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ABSTRACT.   A modular semilattice is a semilattice   S   in which   w >

a   A ft   implies that there exist   i,jeS  such that  x > a.   y > b   and   x  A y =

x A w.   This is equivalent to modularity in a lattice and in the semilattice of

ideals of the semilattice, and the condition implies the Kurosh-Ore replacement

property for irreducible elements in a semilattice.   The main results provide ex-

tensions of the classical characterizations of modular and distributive lattices

by their sublattices:   A semilattice  S   is^ modular if and only if each pair of

elements of S  has an upper bound in  S   and there is no retract of S  isomor-

phic to the nonmodular five lattice.   A semilattice is distributive if and only if

it is modular and has no retract isomorphic to the nondistributive five lattice.

1. Introduction.  The first published definition of distributive semilattice

was given by Grätzer and Schmidt [7], and this concept was studied further in

[8] and [9].  The defining condition for modular semilattices is apparently due

to Edmondson [5], who employed this concept in the study of the lattice of

ideals of a modular lattice.  The first announcement of this as a defining condition

for modular semilattices appeared in [11].  At about the same time, a study of

modularity in partially ordered groupoids was published by Varlet [14].  An

equivalent definition was known to Grätzer and Schmidt, and subsequently appear-

ed in Grätzer's book [6].  It is likely that other workers in the field have invented

equivalent definitions and have proved some of the elementary results, although

none of this work has been available to the author.  R. Balbes [1] has investigated

a semilattice generalization of distributive lattices that is not equivalent to the

one given here.

2. Definitions and elementary results. A semilattice is a set S with a

commutative, associative, idempotent binary operation A on S.  A partial order

may be defined on S by a < b iff a A b = a.   A semilattice S is distributive

iff w>a A b implies that there exist x and y  in S such that x >a, y >

b and x A y = w.  S is modular iff w>a Ab  implies that there exist jc  and
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y in S such that x > a, y > b  and x A y =x Aw.   A semilattice is con-

ditionally complete when every nonempty subset with a lower bound has an

infimum.  A semilattice is complete when it is conditionally complete and has a

zero. A nonempty subset A  of a semilattice is called an ideal provided a A b G

A  iff a G A  and b E A.   A subset  T is convex in S iff jc, y G T, z ES

and jc<z<v  implies that z E T.  An interval of 5 is a convex subsemilattice

in which each pair of elements has an upper bound. The set   [a, b] = {x\a <

x <b} is called the closed interval from a  to ft.

There are a number of elementary results which follow readily from these

definitions. We shall give only a brief account of these here, leaving the details

for the reader.  It is easy to prove that the defining conditions for modular and

distributive semilattices are equivalent to the usual definitions in a lattice setting

and that every distributive semilattice is modular.  Each pair of elements of a

modular semilattice 5 has an upper bound in S, consequently conditionally

complete modular and distributive semilattices are lattices.  Unlike the lattice

case, subsemilattices do not inherit modularity or distributivity, although convex

subsemilattices do if they contain upper bounds for each pair of elements in the

subsemilattice.

The ideals of a semilattice S, ordered by set inclusion, form a complete

joint semilattice S, which becomes a lattice iff each pair of elements in S has

an upper bound in S.   As in the lattice case, a semilattice is modular (distributive)

if and only its lattice of ideals is modular (distributive). A version of Dedekind's

transposition principle holds in a modular semilattice, in that if a V b  exists in

S, then the map /: [a, a V b] —► [a A b, b]   defined by fix) = b A x is an

isomorphism.  Since the inverse f~l(x) = a V x exists in this case, so does

a V x for each jc G [a A b, b].

A semilattice  T is called a retract of a semilattice iff there are homomor-

phisms /: S —*■ T and g: T —► S such that fg is the identity on T.  Clearly,

/ is an epimorphism and g is a monomorphism under these conditions.  If R

is a subsemilattice of S and there is an epimorphism h: S —> R  such that h\R

is the identity, then R  is certainly a retract of S; h  in this case is called a

retraction.

Although epimorphs and subsemilattices of modular and distributive semi-

lattices do not inherit these respective properties, subsemilattices which are also

retracts are better behaved. One can prove

Theorem 2.1.  A retract of a modular (distributive) semilattice is modular

(distributive).

