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A SUFFICIENT CONDITION FOR HYPERBOLICITY OF

PARTIAL DIFFERENTIAL OPERATORS WITH

CONSTANT COEFFICIENT PRINCIPAL PART

BY

JOSEPH L. DUNN(')

ABSTRACT.   Let  P  be a differential operator with principal part   P   ,

and suppose that   Pm   has constant coefficients and is hyperbolic.   It is shown

that the condition for hyperbolicity of P when P  has constant coefficients,

namely, that  P is weaker than  Pm  is also a sufficient condition for hyper-

bolicity in the case where P does not have constant coefficients.   Some gen-

eralizations are also made to the case where  P is a square matrix of differ-

ential operators.

1.   Introduction.   Consider a partial differential operator   P(D) =

XM<maJt, x)Da  of order m in « + 1  independent variables where a is a

multi-index (a0,al,,,m, an) and

There is as yet no general theory which allows one to make the assertion that

such an operator is hyperbolic iff the aa  satisfy certain conditions. The tradi-

tional definition says that an operator is hyperbolic iff its principal part Pm(%) =

s|ai=mac4?C! is such that Pm(% + tN) = 0 for % real and TV =(1,0)  implies

that t is real. However, at best this should be regarded as a necessary condition.

This can be best illustrated by considering the case of constant coefficients where

there has been developed a good theory of hyperbolicity.

In this case one says that a differential operator P is hyperbolic with re-

spect to a covector N if there exists a fundamental solution E, i.e., a solution

of the equation P(D)E = 8, such that  supp E is contained in a proper cone,

i.e., a closed cone contained in the set H U {0}  where H = {x: <x, N) > 0}.
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Gârding [2] was able to obtain a simple algebraic characterization of hyperbolic-

ity, namely P is hyperbolic with respect to N iff Pm(N) =£ 0  and P(£+tN)

i= 0  for £  real and  |Im t\ > c, c a constant. To be more precise about the

sufficiency of this condition one needs the following:

Definition 1.1.  If P is hyperbolic w.r.t. N, and Pm   is the principal

part of P, we denote by  Y(P, N) the set of all real 6  such that the polynomial

Pm(0 + tN)  has only negative roots r.

We can now state the following.

Theorem  1.2 (Hörmander [4, p. 137]). Let P(D) satisfy Gärding 's

condition for hyperbolicity with respect to N. Then there exists one and only

one fundamental solution E of the operator P(D) with support in the half

space H = {x: (x, N) > 0}.  For this fundamental solution we have supp E is

contained in the convex cone

r*(P, N) = {x: (x, 9) > 0,  0 G r(P, N)}

but in no smaller convex cone with vertex at 0.

One can show that if P is hyperbolic then so is its principal part Pm   and

that in order for Pm   to be hyperbolic the equation Pm (£ 4- tN) = 0 must have

only real roots  t for £ real.  However, one does not have in general that P is

hyperbolic if Pm  is.  In order to determine the precise relationship between the

hyperbolicity of P and that of Pm   one needs the following.

Definition 1.3.  A polynomial P is said to be stronger than a polyno-

mial Q iff

te iö£ö«)i2)1/2 <c(z \D*tm\2)112-

One can now state the following.

Theorem 1.4 (Hörmander [4] and Svensson [8]). If the principal

part Pm  of P is hyperbolic w.r.t. N, then P is hyperbolic w.r.t. N iff P is

weaker than Pm.  In this case P and Pm are equally strong.

So much for the case of constant coefficients.  The reason for its complete

success is that when one Fourier transforms a differential operator with constant

coefficients one obtains a polynomial. Obviously one is not so lucky in the case

of variable coefficients. Certain other cases, namely the cases where P has simple

characteristics or is a symmetric first order operator, can be handled by the method

of energy integrals. Peyser [6] considers the extension of energy integral methods

to the case where P has constant coefficients. He found that the method worked

when the polynomial satisfied a condition which he called proper hyperbolicity.
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Svensson [8] was then able to show that an operator is properly hyperbolic iff it

is hyperbolic.

