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THE STRUCTURE OF NESTED SPACES
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ABSTRACT.   The structure of nested spaces is studied in this paper using

such tools as branches, chains, partial orders, and rays in the context of semitrees.

A classification scheme for various kinds of acyclic spaces is delineated in terms

of semitrees.   Several families of order compatible topologies for semitrees are

investigated, and these families are grouped in a spectrum (inclusion chain) of

topologies compatible with the semitree structure.  The chain, interval, and tree

topologies are scrutinized in some detail.   Several topological characterizations of

semitrees with certain order compatible topologies are also derived.

1. Introduction. Certain specialized types of acyclic spaces have been

studied extensively by many authors. Whyburn examined dendrites in some detail

[31], and Plunkett later characterized dendrites in terms of the fixed point prop-

erty [19]. Ward investigated trees in a series of papers ([24], [25]), and he in

turn characterized dendroids in terms of the fixed point property [29]. Ward

also introduced several generalizations of trees which included arboroids [27]

and generalized trees [25]. Charatonik and Eberhart have recently published

papers on dendroids and fans ([4], [5], [6]).  In 1946 Young defined nested

spaces [34], and he continued the research in a later paper [35].  Borsuk con-

sidered [3] a special type of nested space that Holsztyriski later termed a B

space [11]. When in 1972 Bellamy proved that any arcwise connected continuum

is decomposable [2], it became clear that all of the aforementioned acyclic con-

tinua are nested, and this fact justifies a thorough investigation of nested spaces.

The purpose of the present paper is to initiate a study of the algebraic and

topological structure of nested spaces in the spirit of Wallace and Ward ([24],

[25], [27]).
A semitree is simply the extracted algebraic structure of a nested space.

Many known theorems for trees can be extended to semitrees that possess an

Presented in part to the Society, January 28, 1973 under the title The structure of

semitrees. I; received by the editors August IS, 1973.

AMS (MOS) subject classifications (1970).   Primary 54F05.

Key words and phrases.   Acyclic spaces, arboroids, arcs, box topology, branches, chain

topology, combs, fans, nested spaces, order compatible topologies, partially ordered spaces,

semitrees, trees.

Copyright © 1975, American Mathematical Society

57



58 T. B. MUENZENBERGER AND R. E. SMITHSON

order compatible topology in the sense of Wölk  [32], and many new results can

be established. Thus compactness, local connectivity, and metrizability are in no

way essential. The primary application of semitrees at the present time has been to

provide a structure sufficient to prove the classical fixed point theorems for multi-

functions on acyclic spaces ([15], [17]).

The algebraic properties of semitrees are reviewed in §2, and rays and

branches are considered in §3.  Semitrees possessing certain types of order com-

patible topologies are studied in §4.  Many examples are presented in §5, and

chains are characterized in §6.  Finally, three topological characterizations of

semitrees are established in §7.

2. Algebraic semitrees. The fundamental facts about the algebraic structure

of semitrees are reviewed in this section. Nearly all of the following results were

proved in [15]. The basic structural requirements on a semitree are very simple.

A semitree must have unique arcs and contain no open rays. Formally, a semitree

consists of a pair (X, P) where X is a nonempty set and P is a family of sub-

sets of X together with six axioms on the pair (X, P).

Axiom 1.  For all x, y G X there exists a unique minimal (under inclusion)

element of P containing x and y.

The minimal element of  P that contains x and y  is called the chain in

X with endpoints x and y  and is denoted by   [x, y]. Define in the usual way

(x, y) = [x, y]\{x, y} and (x, y] = [x, y]\{x} = \y, x).

Axiom 2.  If 0¥=POCP and if f)P0 * 0, then f) P0 G P.

Axiom 3. For all PG P there exists a unique pair x, y G X such that

P=[x,y].

Thus  P consists of the chains in X. A set A C X is chainable if and only

if for all x, y G A  it follows that   [x, y] C A.

Axiom 4.   The union of two chains with nonempty intersection is

chainable.

Axiom 5.   // P0CP is a nest, then there exists PGP such that

(JP0CP.

Axiom 6. If x, y EX and if x¥=y,  then  (x, y) ± 0.

A pair  (X, P) satisfying Axioms 1-6 is called a semitree.   If, in addition,

X has some topological structure, then the pair  (X, P) will occasionally be

referred to as an algebraic semitree.

Pick a basepoint eGX and define a relation  < by the rule:  x <y if
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and only if x G [e, y]. If x < y  and x+y, then write x < y.  The relation

< is called the semitree order with basepoint e.   For x EX define

L(x) = {yEX\y<x]  and   M(x) = {y E X\x < y}.

When more than one basepoint is being considered, the notations   <e, Le(x),

and Me(x) will be used to indicate the dependence on the basepoint.  If

x<y, then   [x, y]   is called an ordered chain.   If x and y are not comparable

under <, then   [x, y]   is called an unordered chain.   A triple  (X, P, <) will

occasionally be called a semitree in order to stress a particular order <.

In the following six lemmas,  (X, P, <) is assumed to be a semitree where

< is a specific semitree order with basepoint e.

Lemma 2.1.  (i) For all x, y G X, x < y if and only if [e, x] C [e, y].

(ii)  The semitree order < (  is an order dense partial order with unique

least element e.

(iii) 77ze set X is chainable and does not contain two distinct chains with

the same endpoints.

(iv) An intersection of chainable sets is chainable.

Lemma2.2.   Suppose that x, y, z EX where x <y <z.   Then

(0   [x, x] = {x} = L(x) n [x, y] ;

(ii) L(y) = [e, y] = L(x) U [x, y] ;

(in) L(y)\L(x) = (x, y] ;

(iv)  [x,y] = L(y)nM(x);

(v)   [x,z] = [x,y]U\y,z].

Lemma 2.3. Suppose that x, y E X where x^y.   Then

(0   [x> y] > [x, y), (x, y], and (x, y) are chainable;

(ii) if z E (x, y), then   [x, y] \{z}   is not chainable;

(iii) L(x) is totally ordered by <;

(iv) M(x),X\M(x), and X\(M(x)\{x}) are all chainable.

Lemma 2.4. (i) 77ze pair (X, <) is a complete semilattice directed down-

ward, and if 0 =£ A C [x, y], then  inf A E [x, y].

(ii) If 0 =£ A C X is totally ordered, then A has a supremum in X; if

moreover, A C [x, y], then  sup A E [x, y].

(iii) // x <y,  then  [x, y] is a complete lattice.

The notation x Ay will be used for the point inf {x,y} = sup (L(x)nL(y))

where x,y EX.  When x and y are comparable, the notation x Vy will

stand for the point sup {x, y}.
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Lemma 2.5. Suppose that x, y EX.   Then

(i) L(x)nL(y) = L(xAy);

00  [x, y] = [x Ay,x]U [x Ay,y];

(iii) [x Ay,x]n[x A y, y] = {x A y};

(iv) if x and y are not comparable, then no p G (x A y, x]   is com-

parable to any q G (x A y, y].

Lemma 2.6. // A is chainable and if A meets both M(x) and X\M(x),

then x EA.

It is possible to give an order theoretic characterization of semitrees.  Let

(X, <) be a partially ordered set satisfying the following five conditions:

(a) There is a least element e E X;

(b) the partial order < is order dense;

(c) if 0 ¥= A C X,  then inf A  exists in X;

(d) every nonempty totally ordered subset of X has a supremum in X;

(e) for each x G X, L(x) is totally ordered.

Define the chains in X as follows.  If x <y, then set   [x, y] =

{z G X\x < z <y}. If x  and y are not comparable, then set   [x, y] =

[x A y, x] U [x A y, y\-  Let   P be the collection of all sets   [x, y]   for

x.yEX.

