
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 200, 1974
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ABSTRACT.   For recursively enumerable sets A   and H of natural

numbers H is a deficiency set of A  if there is a one-one, recursive function

/ with A = Rng(/) and H = {í: (3/)[i < / & f(j) < /(/)]}.  The relation be-

tween recursively enumerable sets and their deficiency sets under bounded in-

formation reducibilities (i.e. weak truth table, truth table, bounded truth table,

many-one, and one-one reducibility) is investigated.

If a0, al, • • • is a 1-1, recursive enumeration of an r.e. set A then Ha =

{i: (3/)[/ </ & a¡ < a¡]} is called a deficiency set of A. Deficiency sets were

introduced by Dekker [2] who showed that Ha must be hypersimple or recur-

sive and that A and Ha are Turing equivalent. We are concerned with the re-

lationship between r.e. sets and their deficiency sets under stronger, "bounded

information" reducibilities introduced in Post [11] and Friedberg and Rogers

[4]. We show that r.e. sets can have weak truth table incomparable deficiency

sets or may be many-one equivalent to each of their deficiency sets. We show

that weak truth table incomparable r.e. sets can share deficiency sets while one-

one equivalent r.e. sets might not. We then improve these results using degree

restricting techniques introduced in Soare [15], Yates [17], and below in §1.

Drawing on work of Ladner [7](2) we show, in most cases, that our degree restric-

tions are best possible. We also improve the results making use of Robinson's

[13] dichotomy of the r.e. sets into high and low sets and of Rice's [12] notion

of enumerability in the same order.

§ 0 is devoted to preliminaries including a brief survey of elementary results

concerning deficiency sets, grades of simplicity, and high and low sets.  In § 1 we

introduce the methods used in many of the proofs to follow and we consider re-

ductions between sets and their deficiency sets and deficiency subsets.  In §2 we
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consider r.e. sets with incomparable deficiency sets; in §3 we consider incompar-

able r.e. sets with shared deficiency sets, and in §4 we consider "self-deficient"

sets and r.e. sets with many-one equivalent deficiency sets.

0. Preliminaries. N denotes the set of natural numbers { 0, 1, 2, • • •}

and upper case Latin letters except for D, H, and W will be used as variables

ranging over subsets of N. Lower case Latin letters will range over the natural

numbers as well as over natural number functions of arbitrary dimension, the

distinction being left to context.  Subscripts will be used freely.

We adopt the following special conventions regarding finite sets: A [k] =

{n: n e A & n < k}.  \A\ denotes the cardinality of A.  If n = 2*1 + 2k2 +

... + 2km  where ki < k2 < • • • < km  then Dn = {kv k2,---, km}. D0 =

0. « is called the canonical index of Dn.   UDn = U{Dm: m ŒDn}.

We assume a fixed, standard enumeration of the unary, partial recursive

functions (prfs) and let <pe denote the eth prf. We use <¿>e to denote the prf

obtained from <pe by allowing at most t steps in computations under some

fixed, standard step-counting procedure. We assume that ipfe(n) is divergent (dgt)

when t < n and that <pe+ ' (w) is convergent (cgt) when ^(n) is. We use  We

to denote Dom (y>e), call  We the eth r.e. set, and call e an r.e. index of We.

We use  W*9 to denote Dom (<¿£) whence W% C W¡ Q-• • ,We= ötWfe, and

Wg C {«: n < r}. We call a one-one recursive function a an enumeration of

its range and often write a¡ for a(i). We use the recursive, one-one, pairing

function <•, • > with projections ( • )0 and ( • )j  given by <tn, n) = 2m(2n + 1)

— 1  and (<m, n))0 = (<w, m))1 = m for all m and «.

The notions of deficiency set and deficiency subset with which we are con-

cerned derive from notions introduced in Dekker [2]. We define the deficiency

set Ha of an enumeration a by Ha = {/: (3/)[/ </ & a¡ < a¡]} and we define

the deficiency subset H* by H* = {i¡: i S Ha }. We use recursive approximations

to Ha and H* defined by

Hka = {/: (3/)[/ <j<k&a.< a.]}     and      (/#* = {«,: / G H«}.

(Note that, in general, H**Ha[k]   and (#£)* ^H*[k].) Ha (H*) is called

a deficiency set (subset) of Rng (a).

Dekker's purpose in introducing deficiency sets, showing as he did that Ha

and Rng (a) have the same degree of unsolvability and that Ha is hypersimple

when Rng (a) is not recursive, was to exhibit a "natural" hypersimple set in

each r.e. degree > 0.  Recall that Post [11] defines (hyper)hypersimple sets as

those co-infinite, r.e. sets which contain at least one member of each disjoint

(weak) array.  (Here a disjoint (weak) array is an infinite set of pairwise disjoint

finite sets such that the set of their canonical indices (a set containing exactly



DEFICIENCY SETS, BOUNDED INFORMATION REDUCIBILITIES 269

one r.e. index of each) is r.e.) Yates [16] has shown that deficiency sets cannot

be hyperhypersimple by showing that hyperhypersimple sets cannot have retrace-

able complements while, as shown by Dekker and Myhill [3], deficiency sets

always have retraceable complements.  (A co-r.e. set B = {b0 < b1 < • • • } is

retraceable if there is an rf g such that g(b0) = b0 and (Ví)[íf(¿,-+i) ■ b¡].)

Martin [8]   and [9] defines two intermediate grades of simplicity, dense-simple

and supersimple (also called finite strongly hypersimple), only the first of which

is possible for deficiency sets.  His definition of supersimplicity is parallel to

Post's definition of hypersimplicity but with respect to arrays enumerable by

characteristic indices rather than canonical indices.  Martin observes that Yates'

proof that hyperhypersimple sets cannot have retraceable complements is easily

modified to apply to supersimple sets. Martin's definition of dense-simplicity is

parallel to an alternate definition of hypersimplicity due to Rice [12].  Rice shows

that a co-infinite, r.e. set is hypersimple just if its complement is not dominated

by any rf. (A function g dominates a function /if {n: g(n) </(«)} is finite

and a set A dominates a set B if the principal function of A, the function

listing A in increasing order, dominates principal function of B.) Martin [9]

calls co-infinite, r.e. set dense-simple if its complement dominates every recursive

set. He shows in [8] that hyperhypersimple sets are dense-simple. (Dense-simple

sets are clearly hypersimple by Rice's definition.)  Robinson [13] shows that

deficiency sets can be dense-simple by showing that his high sets have only

dense-simple deficiency sets. He also shows that his low sets can have dense-

simple deficiency sets. It follows that "thickness" of deficiency sets is not a

reliable measure of how fast initial segments of an r.e. set can be captured by an

enumeration.

Robinson's [13] notion of high and low for r.e. sets is, as he shows, a re-

liable measure of the speed with which initial segments may be captured, initial

segments of low sets being more quickly capturable than initial segments of high

sets. With any recursive function / such that, for all m < n, D^,m^ Ç ö«„j

he associates a computation function c for the r.e. set A = ^mDf,m\ defined

by c(k) = the least m with A[k] = D^m^[k]   (i.e., c(k) is the least "stage"

at which all elements of A [k]  have appeared). Clearly A is recursive just if c

is dominated by some recursive function. Robinson calls A high if c dominates

every recursive function and calls A low otherwise. He shows that the notions

are well defined by showing that all computation functions for A dominate all

recursive functions if any does.  He also shows that A <^ B cannot hold if A

is high while B is low and that high sets appear in just those r.e. degrees with

jump 0". In proving the latter he makes use of Martin's proof [9] that dense-

simple sets are contained in just such degrees.  Robinson [15] also shows that

low sets appear in all r.e. degrees.  This follows (although he uses a direct construe-
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tion) from the observation that co-retraceable, r.e. sets (deficiency sets in parti-

cular) are low. To see this let / and c be as above and suppose A   is retraced

by a recursive function g. Then let h and k be recursive functions such that

n + 1 < |N - (Df(n))[k(n)] | for each n while g retraces N - (D^ny)[k(n)]

for each n. It follows that D^n^[n] = A(n) for each n&A whence A is

low.