In order to explain these conditions we assume that there is an inner product

on the space of independent variables and that P(t, £) = P(tN + £)  for  £ real

and in NL. Then the hyperbolicity of P w.r.t. N is equivalent toPm(\, 0)¥= 0

and P(r, £) =£ 0  for  £ real and  |Im t\ > c. In particular the principal part of

P, Pm, is hyperbolic w.r.t. N iff Pm(\, 0)^0 and Pm(r, £) = 0, £  real im-

plies T  is real.

Assume now that Pm  is hyperbolic.  Then we have

m

Pm(T,t)=   Il   ('"TO)
k=l

where X™(£)  is real for £  real and we have assumed without loss of generality

that the coefficient of Tm  is  1.

Now define

... -J m-i

Pm\r, £) = £r Pm(T, Ç) = m(m-\)-~(m-i + \)T\(T- X^'d;))
<" k=\is,— i

where again one has  X™~'(£)  real for £  real.

Define also

One now has

(^•=^t-t='«('"-i)---(«-'' + i). n >-*r'œ)-

Theorem 1.5 (Svensson [8]). Suppose P(t, £) = 2£L0P,(r, £) w«ere

•Pj(T> ?) is a polynomial homogeneous of degree i, and suppose that Pm(T,%) is

hyperbolic and that the coefficient of rm  is  I, then P is hyperbolic iff

m-i+ i

z;=iPm-iirA)=   Z  TidXit-'Vna    I>1

where the y'¡(%) are uniformly bounded for £ real.

Remark. This theorem states that P is hyperbolic iff it is properly

hyperbolic.

Flaschka and Strang [1] have conjectured that in the general case with con-

stant hyperbolic principal part that the condition that the lower order terms are

weaker than the principal part is necessary and sufficient for hyperbolicity.  In

this paper we will show that this condition is sufficient for hyperbolicity by
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generalizing the method of energy integrals which Peyser devised.  Finally we

discuss the generalization of the technique to the case of systems of equations

and obtain results similar to those of Kopácek and Sucha [5], Svensson [8] and

Peyser [7].
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Foundation for their financial support in the form of a Graduate Fellowship.

3. Statement of the problem. We wish to consider the case of a partial

differential operator with constant principal part, i.e.,

P = Pm(D) +  Z    ajt, x)Da, where ajt, x) E 8(R"+'),
\u\<m

that is, the space of infinitely differentiable functions which are bounded along

with all of their derivatives. We make the further assumption that the principal

part Pm(D)  is hyperbolic in the time direction and that at each point the lower

order part is weaker than Pm(D).

An example of the type of problem which we wish to solve is given

/G E'(R" + 1)  find a uE tf(Rn+x) such that Pu = f and supp uCK + L

where K is a compact set and L is a proper cone. The obvious way to go

about solving this problem is to write the equation as

Pm(D)u = -   £   aJt,x)Dau+f
laKm

and then perform the implied iteration.  In order to show that this iteration con-

verges we will have to use the energy integrals which are the subject of  §4.

We will also be able to determine the regularity properties of u from those

of /  In fact, if /G E'(R" + 1) n rí(í)(R"+1) where  f/(i)(R"+1)isthe Sobolev

space as defined in Hörmander [4, p. 45] and s is an integer, then we have

«G(f/<i>)l0C(R"+1).

To obtain these results, we will consider the Cauchy problem with homo-

geneous initial data in a slab  VT = {(t, x):0<t<T}. Define V+ C C°°(R"+1)

to be the set of functions u such that supp u O {(?, x): t < 0} =0  and

supp « C K + L where K is compact and L is a proper cone.  Similarly de-

fine  ß_ C C°°(R"+1) to be the set of functions « such that supp u n

{(t, x): t > T} = 0 and  supp u CK-L again where K is compact and L

is a proper cone.  Figures 1 and 2 illustrate the support properties of functions

in V+  and  fl_ respectively.
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Figure 1. uEQ+        Figure 2. «ep_

Definition 3.1.  H^\VT), s a nonnegative integer, is the completion of

V+  in the norm

Ms=(fvT Z   ^u|2)1/2.