This theorem may be used to prove that the product of semilattices is

modular (distributive) if and only if each component is modular (distributive).
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The next results are useful in the sequel.

Theorem 2.2.  If a, b G S,  then the semilattices L(b), M(a) and   [a, b]

are retracts of S.

Proof.  The maps

/: 5 —> L(b) defined by fix) = x A b

(x   if x>a;
g:S-^ M(a) defined by g(x) = ^    i{ x^a

h:S—*[a,b]   defined by h(x) = I
xAb   if je A b>a;

if je A b 3* a

are all epimorphisms.

There are a number of equivalent forms of the definition of modularity

((2) is due to Grätzer and Schmidt):

(1) w > a A b implies that there exist x> a, y>b  in S such that

jcA.y=JcAw = y aw.

(2) w > a A b  and w < a implies that there exists v  in S such that

y > b  and y A a = w.

(3) a A b = b A c implies that there exists y  in S such that y > b

and v A a = a A c.

(4) a A b = b A c implies that there exists y in S such that y >b

and yAa=yAc = aAc.

Two equivalent forms of distributivity are sometimes useful:

(1) w > a A b  implies that there exists y  in S such that y > b, y > w

and y A a = a A w.

(2) a A b = b A c implies that there exists y  in S such that y > b,

y>c and y A a = a A c.

A semilattice is called semimodular if b  covers a Ab whenever a V b

exists and covers a.  This terminology is due to Dilworth and Crawley [4] and is

not equivalent to that given by Birkhoff [2] and Ore [10], even in a lattice.  The

transposition principle for modular semilattices immediately implies that every

modular semilattice is semimodular.  By modifying the proof given by Szász [13,

p. 104], one may extend the Croisot-Szász lattice results with finite maximal

chains to semimodular semilattices.  Indeed, this result holds in a poset:   Suppose

P is a poset such that if a V b exists in P and covers a, then a Ab  exists

in P and is covered by b.   Under these conditions, if there is a finite maximal

chain from a to b in P, then every chain from a to b  is finite and all max-

imal chains from a to b have the same length.  It should be noted that the

weaker hypotheses used by Birkhoff and Ore are not adequate to support the

stronger conclusion of the above theorem. The defining condition for semimodular
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semilattices is called the upper covering condition by Szász.  He also defines a

lower covering condition and notes that both are true in a modular lattice.  It

can be easily seen that the lower covering condition may fail in a modular semi-

lattice.

3.  Main results. This section deals primarily with the characterization of

modular and distributive semilattices by their retracts, and to a lesser extent, the

extension of the Kurosh-Ore theorem to semilattices.

We first consider the latter problem.  An element jc  of a semilattice is

called (meet) irreducible if jc = a or jc = b  whenever x = a A b.   A set M

of irreducible elements is said to be a (meet) representation of jc  if x = AM;

a representation M of jc  is irredundant if  A(M\{m])>x for all m EM.

The relationship between distributivity and meet representations discovered by

Birkhoff carries over without modification to the semilattice case:  Every element

of a distributive semilattice has at most one finite irredundant meet representation

by irreducibles. A proof for the lattice case that works equally well for semi-

lattices may be found in Szász [13, p. 99].

The modular case has attracted more attention, with special emphasis on

the ability to substitute within irreducible representations when they are not

unique. Following Crasley [3], we say that an element jc has replaceable irredun-

dant representations if for every pair of irredundant representations jc = Aß =

Aß1   and each q E Q, there exists q1 E Ql   such that x = ql A A(Q\q). It

is known that [2, p. 75]

Theorem 3.1.  Suppose S is a semilattice in which a Ab is irreducible

in   [a A b, a]   whenever b is irreducible in S.   Then irredundant finite repre-

sentations in S are replaceable. As a corollary, finite irredundant representations

of an element have the same number of components.

The following result is the converse of Theorem 3.1.

Theorem 3.2. Z,ef S be a semilattice in which each element has a finite

representation by irreducibles. If all irredundant finite representations are replace-

able then a Ab is irreducible in   [a A b, a]   whenever b is irreducible in S.