Theorem 2.7. The pair (X, P) is a semitree, and the semitree order

<e is precisely the original order <. Conversely, any semitree (X, P) yields

a partially ordered set (X, <) satisfying conditions (a)-(e) above where < is

any semitree order.

3.  Rays and branches.  Certain maximal subsets of semitrees have proved

extremely useful in two other papers ([15], [16]), and they serve to elucidate

the algebraic structure of a semitree.  Let (X, P, <) be a semitree and let

x EX.  A ray at x is a union of a maximal nest of chains in M(x) which have

x as a common endpoint. A major part of the following theorem was proved in

[15]. The significance of Axiom 5 of §2 lies in proving the existence of maxi-

mal elements.

Theorem 3.1. In a semitree (X, P,<) the following hold:

(i) Every ray at x is a chain with one endpoint being x;

(ii) for each x EX there exists a maximal element m EX such that

x <m;

(iii) an element m of X is maximal if and only if [x, m]   is a ray at x

for each x EX with x < m;

(iv) a subset A of X is a maximal totally ordered subset of X if and

only if A is a ray at e;
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(v)   the semitree X has the representation X= \J{[e,m]\m isa

maximal element in X}.

Let x EX.   A branch B at x is a subset of M(x) which is maximal

with respect to the property:   If y, z E B\{x}, then y A z E B\{x}. This def-

inition could be made in an arbitrary semilattice  (X, A). Notice that the defini-

tion of branch depends on a particular semitree order <fi.  Also there is one other

candidate for a branch at x; namely, X\(M(x)\{x}).  In fact, this set would be

a branch at x if the semitree order <^  were used.  For the purposes of this

paper, branches at x will be subsets of Me(x). Standard maximality arguments

establish the next two lemmas and corollary which contain the elementary algebra

of branches.  Most of the following results are valid in a more general setting.

Lemma 3.2. Let B be a branch at x.  Then

(i) xEB and B is chainable;

(ii) if yE B\{x},   then M(y) C B;

(iii) every yEM(x) is contained in a branch at x;

(iv) any two distinct branches at x meet only at x,  and thus there is

exactly one branch at x containing y EM(x)\{x};

(v) B= \J{M(y)\yEB\{x}}U{x} and B\{x} = \J{M(y)\{y}\y G

B\{x}}.

Corollary 3.3.  The set M(x) is the union of all branches at x. If

x<y,  then M(x) = [x, y] U M(y) U \J{B\B is a branch at z E [x, y) and

B n [x, y] = {z}}.

Lemma 3.4. Let Bx and B    be branches at x and y, respectively.

Then the following hold:

(i) If x£ By and y £BX,  then Bx n By = 0;

(ii) if x<y,Bx* By, aEBx,bE By, and Bx n [x, y] = {x},  then

a A b = x.

The following theorem contains an equivalent formulation of branches in

terms of rays in a semitree.

Theorem 3.5. Let B be a branch at x.   Then

(i) There exists a maximal element m EX such that m E B;

(ii) if m EB is a maximal element, then B = [x, m] U \J {R \R is a

ray at yE(x, m]}.

Proof. The first part of the theorem follows easily from Theorem 3.1(ii)

and Lemma 3.2(ii). Let m EB be a maximal element. Clearly, the right-hand

side of the above equation is contained in B by Lemma 3.2(i) and (ii).
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Suppose that p E B\[x, m]. Then m, p E B\{x}, and so y = m Ap G B\{x}.

Obviously, p is an element of some ray at y G (x, m]   by Theorem 3.1.

4. Topological semitrees.  Five kinds of natural topologies for a semitree

are considered in this section.  Many folk theorems for trees are then extended

to semitrees, and some results of a new and different character are derived. We

examine the relationships between the topologies and indicate in § 5 that a

semitree can have infinitely many natural topologies, not all of which are related.

Let (X, P, <e) be an algebraic semitree throughout this section.

Let A  be a nonempty subset of X.   A point x E X is a quasi supremum

of A  if and only if

(a) for all a E A, x < a and

(b) for all y EX such that y < a  for each a G A, y < x.

The set A  is closed above if and only if A  contains all of its quasi suprema.

The set A  is closed below if and only if inf AEA.

A set A EX is closed if and only if for all x,y EX with x < y,

inf (A n [x, y]) G A  and  sup (A n [x, y]) E A  whenever A n [x, y] ¥= 0.

Equivalently, A C X is closed if and only if the infimum and supremum of

each nonempty totally ordered subset of A   are back in A.

The next theorem says that a quasi supremum of a chainable set is the

supremum of a part of the set.

Theorem 4.1. If 04^A EX is chainable, then xEX is a quasi supremum

of A if and only if AC\ [e, x] =£ 0 and x = sup A n [e, m] for each m>x.

Proof.   Suppose first that x E X is a quasi supremum of A.   If x E A,

then there is nothing to prove.  So choose a E A\{x}. Then a A x < x.   So

choose y E (a A x, x) and a E A  with y < a. Then y E A n [e, x]

because a Ax = a A a'  and A  is chainable.  Thus A n [e, x] # 0. A similar

argument shows that jc = sup A n [e, m]   for each m>x. Conversely, if the con-

dition holds, then it is easily shown that x is a quasi supremum of A.

A partial order < on a topological space  (Y, T) is said to be semicontin-

uous if and only if L(y) and M(y) are  T closed for each y E Y.   Further,

< is monotone if and only if L(y) is connected for each y E Y.   The inter-

val topology   Î  for  Y has the family of all sets L(y) and M(y) for y E Y

as a subbasis for the closed sets.  Evidently   I  is the smallest topology for which

< is semicontinuous.  If (Y, <) is totally ordered, then the interval topology

is usually called the order topology. It is not difficult to prove that a semitree

(X, I) is always compact. The following two lemmas were proved in [15].

Lemma 4.2.   If A EX is chainable and nonempty, then A  is closed if

and only if A  is closed above and below.
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L emma 4.3. 77ze following hold:

(i) Both   0 and X are closed;

(ii) the intersection of closed sets is closed;

(iii) the union of a finite number of closed sets is closed;

(iv) the semitree order < is semicontinuous;

(v) each PEp is closed;

(vi) for each x EX the set X\(M(x)\{x}) is closed.

The collection {UEX\X\U is closed} is therefore a topology for X which

is called the chain topology. Using Lemma 4.3 it is easy to prove that the chain

topology is Hausdorff.

Another way to obtain the chain topology is now developed.  Give each chain

P in  P the natural order topology. The required orders are obtained as follows.

If P is an ordered chain, then use <e  restricted to P.   If P = [x, y]   is an

unordered chain, then keep the semitree order on  [x A y, y]   and reverse the

semitree order on   [x Ay, x]. Now P is totally ordered in either event, and the

corresponding order topology is clearly independent of an interchange of x and

y in the order reversal.

An arc is a Hausdorff continuum with exactly two noncutpoints which are

called the endpoints of the arc, and an arc need not be separable. A topological

space is arcwise connected if and only if any two distinct points are the endpoints

of some arc in the space.  In the next lemma it is convenient to consider   [x, x]

as an arc with both endpoints being x.

Lemma 4.4. Each chain is an arc in its natural order topology.

Proof.  Let PEP. Then with the order defined above, P is totally

ordered and order bounded, complete, and dense. Thus P is a Hausdorff continuum.

Now Lemma 1 of Ward [27] implies that P is an arc.

It is easy to see that every pair P, QE P satisfies

(a) The order topologies of P and  Q agree on P n Q and

(b) each P n Q is closed in P and  Q.

The strong topology in X induced by   P is

T(P) = {UE X\UC\P is open in P for each PEP}.

