) O

Jy2(e3) + 0.  By the same argument, there exists A23 EJVi(u2) n/^(e3) such

that A23=u2+ü3  where  v2EJ1(u2) and v3EJ1(e3) are symmetric idem-

potents. By Theorem 4.3, (2Aj2 • v2)m = v2 4- i>x   where vt EJ2(u2) is a

symmetric idempotent. Thus {vl,v2,v3,e4,es}  are five orthogonal idempo-

tents and vx,v2,v3  are connected.  By continuing the above process, we

finally get five orthogonal symmetric connected idempotents which by the proof

of Theorem 4.5 is impossible.

Lemma 4.7. Let J be *-prime and  1 = ex 4- e2 + e3  where e¡ are

symmetric orthogonal idempotents. If Jfej) and J2(e2) are periodic fields,

J,/2 (e2 + e2) C K, then J1(el + e2) C S.

Proof.  Let  W ={w EJ1(el + e2)\w • JVl(el + e2) = 0}. Then

(K n Jl(e1 + e2)) • JV2(e2 +e2)CSn Jy¡(e1 + e2) = 0

and so K n /j(ej 4- e2) C W.  To show that  W is an ideal of /j(«j 4- e2),

let wEW, aEJl(e1 + e2). Then

(w • a) • JV2(e2 + e2) = w • (a • Jy2(ex 4- e2)) 4- a • (w • Ji/l(el 4- e2)) - 0

and so w • a G W.   If there exist 0 ¥= s = s2 +s!4+s06SnH' where s( G

S,.^), then s,- (i* - 1, % Q)ESnW. This will imply e2 + e2 G W or ef

(/ = 1,2) G W. Thus S n W= 0 and [K C\J1(ei 4-e2)]2 = W2 = 0. But

/jfej 4- e2) is semisimple and so K (~\J1(e1 + e2) = 0.

Lemma 4.8. Let A = {[J **"] la, A, c, fi€£>,m* = M, a* = a, c* = c}

wAere D is a * -simple associative ring from the following list:

(1) a periodic field with involution,

(2) a direct sum of two periodic fields interchanged by the involution,
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(3) a 2 x 2 matrix algebra over a periodic field with standard involution,

(4) a Cayley-Dickson algebra over a periodic field with standard involution,

and the multiplication in A  is defined as

[a   ftVl    p«    P*ß\

ft     c\\p     n\

[am + pb*ß 2~' (bm + bn + pa + pc)*ß~\

2~l(bm+bn+pa+ pc) bp*ß + en

If A is periodic, then D is a periodic field with identity involution and - ß

is a nonsquare in D.

Proof.  If D is of type (2), (3) or (4), then there exists an element ft

such that ftft = 0. Then   [°  6 M ] 2 = 0 contrary to the assumption that A is periodic.

If D is a periodic field with nonidentity involution and if k is any nonzero skew

element, then by Theorem 2.8, there exist symmetric elements a, ft, c such that

a2 - ft2*:2 + c2ß = 0.  Let w = ac~l - bc~lk.   We have  ww + ß = 0.  There-

W(i|2 _

— At is a nonsquare in D.

fore   [M    ™ß ]2 = 0.  Hence D is a periodic field with identity involution and

Theorem 4.9. Let J be *-prime and S be periodic. If S contains

exactly four orthogonal idempotents, then J is a 4 x 4 Jordan matrix algebra

over a periodic field.

Proof.   Let the four orthogonal idempotents that S contains be ev e2,

e3, and e4. Then 5j(e,) (/ = 1, 2, 3, 4) are periodic fields and  1 = e2 +

e2 + e3 + e4.  Otherwise S contains more than four orthogonal idempotents.

Then the idempotents e¡ are connected. Changing the subscripts and by Theo-

rem 2.9, we can assume that e¡   and e2  are connected in S, e2  and e3  are

connected by a skew, e3  and e4  are connected by a symmetric element.  Then

all elements in Jy2(e1 + e2) ñ Jy2(e3 + e4)=J13 + /14 + /23 + /24  are

skew. Hence by Lemma 4.8, Jfey + e2) = Sfey + e2), Jx(e3 + e4) =

■S*i(e3+e4).