Proof.  Let a = AM be a finite representation of a by irreducibles. If

the element b may be omitted from the representation a A b = AM A b, then

a A b = a and the conclusion is immediate.  Otherwise, there is an irredundant

representation a Ab = ax A a2 A • ■ ■ A aq A b where   {ax, a2, • • •, aq) CM.

Suppose now that a A b = x A y with jc, y < a.  Let jc = AX and y = A Y

be finite irreducible representations of jc  and y, respectively.  Since the repre-

sentations are finite, there is an irredundant representation aAb=xxAx2A
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• • • A jc„   where   {jc,, jc2, ■ • • , jc„} C X U Y.   By the replacement property,

one of these elements, say jc,-, may be substituted for b  so that ax A a2 A • • •

A a   A jc,- = a Ab.   Since jc,- G X U Y, jc,- > jc  or jc,- > .v.   In the first case,

x = a A (jc,- A jc) = (a A jc,-) A jc = (a A b) A jc = a Ab,  and in the second case,

y = a Ab. This proves that a A b  is irreducible in   [a Ai, a].

The example given in Szász [13, p. 43] is a nonmodular lattice in which

Theorem 3.2 holds.

Results similar to Theorems 3.1 and 3.2 have been obtained for the com-

pactly generated case by Crawley [3].

We now show that Theorem 3.1 applies to modular semilattices.

Theorem 3.3.  Let S be a modular semilattice.  If x2  is irreducible in

S,  then JCj A jc2  is irreducible in   [xxA x2, xx\.

Proof.   Suppose xx A x2=b Ac with b, c <jc,.  By the preceding

section, there exist  t>x2,  z > x2   such that  r A jíj = b  and z A xx = c.

Thus t A z> x2   and (z A t) A JCj = b A c = JCj A jc2.  Moreover, there exists

y >xx   such that y A (z A t) = (z A t) A x2 = x2.  Since jc2   is irreducible,

x2 =y  or jc2 = z A t.   If jc2 = y,   then JCj A jc2 = JCj   is irreducible in

[JCj A jc2, JCj].  Suppose jc2 = z Ai.   Since x2   is irreducible, jc2 = z  or

x2 = t.  In the first case, JCj A jc2 = c, and in the second jc, A jc2 = b.  This

proves that JCj A jc2  is irreducible in   [jct A jc2, JCj].

Corollary 3.4 (Kurosh-Ore Theorem for Semilattices).   The con-

clusion of Theorem 3.1 is true in a modular semilattice.

In another work we have investigated the question of the existence of rep-

resentations in semilattices [12].

We now turn our attention to the main results of this paper.  Since modular-

ity and distributivity are not inherited by subsemilattices, it is necessary to turn

to retracts for an appropriate generalization of the classical characterizations of

modular and distributive lattices by their sublattices.

Theorem 3.5.   The retract relation R = {(A, B)\A and B are semilattices

and B is a retract of A] is reflexive and transitive.

Lemma 3.6.   Suppose S is a semilattice, L  is a subsemilattice of S and

fix) = VL {y G L\y < jc} is defined for each x E S.  If fix) < jc for all x in

some subsemilattice A of S,  then f\A  is a homomorphism.

Proof.  Suppose jc, y G A.  Since jc A y < jc,

/(jcAy)=FL{zGL|z<jc Ay}

<VL{zEL\z<x}=fix),
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and, similarly, fix A y) < f(y).  Suppose jc, yEA   and  t=fix)Af(y). Since

fix)<x and fiy)<y,  t<xAy.  Thus t < VL{z EL\z <x Ay} =fix Ay).

This proves /(jc) A fiy) = fix A y).

A subsemilattice Z,  of S is called a sublattice of 5 when Z,  is a lattice

and the insertion map i: L —► S defined by i'(jc) = jc  is a lattice monomorphism.

If L  is complete, i(VLA) = Vi(A), and i(ALA) = A,i(4)  also, L  is called a

complete sublattice.

Theorem 3.7.   If L is a complete sublattice of a semilattice S,  then L

is a retract of S.   Thus a finite sublattice of S is a retract of S.