As stated in the introduction we are concerned with the relation between

r.e. sets and their deficiency sets under "bounded information" reducibilities.

By bounded information reducibilities we mean one-one, many-one, bounded truth

table, and truth table reducibility as introduced by Post in [11] and weak truth

table reducibility as defined by Friedberg and Rogers in [4]. We refer to these

reducibilities as 1, m, btt, tt, and w-reducibility respectively and we denote by

< with the appropriate subscript the partial ordering of the r.e. sets induced by

each reducibility.

We refer the reader to Friedberg and Rogers [4] for a detailed account of

these reducibilities as they apply to r.e. sets. Intuitively we think of a reduction

of an r.e. set A to an r.e. set B as affected by an rf g which gives correct in-

formation about A based on knowledge of B. As a 1- or m-reduction we say

that g(n) succeeds for B if g(n) &B. As a btt- or tt-reduction we say that

g(n) succeeds for B if (3 k)[k G Dgtn) &Dk=B n ÖDg^]. As a w-reduc-

tion we say that g(n) succeeds for B if (3k)[k G£>(g(„))   n W(g(H\\. &

Dk =B n U £>(£(„))]. Then A is m-, tt-, or w-reducible to B if there is an

rf g such that (Vn)[n EA **g(n) succeeds for B]   where "succeeds" is inter-

preted appropriately. A is I-reducible to B if A is m-reducible to B by a

one-one rf. A is btt-reducible to B if A is tt-reducible to B by an rf g for

which there is a uniform bound b such that  |Up_/„\| < b for all n.

Notice that in all but the w-reducibility case we can determine from knowledge

of B whether or not g(n) succeeds for B. In the w-reducibility case g(n) may

"fail" for B relative to  ^(«v),  while succeeding relative to  ^(g(n)).- Hence

in stage-by-stage constructions to follow, when at a stage t we speak of failure

in the sense of w-reducibility we intend the obvious restriction.

It is easy to verify for any enumeration a of any r.e. set A that H <tt A

and that Ha<m H*^ A. We will illustrate the methods introduced in §1 by

arguments designed to show that Ha is not generally btt-reducible to A and that

H* is not generally tt-reducible to A. On the other hand, it follows from work

of Jockusch in [5] that Ha <„, A when A is co-retraceable. This result will

be useful in §4, Theorem 9 where we construct an r.e. set A m-equivalent to

each of its deficiency sets.  In the other direction, Dekker [2] shows that any

r.e. set is Turing reducible to each of its deficiency sets. Robinson's proof in [13]

that high sets are never w-reducible to low sets together with our observation that
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deficiency sets are always low show that r.e. sets are not generally w-reducible

to their deficiency sets. Also Post's [11] proof that hypersimple sets cannot

be tt-complete is easily modified to show that hypersimple sets  cannot  be

w-complete.

1. Reductions between sets and their deficiency sets.  In §4 of [14] Sacks

formalizes the combinatorial aspect of a class of finite injury priority constructions.

In Sacks' formalism a requirment is an effectively open set in the Cantor topol-

ogy on 2N and a set A Q N meets a requirement by lying in the correspond-

ing open set. In Sacks' constructions each condition to be satisfied by the set

A being enumerated is associated with a single requirement which, if met, en-

sures that the condition is satisfied.  The enumeration of requirements together

with the enumeration of A  is designed to ensure that nonvacuous conditions

have requirements which are met.

With the exception of Theorems 8 and 9 our constructions could employ

Sacks' combinatorial formalism although our conditions would need to be as-

sociated with several requirements each of which would have to be met to

ensure a nonvacuous condition.  In the bounded truth table and truth table

constructions two requirements are needed per condition; in the one-one and weak

truth table construction three requirements are needed; and in the construction

for Theorem 10 ñola priori bound exists on the number of requirements needed

by a given condition. In this last case a variable assignment of requirements to

conditions is needed but the assignment settles down because each condition needs

only finitely many requirements. We will not employ Sacks' formalism in our

constructions because intuition is better served by another approach.

In [15] Soare gives sufficient conditions for completeness of a set enum-

erated in a Sacks' construction. We apply his completeness criterion in Theo-

rems 4, 6, 7 and 10 to show that complete sets with the indicated properties

exist. In [15] Soare also shows how to apply the permitting method introduced

in Yates [17] to any Sacks' construction to push down the degree of the result-

ing set.  In applying this method when conditions are associated with several

requirements care must be taken first to ensure that each condition requires

only finitely many requirements and second to ensure that requirements of a

nonvacuous condition are met in the correct order.  Both considerations can be

met in the one-one, bounded truth table, truth table, and weak truth table con-

structions to follow but the first consideration cannot be met in the construc-

tion of Theorem 10. In the bounded truth table and truth table constructions,

partly because each condition needs only two requirements the first of which is

highly flexible, a combination of permitting and coding which we call trapping

may be applied to give the resulting set any desired r.e. degree > 0.

In our constructions each condition will have a unique natural number
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index and lower numbered conditions will be given higher priority. The con-

structions are conceived in stages with each stage devoted to a single condition.

(We will systematically confuse stages with stage numbers.) At any stage some

earlier stages may be designated as invalid.  A stage is valid until (if ever) desig-

nated invalid and is invalid thereafter.  Some sequences of currently valid stages

devoted to the same condition will be called attacks on that condition and the

first stage in an attack will be called an initial attack on that condition.  Circum-

stances will be given under which a condition needs an initial attack and under

which an existing attack needs attention.  An attack which needs attention will

continue to need attention until (if ever) it receives attention or is invalidated.

A condition is said to need attention if either it needs an initial attack or it has

an attack needing attention.  In the latter case the condition is said to need at-

tention through the attack.  In constructions which employ permitting or trap-

ping we may be prohibited from giving attention through a particular attack but

modulo such prohibitions we devote each construction stage to the highest pri-

ority condition in need. An attack is said to win if it never needs attention and

if none of its stages ever becomes invalid. Proving that a construction works

entails showing that each condition has a winning attack.

A basic construction is one in which neither permitting nor trapping is

employed. At a basic construction stage we automatically designate as invalid

all earlier stages devoted to lower priority conditions. In a basic construction

a condition needs an initial attack if and only if it has no current attacks (hence

a condition has at most one attack at a time). We devote a basic construction

stage to the highest priority condition needing attention. Hence proving that a

basic construction works entails showing that any attack whose stages are never

invalidated has a winning extension (perhaps itself).

In all constructions a top-marking function m(t), nondecreasing in stages

t, is used to prevent initial attacks from interfering with existing attacks. (m(t)

may be viewed as incorporating all "restraints" needed to protect existing attacks.)

An initial attack at stage t entails putting number(s) larger than m(t) into the

set A being constructed and/or designating other numbers larger than m(t) as

followers of this attack (perhaps to be put into A at stages extending the attack).

m(t + 1) is then taken to be the maximum of all followers, all numbers put into

A, and all "restraints" necessary to preserve this attack. Extending (i.e., giving

attention to) an attack at stage t entails putting some followers of that attack

into  A   and  defining  m(t + 1) to exceed all "restraints" now needed to pre-

serve the attack.

In order to show that a set A enumerated in a basic construction is com-

plete it suffices (cf. Soare [15, Theorem 2]) to find for each e, a condition

whose winning attack contains a single stage if and only If e £ W.. It follows
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that e £ We if and only if there is a stage t devoted to an initial attack on

this condition and such that no number below   m(t + 1) enters A  after stage

t. (Recall that in basic constructions attention goes to the highest priority con-

dition in need.)