Then applying Theorem 2.14, Theorem 2.3 and Theorem 2.12, / is iso-

morphic to a 4 x 4 Jordan matrix algebra over a / simple associative algebra D

with involution / : x —► x where D is one of the following:

(1) a periodic field with involution,

(2) a direct sum of two periodic fields interchanged by the involution,

(3) a 2 x 2 matrix algebra over a periodic field with standard involution,

That is:
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' a bu cv dw

b e u~lfv u~lgw

c f p v~lhw

d g A k    J

a, A, c, d, e, f, g,h,p,kED

u = u, v = v, w = w,â = a, p = p, k = k, ë = e.

But { [ab     b"] \a,b,  e, u G E, a~ = a, ë = e, W = u}  is periodic and so D

is a periodic field with the identity involution and - u  is a nonsquare element

in J) by Lemma 4.8. This completes the proof of this theorem.

Theorem 4.10.   Let J be *-prime and S be periodic. If S contains

exactly three orthogonal idempotents, then J is a 3 x 3 Jordan matrix algebra

over a periodic field.

Proof.   Let the idempotents that S contains be ev e2  and e3. Then

S2(e¡) (i = 1, 2, 3) are periodic fields and  1 = ex 4- e2 4- e3. We now show

that {e1, e2, e3]  are connected. Suppose et   and e2  are not connected, then

Jl2 = 0.  Since connectedness of idempotents is a transitive relation, /23 = 0

or /j 3 = 0. Assume J13 = 0. Then J = Jt 2 + (J22 + J23 + J33) contrary to our

assumption on /, similarly for any other two idempotents which are not connected.

Hence eL, e2, e3 are connected. Changing the subscripts if necessary, we assume that

et and e2 are connected by a symmetric element, e2 and e3 are connected by a

skew element.   Then by Theorem 2.9, /23 CAT and by Lemma 4.7, J1t(el +e2)

= 5j(ej 4-e2). Applying Theorem 2.3, Theorem 2.12 and Theorem 2.14,7 is iso-

morphic to a 3 x 3 Jordan matrix algebra over a / simple alternative algebra (D, j)

with involution / where D is one of the following: (i) a periodic field with invo-

lution, (ii) a direct sum of two periodic fields interchanged by the involution, (iii) a

2x2 matrix algebra over a periodic field with the standard involution, (iv) a Cayley-

Dickson algebra over a periodic field with the standard involution. That is

a    bu

b     d    u

cv

■i«,
ev

f

a = a, d =d, f = f, u = u, v = v

I

But { [ab     bJl] la, b, d, u E D, a = a, d = d, U = u]  is periodic. Thus D

is a periodic field with the identity involution by Lemma 4.7.

Theorem 4.11.  Let J be *-prime and S be periodic. If S contains

exactly two orthogonal idempotents, then J is one of the following:

(1) a direct sum of two simple periodic Jordan algebras of capacity two
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interchanged by the involution,

(2) a Jordan algebra of a nondegenerate symmetric bilinear form on a

vector space over a periodic field,

(3) a 4 x 4 Jordan matrix algebra over a periodic field.

The proof of the above theorem is quite complicated.  For convenience, we

divide the proof into several steps.

Assertion 1. S is either a simple periodic Jordan ring of capacity two or S

is a direct sum of two periodic fields.

Proof.    Let ex   and e2  be the two orthogonal idempotents that belong

to  S. If e*j and e2 are connected in S, then by Theorem 2.9 5 = Sl(el +e2) +

S0(e1 +e2). Thus S = S1(el +e2) by the assumption on S. Let I be any ideal

of 5 and 0 =¿ s = s2 + sVz + s0 el where s¡ G S,.^).  Then s¡ (i = 1, lA, 0)

G I and so 1 GI or e¡ G / for i = 1, or / = 2. This implies  2~ 1Xyi =

el • x¡A  for any xVieSy1(el). Since Sfá) (i = 1,2) are periodic fields,

x"2 = e2 + e2 G 7 and I = S.

If ex   and e2  are not connected, then Sjíe,) (i = l,2) are periodic

fields and S = S^eJ + 52(e2).

Assertion 2. If 5 is a direct sum of two periodic fields, then S^e^ =

Jjfej), Sx(e2) = Jt(e2) and / is a Jordan algebra of a nondegenerate sym-

metric bilinear form on a vector space over a periodic field.