Proof.  Let L be a complete sublattice of a semilattice S and let a =

AI,  b = VL.  Since   [a, b]   is a retract of S, it suffices to show that L  is a

retract of  [a, b]. Define /: [a, b] —*■ L by fix) = VL {y E L\y <jc}.  Since

Z,  is complete, / is well defined.  Since L  is a complete sublattice, /(jc)<jc

for all jc G [a, b]. Thus f = f\[a, b] is a homomorphism by Lemma 3.6,

and since / is surjective, it is an epimorphism.

It was shown by Dedekind that a lattice is modular if and only if it contains

no sublattice isomorphic to the nonmodular five lattice.  It is easy to show that a

modular semilattice may contain a nonmodular five lattice as a subsemilattice.  The

next two examples show that a nonmodular semilattice may fail to have a sub-

lattice isomorphic to the nonmodular five lattice, even if each pair of elements

has an upper bound.  (The nonmodular five lattice Ns is defined in [2].)

Example 3.8.  Let Nx = {(0, 0), (0, 1), (0, 2), (1, 0)} UA  where A =

{(1,2+ 1/m)|m  is a positive integer}. With the coordinatewise order of the plane,

Afj   is a nonmodular semilattice; there is no sublattice of Nx   isomorphic to the

nonmodular five lattice.

Example 3.9.  Let N2 = {(0, 0), (0, 1), (1, 0)} U A U B with A -

{(0, 1 + l/n)|«  is a positive integer}  and B = {(1,1 + l/n)\n  is a positive

integer}. With the coordinatewise order of the plane, N2   is a nonmodular semi-

lattice. There is no sublattice of N2  isomorphic to the nonmodular five lattice.

The correct semilattice generalization of Dedekind's theorem is provided by

the following result.

Theorem 3.10.  A semilattice S is modular if and only if each pair of

elements in S has an upper bound and S does not contain a retract isomorphic

to the nonmodular five lattice.

Proof. Necessity.  If S is modular, then each pair of elements has an

upper bound. If R  is a retract of S, then R  is modular by Theorem 2.1.

Therefore R is a modular lattice if R is a lattice, and thus R  cannot be iso-

morphic to the nonmodular five lattice.
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Sufficiency.   Suppose S is nonmodular and each pair of elements in S has

an upper bound. We shall construct a retract isomorphic to the nonmodular five

lattice. Since S is nonmodular, there exist c > a A b  with c < a  such that

y A a # c for all y > b.  Let t > a, b.  Then a = t Aa> c.   Since c > a A b,

sAKiAc; and since a> c, a Ab> b Ac  Thus, a Ab = b Ac.   Let

u be an upper bound for a and b  and let L = {a, b, c, a A b, «}. We shall

prove that L  is a retract of  [a A b, u].  For this purpose, let  W = {x G

[a A b, u]\x > b  and x > c} and define for all x E [a A b, u],

if jc G W,

if jc > b  and x^c,

if jc 3* b, x>c and jc 3* a A z  for every z E W,

if jc 3* &  and x>a A z  for some z G W,

if jc 5* è and jc 5* c.

We must show / is a homomorphism.  Let jc, y E [a A b, u]. There are five

cases. The interesting case is the first.

Case 1. fix) = a.   Then jc 3* b  and x>a A z  for some z E W.   Since

jc 3* &, xAy^b  for all y G [a A 6, u].  Suppose /(y) = a.  Then y > a A w

for some wEW, so xAy>aA(zAw) and z A w G W.  Thus fix A y) =

a = fix) A fiy). Suppose fiy) = u.  Then xAy>aA(zAy) and z A y G

W, so fix Ay) = a= fix) A fiy). Suppose fiy) = c.   Since y 5* a A p for

every p G w, xAy^aAp for every p G W.   Since z EM/, x>a Az>

a Ac = c,  so x Ay >c.   Hence /(jc A y) = c = /(jc) A /(y).  Suppose /(y) = b

or /(y) = a A b.  Then y 3*c, so xAy^c; since xAy^b, fix Ay) =

a A ¿> = /(jc) A /(y).