Each PEP, as a subspace of (X, TCP)), retains its original topology and

is a closed subset of the space X.  Further,  T(P) is the largest topology for X

that preserves the given topology of each PEP. Also C C X is  T(P) closed

if and only if C n P is closed in P for each PEP [7].

Theorem 4.5.   The chain topology is precisely  TCP).
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Proof. Let CEX be T(P) closed and let D = C n [x, y]¥= 0 where

x <y. Now D is closed in [x, y], and so it suffices to prove that inf D and

sup D are in the closure of D in [x, y]. But this follows from the definitions of

inf D, sup D, and the order topology on [x, y]. Conversely, suppose that C is

closed in the chain topology, and let [x, y] E P Let z be an element of the

closure of C n [x, y] in [x, y]. Suppose that z E (x Ay, x]. Then either

z = inf C n [z, x ] G C or z = sup C O [x A JV, z ] G C. For if neither equality holds,

then there is a neighborhood of z in [x, y] that does not meet C. This is a con-

tradiction. Similar arguments handle the cases z=xAy and zE(xA y, y].  So

z G C, and C is T(P) closed.

So the chain topology is the strong topology induced by the chains. Now

T(P) is clearly independent of the semitree order < used in the definition of

closed, and thus the chain topology is independent of the basepoint.

Lemma 4.6. 77ie chain topology is the strong topology induced by any of the

following families:

(i) {L(m)\m is a maximal element in X};

(ii) {L(x)\xEX};

(iii) {[x, y]\x, y G X and. x <y};

(iv) ?={[x,y]\x,yEX);

(v) {KEXIK is T(P) compact}.

Proof. Each family is contained in the one below it, and taking strong topol-

ogies reverses the inclusions. The first four types of sets induce the order topology

on any chain that they happen to contain. Using these facts it is seen that the first

four families induce the same strong topology. That the fifth does also is immediate

since each K C X in (v) is given the topology induced by  T(P)-

Corollary 4.7. The space (X, T(P)) is a Hausdorff k space.

A topology T for X is weakly order compatible if and only if the following

hold:

(a) Each chain in Pis T closed;

(b) Tinduces the order topology on each chain in   P.

A semitree with a weakly order compatible topology is arcwise connected and

Fréchet, and <e is monotone for any e. A fundamental property of such topolo-

gies is the following.

Lemma 4.8. Let Tbea weakly order compatible topology for X. If zE

UETand x<z<y, then there exist a,bEX suchthat x<a<z<b<y and

(a, b) C U. Similar results hold for half open chains.
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Proof. Now z G U n [x, y] which is open in the order topology on [x, y].

So there exist a,bEX such that x<a<z<b <y and (a, b)CUC\[x,y]CU.

The results for half open chains are proved similarly.

A topology T for X is order compatible at e if and only if the following

hold:

(a) T is a weakly order compatible;

(b) for each x E X, M(x) is T closed.

The term order compatible is due to Wölk [32]. Observe that a topology may

be order compatible at one basepoint but not another.

Lemma 4.9. Let T be a topology for X. The following are equivalent:

(i) T is order compatible at e;

(ü)  ICTCT(P);
(iii) <c is semicontinuous and for each xEX.T restricted to L(x) is the

order topology on L(x).

Proof. Observe first that L(x) and M(x) are T closed for each xEX

iff I C T iff <e is semicontinuous. So only the induced topologies need be

checked in each implication. Suppose that (i) holds. Then JEJ(P) since T

induces the order topology on the chains. Thus (i) implies (ii). Suppose that (ii)

holds. Then T induces the order topology on each L(x) for xEX since I and

T(P) have this property. Thus (ii) implies (iii). Suppose that (iii) holds. But the

chain [x,y] is contained in L(x)UL(y), and so T induces the order topology on

each chain in P. So (iii) implies (i), completing the proof.

Let (Y, <) be a partially ordered set. A subset S of Y is down directed

(up directed) if and only if for all x, y E S there exists zES with z < x, y

(x,y<z). Following McShane and Wölk [32], a subset C of Y is Dedekind closed

if and only if whenever S is a down directed subset of C and y = inf S or S is an up

directed subset of C and y = sup S, it follows that y EC. Also Y is Dedekind

complete if and only if every down directed subset of Y has an infimum and every

up directed subset has a supremum. In a semitree up directed sets are totally ordered,

and so any semitree is Dedekind complete. Following Frink [8], a net {ya} in Y

is said to converge to yEY in the Moore Smith order topology, written ya —*■ y,

if and only if there exist nets {xa} and {za} such that (a)  For each a, xa <ya <

za; (b) supxa =y = infza;and (c)if a<0,thenjca ^XßindZß <za. Asubset

C of Y is closed in the Moore Smith order topology if and only if whenever

{ya}EC and ya —>y it follows that y EC. In a semitree the infima and

suprema involved in this definition always exist. Notice that Moore Smith closure [8]

and convergence in a semitree are not the same as closure and convergence with

respect to T(P), but a net that converges with respect to T(P) necessarily possesses

a diverse or monotone subnet [9].
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Let Y be an arcwise connected Hausdorff space. An arc component of  Y is

any subset of Y which is maximal with respect to being arcwise connected. The

space Y is locally arcwise connected if and only if the arc components of open

sets are open. Young's arc topology ([28], [34]) is that topology which results

from taking the arc components of open sets of the given topology as a basis for the

arc topology.

It will now be shown that in a semitree the three concepts of closed just now

defined coincide with the concept of closed defined previously.

Lemma 4.10. The space (X, T(P)) is locally arcwise connected.

Proof. Let A be an arc component of a T(P) open set U. It suffices to

prove that A n [x,y] is open in [x,y] where x<y. Let zEA C\ (x,y). By

Lemma4.8 there exist a,bEX such that x<a<z<b<y and (a, b)C U.

But (a, b) is arcwise connected and meets A. Thus z G (a, b) C A O [x, y]. The

cases z =x and z = y are handled similarly. So A n [x, y] is open in the order

topology on [x, y], and A is therefore T(P) open.

As a consequence of Lemma 4.10, the chain topology T(P) is precisely

Young's arc topology in the space (X, T(P)).

Theorem 4.11. Let CEX. The following are equivalent:

(i) The set C is T(P) closed;

(ii) the set C is closed in the Moore Smith order topology;

(iii) the set C is Dedekind closed.

Proof. Let C be T(P) closed. Suppose that {ya}EC and ya—*y. Let

{xa} and {za} be the nets given by the definition of Moore Smith convergence.

Pick some a0 and consider D = CCt[xa , za ]. Using the properties of the nets

{xa} and {za}, it is easy to see that y is an element of the closure of D in

[xa , zaA- But D is closed in [xa , za ], and so y ED. Thus C is closed in

the Moore Smith order topology, and (i) implies (ii).   Suppose now that C is

closed in the Moore Smith order topology. Let S be a down directed subset of C

and y = inf S. By reversing the order, S can be construed as a net {ya} that con-

verges to y in the Moore Smith order topology. Thus y EC. If S is an up

directed subset of C and y — sup S, then analogous reasoning shows that y EC.

So C is Dedekind closed, and (ii) implies (iii). Assume now that C is Dedekind

closed. If S is a nonempty totally ordered subset of C, then S is both down and

up directed. So inf 5, sup S G C, and C is T(P) closed. Therefore (iii) implies (i),

completing the proof.

A subset A of X is totally unordered if and only if no two distinct elements

of A are comparable under the semitree ordering <e. An important basis for

T(P) is now determined.
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Lemma 4.12.   A local basis for T(P) at e consists of sets of the form

U {Ie' em )IOT " a maximal element of X}

where {em } is totally unordered and em E (e, m] for each maximal element

mEX.