Proof. Let keKnj^eJ. Then by Theorem 2.4, k • /y2(e2) Ç 5 n

/y2(e2) = 0 and fc2 • Jy^eJ C 2A: • /y^) = 0. If fc2 * 0, Ä:2 has an in-

verse s G/jíej) such that s - k2 = ex   and by Theorem 2.4

ei • JyÂei) = (ß • k^Jy^e,) Cs'(k2 - JVi(e{)) + k2 • (s . ^(e,)) = 0.

Thus /^(e,) = 0 and so / = J^e^) + J0(e{) which contradicts our assump-

tion that / is *-prime. Hence k2 = 0 and Knj^e^) is a nilpotent ideal of

/j(ej).  But by Theorem 2.5, /j(e2) is semisimple, so K nJl(el) = 0. There-

fore J^e^) = íjí^j).  Similarly, .^(e-j) = Si(e2).

Furthermore, (/^(ej))2 ^ 0.  Otherwise,/^(ßj) is a nilpotent ideal of /

and the semisimplicity of / will imply /^(Cj) = 0. Thus we can find an ele-

ment xG/1/2(ej) suchthat xn = e1 + e2  for some positive integer «. / is

then a simple Jordan algebra of capacity two.  Applying Theorem 2.13 / is

either a Jordan algebra of a nondegenerate symmetric bilinear form / on a vec-

tor space over a field  T, or a Jordan matrix algebra H(D2, Jn) where D is

one of the following:  (i) a direct sum of two noncommutative associative division

algebras with the exchange involution, (ii) a noncommutative division algebra

which is not a quaternion algebra over its center with / the standard involution.

But if / is isomorphic to H(D2, Jn), then the set of /  symmetric elements
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forms a periodic field and D is either a periodic field or a direct sum of two

periodic fields. This contradicts the fact that D is not commutative. Thus J isa

Jordan algebra of a nondegenerate symmetric bilinear form / on a vector space

over  T. Since  rc/^e,) 4-,/0(e1), T is a periodic field.

If S is a simple periodic Jordan algebra of capacity two, then by Theorem

3.1, / has the identity 1, and by Lemma 3.14 J is *-simple.  But if J is a

direct sum of two simple ideals interchanged by the involution, then / is a Jor-

dan algebra of type (1) in Theorem 4.10. Otherwise / is simple.

Assertion 3. Let J be simple and the center of / be Z. If Z <lS,

then / is a three-dimensional Jordan algebra of a nondegenerate symmetric

bilinear form on a vector space over a periodic field.

Proof.   Since Z °\_S, we can find a nonzero skew element k in Z.   But

(kx • k~l) • k = kL   for any skew element k2, so J = S 4- S • k.   Let  C be

the center of S. From J = S + S • k and k E Z, it follows that  C = S n Z.

But, by Theorem 2.10, S = C+ C • (e2 - ex) 4- C - ul/2 where u^ ES1/l(el) and

u\ E C.  Thus

/ = S 4- S • k = (C 4- C • k) + (C + C • k) • (e2 - ex) + (C + C • k) • ui/t

= Z + Z • (ez - e2) + Z • uVi

and by Theorem 3.3, Z is a periodic field.

Hence, from now on we assume (i) / is simple with the identity element

1, (ii) S is a simple periodic Jordan algebra of capacity 2, (iii) Z C_S.   Since

the sets of symmetric elements of the semisimple Jordan algebras Jx(e¡) (i =

1, e) form periodic fields, ̂ (e,.) (/ = 1, 2) are the Jordan algebras of the

following types:

(a) a periodic field,

(b) a direct sum of two periodic fields with exchange involution,

(c) a Jordan algebra of a nondegenerate symmetric bilinear form on a vec-

tor space over a periodic field.

We have the following possibilities:

Case (1) The J2(e¡) are periodic fields (same as Assertion 2).

Case (2) J^e^ is a direct sum of two periodic fields and /i(e2) is a

periodic field.

Case (3) Both JL(e2) and JL(e2) are of the same type (b).

Case (4) J^e^) is a direct sum of two periodic fields and /i(e2) is of

the type (c).

Case (5) Jx(e2) is a periodic field and Jx(e2) is of the type (c).

Case (6) Both Jx(ex) and /j(e2) are of the same type (c).

Assertion 4. Case (2) is impossible.