Now for u E V+, s > 0, define

IMU = J»P \fvTuU\/Ms < H"ll-

Definition 3.2.  H^+\VT), s a negative integer is the completion of V+

in the  || • \\s norm.

Definition 3.3. If / G ^(Vj.), s an integer, then we will say m G

H^\VT) is a strong solution of Pu = f with homogeneous initial data, if there

exists a sequence un G f)+   such that Pun —► / and u„ —* u both in Hy(VT).

Now given our assumptions on P we will be able to show that for all

fE U^.\VT) there exists a unique strong solution u E H^.\VT), and that for

this solution supp u C supp / + T*(Pm, (1, 0)).  Using this result one can easily

obtain the result for fE E'(R"+1) and u E P(Rn + x). These existence theorems

will be the subject of §5.  In  §6, we will make an easy generalization of these

results to systems of differential operators.

4. Construction of energy integrals.  Suppose that P is an operator which

satisfies the assumptions of the previous section, in particular Pm(D) is assumed

hyperbolic.  Since the set of differential operators of degree i which are weaker

than Pm  is a linear space, we can choose a basis p], • • • , p"! for this set.

Then our assumptions about P imply that

m-\     "i

(4.1) Pu = Pm(D)u +Z    ¿2 c[(t, x)p\(D)u
i=0    /=1

where the c{(t, x) E ß(t, x).  Furthermore it is obvious that any operator of

form (4.1) satisfies our hypotheses.
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We will now construct energy integrals for operators of form (4.1) follow-

ing the method of Peyser [6].   Consider the quantity

-\m(P„\-x\D)uPm\D)u).

One has by methods identical to those of Peyser that

(4.2) - Im (Pm-x\D)uPm\D)u) = £ o^"''(«)/3*,
j=o

where the Af~'  are Hermitian forms in the derivatives of order  m-i  of u,

and for u E V+   or  0_,

(4.3) fST,A^-i(u)dx>0

where ST'  is the hyperplane   {(t, x): t = T'}.

Lemma 4.1. If P satisfies our hypothesis and uE~0+  or Q_ then

there is a constant c such that

Jsr £ c[{t, x)p{(D)u

/-i
<cisT'Ao(u>

Proof.

JsT- X a.(t, x)p/(Z))U<

The result now follows from Lemma 3 of Peyser [6].

We are now ready to state the main energy inequality.

Theorem 4.2. If P is of form 4.1, then for each nonnegative integer s

there exists a constant  c which depends on Pm, T and the bounds of the  c\

and their derivatives up to order s such that for  7/ in the interval  [0, T]   and

u E V+  we have

(4-4) Z    Z ¡s^Ao~i(.Dyu)<c  Z       ([ \DyPu\2.
\y\<s  i=l "   r l7l<s    pz.,

Proof.   By integrating (4.2)  over  VT>  and using the fact that  |Im(aô)|

< ^(|a|2 + |2>|2) we obtain
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Ís^-K^ü) < \ ff |P0-1)(Ö)Z)7Ü|2  +   1 Jjjp0)(£>)^u|2
VT' Vf

Summing over i  and using Lemma 4.1 we obtain

Z ¡SrA^-Wu) < \ ff ]Pm(D)DM2 + c £ Jj A%-Wu).
i'=l Vf '=^Vf

Summing over y for  lyl < s gives

Z    Z fsr^o-^u)
l7l<i    1=1 *

(4.5)

<$ Z   ff\pm(D)Dyu\2+c Z   Z ff AV~W»)-
l7l<i  vT> hfKi /=i r/£,

Now

PmZJT« = Z)TPm« = D^Pu - Z)t[Z Z c{(t, x)p\(D)u~\.