Proof. Suppose that eEUEj(P) and let C = X\U. For each m maximal,

let Am = CC\ [e, m]   and define  em = inf Am if Am + 0 and em=m other-

wise. Suppose that em < en for mi=n. But then emECC\[e,n]=An, a con-

tradiction. So {em} is totally unordered, and clearly emE(e, m\. Assume that

xE[e, em)C\C. Then xEAm, but x<em =MAm. Accordingly, eE

Um [e,em)EU. Finally, Um [e, em) is T(P) open since for each maximal

element n EX, \Jm [e, em) O [e, n] = [e, en) which is open in [e, n].

Corollary 4.13. // U is a chainable open set containing e, then there is

a set {em } of the above type such that

Um[e,em)EUE\Jm[e,em].

Proof. If y E U and y < m for m maximal, then em <y since U is

chainable, contains e and y, and does not contain em.

Corollary 4.14. A local basis for T(P) at xEX consists of sets of the form

\J{[x,xm)\m is <x maximalin X}

where {xm} is totally unordered with respect to <x and xmE(x, m] for each

^ maximal element mEX.

Combining the bases for T(P) at x EX given by Corollary 4.14, a basis of

chainable sets for T(P) is obtained.

Corollary 4.15. The space (X,T(P)) is one dimensional in the sense of

Menger.

Proof. The boundary of a basic open set (Jm [x, xm) is {xm} which is

totally unordered with respect to ^ and therefore discrete.

The proof of the next lemma is straightforward, but tedious and therefore

omitted.

Lemma 4.16. (i) If m is <x maximal and if m =£ e, then m is <e maximal.

(ii) // {xm } is totally unordered with respect to <x and if xm ^e x for any

m, then {xm} is totally unordered with respect to <e.

(iii) If y<ex,  then

Mx(y) = Ie' y] u LK[e> mWm " <e maximal and mAex<ey}.



68 T. B. MUENZENBERGER AND R. E. SMITHSON

For A EX, let

L(A) = U {L(a)\a G A}    and   M(A) = U {M(a)\a EA}.

If A  is a family of subsets of X, then  T[A]   denotes the topology which

results from taking all L(A)  and M(A)  for A E A   as a subbasis for the

closed sets.  The next lemma together with the preceding one shows that it is

possible to express a basic open set at x EX in terms of Le  and Me.

Lemma 4.17. Let  C/=Um [x, xm) be a basic open set at x as given

in Corollary 4.14.  Then the following hold:

(i) // there exists xm   <e x,  then

U = X\[Me({xm \xm % x}) U Mx(xmo)] ;

(ii)   otherwise,   U = X\Me({xm}).

Corollary 4.18. Let A consist of the subsets of X which are totally

unordered with respect to e.   Then   T(P) E T[A].

Equality need not hold in Corollary 4.18 since Le(A) is not necessarily

T(P) closed for each A E A.

A topology  T for X is strongly order compatible at e if and only if T

is order compatible at e and M(x)\{x} is   J open for each x E X.   A semi-

tree with a strongly order compatible topology will turn out to be the best

candidate in this paper for the title of noncompact tree.   By Lemma 4.3,  T(P)

is strongly order compatible at any basepoint.  Also the topologies in question

are now Hausdorff (see Lemma 4.19).  Recall that a branch B at a point x EX

was defined in §3 in terms of a particular semitree order <e.

Lemma 4.19. Let  T be a topology for X which is strongly order com-

patible at e and let B be a branch at x EX.   Then

(i) B as well as any union of branches at x is  T closed;

(ii) B\{x} is  T open;

(iii) (X, T) is completely Hausdorff

Proof. Suppose that y £ B.   Then, since M(x) is closed and B C M(x),

it may be assumed that y EM(x)\{x}. Then there is a z  such that x <z <y.

Now y E M(z)\{z} and  (M(z)\{z}) n B = 0   by Lemma 3.2(i) and (ii).  Thus

B is closed, and any union of branches at x EX is analogously shown to be

closed. That B\{x} is open follows from Lemma 3.2(v).  To show (iii) let

x.yEX with x¥=y. If x<y,  then there exist a.bEX with x<a<

b<y.  Then X\M(a) and M(b)\{b} are the desired open sets.  If x and y

are not comparable, then there exist a E (x A y, x) and b G (x A y, y)- Then

M(a)\{a} and M(b)\{b} are the required open sets.
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Observe the strength of Lemma 4.19.  Part (i) implies that M(x)  is   T

closed for each x E X by Corollary 3.3.   For each x E X, M(x)\{x] =

[J{B\{x}\B is a branch at jc}.  Thus   B\{x}  being   T open for each xEX

and each branch B  at x  in fact implies that M(x)\{x}  is  T open for each

x EX.   The next theorem shows that the concept of a strongly order compatible

topology is independent of the basepoint.    Hence all reference to the basepoint

can be dropped when dealing with strongly order compatible topologies.

Theorem 4.20.   If 1 is a topology for X which is strongly order com-

patible at one basepoint, then   T is strongly order compatible at any other

basepoint.

Proof.   Assume that  T is strongly order compatible at e and let /,

x E X. The notations <, <, and   A are taken with respect to e throughout

the following argument. If x = f, then Mfa) = X and M^(x)\{x} = X\{x}

which are obviously  T closed and  T open, respectively. If x *?/, then it will

be shown that Mf(x) = Me(x),  and so M^(x)\{x} = Me(x)\{x}.  So both sets

again have the required properties.  To show that M¡(x) = Me(x), observe that

y EMf(x) iff xE[f,y]   iff x E \f Ay, y]   iff x E [e, y]   iff x <y  iff

y E Me(x) where x ^Lf has been used twice. Suppose finally that x < f and

let B be the branch at x containing / given by Lemma 3.2(iii).  Then it will

be shown that Mf(x) = X\(B\{x}), and so Mf(x)\{x} = X\B.   Applying

Lemma 4.19(h), both sets again have the necessary properties. To prove the stated

equality, note that y E Mf(x) iff x E \f, y]   iff x E \f A y, f)   iff / A y < x

iff / A y 3 B\{x} iff y <? B\{x}  iff y E X\(B\{x}). The fourth iff is equiva-

lent to   x<fAyifffAy EB\{x} which follows from Lemma 3.2(i).

A connected space  Y is hereditarily unicoherent if and only if whenever A

and B are closed connected subsets of  Y,  it follows that A n B is connected.

Now let  Y be an arcwise connected Hausdorff space.  Then  Y is acyclic if and

only if any two distinct points are the endpoints of exactly one arc in the space.

Further,  Y is nested if and only if the union of each nest of arcs in  Y is

contained in an arc in  Y. An acyclic continuum need not be nested, and a nested

continuum need not be hereditarily unicoherent.  Also   Y is dendritic if and only

if Y is locally connected and any two distinct points can be separated in  y by

the omission of some third point. A dendritic space need not be nested, and a

locally connected nested continuum need not be dendritic (see §5(c)).

Theorem 4.21.   Let  T be a strongly order compatible topology for X.

Then the following hold:

(i) Every arc in X is a chain;

(ii) arcwise connectivity, chainability, and  T connectivity are all equiva-

lent for subsets of X;
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(iii)  the intersection of connected sets is connected;

(iv) the space (X, T) is acyclic, nested, and in fact hereditarily unicoherent.

Proof. Let A  be an arc in X with endpoints x and y.   Suppose that

z G [x, y]\A.  Without loss of generality, z ¥= x A y since   [x, y]\A  is open

in the connected set   [x, y]. So it can be assumed that z G (x A y, x), for

example.  But  (M(z)\{z}) n A = M(z) n A  is then a clopen, nonempty, proper

subset of the connected set A.   This is a contradiction.  So   [x, y] C A Suppose

now that a E A\[x, y]. But A  is an arc and therefore has the order topology

induced by some total order <*.   Now work inside   A   letting   MA(a) =

{z G A \a <* z}.  But (MA(a)\{a}) n [x, y] = MA(a) n [x, j>]   is then a clopen,

nonempty, proper subset of the connected set   [x, y]. This is a contradiction. So

A = [x, y]   is a chain, and this finishes the proof of (i). Now (i) implies that arc-

wise connectivity and chainability are equivalent, and obviously arcwise connec-

tivity implies  T connectivity.  Now let A  be  T connected and let x, y E A.