In applying permitting or trapping we suppose we are given an enumeration

b of a nonrecursive, r.e. set B. We let Bt = {b¡: i < t} and we let A* denote

the set being constructed as constituted prior to stage t. In permitting we ensure

that At+l[bt] =At[bt]   for each t. It follows for each n that A[n] =At[n]

if B[n] = B*[n]  whence A ^ B and a fortiori A < B.

In applying trapping we use a partial coding function c(n, t) to code B

in A  and to restrict changes in A  modulo b. At each stage t, c(n, t) will

be defined on a finite initial segment with c(0, t) = 0 and c(n, t) < c(n + 1, t)

if c(n + 1, t) is defined.  If c(l + bt, t) is defined it will enter A at stage t,

c(n, t + 1) will be undefined for all m > 1 + bt, and c(n, t) = c(n, t + 1) for

all n < 1 + bt. If c(l + bt, t) is not defined then c(n, t) = c(n, t + 1) for

all n with c(n, t) defined and c(n, t + 1) may (or may not) be defined for

the least n with c(n, t) undefined. (All other c(n, t + 1) will be undefined.)

There will be infinitely many stages t with c(l + bv i) undefined at which a

new value c(n, t + 1) will be defined. It follows (since b is 1-1) that for each

n there is a single value taken by c(n, t) at all sufficiently late stages t. Hence

for each   n   there is a stage   t   with   c(n + 1, r)   defined and with

A[l+c(n + l, t)] =A*[1 + c(n + 1, f)]. It follows that B[n + 1] =Bf[n + 1]

whence, since the construction is recursive, B <T A. Also for each m there

is a stage / and an n such that c(n + 1, r) is defined, m < c(n + 1, r), and

£[n + 1] =B*[n + 1]. It follows that A[l + c(n + 1, t)] =At[l + c(n + 1, /)]

(in particular m EA if and only if m G ̂ 4') whence, since the construction is

recursive, A <r B. (We will in fact have that c(n, t) < c(n, t') when both are

defined and t < t'. From this it follows that A <^ B.)

We begin each proof with a basic construction to illustrate the combinatorial

devices needed to satisfy the conditions. We then indicate how to apply Soare's

[15] completeness criterion and permitting or trapping where possible. Theorem 1

is meant to serve as a paradigm basic and trapping construction.   Theorem 4

is meant to serve as a paradigm completeness and permitting construction.

Theorem 1. Every r.e. degree > 0 contains an r.e. set A with a defici-

ency set H not btt-reducible to A.

Proof.  We define an enumeration a of an r.e. set   A such that Ha

4^ti A.  We define at   at stage   t and let A* = {a¡: i < t}. We take as our

<n, b)th condition that ipn not be a tt-reduction of Ha to A with bound b.

If stage t is an initial attack on this condition we let m(t + l) = at = m(t) +
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b + 1. We designate all numbers between m(t) and at as followers of this

attack. If at stage t' > t we find that v?„(r) succeeds for N — (A* ) while

lU^ ,A<b then one of these b followers may be used to put t in Ha

without changing the success of <¿>„(r) for A. We say that such an attack in-

itiated at stage t needs attention at stage t' > t if it has not received attention

at any intermediate stage (i.e., at any stage t" with t < t" < t') and if V„(t)

converges while  \UD¡Pn(t-)\ < b. Such attention is given in one of two ways.

If <¿>„(r) succeeds for N - (A* ) then we let af- be the largest follower of

this attack not in   UD^n(r). If <¿>„(r) fails for N- (A*') we let at> = 1 +

Max({m(r')}uUD^(r)). In both cases we let    m(t' + 1) « 1 +

Max({m(r')}uU^„(f)).

Under these circumstances of needing attention and the basic construction

rules for giving attention to the highest priority condition in need each condi-

tion will have a winning attack.  If the winning attack for the <n, Z>>th condition

contains a single stage t then <¿>„(f) diverges or \\jD{Pn^\> b. If this attack

has two stages t <t' then either ipn(t) succeeds for N — (A* ) and t &Ha

(because at'<at) while y?„(0 succeeds for A or <pn(t) fails for TV- (A*)

and t & Ha (because at < nz(r') < at>) while ip„(r) fails for A. (In both

cases success or failure for A is ensured by the definition of m(t' + 1) and

the continued validity of stage ?'.) In any case <pn is not a tt-reduction of Ha

to A with bound b.

In applying trapping to this construction we may need to define more

than one value of a at a given stage. We use a marking function /(f) defined

as the least i with a¡ undefined prior to stage t. We let At = {a¡: i </(f)}.

(If stage / is devoted to an initial attack then only one value, a-,ty will be

defined whence any extension of this attack will be used to put j(t) in or out

of Ha.)

For any two attacks the one initiated at the earlier stage is said to be

earlier than the other. It is important to observe that by use of the top-marking

function m(f) we ensure that all followers of an earlier attack precede all fol-

lowers of a later attack. We wish to keep all followers of a given attack either

above all defined coding markers e(n, t) or between a consecutive pair c(n, t)

and c(n + 1, t) of coding markers. If all of an attack's followers are between

c(n, i) and c(n + 1, r) we say the attack is in the nth trap.  It follows from

preceding observation that earlier attacks will be in equal or lower (numbered)

traps. We will ensure when defining c(n + 1, t + 1) that the nth trap contains

an attack for each condition of priority higher (lower index) than n + 1.

It is necessary to ensure in trapping constructions that an attack needing

attention continues to need attention until attended to or invalidated.  It is

also necessary to ensure that if any attack on a condition needs attention then
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all earlier attacks on that condition (which are still valid) also need attention.

We do so by stipulation.

A condition needs an initial attack at stage t if each of its current attacks

is in a trap. An attack on the  <n, b)th.   condition initiated at stage t needs

attention at stage t' if ^0(0) is defined, lU-D^ (/(f»l < b, it has not re-

ceived attention at any intermediate stage, and all current, earlier attacks on the

<n, W'th   condition need attention.

Let an enumeration ft of a nonrecursive, r.e. set B be given.

Case 1: c(l + bt, t) is defined.  Let a«fj = c(l + bt, t) and consider

invalid all stages in all attacks not in the &fth   or lower traps. If some attack

in the btth   trap needs attention let the <n, Wth   be the highest priority con-

dition with such an attack. There will be only one such attack for the (n, b)th

condition and this will be the earliest attack in the btÜi   trap needing attention.

If this attack was initiated at stage t' and if <£„(/(/)) succeeds for N —

(A* U {«/(f)B then let ß/(r)+i be the largest follower of this attack not in

U£,v„0(f'))- If ^G"0')) fails for N - (A* U {«/(f)B do not define <z/(f)+1.

In either event let m(t + 1) = Max({m(f)} U Uö^ytt'))). If no attack in the

btth trap needs attention do not define a¡(t)+i  ^ let m(í + 0 = m(f)-

Case 2: c(l + bt, t) is not defined.  Let the <n, b)th   be the highest

priority condition needing an initial attack. Let m(t + 1) = tt»tt\ = m(t) + b + 1

and designate all numbers between m(t) and a,,t>. as followers of this attack.

If k is minimal with c(k + 1, t) not defined and k < <n, b) then define

c(k + 1, t + 1) = m(t + 1) + 1. Otherwise leave c(k + 1, t + 1) undefined.

By arguments in the basic construction any condition with a winning

attack is satisfied. This is so because success or failure in case of a two stage

winning attack will be protected by the top-marking function against all attacks

in higher traps than the trap of the winning attack and attention to attacks in

lower traps would have invalidated this winning attack. We are thus left with

showing that each condition has a winning attack.