Case 2. /(jc) = u.   The case /(y) = a has been considered.  If fiy) = ô,

jc Ay > b and jc Ay 3*c, so fix Ay) = 6 = fix) A fiy). If /(y) = t\

x A y > c, xAy^b  and jc A y 5* a A z  for every z G W.  Hence fix Ay) =

c = /(jc) A /(y). If fiy) = a Ab, xAy^b and xAy^c, so /(jc A y) =

a A b = fix) A fiy).
The remaining cases /(jc) = a A b, fix) = c and /(jc) = b are easily han-

dled. This proves that L is an epimorph of [a A b, u] and since it is obviously

a subsemilattice, L is a retract of [a Ab, u]. By Theorems 2.2 and 3.5, then,

L is a retract of &

Notice that Theorem 3.10 contains the classical case because every finite sub-

lattice of a lattice is a semilattice retract of that lattice.

Example 3.11.   Let Ms - {(0, 0), (0, 2), (1, 1), (2, 0), (2, 2)}. In the

coordinatewise order of the plane Ms  is a modular, nondistributive lattice. Ms

is called the nondistributive five lattice [2].

/(*) =

u

b

c

\a

a Ab
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Example 3.12.   Let A = {(2, jc)|2 <jc < 3} U {(0, 0), (0, 2), (1, 1),

(2, 0)}.  In the order of the plane, A   is a modular, nondistributive semilattice.

No sublattice of A   is isomorphic to M5.

Example 3.13. Let B = {(2,y)|l <y < 2} U {(0, 0), (2, 0), (1, 1)} U

{(0,y)|l <y < 2}. In the coordinatewise order of the plane B is a modular,

nondistributive semilattice which does not contain a sublattice isomorphic to Ms.

Birkhoff discovered that a lattice is distributive if and only if it is modular

and there is no sublattice isomorphic to Ms.  The next theorem is the semilattice

generalization of this.

Theorem 3.14.   A semilattice S is distributive if and only if S is modular

and there is no retract of S isomorphic to the nondistributive five lattice.

Proof.  (=>) Apply Theorem 2.1.

(*=)  Suppose S is modular and nondistributive. As in Theorem 3.10, we

construct a retract isomorphic to the nondistributive five lattice.  Since S  is not

distributive, there exist  b>dAe  suchthat xAy¥=b  for all x>d and

y > e.   By modularity, there exist a> d,  c > e such that a Ab = b A c =

a Ac.   Since  b> a Ac we must have b> a Ac by the assumption.  If a =

a Ac, then b> a> d; let t be an upper bound for b  and e, and then

t A b = b with t > e,  b> d.   Since this is contrary to assumption, a > a A c.

Similarly c > a A c.  Moreover, if jc > a  and y > c, x A y =£ b.

We show that jc a y =£ a  for all x> b  and y > c.   Suppose jc A y = a

for some x> b  and y > c.   Then xAc = xAyAc = aAc = bAc, so by

modularity there exists q > c  such that qAx=xAb = b.   But q > c  and

jc > a,  so this is contrary to assumption.  Therefore x Ay ¥= a  for all jc > b

and y > c.   Similarly, jc A y + c  for all jc > a  and y > b.

Let u  be an upper bound of a, b,  and c.   Let

K = {jc G [a A b, u]\x > ax A a2 A a3

for some ax > a, ft,  a2 > a, c,  and a3 > 2>, c}.

Clearly, K is an ideal of  [a Aft,«].

We first show that a, b, c, a Ab EK.   Suppose a E K.  Then a>axA

(a2 A a3) implies that there exist x> ax, y > a2 A a3  such that jc A y =

jc A a.   But jc >aj > a, ô  implies x Ay = a,  and x> ax >b  and y >

a2Aa3>c  contradict an earlier statement.  Hence aEK,  and by a similar argu-

ment   b, c EK.   Since aEK and K is an ideal, a AbÈK.

Define a relation = on   [a A b, u]   as follows: jc = y  if and only if

x Ad=y Ad for some d E K.   It is easily seen that = is a congruence relation.

From the above, a, b, c, a A b ^ u.
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We prove that a^a Ab; the argument that b^a Ab, c^a Ab is

similar. Suppose a A b = a.  Then (aAb)Ad = aAd for some d E K

implies that b>a Ad>a A(ax A a2 A a3) = a A a3. By modularity, there

exist jc > a, y>a3  such that x Ay =y Ab = b  since y>a3>b.   Since

jc >a and y >a3>c, this contradicts an earlier statement. Thus a^a Ab.