Suppose that z G [x, y] \A.  Let x Ay = i and suppose first that z =£ i. Then

A = [(X\M(z)) DA]U [(M(z)\{z}) n A]

would be a separation of the connected set A.  Second, suppose that z = i.   Then

with no loss of generality A C M(i)\{i},  for otherwise use the separation given

above.  Let B be the branch at i containing x given by Lemma 3.2(iii), and

let C be the union of all other branches at i. Then B\{i}  and C\{0  are open

by Lemma 4.19(h). Thus

A = [(B\{i})nA]U[(C\{i})nA]

would be a separation  of A  since M(i)\{i} = (B U Q\{i}, B n C = {/}, and

.y G C\{/}.  Therefore, /I  must be chainable, and this proves (ii).  Clearly, (ii)

implies (iii) by Lemma 2.1(iv).  Finally, Axioms 1 and 5 together with (i) and

(iii) imply (iv).

Corollary 4.22. If T is a strongly order compatible topology for X,

then the arc components of the  T open sets M(x)\{x} are  T open for each

xEX.

Proof.   The arc components of the  T open sets M(x)\{x} where x E X

are exactly the 5\{x}  used in the proof of Theorem 4.21 where B is some

branch at x.

In spite of Lemma 4.10 and Corollaries 4.14 and 4.22, a semitree X with

a strongly order compatible topology need not be locally arcwise connected,

although there is a converse.  A chain component of a set A E X is any subset

of X which is maximal with respect to being chainable. The space  (X, T) is

locally chainable if and only if the chain components of T open sets are  T open
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Either Corollary 4.14 or Lemma 4.10 and Theorem 4.21 imply that (X, T(P))   is

locally chainable.

Theorem 4.23. // (X, T) is Frechet and locally chainable, then L(x),

M(x), and X\(M(x)\{x}) are  T closed for each x EX.

Proof. If x E X and B is a branch at x, then B\{x} is a chain com-

ponent of Z\{x}  and is therefore open.  Thus M(x)\{x}  is open. Also,

X\M(x) is a chain component of A'Xix}  and is" therefore open for each x E X.

Finally,

X\L(x) = (M(x)\{x})

U   U {B\{y}\B   is a branch at  y E [e, x)   and   B n [e, x] = {y}}

by Corollary 3.3, and so L(x) is  T closed.

Branches at x G X could in fact be defined in terms of chain components

of M(x)\{x}. Theorem 4.21 permits the following strengthening of a fixed point

theorem that appeared in [15].

Theorem 4.24.   Let  (X, T) be a nested space where  T is a strongly order

compatible topology.  If F: X —► X is lower semicontinuous and point connected,

then F has a fixed point.

A partial order < on a topological space (Y, T) is said to be continuous

if and only if < is a closed subset of Y x Y.

Lemma 4.25.   Let  T be a strongly order compatible topology for X.   Then

the following hold:

(i)  Any two distinct points in X can be separated by the omission of a

third point;

(ii) the semitree order < is continuous.

Proof. Let  x, y EX where x^y. If x and y are comparable, then

any z G (x, y) separates x and y by its removal.  If x and y are not com-

parable, then x Ay separates x  and y by its removal. To see the latter state-

ment, use X\M(x A y) and the branches at x Ay.  The proof of (ii) is stan-

dard [25].

Observe that continuity of a semitree order need not imply strong order

compatibility of the topology [25]. Moreover, for a given weakly order compat-

ible topology, the semitree order <e  need not in general be continuous or even

semicontinuous for any e EX [20].

But if <e  is semicontinuous with respect to a weakly order compatible

topology  T for any e EX, then   T is strongly order compatible [20].

Corollary 4.26. If (X, T) is locally chainable and T is a weakly order
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compatible topology, then  (X, T) is dendritic, and hence every continuum con-

tained in X is a tree [26].

Let  T0  denote the topology for X with subbasis consisting of all sets of

the form X\L(x), X\M(x), or M(x)\{x}  where x G X.

Theorem 4.27.   77it? space (X, T0) is compact Hausdorff. Hence,  (X, TQ)

is a tree and is therefore locally chainable.

Proof.  Observe first that  T0  is a strongly order compatible topology

because   I C T0 C T(P).  Second, by Alexander's subbasis lemma it suffices to

prove that each nonvoid family  F  of subbasic closed sets with fip has non-

empty intersection. Third, if  F contains some L(x), then clearly    D F i* 0

since L(x) is  T0 compact.  So assume that   r  contains no L(x) for x EX.

Since  F  has fip, the set S = {x\M(x) GF}  is totally ordered.  Also S may

be assumed to be nonempty since otherwise e G f| F.  Let s = sup S, and

then s E D {M(x)\M(x) G F}.  It is then easy to see that  s E f\ F.  For

suppose that sEM(x)\{x} where .Y\(Äi(.x)\{jt}) G F.  Since s = sup S there

exists ^ G 5 n (x, s).  But then M(y) n (JST\(M(x)\{x})) = 0, a contradiction.

Thus (X, T0) is compact Hausdorff.  Hence, (X, T0) is a tree [24] and is

therefore locally connected ([24], [25]).

Theorem 4.28. IfCEX is chainable, then C is  T0 closed if and only

if C is T(P) closed.

Now   T0 is clearly the minimal strongly order compatible topology. Thus

there is exactly one compact strongly order compatible topology, and so there is

exactly one way to make a semitree into a tree that is compatible with the chain

structure. Therefore  T0  will be called the tree topology for X. Note that

(X, T0) has finite boundaries [24].

The families of weakly order compatible topologies studied in this section

form a spectrum (inclusion chain) of topologies that are compatible with the

chain structure of the semitree. They include the order compatible topologies

(equivalently, < is semicontinuous), the topologies for which < is continuous,

the strongly order compatible topologies, and the topologies for which the semitree

is locally chainable. Of particular interest are   I, the minimal order compatible

topology; T0, the minimal strongly order compatible topology; and  T(P), the

maximal strongly order compatible topology (also the maximal weakly order com-

patible topology). The minimal weakly order compatible topology has P as a sub-

basis for the closed sets. A semitree with a topology from this spectrum will be

called a topological semitree.

5.  Examples. Many interesting examples of topological semitrees are pre-

sented in this section, and the spectrum of topologies described in the last section
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is examined in a few specific cases.  Some other examples are given for the sake

of contrast.

(a) Arcs.  The unit interval I   is the simplest semitree, and being the only

metric arc, it is usually called the real arc.  More generally, any arc admits the

structure of a semitree wherein the chains are the subcontinua and e is an

endpoint.   Any nondegenerate subcontinuum of an arc is an arc in the induced

topology.   The chain, interval, order, and tree topologies all coincide in an arc.

So there is exactly one weakly order compatible topology for an arc, and it

is locally chainable.   All arcs are nested, and they are the basic building blocks

for semitrees.   The long interval is perhaps the simplest nonmetric arc, and it

serves as a counterexample to several conjectures about properties possessed by

semitrees [22].   The unit square   I2, ordered lexicographically and given the

order topology, is an arc [22].   More generally, any power of unit intervals,

Im, m a cardinal, is an arc when similarly constrained.   The arc  7K°   is

particularly interesting for it enjoys a property common to both the real arc

and the pseudo arc.   By a theorem of Arens ([1], [23]),  Io   is hereditarily

equivalent; that is, every nondegenerate subcontinuum of  / °   is homeomor-

phic to  / °.   It would be interesting to have a theorem that gives constructive

procedures for obtaining all arcs.