If some condition has no winning attack let the <n, b)th   be the highest

priority such condition. We know that all but the first <n, b) "permanent traps"

will contain attacks on the  <n, b)th   condition which are never invalidated and

which need attention at all sufficiently late stages. Hence modulo B[<n, b)]

and winning attacks on higher priority conditions we can conclude that B[k] =

Bt[k\   for kXn, b) if c(k + 1, f) is defined and the fcth trap has an attack

on the <n, b)th   condition which needs attention. This is so because all traps

between the in, b)Xh   and the fcth will then contain attacks on the <n, b)Ûi

condition which need attention and this need will be persistent.  Then the small-

est number k' with <n, bX k' < k to enter B after stage t would lead to a

winning attack on the <n, ¿>>th   condition.   But given that   B[<n, b)] =
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B*° [<n, b)]   and that no condition of priority higher than the <n, ¿>>th   has an

attack extended after the stage t0 such a stage t > tQ can be found for each

k. Since this is contrary to the hypothesis that B is not recursive all conditions

must have winning attacks.      D

Theorem 2. Every r.e. degree > 0 contains an r.e. set A with a deficiency

subset H* not tt-reducible to A.

Proof.  We define an enumeration a of an r.e. set A such that H% «$tt

A.   Since we will not add numbers to A at some stages we let /(f) be the least

i with a¡ undefined prior to stage t and let A* = {a¡: / </(f)}. We take as

our eth condition that <pe not be a tt-reduction of H* to A. If stage t is an

initial attack on the eth condition we let m(t + 1) = m(t) + 2 and designate

m(t) + 1  and m(t) + 2 as followers of this attack.  In extending this attack

we will put both followers into A and depending on case we may or may

put the larger follower,  m(t) + 2, into H*. We say that such an attack initi-

ated at stage t needs attention at stage f' > t if it has not received attention

at any intermediate stage and if v^ Qn(t) + 2) converges. In giving such atten-

tion we distinguish between cases where ipe(m(t) + 2) succeeds and fails for

A* U {m(t) + 1, m(t) + 2}. In case of success we let a^t^ = m(t) + 1  and

fl/(/')+i = mW "*~ 2 and hi case of failure we let ttut'\ = m(t) + 2 and fl,(r')+1

= m{t) + 1. In either case we let m(t' + 1) = Max({m(f)}U Uz>,¿,e(nz(í) + 2)).

Now in a single stage winning attack on the eth condition, say at stage t,

we have that tpe(m(r) + 2) diverges. In a two stage winning attack, say at

stages t < t', we have either that m(t) + 2 éH* while <¿>e(m(r) + 2) succeeds

for A or m{t) + 2 G77* while ye(m(t) + 2) fails for A. In any case <pe

is not a tt-reduction of H* to A.

Applying trapping in this construction is completely analogous to its

application in the proof of Theorem 1. The need for attention persists auto-

matically, we stipulate that the need for attention progresses through earlier to

later attacks, and we define new coding markers when enough initial attacks

have been made.  In distinguishing the success and failure cases at stage t' we

again include c(l + bt<, t') in A.     D

Recall from the preliminaries that for any r.e. set A with enumeration a,

Ha <(t A and H* ^ A. Theorems 1 and 2 show that, relative to any r.e.

degree > 0, this is the best that can be counted on.

2. Incomparable deficiency sets. We will show in this section that an r.e.

set may have w-incomparable deficiency sets and deficiency subsets, that 0'

contains such a set, that every r.e. degree > 0 has a predecessor > 0 containing

such a set, and that in the case of tt-incomparability every r.e. degree > 0 con-
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tains such a set.  We know from previously cited work of Ladner that these

degree restrictions for w-reducibility are best possible. Theorem 4 of this section

serves as a paradigm permitting construction and application of Soare's complete-

ness criterion.

Recall from the preliminaries that Ha <„, H* for any enumeration a.

Following a suggestion of R. W. Robinson we use this to obtain the deficiency

set and deficiency subset results simultaneously.  Specifically we obtain enum-

erations a and a' of an r.e. set A such that Ha ^t H*> and Ha> ̂ t H*

and similarly for w-reducibility.  It follows that Ha and Ha< are incomparable

as are H* and H¿ since if, for example, Ha <jt Ha> then Ha <tt Ha< <„,

Äj whence Ha <,t /#.

Theorem 3. Every r.e. degree > 0 contains an r.e. set A with enumer-

ations a and a  such that Ha *£tt H* and H¿ *£tt //*.

Proof. We find values of a and a' simultaneously so that {a¡: i </(f)}

= {a'¡: i </(f)} at each stage t. (Here as before /(f) is the least i with a¡

undefined prior to stage t and A* = {a¡: i </(f)}.) We take as our 2eth con-

dition that ipe not be a tt-reduction of Ha to H*> and as our (2e + l)st

condition <pe not be a tt-reduction of Ha< to H*. If stage t is an initial

attack on the (2e + fc)th  condition (where k < 1) we put 4m(t) + 1  and

4m(t) + 3 into A by defining

«/<o+*=4m«+1 = <(o+(i-*) and a/(r)+(i-*)=4mw+3 ■ «;<,>+*■

We designate 4m(i) + 2 and 4wz(r) -I- 4 as followers of this attack and define

m(t + 1) = m(t) + 4. If k = 0 we have put 4m(t) + 3 = aj(t) into ^*. while

keeping ;'(r) + 1  out of Ha. At a later stage we may put either follower

4m(t) + 2 or 4m(t) + 4 into A with the same effect on H*< but with the

effect of putting ;'(r) + 1 into Ha only in the first case. (Similar remarks

apply if k — 1.) We say that this attack needs attention at stage t' > t if it

has not received attention at any intermediate stage and if <pl(j(f) + 1) con-

verges. Again we distinguish two cases. If <pt(](f) + 1) succeeds for TV —

(0<P)*U {a'i-.jif) + Ki<j(t')}) we put 4m(t) + 2 in A by defining

ûy(f-) = 4m(r) + 2 = a'j(t'y Otherwise (i.e. in case of failure) we put 4m(t) + 4

into A by defining a,,t^ = 4m(t) + 4 = a',/t'y In either case we let m(t') ■

Max({m(/)}uU^e(/(f)+1)).

Now in case of a single stage winning attack we have a divergence of <pe

as in Theorem 2. In case of a two-stage winning attack, say on the 2eth con-

dition, containing stages t < t' we will have put /(f) + 1  into Ha only in the

case of success while in either case, we will have ensured that H¿ [m(t' + 1)] =

(///(?'))* y {aJ.: fifi + i < / </(i')} since stage f' is valid at all later stages.
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It follows that <pe is not a tt-reduction of Ha to //*-.  Similar arguments

apply to odd numbered conditions.

The application of trapping to this construction is again analogous to its

application in Theorem 1.      D

Theorem 4. Below every r.e. degree > 0 there is an r.e. degree > 0

containing a set A with enumerations a and a' such that Ha ^w //"*- and

Ha, ^w H*. Furthermore, 0 ' contains such a set.

Proof.  We proceed as in Theorem 3 except that a two stage attack may

need attention when success and failure are taken in the sense of w-reducibility.

Specifically, if at stage t' of a two stage attack, say on the 2eth condition, con-

taining stages t < t' we find that <pe(j(f) + 1) fails for N - ((ffjV>)* u

{a'¡: j(t) + 1 < i </(f')}) and proceed as in Theorem 3 we may find at a stage

?" > t' that, owing to a change in W^ (/(r)+i)),> <Pe(j(t) + 1) now succeeds for

N - ((Hiy))* U {«¡: /(f) + 1 < /</(/)})• Fortunately, we still have 4m(f) +

2 which may be put into A thus putting /(f) + 1  into Ha while leaving

//"*- [m(t' + 1)]  unchanged. The above mentioned success is now protected by

m(t' + 1) as long as stage t' remains valid.