Proof.   In Case (2), there exist three orthogonal idempotents  1 = a 4- A 4- c

such that a* = A, a 4- A = ex, c = c* = e2. If we let / = Jx x 4- /22 4- /33 4-



JORDAN RINGS WITH INVOLUTION 131

/12 +/l3 +/23  be the Peirce decomposition of / relative to a, ft, and c,

such that

Al=/,(4 J22=Jl(P), h^J.ic),

Jl 2 " '%(*) n W),   J2 3 = «W ° JySP),    /j 3 - JySß) n J^C);

then /j 2 = 0 and /H (/ = 1, 2, 3) are periodic fields.  Since /^ (a + ft) n

/y2 (c) 2 £% (^i) n Sx (e2) =¡t 0, we have Jl 3 + J23 <£ 0.  But J13*0 if and

only if /23 = (/13)* =£ 0. Thus J13 * 0 and /23 # 0. If /^3 = 0, then

J13  is a nilpotent ideal of the semisimple Jordan algebra /x(a + c). Therefore

/23=¿0, and J\3 = (J]3)* ¥= 0. We can find xG/13  and vG/23  such

that xn = a + c and vm = ft + c for some positive integers n  and m.  Then

a and ft  are connected by an element in Jl 2  which contradicts Jt 2 = 0.

Assertion 5. Case (3) is impossible.

Í7-0O/    Let   J = Ju +^22 +^33 + ^44 +^12 +*^13 +*^14 + ^23 + ^24

+ /34  be the Peirce decomposition of / with respect to a, ft, c and d, where

1 = a + ft + c + d, a* = b, a + ft = ev c + d = e2, c* = d, J¡¡ are periodic

fields, Ji 2 = /y2 (a) n /^ (ft) = 0 and /34 = /y2 (c) n /% (<f) = 0. But /2 3 ¥= 0.

Otherwise /24 =/*3 = 0 and / = (Jll +J14 + ^44) + (J22 + ^23 + ^33)

contrary to the simplicity of /.   Similarly, J23¥= 0. Then by the same argument

in Assertion 4, a and ft  are connected in J12 = 0, which cannot happen.

Assertion 6. Case (4) is impossible.

Proof.   There exist four orthogonal idempotents a, ft, c, d such that a +

ft = e2, c + d = e2, J12 = JVl(a) n Jyi(b) = 0, Ja (1 = 1, 2, 3,4) are

periodic fields. By assumption,

Jy2(a + ft) njjfi +d)=J13 +/14 +/23 +/24 2Sy2(*l) n SvAe2) * 0.

Hence at least one of the J¡- ¥= 0. Without loss of generality, we let J13¥=0.

Then a and c are connected and so a and d are connected. This means

/14 =£ 0. If /23 = /24 = 0, then we have

/ = /22 + (/j j + /33 + /44 + /j 3 + /14 + /34)

contrary to the simplicity of /.  Thus, either /23  or /24  is not equal to zero.

But this implies a  and ft  are connected which contradicts /x 2 = 0.

Assertion 7. Case (5) is impossible.

Proof.  We can find three orthogonal idempotents a, ft, c such that a =

ev b + c = e2. Let

0 * UK e 5%(ei) n SM £ Ai (fl) n J*Q> + c) =/12 +/13
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Uv4=«124-Wl3G/124-/13

where u12 G/12, u13EJl3. We have u12  and ul3  both not equal to

zero, since u1/2  connects eL   and e2. Hence a, A  and c are connected idem-

potents. By Theorem 2.3 and Theorem 2.14, / is isomorphic to a 3 x 3  simple

Jordan matrix algebra over a / simple alternative ring  (D, j) with involution /:

x —*■ x where D is one of the following:

(i) a periodic field with involution,

(ii) a direct sum of two periodic fields with exchange involution,

(iii) a 2 x 2 matrix algebra over a periodic field with standard involution,

(iv) a Cayley-Dickson algebra with standard involution, and

/~

/  gV-    hv

g   P

A   q

g   p   qp  lv

w

f, g. A, p.q.wE D;

1 =f,P = P,~q=<l. ü = u, v = v\

such that

«12 =

0 m   0

1 0   0

0   0   0

and   w13 =

0   0   v

0 0   0

1 0   0

Hence

ul =

0 p   v

1 0   0

1    0   0

p 4-j; 0 0

0 M v

0       p   v

[M ']   hasand   \£    ^ES^b + c) should be invertible in 5!(A4-c).  But   [J

no inverse.  This proves Assertion 7.