Applying Leibniz's rule to the quantity in brackets gives

V«-/™.-7i  z zz/^n W>«
a+ß=y   i   j

= DiPu-y\     Z   ZZ

a + ß=y   i   T\   «i   /   \       $

Z)0^ \   fp>i(D)Dßu

a + ß=y   i    j   \   a!

Thus

ffv^u]2 < Jjf |Z>W +c Z   Z ^\p\{D)D^u\2
vT> vT> ß<y ¡.i Vf

< fjwm2 +c Z Z ffA^-Hpfu)
Vf ß<y  ' Vf

< jT iz>w + c z z rr A^ipPu).
Vf l/JK*   i   ¿£

Substituting this into (4.5) we obtain

m    r

z zfsT.Arwu)

<^ ¿2  ff\D-ypu\2+c Z   Z ffAZ-'(p*u).
\y\<s Vf \y\<s  i=i Vf
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Now by a classical result about integral inequalities, this implies,

Z   tisf^-K^uXc  £    ffWPul2.
1-yKi i=i J   T \y\<s Vf

Corollary 4.3. If P is of form (4.1), u E V+ and s a nonnegative

integer, then  \\u\\s < c\\Pu\\s where || • ||s is the norm defined by

ll"H2=   Z      jfjT \Dyu\2.
\y\<s   vT

In order to obtain results about the existence of solutions of the equation

Pu = / for fEH$'(VT) when s is negative, we will need energy inequalities

for the adjoint of P, P*:

P*u = Pm(- D)u + ZZ Wr D)c[{t, x)u
i    i

= Pm(D)u +ZZZ [(-D)*cit](#>(-D)u.
a  i    j

Now (p{)^  is weaker than Pm  if p{ is and so the verification that P*

satisfies our hypothesis is reduced to the following:  Claim if p  is weaker than

Pm(D) then p(-D) is weaker than Pm(D). For if p(D) = Z^Z)*, then

p(-D) = Sga(-Z?)a  and p(-Z)) = ^äaDa. Thus if /(£)  is the polynomial

corresponding to p(- D), then /(£) = p(£) for £ real and thus  |/(£)| = |p(£)|.

Now by Theorem 3.3.2(a) of Hörmander [4] this implies that p(- D) is weaker

than Pm  if p(D) is. Thus P* satisfies our hypothesis. One can now prove

the analogs of Theorem 4.2 and Corollary 4.3 with uEV+   replaced by u E £>_

and P by P*.

5. Existence theory. We are now ready to prove existence theorems for the

Cauchy problem for Pu = f with homogeneous initial data.

Theorem 5.1. If P is of form (4.1) and f is an arbitrary element of

H^(VT), s an integer, then there exists a unique strong solution u E f/^(Fr)

of the problem Pu = f with homogeneous initial data.   We have for this u that

supp u C supp f + r*(Pm, (1,0)).

The proof of this result will proceed in several steps.  Step 1 is the proof

of the result for nonnegative s.   In the course of this proof we will show that

for every fEV+  there is a unique u EV+  such that Pu = f.  A similar re-

sult also holds for u and / G p_ and P*u = f.   Step 2 uses the results of Step

1 to obtain estimates in H^} for s negative which can then be used to prove

the result for such s.
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Step 1. Assume that s is a nonnegative integer.  Uniqueness is easy. If

u and v are two strong solutions corresponding to /, then there exist two

sequences un  and vn  suchthat Pun—+f, u„—*u, Pun —>f, and vn —> u

all in  f/P(Fr). This implies that P(un - vn) -* 0 in  «^(Fj.) and thus by

Corollary 4.2 un-v„ —► 0.  Therefore u = v.