We say that a two stage attack on the 2eth condition which contains

stages t < t' needs attention at stage t" > t' if 4m(r) + 2 Ö A*   while

<^0'(0 + 1) succeeds for N - ((/M'V U {a¡: /(f) + 1< i < /(/)}) at stage

?". (Note that the absence of 4m(f) + 2 from A indicates the "failure case"

at stage f'. Observe also that by the definition of m(t' + 1) this new need

for attention will persist until, if ever, stage f' becomes invalid.) If this attack

receives attention at stage f" we define aj(t") = ^m(t)+2= a'j(t") an^

m(t" + 1) = m(t"). The definitions and actions for odd numbered conditions are

similar. Single and two stage winning attacks ensure their conditions as in The-

orem 3. Three stage winning attacks ensure their condition by arguments in the

preceding paragraph.

To see that A is complete observe that for each k we may find an index

ek such that for each /, <¿>   (f) converges if and only if k G Wk and in the

case of convergence

ek      u ek      L

Since D1 = {0} we have for each / and k that <pe (f) succeeds for 0 (and

hence for 77*0 if an(1 onty if kE.Wk. Then by remarks in §1 A is complete.

To apply permitting to this construction suppose we are given an enumer-

ation b of a nonrecursive, r.e. set B and let B* ={b¡: i < f}. We say that an

attack is permitted at stage f if each of its followers is > bt. We say that a

condition needs an initial attack at stage f if either it has no attacks or each of
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its attacks needs attention but is not permitted. We devote stage f to the

highest priority condition without a three stage attack and either needing an

initial attack or with a permitted attack needing attention.  In the latter case

we choose from the permitted attacks needing attention the earliest among those

of greatest length (as sequences) (i.e. we give preference to extending two stage

attacks over single stage attacks).  We designate as invalid all prior stages devoted

to lower priority conditions or devoted to later attacks on this condition.  (In-

validating later attacks is necessary because followers of earlier attacks precede

followers of later attacks whence attention to earlier attacks interferes with

later attacks.)

Now the argument that a winning attack ensures its condition is as in the

basic construction. It remains to show that each condition receives a winning

attack. Suppose otherwise and let the 2eth be the highest priority condition

without a winning attack. (The case for an odd numbered condition is similar.)

Further suppose that no stage after stage fö is devoted to a higher priority con-

dition. Then no two stage attack on the 2eth condition will receive attention

after stage f0 else the condition would have a winning attack. Since the 2eth

condition has no winning attack it will, by reductio ad absurdum, have infinitely

many attacks which are never invalidated.  Since as in the basic construction the

need for attention persists each of these infinitely many attacks will need at-

tention at all sufficiently late stages. Now the appearance at a stage t> t0 of

a two stage attack needing attention and with least follower n signals that

B[n] = B*[n] else some two stage attack will receive attention after stage f0.

Hence only finitely many of the attacks which persist can be two stage attacks

(else B would be recursive).  Suppose f x > f0 is a stage after which no single

stage attack receives attention. Then the appearance at a stage f > tl  of a

single stage attack needing attention and with least follower n signals that

B[n] =Bt[ri\. Since there must be infinitely many such stages B is recursive,

contrary to hypothesis. Hence the 2eth condition must have a winning attack. D

Although we know from Ladner [7] that any attempt to improve the

degree restriction in Theorem 4 must fail it is perhaps worthwhile examining

why trapping fails. We would like to use the presence of trapped attacks need-

ing attention to signal the final value of coding markers c(n, t). But we can-

not tell whether the presence at stage f of a single stage attack needing atten-

tion in the «th trap indicates that this value is c(n + 1, f) or whether such an

attack will be later extended to a two stage attack.  Since there may be infinitely

many persistent single stage attacks and since we cannot decide in which traps

they are caught we cannot use the presence of two stage attacks (because they

may later be invalidated by a single stage attack in a lower trap) to signal the

the final value of a coding marker.
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3.  Shared deficiency sets. We will show in this section that pairs of

w-incomparable r.e. sets may share deficiency sets while pairs of 1-equivalent

r.e. sets might not. 0' contains both sorts of pairs and below any r.e. degree

> 0 there is an r.e. degree > 0 containing such a w-incomparable pair and an

r.e. degree > 0 containing such a 1-equivalent pair. We also show that each

r.e. degree > 0 contains a pair of tt-incomparable r.e. sets "enumerable in the

same order" and hence sharing a deficiency set. Again from Ladner [7] we

know the degree restrictions for w-reducibility are best possible; however in the

case of 1-equivalence a better result may be possible.

R.e. sets A and Á are defined by Rice [12] to be enumerable in the

same order if they have enumerations a and a   respectively such that (Vf, /)

[a¡ < a, * a'i < a'].  For such a and a' Ha=Ha< whence A and A' share

a deficiency set.  Rice points out that sets enumerable in the same order are

w-equivalent since, with a and a' as above, given n, i, / with a¡<n <a-

deciding whether n is in A requires only knowledge of A' n {m: a\ < m < a'-}.

Hence the w-reducibility result is also best possible from this standpoint.

Theorem 5. Every r.e. degree   > 0 contains a pair of tt-incomparable

r.e. sets enumerable in the same order.

Proof.  The basic construction gives enumerations a and a' in the same

order of tt-incomparable r.e. sets A and A' respectively. We take as our 2eth

((2c + l)st) condition that ye not be a tt-reduction of A toA' (A' to A).

Corresponding values of a and a' will be defined at the same stage, at most

one value per stage, and as before /(f) will be the least i with a( (and hence

aj) undefined prior to stage f. A* and (A')* denote  {a¡: i < /(f)} and

{a'¡: i </(f)} respectively. We describe attacks on even numbered conditions

only, the case for odd numbered conditions being symmetric.

If stage f is an initial attack on the 2eth condition we designate m(t) + 1

and m(t) + 2 as followers of this attack and let m(t + 1) = m(t) + 2. We say

that this attack needs attention at stage t' > t if it has not received attention

at any intermediate stage and if </?£ (rn(t) + 1) converges.  In giving such atten-

tion we let a/(f'j = m(t) + 1 = a;'(i-j if ipe(m(t) + 1) succeeds for N -

(04 y' U {m(t) + 1}) and we let a/(i'} = m(t) + 2 and a/(i.} = m(f) + 1  other-

wise. In either case we let

m{t' + 1) = MaxO(f')} U Uz>^(w(f)+1)).

We have kept a and a' in the same order by ensuring for each i that

at and a\ are chosen from some pair m(t) + 1  and m(t) + 2 and that no

other values of a or a' are ever chosen from this pair.

Now as before a single stage winning attack on the 2eth condition indicates
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a divergence of i¿>e.  A two stage winning attack on the 2eth condition, say

containing stages t<t', ensures that ipe(m(t) + 1) succeeds for A' if and only

if m(t) + 16Á

Trapping may be applied to the construction of A as in previous cases.

The conditions of the theorem, namely that Ha =Ha>, ensure that A and A'

have the same degree.      D

Theorem 6. Below every r.e. degree > 0 there is an r.e. degree > 0

containing a pair of w-incomparable r.e. sets sharing a deficiency set.  Further-

more, 0' contains such a pair.

Proof.  We again produce enumerations a and a' of r.e. sets A and A'

respectively but now we only ensure that Ha = Ha>. Again values of a and a'

will be defined simultaneously; /(f) will be the least i with at undefined prior

to stage f, and At and (A')* will be  {a¡: i<j(t)} and {a'¡: i<j(t)} respec-

tively. We ensure that Ha = Ha> by keeping //£(f) = H'W at each stage f.

(Recall that Hka = {/: (3/)[í <j <k &a¡<a¡]}.) Again we describe attacks

on even numbered conditions only.