Assertion 8. If J¡ (i = 1, 0) are both of the same type (c), then / is a

4x4 Jordan matrix algebra over a *-simple associative ring D which is one of

the following:

(1) a periodic field,

(2) a direct sum of two periodic fields,

(3) a 2 x 2 matrix algebra over a periodic field with standard involution.

Proof.    We know from Lemma 3.12 and Lemma 3.13 that /i(e,) either

contains interchanged orthogonal idempotents a¡, b¡ or Sjíe,-) (^Jl(e¡) = S¡¡

can be decomposed into Su = Su(+) + S¡¡(-) where   [Su: Sa(+)] =2. In this

second case, let k¡ be any invertible skew element in Jx(e¡) and s¡ G 5'j7(-).
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Then there exists m, n E Su(+) such that  (ms¡ 4- nk¡)2 = s2  for some s G

S¡¡(+) by Theorem 2.8. Hence J2(e^ contains orthogonal idempotents a¡ =

2_i _ 2-1(s-1msi 4- s~lnki) and b¡ = 2~l + 2~l(s~imsi 4- s~1nki). These

two orthogonal idempotents a¡ and b¡ (i = 1, or 2) might not satisfy a* =

Af.  But if we define (s+ 4- s_ 4- k)*' = s+ - s_ - k, then *' is a hew involu-

tion on Jn by Lemma 3.13 (1) and also a*' = bi. Therefore Jx(a^ and

Ji(b¡) are periodic fields.  It is clear that av a2,bvb2  are connected. Then

applying Theorem 2.3 and Theorem 2.14, we get the result.

Assertion 9. The associative ring D in the above assertion is a periodic

field with identity involution or both Ju contain interchanged orthogonal idem-

potents.

Proof.   We can find four orthogonal idempotents  a, b, c, d such that

a + b = ev c + d = e2  and

m np     pv qz

n   r    p  lsv   p  ltz

P   s

q t

w

X

V    1XZ
m, n, p, q, r, s, t, w, x, y E D) »

m m,r =r,w = w,y=y,p = p,v =v,z = z.

If both JH (i = 1, or 2) contain exchanged orthogonal idempotents then

we get what we want; if not, we might assume S21 = S^e^ nJ2(e2) =

*i i(+) + *iii") where   [S2,: Sx,(+)] = 2. Let s = [m     »»] G Sx x(-).

Then

s2 =
[m2 +nnp   (mn +np)p]

mn + np       nnp 4-  p2 J

which is the center of •/1(e1) and so (m + p)(m - p) = 0, (m + p)n = 0. If

m 4- p =£ 0, we have m = p,  n = 0 and s = [™    ° ] G S, x(4-) n Sj 2(-) = 0

which contradicts our assumption that s ¥= 0. So m =-p and s =

(»     ***)€ Sx !(-). We now claim (J?     "£)2 # 0.  If zero, then

r   .     r-«-M .,_,„-, ff» *] + p» °1)
[^-'m-'n 0 ([«    -wj      [0   mjj

G5 u

and
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[1 2~lm-1nß~

(2m)~in 0
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2_1w-1n

l  1m  '«jul

0      J

which contradicts the fact that every element in Sj l   is invertible in Ji j. Thus

w = [°     Tl # 0 connects a and ft. By Jacobson's coordinatization Theorem

2.14, there exists an isomorphism / such that

f(a) = H[l 1],     f(c) - '¿[33],     /(d) = H[44]

and

/(w)

'0   (i 0 0

10 0 0

0   0 0 0

.0   0 0 0.