For the existence of a strong solution u of the problem it suffices to find

a sequence un E V+  such that Pun —► /  Indeed, if un  is such a sequence,

Corollary 4.2 shows that un  is Cauchy and hence must converge in  H^\VT).

Suppose now that one has the following

Lemma 5.2. If P is of form (4.1) and g G p+  then there exists a

unique u EQ+  such that Pu = g. Furthermore we have for this u that supp u

c supp * + r*(z>„,, (i,o)).

Now by choosing /„ G V+  such that \\fn -/||s < e = 1/n and supp/„

C supp f + Be  where Be  is the ball of radius e about 0, we have for the

un  given by the lemma that Pun = /„  and that supp un C supp /„ + T* C

supp f + F* +B£  and thus the limit of the un, u has supp u C supp / + T*,

and is a strong solution of Pu = f.

Proof of lemma  We will perform the iteration

m0 = 0,

Pmul+ 1=8-    Z Z c{(t, X^ftZ))«,.
'    /

That is,

"z+i -*• if - YLcït,x)p[{D)u\

where E is the fundamental solution of Pm(D) with support in the cone

r*(z»m,(i,o)).
Claim that all the u¡ are in V+  and that in fact  supp u¡ C supp g +

T*(Pm, (1, 0)).  Clearly this is true for u0. If it is true for u¡ then g -

Sj^c^p^Z))«, G V+  and thus by elementary facts about convolutions ul+1 G

V+. Furthermore

supp u,+ j C supp E + (supp g U supp u¡)

= (supp E + supp g) U (supp E + supp u¡)

civ*(Pm(i,o))+suppg)v(r*(Pm,(i,o)) + r*(Pm,(i,o)) +supp^)

= (r* + supp g) u (r* + supp g) = r* + supp g
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where we have used the fact that  T* is a convex cone.  Thus if these u¡ have

a limit in  V+   it is supported on  T* + supp g.

We will now use the energy inequalities of the previous section. One has

Pm(D)(ux-u0)=g

Pm(PXul+1 - «,) = -EeÍpftDX«, - ",-i).

Now for T'  fixed, t in the interval   [0, T']   and

m     r

cms Z  Z/ 4TW"/+,-«,))
l7l<i    1=1    St

we have that

G0(t)<c   Z    ffWg\2<cx
I7IO   Vt

and

_ m   r     i i

Gftxcfidt' £ il d72>{p^X",-«/-i)r
l7l<S   1=1        '

<eif¿dt'G^l(f').

One obtains easily that G;(i) < cx(c2t)l/l\  and therefore Gj(f) —* 0

uniformly for 0 < t < T'.  Furthermore

Z   // iz^«, - U/t)|2 < c frdt> g Cj(0 '
l7l<s    Vf i=k

which implies that u¡ is Cauchy in the H^ÇVj.-) norm. Letting s and 7*'

go to infinity one obtains that u, converges in C°°(R" + 1) to an element of

Q+. This completes the proof of the lemma.

Step 2.  Suppose now that s  is a negative integer and that fE ¡l^(VT).

The proof will go through much as before if we can establish the extension of

Corollary 4.3 to the case of negative s.

For / G p_ denote by Ef the unique element in  ß_ such that P*Ef = f.

Then we have for u E Q,
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||ftiH,=   sup   \(v, Pu)\l\\v\\_s =   sup \(P*v, iOI/HuIL,
uep_ uep_

=  sup  \(P*Ef,u)\l\\Ef\\_s=    sup |(/, m)|/||^/||_s.

But by Corollary 4.2, |U?/||^ < c||/IL,  and thus

||fti||,>csup  \(f, u)\l\\f\\_s = c\\u\\s.

This completes the proof of Theorem 5.1.

Let us now consider the problem Pu = f where fE E'(R" + 1) and where

uEV'(R" + x) with  supp u C K + L, K compact and L  a proper cone.  The

assumption that fEE'  implies that / G f/^(R"+ ' )  for some s.  We can by

choosing the origin of time appropriately assure that supp /H {(t, x): t < 0} =

0, and we can choose  T large enough so that supp /n {(t, x): t>T} = 0.