At a stage f of initial attack on the 2eth condition we designate m(f) + 1

and m(f) + 2 as followers of this attack and let m(t + 1) = m{t) + 2. We say

that this attack needs attention at stage f ' > t if it has not received attention

at any intermediate stage and if ^ (m(t) + 2) converges. In giving such atten-

tion we let a/(0 = m(f) + 1 = a'j{t'y we let

m(t' + 1) - Max {{mit')} U U^(m(f)+2) ) + 1

and we designate w(f' + 1) as a new follower of this attack. Note that since

stage t is valid at stage f' one effect of stage f' is to put all numbers i with

/(f) < i </(/') into Ha and Ha< (because for all such /', mQ + 1) < a¡). We

say that a two stage attack on the 2eth condition containing stages t <t' needs

attention at stage f" > f' if it has not received attention at any intermediate

stage and if <¿>e(m(f) + 2) succeeds for N - ((A')* ) at stage f". Note that

by definition of m(f' 4- 1) such success persists as long as stage f' remains

valid. In giving such attention we define 0¡tt'\ = mit) + 2 and a;'(r") = mit').

We let mit" + 1) = mit"). Note that since stage f' is valid at stage t" one

effect of stage f" is to put all numbers / with /(f') < i < /(f") into Ha and

Ha< while keeping ;'(f') out of Ha and H¿ (because for all such i a^t<^ <

mit' + 1) < a¡).

Now in case of a single stage winning attack on the 2eth condition we have

a divergence of <pe. In case of a two stage winning attack containing stages

t < f' we have m(f) + 2 Ö A while i^e(w2(f) +2) fails for A'.   In case of a

three stage winning attack containing stages t<t'<t" we have that mQ) + 2EA
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while ipe(m(t) + 2) succeeds for A'. Success here is preserved by the definition

of m(t' + 1).

To see that Ha = Ha' observe first that as long as a single stage attack,

say containing stage f, persists (i.e. remains valid but is not extended) its lower

follower, m(t) + 1, threatens to put the same numbers into Ha and Ha>

(specifically all i > /(f) with a¡ defined). Next observe that as long as a two

stage attack, say containing stages f < f', persists the follower m(t) + 2

threatens to put the same numbers into Ha as the follower m(t' +1) threatens

to put into Ha>. Then since a second stage involved putting m(t) + 1  into A

and A' and a third stage involved putting m(t) + 2 into A and m(t' + 1)

into A', Ha =Ha'. (In case of attacks on odd numbered conditions interchange

a and a' as well as A and A1.)

A and A' are seen to be complete as in Theorem 4.  Since Ha =Ha<,

A and A' have the same degree. Permitting may be applied to A as in The-

orem 4 to hold the degree of A and A' down.      □

Theorem 7. Below every r.e. degree > 0 there is an r.e. degree > 0

containing a pair of 1-equivalent r.e. sets not sharing any deficiency sets.  Further-

more 0' contains such a pair.

Proof. We will construct an r.e. set A and let

A' = {3n: 3« + 1 EA}U{3n + 1: 3nEA}U{3n + 2: 3«+ 2G.4}

whence A and A' are 1-equivalent. We take as our <e, /)th condition that if

ye is an enumeration of A and fy is an enumeration of A' then Hv  + H^ .

We employ a marking function v(e, t) defined as the least n with ip*e(n) di-

vergent or <¿>g(n) = i/£(m) for some m < n to indicate initial segments of 1-1 con-

vergence.

At a stage f of initial attack on the <e, /)th condition we designate

3m(t), 3m(t) + 1  and 3m(t) + 2 as followers of this attack and let m(t + 1) =

3m(f) + 2. We say that such an attack needs attention at stage t' > t if it has

not received attention at any intermediate stage and if

{<¿> (z): i < v(e, f')} [3w(0 + 3] =A*'[3m(t) + 3]

and

{<p/i): i < v(f, f')}[3m(f) + 3] = (^y'[3m(f) + 3].

In giving such attention we put 3m(t) into A (and hence we put 3m(f) + 1

into A'). We say that a two stage attack containing stages t<t' needs atten-

tion at stage t" > t' if it has not recieved attention at any intermediate stage

and if
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{^(f): i < vie, t")} [3/n(0 + 3] = A*" [3m(i) + 3],

{^(/): i < vif, t")} [3m(t) + 3] = iA'f [3m(f) + 3],

and ifiJf) = 3m(f) + 1  for some (unique) / < vie, t").  In giving such attention

we put 3m(f) + 2 into A if /€Äji*'*") or 3m(f) + 2 < <pe(j) and we put

3m(f) + 1  into A otherwise.

Now in case of a single stage or two stage winning attack either <pe is not

an enumeration of A or <¿y is not an enumeration of A'. In case of a three

stage winning attack, say containing stages t <t' < t", if <pe and <¿y are

enumerations of A and A' respectively we have that the unique / referred

to at stage f" is in 77     if and only if / Ö 77^ .

Completeness and permitting apply as in Theorem 4. In applying the

completeness criterion choose (ek, fk) such that ipe    and <¿yfc are everywhere

divergent or are enumerations of A and A' respectively according as k & Wk

or kewk.     n

4.  Self-deficient sets and m-reducibility.  The main result in this section

is that below every r.e. degree > 0 there is an r.e. degree > 0 containing an

r.e. set m-equivalent to each of its deficiency sets. The proof is facilitated by

the introduction of self-deficient sets, r.e. sets A with enumerations a such

that A = Ha, since by Jockusch [5, Theorem 3.2, 4.2(h)] any deficiency set

of a deficiency set A is m-reducible to A, It is therefore sufficient to con-

struct self-deficient sets m-reducible to all of their deficiency sets, m-equivalence

is the best to be hoped for in this context since any r.e. set has deficiency sets

whose symmetric difference is a singleton and simple sets whose symmetric dif-

ference is a singleton cannot be 1 -equivalent.(3)

In the context of self-deficient sets we begin by showing that every r.e.

degree contains one and we close by showing that some deficiency sets are not

self-deficient. In the self-deficient set construction we use coding markers

ein, t) as in trapping but we do not distinguish individual conditions in ensur-

ing self-deficiency hence the construction has a different flavor than the pre-

ceding constructions.   In the construction of the main theorem we combine

the self-deficient set construction with e-state movement of markers to ensure

nonrecursiveness and we apply permitting to push down the degree of the set

constructed.(4) In the construction of a non-self-deficient, deficiency set we

return to a basic construction and apply the completeness criterion to show that

there is a complete, non-self-deficient, deficiency set.  In this construction there

(3) I am indebted to C. G. Jockusch, Jr. for this observation.

(4) I am indebted to R. E. Ladner for observing that permitting is applicable here.
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is no a priori bound on the length of attack needed to satisfy a given condition,

hence permitting cannot be applied while ensuring that each condition has a

winning attack. Nonetheless a degree restricted result may be possible.

Theorem 8. Every r.e. degree contains a self-deficient set.

Proof. It is easily verified that each co-infinite, recursive set is a deficiency

set for each infinite, recursive set. However the combinatorial device needed to

construct self-deficient sets of arbitrary degree is best illustrated by constructing

an enumeration a of a recursive set A with Ha=A. In all constructions /(f)

is the least i with a¡ undefined prior to stage t, A* = {a¡: i<j (f)}, m(0) = 0

and m(t) = 1 + Max(^f) for f > 0. We will have At - EPa(t) U {/: /(f) < i <

mit)} at each stage f of each construction. (Recall that #£= {/: (3/)[/ </ <

k&ajKa,]}.)

At stage f in the construction of a recursive, self-deficient set we add the

(m(f) -/(f)) + 1  numbers m(t) + 1  through m(t) + [(m(t) -/(f)) +1]   to

A. We thus have that

/(f + 1) =/(f) + l(m(t) - /(f)) + 1] = m(t) + 1

and that

m{t + 1) = m(t) + [imit) - /(f)) + 1]  + 1.

We add these numbers to A by defining a,et\+k = mit) + 2 + k for k <

w(f) -/(f) (thus adding mit) + 2 through m(f) + [(mit) -/(f)) +1]) and

defining am(f) = mit) +1. This forces {/: /(f) < i < m(f)} C fl£<i+1> and

ensures that At+ x = //£(f+ J) U {/: ;(f + 1) < / < m(f + 1)}. It follows that

U^f = U^(f) whence ,4 = i/fl.