Hence we can assume « = 1  and s = (m    J* ) GSU(-).    But

m     M1 1        -m j Vm     ß 1     Í0    -fc/z|

1    -ffîj     L-M"1'w    -J L1    ~m\    Ve      °J
= 0

where A; is an invertible skew element in D. Hence

*i- r '  ""I »d *, - r° -*i
J-/!"1»!      -lj jjfc       o

ft, = 0, thereare skew elements in Jx(e{). Since &2 ¥> 0 and fc2 # 0, fcj

exist   ftx, ft2 G5n(+) such that («j • kt +ft2 • A:2)2 = «2   for some «3 G

5j i(+). Hence we can find a skew element k3 = «J1. ht • fcj + «J1 • «2 •

fc2   suchthat k\ = \. This implies that  2~l(\-k3) and  2_1(1 + Ä:3) are

interchanged orthogonal idempotents. This contradiction arises when we assume

D contains an invertible skew element.  Hence D must be a periodic field with

identity involution if one of the ^(e,) (i = 1, 2) contains no interchanged

orthogonal idempotents.

Assertion 10. If both /jiej) and Jx(e2) are of the same type (c), then

it is impossible that both J^e^) and J2(e2) contain exchanged orthogonal

idempotents.

Proof.   Let 1 = ex + e2  and a, ft, c, d be orthogonal idempotents such

that a + ft = ev c + d = e2, a* = ft,  c* = d. Then
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/~

m np

n

p s

\_q t

pv qz

r    p  1sv   p  xtz

v~lxz
m, n, p, q, r, s, t, w, x, y E D)>

w

X V    J

m = m, r = r, w = w, y = y, p = p,v = v, I = z

where D is an associative ring listed in Assertion 8. Since   [Jt(a + c)]   =

J2 (b 4- d), D is a periodic field with identity involution.  Let

"0   0   v   0"| *     TO   0   0       0 "

0   0   0   0 0   0   0   p~ltz

10   0   0 0   0   0       0

.0   o   o   oj      [o f   0      0

Then

"i =

0 0 0 z

0 0 0 0

0 0 0 0

U o o oj

0   0 v      0

0   0 0 u~xtz

10 0      0

0   t 0      0

ro o    o    o'

0   0   m~xp   0

0   s        0      0

0   0 0       0.

0   0 0 z

0   0 su~lv 0

0   s 0 0

.10 0 0_

= «-,

are two symmetric elements in Sy2(e2) n SVl(e2). Since S is a simple periodic

Jordan ring by our assumption and ui,u2ESV2(el)C\SVl(e2),ui -u2¥=0 by

Theorem 2.10. By multiplication,

1
"l '«2 = 2

0 vs + tz

u~l(tz+sv)       0

0 0

0 0

is an element of /12 4-/34.  Since

0

0

0

(tsp-1 + l)v

0

0

z(\ +su~1t)

0

*0
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«? =

> 0 0 0

0 t2u~lz 0 0

0 0 v 0

0 0 0 t2u-*zj

S,      v = t2ß~lz

Thus vs + tz = 0 implies rs«-1 + 1 - t(- tz/v)ß-1 + 1 = 0. Also tsu~l +

1 = 0 implies vs + tz = v(- ß/t) + tz = 0. Therefore S n Jl2  and S n J34

are both nonzero.  But J12  and /34  are both one-dimensional over the center

and Jl2 C/j j, ^34Ç/34  and also the center Z of J is contained in S by

our assumption, so /j 2 and /34  consist only of symmetric elements.  Then

S = Z + Z'(el-e2)+Z'

0    D v 0  "

0   0 0 M-1rz

10 0 0

.0   t 0 0  J

+ Z.

0 0 0 z"

0 0 sß~1v 0

0 s 0 0

LI 0 0 0.

+ z

Ö   m 0 Ö"

10 0 0

0   0 0 0

Lo  o o o.

+ z

"0 0 0      0 "

0 0 0      0

0 0 0 v~lz

.0 0 1       0

is six-dimensional over Z. But by Theorem 2.10, S is 3-dimensional over the

center F of S.   Thus F is two-dimensional over Z. Since  «2 GS^fej) and

y2 G Z, we can find an element heF such that ft2 = - u2. Then

[ft • (gj - e2)+ u2]2 = ft2 + tz2 = 0 which contradicts the fact that S is periodic.

The following two examples show that / can be a 4 x 4 Jordan matrix

algebra over a periodic field.