(b) Nested spaces.   Let   (X, T)   be a nested space and let   P be the

family of arcs in   X  where   {x}   is considered to be an arc with both end-

points being  x.   Monier has proved that nested spaces are acyclic [14].   An

interesting question is whether the Hausdorff assumption in the definition of a

nested space is necessary for the space to be acyclic.   It is easily shown that

(X, P)   is a semitree and   (X, T)   induces the order topology on the chains.

So   T   is a weakly order compatible topology, and   T C T(P).   Also  A E X

is an arc if and only if it is a chain.   The cutpoint order with basepoint   e

[30]   is contained in the semitree order   <e.   These results and some converses

will be summarized in §7.   The   B   spaces studied by Holsztyñski [11] are a

special type of nested space first considered by Borsuk [3].   Nested spaces

were introduced by Young [34].

Other special cases of nested spaces include the arboroids of Ward [27].

An arboroid is an arcwise connected hereditarily unicoherent Hausdorff contin-

uum.   Among the arboroids are the dendroids (metric arboroids), the trees

(locally connected arboroids), and the dendrites (metric trees).   The arboroids

also include the generalized trees (smooth arboroids [5]) of Ward [25] and those arc-

wise connected continua that are hereditarily divisible by points [14]. It will now be

proved that every arboroid is nested and thus is a semitree. The crucial step is to

prove that arboroids are hereditarily decomposable, and this follows by putting

together theorems of Bellamy, Harris, and Ward.   Bellamy recently proved [2]

that any indecomposable continuum can be mapped continuously onto the
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Knaster continuum [30].   Harris showed that the continuous image of an arc is

arcwise connected [10].   Ward proved that any subcontinuum of an arboroid is

arcwise connected [27].   In particular, no arcwise connected continuum is

indecomposable.   Now let   X  be an arboroid and let   P consist of the arcs

in   X.   Ward has shown that   X  has a natural order theoretic characterization

in terms of an order   <   that turns out to be a semitree order [27].   Using

this order Ward proved that every nonempty totally ordered subset of an hered-

itarily decomposable arboroid has a supremum.   Since it is now known that

every arboroid is hereditarily decomposable,   (X, <)   satisfies Lemma 2.4(h),

and from this fact the nested property follows readily.

The following natural characterizations of some acyclic spaces in terms of

semitrees follow from results of §4, Smithson [20], and Ward ([24]—[27]).

Theorem 5.1.  Let   (X, P)   be a semitree and let   T   be a weakly order

compatible Hausdorff topology for  X.   Then the following hold:

(i) (X, T) is an arboroid if and only if (X, T) is compact and every sub-

continuum of X is chainable (if and only if (X, T) is acyclic, compact, and

every subcontinuum of X is arcwise connected);

(ii)   (X, T)   is a generalized tree if and only if  (X, T)   is an arboroid

and   <e   is continuous for some   e;

(iii)   (X, T)   is dendritic if and only if (X, T)   is locally chainable;

(iv)   (X, T)   is a tree if and only if (X, T)   is compact and   <e   is

semicontinuous for any   e.

Suppose further that   T   is strongly order compatible.   Then

(v)   (X, T)   is dendritic if and only if (X, T)   is locally connected;

(vi)   (X, T)   is a tree if and only if (X, T)   is compact.

It should be again pointed out that dendritic spaces need not be nested.

Parts (iii) and (v) above are only concerned with those dendritic spaces that

happen to be nested.

(c)  Fans.   Let   (X, P)   be a semitree.   The order of a point  x G X

is the maximum possible number of chains in   P that have  x   as an endpoint

and do not intersect otherwise.   This cardinal number will be denoted by

Ord (x).   A point of order one is an endpoint of the semitree, and a point of

order three or greater is a branch point.   It is easy to see that every maximal

element is an endpoint, and the only other possible endpoint is   e.   Conversely,

an endpoint is either   e   or   <e   maximal.

A fan is a semitree in which the infimum of any two noncomparable

elements is   e.   Equivalently, a fan is a semitree with at most one branch point.

Intuitively, a fan is just a bundle of arcs tied together at   e.   A finite (countable)

fan or semitree is one that has only finitely (countably) many endpoints.   If a
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fan is given a topology that is weakly order compatible, then that topology is

order compatible at   e.   Charatonik's concept of fan ([5], [6]) is a fan in the

present sense.

Closed stars in real vector spaces are fans.   Let   f   be a real vector space

and let   e E I/.   A line   L   through   e   is a set   L — e + U where   U  is

a one dimensional linear subspace of   1/.   A closed line segment is a set of the

form

{z G 1/ \z = Xx + (1 - X)y   and   0 < X < 1}   where x, y G (/.

A subset S of f is a closed star at e if and only if e G S and each

line L through e intersects 5 in a closed line segment. The arcs in a

closed star in a topological vector space are real arcs, but the closed star it-

self need not be topologically closed or compact.

Let  B   denote the closed infinite broom [22] which is just a bundle of

H0   real arcs embedded in the plane (including a limit line) and radiating from

the origin.   Let   D   denote the unit disc in the plane at the origin.   Now   D

can be thought of as a bundle of   c   real arcs emanating from the origin in the

plane, where   c   is the cardinality of the reals.   Consequently,  B   and   D

have a similar semitree structure, and the resulting spectra of order compatible

topologies are very similar.   The similarities as well as some subtle differences

will be pointed out.   For the moment let   X  stand for   either  B   or  D.

Let   e   be the origin in   X.   The ordered chains in   X  are the radial line

segments that contain   e   when extended.   Keeping in mind that   X  is to be

a fan and in fact a closed star at   e   in the plane, the other chains are defined

in the obvious way.   The Euclidean subspace topology   TE   is a compact

Hausdorff order compatible topology that is not strongly order compatible.   The

interval topology   I   is not Hausdorff, and the chain topology   T(P)   is

neither compact nor metrizable.   Ward made   D   into a dendritic space

(D, Tw)   which admits no compactification as a tree [26], and the same con-

struction applies to   B.   In fact Ward's proof shows that   (X, T)   admits no

compactification as a tree when   T   is any order compatible topology such that

(X, T)   is not a tree to begin with.   Young's arc topology in the space   (B, TE)

is exactly   Tw,   and the same is true of  (D, JE)   if the chain components of

TE   open sets are taken as a basis for the arc topology.   Now

1 GTECTWG T(P)

where each inclusion is strict.   Infinitely many order compatible topologies

between   TE   and   T(P)   can be obtained by changing the topology on  D   in

sectors of angle   6  (0 < 6 < 2ir)   from   TE   to   T(P),   and none of these

are related to   Tw   under inclusion.   Now   X  can also be thought of as the
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axes in the product   Im   (m = N0, c).   Then the subspace topology induced by

the product topology on   Im   is exactly the tree topology   T0,   and

JET0CTWC T(P)

where all inclusions are strict.   There is one final topology on  D   of interest;

namely, the subspace topology   Tc  induced by the topology on   Ie   that

restricts at most countably many coordinates. Then

T c T0 c Tc c T(P)

where each inclusion is strict.   No other inclusions hold among any of the

topologies discussed above except those indicated.   Observe that   (B, T0)   is a

dendrite, whereas   (D, T0)   is a nonmetric tree with real arcs.   The two cell

has been made into a semitree in two essentially different ways:   as an arc

I2  whose topology is not related to the Euclidean topology, and as a bundle

D   of  c   real arcs wherein the Euclidean topology is order compatible.