Then we have by methods similar to those of Hörmander   [4, §2.5] that fE

H^\VT) and

mH(s>(vT) = llñH(°hKn+xY

Thus we have a unique strong solution u E ¡¡^(VT). Furthermore, we also have

a strong solution in  f/^ÍIV) for  T' > T which can be restricted to H{(+\VT)

to yield the already given solution. Proceeding in this manner one can construct

a m G H(í)loc(R"+1) with u = 0 for t < 0  such that Pu = f and such that

supp u C supp/ + T*.  Furthermore, it is easy to show that among the elements

of V'(R" + X) suchthat Pu=f and supp u C K + L, K compact and L a

proper cone, the solution is unique.  Summarizing we have

Theorem 5.3. If P satisfies our hypothesis and fE E'(R" + 1)  then the

equation Pu = f has a solution u E V'(R"+1) with  supp u C supp / 4-

V*(Pm, (1, 0)) and this solution is unique in the class of u E t)'(R" + ' ) with

supp u C K + L  where K is compact and L is a proper cone.  One has also

that fE {{^ implies u E H(i)loc, where s is an arbitrary integer.

6. Systems. We will now suppose that we have a square system of differen-

tial equations Pu = IP¡j(D)Uj =f¡. Certain special operators of this type will

admit a treatment similar to the one we have already given for scalar operators.

The most obvious such operators are of the form Pu = Pm(D)I + lower order

terms where Pm(D) is a scalar operator with constant coefficients which is

homogeneous of degree m  and hyperbolic in the time direction.  If one makes

the further assumption that for each matrix position the lower order terms are
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weaker than Pm, then one can push through the analogs of aU the theorems of

§§4 and 5. For instance,

Theorem 6.1. If Pu = Pm(D)u + Qu where Pm  is a scalar operator

homogeneous of degree m with constant coefficients and hyperbolic in the time

direction and Q is a matrix of differential operators with coefficients in   8 such

that at each point Q¡j is weaker than Pm, then for each fEH^(VT), s an

integer, there exists a unique u E H^}(VT) such that u is a strong solution of

Pu = f with homogeneous initial data.  Furthermore supp u C supp / +

r*(z>m,(i,o)).

We also have for such P that if / G E'  then there exists a unique u E V'

such that Pu = / and  supp u C K + L, K compact and L a proper cone.

For this « we have  supp u C supp/ + r*(Pm, (1, 0)).

The proof of this theorem and of all the other theorems from   §§4 and 5

go through virtually without change.

One can obtain results for other systems of equations when it is possible to

throw them into the above form.  For instance if there exists an operator R

such that RP is in the above form, then one has that for any fEE' there

exists at most one u E V' with supp u C K + L, K compact and L  a proper

cone such that Pu = f.   Similarly if PR is in the above form one obtains an

existence theorem.

Finally let us consider the problem when P = A + B where A  is a

matrix of differential operators with constant coefficients. One makes the

further assumption that there exists another operator C again with constant

coefficients such that CA = p(D)I where p is a hyperbolic polynomial and

such that CB is weaker than the principal part of p.  Clearly one has unique-

ness for such an equation. One has existence also. In fact, if CPu = Cf where

/ G E'  and uEV' with supp u C K 4- L, K compact and L a proper cone

then Pu=f.   For C(Pu -f) = 0 with supp (Pu-f)CK + L, therefore

since our assumptions on C imply that it is a hyperbolic operator we have Pu —f. To

see why Cis hyperbolic one needs the result of Girding and Svensson [8], that a

matrix of operators with constant coefficients is hyperbolic iff its determinant is

hyperbolic. However, that Chas hyperbolic determinant follows easily from the

fact that CP = pI where p is a hyperbolic polynomial.
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