Example (1). Let
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/ =

tn n 2p q

n r 2s t

p s w 2x

ß t x y_

m, n, p, q, r, s, t,

w, x,yeZ3 = {0, 1,2}|

*,(+)

*a(-> =

10    0 0

0     10 0

0     0     0 0

0    0    0 0

12 0 0

2-100

0 0 0 0

0      0      0    0

0 0 0     0

0 0 0     0

0 0 0     2

0 0 10

0       0-2   1

0 0 10
-12     0    0

1 0     0    0

0

1

0

0

*,(-) =

s2(+)

k2 =

110 0

1-10 0

0        0        0 0

0        0       0 0

0 0 0      0

0 0 0      0

0 0 10

0 0 0      1

0 0 0       0

0 0 0        0

0 0 10

0 0 0-1

-1

0

0

0

2

1

0

0

Then the elements listed above form a basis of / over the center D. If we

define an involution  * on / suchthat sx(+), s^-), s2(-), uv u2  and the

center D are symmetric, kv k2, vt   and v2  are skew, the set of symmetric

elements forms a simple periodic Jordan algebra of capacity two. We also notice

that J^ej) has no interchanged orthogonal idempotents and Jy(e2) contains

two interchanged orthogonal idempotents in Example (1).

Example (2). Let

/ =

m n p q

n r s t

p   s   w  x

L7 * x y

m, n, p, q, r, s, t,

w, x,yeZ3 = {0,1,2} j
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and D be the center.  Then

íj.(+)

k, =

*2(-) =

1 0     0

0 10

0 0     0

0 0     0

1 2

2 -1

0 0

0 0

0

0

0

0

0 0

0 0

0 0

0 0

0 0 0      0

0 0 0      0

0 0 11

0 0 1-1

0 0 0     1

0 0 2     1

0 2 0     0

110     0

0 0 10

0 0-21

1-200

0      10     0

*l(-) =

*a(+) =

*-> =

110 0

1-10 0

0       0       0 0

0      0      0 0

0 0 0     0

0 0 0     0

0 0 10

0 0 0     1

0 0 0      0

0 0 0      0

0 0 1       2

0 0 2-1

0 0 2 2

0 0-20

2-200

2      0      0      0

0 0 12

0 0 0 1

10 0 0

2     10     0

form a basis of J over D.  We define  * on / suchthat s2(+), s2(-), s2(+),

s2(-), Mj, u2  and D are symmetric elements, k2, k2, v2   and v2  are skew

elements. Then the symmetric part forms a simple periodic Jordan algebra of

capacity two.  In this example both /i(ej) and J2(e2) contain no interchanged

orthogonal idempotents.

5.  General theorems.  In this section, we prove our Main Theorem stated

in the abstract.

Theorem 5.1. Let S be periodic and TV be the Jacobson radical of J.

Then TV = rAe prime radical of J = rAe intersection of all  *-prime ideals of J.

Proof.   Since   TV   contains no idempotent, TV n S = 0.   But   TV* C

TV.  This gives us TV2 = 0 and TV is the maximal nilpotent ideal of /. There-

fore TV = the prime radical of / by Theorem 2.6.  Let the prime radical be

R(J) = D as/ Pa where { Pa}aEiI is the collection of all prime ideals of / and

let Q(J) be"the intersection of all  *-prime ideals of /. Then from Theorem

4.1 any *-prime ideal / is either prime or / = P n P* where P is prime.

Thus any *-prime ideal /3/?(/) and so Q(J)2R(J)- But R(J) = na<EIPa

= nae/ (Pa n P* ). Thus R(J) 2 Q(J)- This implies R(J) = Q(J) = TV:

Theorem 5.2. Let S be periodic and TV Ae the Jacobson radical of J.  Then
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N   = 0 and J/N is a subdirect sum of rings of the following types:

(i) a periodic field with involution,

(ii) a direct sum of two simple periodic Jordan algebras interchanged by

the involution,

(iii) a 4 x 4 Jordan matrix algebra over a periodic field,

(iv) a 3 x 3 Jordan matrix algebra over a periodic field,

(v) a Jordan algebra of a nondegenerate symmetric bilinear form over a

periodic field.

Proof.  We have shown that N is the intersection of all  *-prime ideals,

and so J/N is a subdirect sum of *-prime Jordan rings with periodic symmetric

elements. If we can show all these  *-prime Jordan rings are of characteristic not

two, then we can apply Theorem 3.14, Theorem 4.8, Theorem 4.9 and Theorem

4.10 to get the above result. The proof of characteristic not two is just the same

as the proof in the associative case.  See Osborn [3].
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