Certain types of cones provide further interesting examples of fans.   See

[7] for the definition of a cone.   The Cantor fan is just the cone over a

Cantor set.   The cone over a pseudo arc is a nested continuum that is not

hereditarily unicoherent ([10], [34]).   Let   M   denote Mardesic's locally con-

nected continuum which contains no proper locally connected subcontinuum

[12].   The cone over  M   is a locally connected nested continuum that is not

dendritic.   Similar examples are obtained by taking cones over other continua

that contain no arcs; for example, the product of  n   pseudo arcs,   n   a posi-

tive integer [35].   It is interesting to ask whether an acyclic locally connected

continuum must be nested [26].

The spectrum of order compatible topologies also collapses for a finite

fan or semitree.   Let   X  denote a finite semitree.   If   T   is a weakly order

compatible topology for  X,   then   T   is order compatible at any   e E X  by

Lemma 4.16(iii).   Now  X  contains no infinite totally unordered set, and so

X possesses a unique weakly order compatible topology [18] that must be

lpcally chainable.   This topology is   T0,   and   (X, T0)   is a tree.   If  X  has

real arcs, then it is easy to see either directly or by using a lemma of Wölk

[33] that   (X, T0)   satisfies the second axiom of countability.   So   (X, T0)

is metrizable [33] and thus is a dendrite.   Note that an arbitrary semitree can

have infinitely many endpoints and still have a compact strongly order compati-

ble topology.

(d)   Combs.   The combs form another important family of semitrees and

include the fans [5].   Many combs have a common semitree substructure that

is constructed as follows.   For   n = 1, 2, • • • ,   erect at   (l/n, 0)   in the

plane a perpendicular interval of length one.   Let   C   denote the union of the
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erected intervals and the unit interval, and let   TE   denote the Euclidean sub-

space topology for   C.   Then   (C, TE)   is called an infinite comb.   A closed

infinite comb is obtained by attaching a limit line to   C.   Let   e   denote the

origin   (0, 0)   and let  /  denote the point (1, 0).   Now   C  is made into a

semitree by letting   P consist of the arcs in   C,   but   C  also has the structure

of a one dimensional simplicial complex  K.   The Whitehead topology is the

strong topology   T(K)   induced by   K   where each simplex in   K   is given

the order topology.   Define another topology    Ts   for   C  as follows.   Take

the usual open sets in   C\{e}.   A basic open set containing   e   will consist

of the points in   C  that are to the left of a line   x = c   and either above a

line  y = b   or below a line  y = a   where   a, b, c E (0, 1)   and   a < b.

The basis at   e   is obtained by letting  a, b,   and   c   vary.   Then   Ts   is a

strongly order compatible topology, but   (C, Ts)   is not locally connected. Also

1e c h = T0 c Ts c TE c T(P) c T(K)

where each inclusion is strict and    I    (Iy)   denotes the interval topology

determined by   <e  (^/)-   These topologies admit particularly nice subbases

for the closed sets.   For example,   le = T[AJ,  T0 = T[A0],   T(P) =

T[Ae],   and   T(K) = T[A^]   where the notation of §4 is used and where

Aj   consists of the singletons in   C,   A0   consists of  At   and the   T0   clo-

sures of sets of  <e   maximal elements in   C,   and   ke  (At)   consists of the

subsets of   C  that are totally unordered with respect to   <e  (<^).   The

first equality is trivial, and the second equality is a consequence of the main

theorem in [21].   The third equality follows from Corollary 4.18  and the fact

that   Le(A)   is   T(P)   closed for each  A E Ae.   The fourth equality follows

since   {e}   is an open set in both topologies.

The Hubert cube   I °   (or any cell for that matter) can be given a

comblike semitree structure distinct from the arc and closed star structures

mentioned above.   For  a, b E I °   define   a < b   if and only if either

a¡ = 0   for all   i G N0   or else there exists   n G H0   such that

(a) an < bn;

(b) for all   i> n, a( = b¡;

(c) if n > 0,   then  a0 = al = • • •   = an_1 = 0.

Then   (/ °, <)   is a partially ordered set meeting the requirements of Theorem

2.7.

(e)   Other examples.   Using Axioms 1-6 of §2 as instructions and the

examples in (a)-(d) above as construction materials, the methods of identifica-

tion yield other examples.   In fact, it will be shown in §7 that every semitree

is an identification space of an appropriate fan when the topologies are

chosen naturally.   Examples obtained by identification can be found in nearly
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all of the references listed at the end of the paper.

Perhaps the simplest nonnested acyclic continuum is the topologist's

sin l/x   circle [28].   Other examples can also be found in the references.   The

following result leads to even more examples.

Lemma 5.2.  Let   X  be a semitree, let   T   be a strongly order com-

patible topology for  X,   and let   m E X\{e}.   The following are equivalent:

(i)   m   is   <e   maximal;

(ii)   m   is an endpoint (that is,   Oid(m) = 1);

(iii)   m   is a noncutpoint.

It is necessary to assume that   T   is strongly order compatible in Lemma

5.2 since the Cantor swastika is a dendroid without cutpoints [13].   Also the

order of  mEX  in Lemma 5.2 may be taken in the classical sense [4] since

every arc in   (X, T)   is a chain by Theorem 4.21.   Finally, (ii) and (iii) in

Lemma 5.2 are equivalent for all   mEX.

Corollary 5.3.   If  (X, T)   is a nondegenerate space without cutpoints

(noncutpoints),   then it is impossible to give   X  the structure of a semitree

wherein   T   is a strongly (weakly) order compatible topology.

The complement of any set of maximal elements in a semitree is chain-

able, whereas the removal of any pair of distinct points disconnects the unit

circle.   Thus it is impossible to give the unit circle a semitree structure and

have the Euclidean topology be weakly order compatible.   It is conjectured

that this is true of any   n   sphere,   n   a positive integer.   Using the above

ideas, it is easily seen that every nondegenerate nested space has at least two

noncutpoints.

6.   Characterizations of chains.   In this section the chains in a semitree

are characterized leading to a description of arcs.   Let   (X, P, <)   be an

algebraic semitree throughout this section.

Lemma 6.1.   Suppose that   0 =£ A EX.   Then the following hold:

(i)  // A   is closed above, then the quasi suprema of A   are exactly

the maximal elements of A;

(ii)   if A   is closed below, then   inf A   is the least element of A ;

(iii)   if a0 E A,   then  A   has a quasi supremum   s   such that  a0 < s;

(iv)   if  sup A   exists, then   sup  A   is a quasi supremum of A.

Proof.   The proof of (i) is not difficult, and part (ii) is trivial.   To prove

part (iii) let   a0 E A.   By Wallace's principle let   M   be a maximal   <  totally

ordered subset of A   that contains  a0.   Now let   s = sup M.   Then   s   is a

quasi supremum of  A   and   a0 < s.   To prove (iv) suppose that   s = sup A
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exists.   Then for all   a E A, s <l a   since   s   is in fact an upper bound of A.

Assume that  y E X   satisfies  y <l a   for all   a E A.   If y < s,   then

A C L(s) = L(y) U \y, s]   and  A D (y, s] - 0   imply that  A C L(y), a

contradiction.  Thus   s   is a quasi supremum of A.

Unfortunately, not all of the quasi suprema of a set  A E X   can be

obtained in the manner of the proof of Lemma 6.1 (iii) unless A is chainable.

Lemma 6.2.   Suppose that   0 *£ A E X.   Then the following are equivalent:

(i)  A   has exactly one quasi supremum;

(ii)  A   is totally ordered;

(iii)   sup A exists.