Now let b be an enumeration of an r.e. set B. As in trapping we use

coding markers c(«, f) to code B in A and restrict changes in A modulo b.

It follows as in trapping that A = B.  In case c(pt, t) is not defined we proceed

exactly as above and define c(«, f + 1) = mit) for the least n with c(«, f)

undefined. (c(n, f + 1) a c(«, f) for all other «.) If c(èf, f) is defined we

put all k Ö /!' with c(ftf, f) < k < mit) into A   If there are   r such numbers

we enumerate them in ascending order as am^ through am(r)+(r_i)- Next

we define c(n, f + 1) = c(n, f) for n<bt and leave c(«, f + 1) undefined

for n > &r  Finally in analogy with the preceding case we add the (m(f) —

/(f)) + 1  numbers mit) + r + 1  through w(f) + r + [(m(f) - /(f)) + 1]   to

^4 by defining ß/(r)+fc ■ w(f) + r + 2 + k for fc< m(f) - /(f) (thus adding

m(f) + r + 2 through ffi(f) + r + [(/rc(i) -/(f))+ 1]) and defining am(f)+r =

mit) + r + 1. It follows that ;(f + 1) = mit) + r+ 1  and m(f + 1) = m(f) +
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r + [imit) -/(f)) + 1] + l. We thus have that

{/: /(f + 1) < / < mit + 1)} C At+i and {/: /(f) < i < mit)} QH>¿t+í\

Hence in order to show At+1 ■ H$t+ x> U {i: /(f + 1) < / < m(f + 1)} it suf-

fices to show At+l \jit)] = 77>(f+1>[/(i)]. We have assumed that A* = H'^ U

{/: /(f) < i < mit)} hence that A*[/(f)] = 77¿(f) [/"(?)].  By construction there is

a unique f' < f - 1 with c(èf, f) = m(f').  If fc </(f) belongs to 77>(f+1) -

77>(f) then mit') < ak whence ;(i') < k and m(f') < k since {/: ;(f') < f <

m(f')} Ç77^f'+1),Ç 7/£(í).  It follows by construction that Jfc G/li+1. If fc <

/(f) belongs to At+1 — At then w(f')<fc.  Hence by construction m(f') <

afc since c(2>f, f") = m(f') for all  f" with f' < f" < f. Then since am ,f) =

mit') and k<iif)<mif) we have fcG77¿(,+ 1). It follows that  U¿4' =

Ugflffl and ̂ =77a.     D
It should be observed that if 5 in Theorem 8 is high then A is dense-

simple.  Suppose C = {c0 < Cj < • • • } is an infinite recursive set.  For each n

we can find a stage tn and an index /„ such that ein, tn) is defined, c¡n <

mitn), and |/V - (4'")[c(n, f„)] | </„.  Since 7J is high 7i[n + 1] ¥=

{7»f: f < tn}[n + 1]   for almost all n.  Hence by construction  \A [nz(f„)] | </„

for almost all n.  Since c¡n < mitn) Ä majorizes {cj0 < Cy, < • • • } which in

turn majorizes C It follows that A is dense-simple and from Robinson [13]

that every high degree (i.e. degree with jump 0") contains a dense-simple, self-

deficient set.

Theorem 9. Below every r.e. degree > 0 there is an r.e. degree > 0

containing an r.e. set m-equivalent to each of its deficiency sets.

Proof.  Given an enumeration b of a nonrecursive, r.e. set B we pro-

duce a self-deficient enumeration a of a nonrecursive, r.e. set A <r B. The

use of coding markers ein, t) will differ from Theorem 8 in that cibt, t) may

not be put into A even though defined and in that ein, t + 1) may become

undefined even though ein, t) is defined and no cQn, t) for m<n is put

into A. If ein, t) is defined but ein, f + 1) is not we say that ein, t) has

been cancelled.  If c(n, f) is defined and not cancelled then ein, t + 1) =

ein, t).

As in Theorem 8 if any numbers below m(f) are put into A at stage t

then they are exactly the k &N — iAf) with c(ôf, f) < k < mit) and the

method of enumerating A is exactly as in Theorem 8. Hence A is self-de-

ficient and by Jockusch [5] each deficiency set of A  ism-reducible to A.

To see this in the context of this construction suppose a' is an enumeration of

A. To decide whether a given / is in 77a' find a stage f >/ with a'¡ < mit)

and {a'¡: i < t}^]] = A^a)]. If / Ö /7£' then / G 77a- if and only if
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Max iN -iAf)[«/]) G A because any k<a'f put into A at stage t'> t is

caused to be put into A by c(bt; t') < k being put into A whence, by con-

struction all k with cibt; t')<k< mit') (and in particular IfaxQf-Çityfi))

are put into A

In addition to self-deficiency we have two types of conditions to satisfy.

Our eth simplicity condition is that A n We =£ 0 if We   is infinite. (Of course,

A, being a deficiency set, is simple if nonrecursive but ensuring simplicity

directly is combinatorialiy easier.) Our eth reduction condition is that A <m

HVe if ipe is an enumeration of A

The construction employs three special marking functions. We define

«(0, f) = 0 and w(e + 1, f) = nie, t) + |w£| + 1  for each f where t' is

maximally <f such that A* C\Wte=0. It is easy to see that n(e, f) is in-

creasing in e and nondecreasing in f. We define e(n, f) to be the largest e

with nie, t) < n.  It is also easy to see that e(«, f) is nondecreasing in n and

nonincreasing in f. We use e(w, f) and hence nie, t) in attending to the sim-

plicity conditions while keeping A <r B. Specifically we view c(«, f), if de-

fined, as assigned to the e(«, f)th simplicity condition. Finally, as in Theorem 7

we define u(e, f) to be the least n with <¿£(w) undefined or with ^(«) =

<Pg(m) for some m<n. We use u(e, f) to measure initial segments of 1-1 con-

vergence in attending to the reduction conditions.

We will observe at the end of the construction that each of the coding

markers cQt, t) reaches a limit cn Û A. Since e(«, f) is nonincreasing in f

each of these reaches a limit en. Our ultimate goal in satisfying the eth reduc-

tion condition is to ensure that if v?e is an enumeration of A then between

any pair cn and cn+1  with e<eM  there is a <peij) with / ÛH^. If at

stage f we have / < u(e, f) and c(n, f) < ipe(f) < c(n + 1, f) with

^'KO') + 1] = ÍVe(0: ' < v(e, t)}yeij) + 1]  and / é #»<«•'> then we know

that as long as \pe enumerates A any number k with ein, t)<k < ye(j)

to enter A at stage f or later will have to be enumerated as ve(j') for some

/' > vie, t) >/ and conversely any <pe(j') < c(« + 1, f) with /' > vie, t) will

have to be forced into A by some cQn, t) for m <«.  (The latter because

the values c(m, t') < c(n + 1, f) with f' > t are among the values cQn, t)

for »î < «.)

We divide each construction stage into two steps, the first devoted to

reduction conditions and the second devoted to simplicity conditions. We begin

the first step by searching the defined coding markers for a pair c(n, f),

c(« + 1, f) such that for some e < e(«, t) there is a / < u(e, f) with / G

H$'*\ ein, t) < veij) and A*[<pe(f) + 1] ={*e(i): i < v(e, t)}[ve(j) +1]  but

such that for any such /, c(n + 1, f) < <£<,(/)•  If such a pair exists we pick the

least such pair (i.e. the least n with c(n, t), c(n + 1, f) such a pair) and cancel
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all c(n, f) for m > n + 1. We begin the second step by determining whether

c{bt, f) is defined and not cancelled in the first step. If so we then determine

whether At n We(b t) = 0 while {k: cibt, t)<k<mit)}nwte(bpt) *0. If this

is also the case we decide to put all kéA* with cibt, t)<k<mit) into A and

otherwise we decide to put no numbers below mit) into A. In the former case

we cancel all cQn, t) for m > bt. (We cancel c(pt, t) here contrary to Theorem 8

in order to have cb( € A.) In the latter case we define ein, t + 1) = mit +1) for

the least n with c(n, t) undefined or cancelled in the first step.