We show that a ^b.  The proofs that a^c and ô ^c are similar. Sup-

pose a = b.  Then a Ad = d Ab  for some d G AT.  Then

a>bAd>bAaxAa2Aa3 = bAa2

implies by modularity that there exist x> b, y > a2> a, c such that jc Ay =

y A a = a,  contrary to an earlier statement.

We now prove that if jc=y, jc>a,  and y>b, then jc=«.   Suppose

jc=y, jc>a and y > b.  There exists dEK suchthat x A d=y Ad. Since

y>b, x>xAd=yAd>bAd>bAa2  for some a2 > a, c. Since

x > b A a2, by modularity there exists p>a2, q>b  such that p A q =

p Ax = q Ax.  Since p> a2>a and jc > a, aAq=aApAq = aApA

x = a, hence <? > a.   Since q~>b,  q E K.  Thus x>p A q,  so x E K and

jc = w.  Similarly, it can be shown that if jc = y,  and either jc > a and y>c,

or jc > b and y~> c, then jc = u.

Let N = [a A b, a, b, c, u}. Define /: [a A b, u] —* N,  by

if xEK,

if jc G K and x>a A d for some d>b, c,

if jc € AT and x>b Ad for some d>a, c,

if jc G AT and x>c Ad for some d> a,b,

otherwise.

We first observe that / is well defined. It is impossible that /(jc) = a and

fix) = b. For suppose jc G K, x > a A d for d>b, c and jc > b A e for

e>a, c. Since x>a A d, by modularity there exist m>a, n>d such that

m An = n Ax. Since « G AT, rSx Similarly, there exists p > 6 such that

p=x Thus m = p, m>a and p>b, so x = m = u implies xEK, con-

trary to assumption. Similarly, it is impossible that /(jc) = a and /(jc) = c, or

that /(jc) = b  and /(jc) = c.

It has been shown that a, b, c G K; hence it is easily seen that fia) = a,

fib) = b, and fie) — c.  Obviously, fiu) = u.  Notice also that if a A b> a Ad

for some d>b, c,  then (a A b) A d = a A d.   Hence a A b=a, contrary to

a previous result. This shows that fia A b)¥= a, and, similarly, fia Ab) #= ô,

/(a A ft) -^ c.  Since a AbGK, fia Ab) = a Ab.

It is left to show that / is a homomorphism.  Suppose jc, y G [a Ai, u],

ñx) =

la

r

a Ab
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First of all, it is obvious that the sets .T'i"). fl(« A ¿)> f~1(fl), rl(b) and

f~l(c) are closed under meet. The remaining cases are considered below.

Case I. fix) = a Ab.   Suppose fiy) = a.  Then y GK and y > a A d

for some d>b, c.   Since ZC is an ideal, x A y GK. If jc A y > a A e  for

e> b, c,  then /(jc) = a.  Hence fix A y)¥= a, and similarly, fix Ay) ^b and

/(jc A y) =£ c.  Thus /(jc A y) = a A b.  A similar argument shows that when

fiy) = b  or fiy) = c, fix Ay) = a A b = fix) A fiy). Suppose fiy) = u.  Then

y EK but x Ay GK because jc G AT.  Moreover, if fix A y) = a, b,  or c;

then fix) = a, 6  or c respectively.  Thus fix Ay) = a Ab = fix) A fiy).

Case II. /(jc) = u is trivial.

Case III., fix) = a (the cases fix) = b and /(jc) = c are similar to this).

In view of preceding remarks it suffices to consider the case fiy) = b (the case

fiy) = c is analogous). Thus x.yGK, x > a A d for d> b, c and y >

iAe for e>a, c.   Clearly jc A y Ö AT because K is an ideal. If fix A y) =

a, ft  or c, then /(jc) = fiy) = a, b  or c respectively. Thus fix A y) = a A b =

This proves that N = {a A b, a, b, c, u} is a retract of  [a A b, u]. Since

[a A b, u]   is a retract of S by Theorem 2.2, it follows from Theorem 3.5 that

N is a retract of S.  It is clear from the construction of N that N is isomorphic

to the nondistributive five lattice, and this completes the proof.

I am grateful to Professor Don Edmondson for his advice during the prepar-

ation of this paper and to the National Science Foundation for partial support

through a Summer Traineeship at the University of Texas in 1969.
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