We observe first that the limit cn exists for each n. Clearly c0 = 0 unless

at some stage f, bt = 0 and second step action causes c(0, f) to be cancelled. In

the latter case no numbers below m(f +1) will enter A at stage f + 1 whence

c(0, f + 2) = mit +1) will be defined (as in Theorem 8) and since b is 1-1 and no

first step action can cancel c(0, f') at any stage f', we have c0 = c(0, f + 2). Sup-

pose cn exists and let f0 be a stage by which cn and en are reached and such

that n + 1< bt for all t>t0. Then if f > f0 and c(n + 1, f) is defined and can-

celled this cancellation will be caused by first step action relative to the pair ein, i),

c(n + 1, f). If e and / are as in the first step then the first step will never apply

relative to e and the pair ein, t'), c(n + 1, f') at a stage t'>t unless / G77j£e,f K

But in this case ipeQ') < fe(j) for some f > vie, t) while, on the other hand,

^[Veïï+l] =^f'[^0') + l] since cin,t) = cn and cQt + 1,f')>w(f)><pe(j).

Hence the first step will never apply relative to e and the pair ein, f'), c(n + 1, f')

at any stage f' > f. Since for t>t0 we will define c(n+l,f+l) = m(f +1)

whenever c(n + 1, f) is not defined we have by reductio ad absurdum that cn + 1

exists and by induction that each limit exists.

To see that A is simple observe first that A is co-infinite since each cnEA.

Suppose for purposes of contradiction that A is not simple and let / be minimal

with Wf an infinite subset of A. By the minimality of / only finitely many en

are </. Let n0 be minimal with e„0 =f. By hypothesis en =f for all n>n0.

If <pe is not an enumeration of A then only finitely many first steps will apply

relative to e since either u(e, f) will reach a limit or there will be a largest / with

^'KO') + 1] = fae(0: i < vie> t)}[<pe(j) + 1] for some t. Let f0 be a stage by

which the limits c„0 and e„Q are reached and after which no first step applies

relative to any e </ for which ipe is not an enumeration of A. It is not difficult

to verify by arguments similar to those showing that the limits cn exist that if the

first step of a stage t>t0 applies relative to e </ and a pair ein, t), c(n + 1, f)

then no later stage t'>t applies to e relative to the pair cQi, f'), c(n + 1, f') if

ein, t') = cin, t). It is also not difficult to see that for each e </ with <¿>e an

enumeration of A and each n>n0 there will be a ]&HiPe with cn < ipe(j) <

cn+j. Since Wf is an infinite subset of A we know that for each n there will be

a stage t with A* n Wf=0 while {k: ein, t) <i<m(í)} n ^=¿0. Hence, by the
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second step,it suffices in order to conclude for n>n0 that B[n + 1] =

{b¡: i < t} [n + 1 ] to have í > t0, ein, t) =f, {Jfe: c(«, f) < k < mit)} nwffï0

and to have for each e </ with ipe an enumeration of A a / G /^f •f) with c(«, f) < <¿>e(/)

< c(n + 1, f). This being contrary to B's nonrecursiveness we have the desired

contradiction.

It is now easy to verify that A <„, Hlfie if \pe is an enumeration of A. Given

e let «0 be minimal with e„0 = e and let f0 be a stage by which c„Q and e„0

are reached and after which no first step applies relative to an e' < e with <pe>

not an enumeration of A. Then, for n>n0,t>t0 and j&Hftf'^ with c(«, f)

< *eC0 < c(« + 1, f) and A*lpe(f) + 1] ={<Peij): i < vie, t)}[ve(j) + 1], we know

that for any k G A * with c(«, f ) < fc < <¿>e(/), A: G ,4 if and only if / G HlÇg.

Hence AK^H^.

Finally, since c(n, f) is increasing in n (where defined) and nondecreasing

in f in the sense that c(«, t)<cin, t') wherever both are defined and f < f',

we have A<TB (in fact A ^ B). This because A [ein, f)] =yli[c(«, f)] where-

ever £[«] ={ôi:/<f}[«] and because cn exists for each n.    D

Theorem 10. 77zere is a complete, non-self-deficient deficiency set.

Proof. We return to the methods of § 1—§3, using a basic construction to

produce an enumeration a of an r.e. set A which, by Soare's completeness cri-

terion, is complete. Ha will be non-self-deficient and hence, by opening remarks

in Theorem 8, nonrecursive. Of course, by Soare's completeness criterion for A,

Ha is complete. We are unable to apply permitting, lacking an a priori bound on

the length of attack for a given condition.

We take as our eth condition that ipe not be an enumeration of both Ha

and H{pg. At each stage f we define a2i =Mit) +1 + 3 and we define a2f+1

ensuring that a2t+1<a2t so that {2i:iEN}QHa. We let mit + l) = m(f) +

f + 4 and if stage f is an initial attack we let a2t+l= mit) + t + 2 and designate

all k with mit) <k< mit) + f + 1 as followers of this attack. If stage f is not

an initial attack but is devoted instead to extending an existing attack we let

a2t+1 be the largest follower of this attack not in A* where A* = {a¡: i < 2t}.

Hence an attack begun at stage f may have length f + 3 and since we have no

a priori knowledge of when the winning attack on the eth condition is initiated

we have no a priori bound on the length of this attack.

By basic construction rules any condition without an existing attack needs

an initial attack and each stage is devoted to the highest priority (lowest numbered)

condition in need. A single stage attack on the eth condition containing stage f0

needs attention at stage t>t0 if 2f0 + 1 G {</>e(i): i < v(e, f)}; 2f0 + 1< v(e, t),

and {2/: / < í0} C{ye(i): i < v(e, t)}. (Here as in Theorems 7 and 9 v(e, t) marks

initial segments of 1-1 convergence.) A multiple stage attack on the eth condition

containing stages f0 < • • • < tr needs attention at a stage t>tr if ipe(j) G

{% + I: i< t0} for some / with v(e, t - 1) </ < v(e, t).

Notice that an attack begun at stage f0 can have length at most f0 + 3 since
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each stage beyond the second stage in this attack corresponds to the enumeration

of a unique odd number between 1 and 2f0 + 1. It follows that each a2t+ j is

well defined and by basic construction rules, that each condition has a winning

attack since no attack begun at stage f0 and of length í0 + 3 can need attention.

Now if the winning attack on the eth condition is a single stage attack con-

taining stage f0 then either <pe is not 1-1, {2/: i G n} <j£ Rng(<£e), or 2f0 + 1 G

R^SÍVe) — 77a. If the winning attack is a two stage attack containing stages f0 <

fj then 2f0 + 1 G77a - Rng(<pe) unless ye is not an enumeration. If the winning

attack contains stages f 0 < • • • < t  where r > 1 then there is a largest / satis-

fying vie, tr - 1) </ < vie, f,) with <peij) G{2i + 1 : i < t0}. Since f, is the final

stage in this attack / G77^ or <pe is not an enumeration. By construction we

have a2t + x <a¡ since 2f0 + 1 < u(e, tx) < u(e, tr — 1) </ and we have / < tr

< 2tr + 1 since / < vie, tr) and, by convention, ^n) is undefined for n>t.

Hence / G77a - H^e or ipe is not an enumeration. In any case </>e is not an enum-

eration of both 77a and Hlfie.

To see that A is complete observe that for each k we may find an index

ek such that ipe/c enumerates 77a if k G Wk and is everywhere undefined other-

wise.    D
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