Proof.  For (i) implies (ii), use Lemma 6.1(iii).   For (ii) implies (iii), use

Lemma 2.4(h).   For (iii) implies (i), suppose that   sup A = s   exisis.   Then   s

is a quasi supremum of A   by Lemma 6.1(iv).   Assume that   t   is a quasi

supremum of A.   If  t ^ s,   then there exist   x E (s A t, t)   and  a E A

with  x < a.   But  x < a < s.   a contradiction.   So   t < s,   and then  t = s

follows similarly.   Thus   s   is the only quasi supremum of A.

Corollary 6.3. // A   is closed above and totally ordered, then   sup A

is  the greatest element of A.

Lemma 6.4.  Suppose that 0 ^P EX.   Then P is an ordered chain if and

only if P is chainable, closed, and totally ordered.

Proof. That an ordered chain has the stated properties follows from Lemmas

2.3 and 4.3. Suppose that P E X is chainable, closed, nonempty, and totally

ordered. Let i = inf P and s = sup P.   Then   [i, s] EP since P is chainable

and closed.  If p EP,  then i <p < s and so p E [i, s]. Thus P = [i, s]   is an

ordered chain.

The conditions in Lemma 6.4 and the next lemma may be replaced by üie

equivalent conditions in Lemmas 4.2 and 6.2.

Lemma 6.5.   Suppose that 0 i=P EX.   Then P is an unordered chain

if and only if P is chainable and closed and P has exactly two quasi suprema

x and y where inf P = x A y.

Proof.  Assume that P = [x, y], for x, y EX, is an unordered chain.

Then P is chainable and closed by Lemmas 2.3 and 4.3. Now x  and y are

quasi suprema of P.   For clearly x <£ p for all p EP as P G L(x) U L(y).

Suppose that z <x.  Then z \/ (xAy)<x. So choose q G(z V (x Ay), x),

and then z < q G P. So x is a quasi supremum of P, and similarly y  is a

quasi supremum of P. If z  is a quasi supremum of P, then z EP.   So

suppose that   z < x.   Then   z =£ x   is impossible.   Thus   x   and   y
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are the only two quasi suprema of P, and x A y = inf P by Lemma 2.5.

Suppose conversely that P E X is, chainable, closed, and nonempty and that P

has exactly two quasi suprema x and y where inf P = x Ay.   Then x, y EP

since P is closed and   [x, y] EP since P is chainable.  Suppose that p EP.

By Lemma 6.1(iii), it can be assumed that p < x.  Therefore jc A y = inf P <

p < x, and so p G [x, 7]. Thus P = [x, >»]   is an unordered chain.

A triod T in X is a subset  T of X that is the union of three nondegen-

erate chains each having a point a as an endpoint and not intersecting otherwise.

The point a is of course a branch point of X. A subset A  of X is atriodic if

and only if A  contains no triods.  There is the following easy characterization

of triods in semitrees.

Lemma 6.6.   Let a, av a2, a3EX be all distinct.   Then  T = U«=i Ia- an]

is a triod if and only if the following hold:

(i)  There exist i,jE{\, 2, 3} such that a = a¡ A a¡;

(ii) if k E {1, 2, 3}\{i, /} and a < ak,  then a¡ Aak = a = ay A afc.

Theorem 6.7.   Suppose that 0 i^P EX.   Then P is a chain if and only

if P is atriodic, chainable, and closed.

Proof.  Assume that P = [x, y]   is a chain where x, y E X.  Now P

is known to be chainable and closed.  Suppose that  T = U«=i ta> an\   *s a

triod in P.  Let i,j,k be as in Lemma 6.6.  Then a¡ and a- are not comparable.

So P is not an ordered chain. Moreover, it can be assumed that a¡ E (x Ay, x]

and a;- G (x A y, y]. Then a = aiAaJ=xAy   and a<ak. Thus afc and

either a,- or a- are comparable which cannot happen.  So P is in fact atriodic-

Conversely, suppose that PEX is atriodic, chainable, and closed.  Let in{P = a.

Assume that P has three distinct quasi suprema; namely, av a2, and a3.  Then

a<ava2,a3.  If a = a/Aa/ for all i, / G {1,2, 3}, then U^=i [*. a„]

would be a triod in P by Lemma 6.6.  So assume that a <aj A a2.  Now al

and a2  are not comparable.  Consequently,   [aj A a2, a] U [ax A a2, aj] U

[a1 A a2, a2]    is a triod in   P   by Lemma 6.6.   Thus   P   has at most

two quasi suprema. Now apply Lemmas 6.2, 6.4, and 6.5.

Let   Y be a nested space and give  Y the semitree structure of §5(b).

Then A C Y is atriodic if and only if >1  does not contain what is usually

called a simple triod—a union of three nondegenerate arcs with exactly one point

common to any two of them.

Corollary 6.8. Let A  be a nondegenerate subset of the nested space

(Y, T).  Then A is an arc if and only if A  is arcwise connected, atriodic, and

T closed.

Proof.   If AC Y is an arc, then A  is obviously arcwise connected and
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T closed since (Y, T) is Hausdorff. Further, A  is a chain and is atriodic by

Theorem 6.7. Conversely, let A  be arcwise connected, atriodic, and  T closed.

Then A  is chainable and closed since  T C T(P). Theorem 6.7 implies that A

is a chain and thus is an arc.

As an immediate consequence of Corollary 6.8, a nondegenerate space A

is an arc if and only if A  is atriodic and nested. This result admits more direct

proofs, and it, in fact, is equivalent to Theorem 6.7 and Corollary 6.8.  But the

above line of argument is perhaps the most illuminating.

7. Topological characterizations of semitrees.  Three purely topological

characterizations of semitrees are given in this section. The first, in terms of the

nested spaces introduced by Young in 1946, amounts to putting together results

of §§4 and 5. The second, in terms of the mofes of Wallace, generalizes a result

of Ward and represents the fruits of another paper. The third and completely

new characterization is in terms of box products. The next two theorems can be

viewed as extending theorems of Harris [10] to a noncompact, nonmetric setting.

Theorem 7.1.  Let (X, P, <e) be a semitree.  Suppose that

(i)  T is a weakly order compatible Hausdorff topology for X;

(ii) every arc in  (X, T) is a chain in   P.

Then (X, T) is a nested space.  Suppose, in addition, that  T is strongly order

compatible.   Then conditions (i) and (ii) are redundant, and the outpoint order

<e with basepoint e equals <e.

Proof.  Only one minor point has not been proved in  § §4 and 5(b);

namely, that <e C <e when  T is strongly order compatible.  So let e ¥= x <e y.

Then X\{x} = (X\M(x)) U (M(x)\{x}) is a separation with e G X\M(x) and

y G M(x)\{x}. Thus x <e y,  as required.

Theorem 7.2. Let (X, T) be a nested space.  Then X admits the struc-

ture of a semitree (X,P,<e) wherein   P  consists of the arcs in  (X, T),  T

is weakly order compatible, and the cutpoint order <.e with basepoint e is

contained in <e. Now  T is order compatible at e if and only if M(x) is  T

closed for all x E X. If T is order compatible at e,  then <e = <e if and

only if T is strongly order compatible.

Proof.  Again only one thing remains to be proved:   if <e = <e, then

M(x)\{x}  is open for each xGX.  This is obvious for x = e.   So let e ¥= x G X

and y G M(x)\{x}. Then e =£ x -< y; so write X\{x}=AUB where A and

B are separated, e G A,  and y GB.  Then y GB E Af(x)\{x} where B is

open, showing that M(x)\{x}  is open.

Acyclic spaces can be characterized in a similar fashion using Axioms 1 —4

and 6.
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The terms used in the following two theorems are defined in [16].

Theorem 7.3.  Suppose that (X, T) is a commutative idempotent monotone

mob that satisfies condition 0. // each maximal totally ordered subset of X is

compact, then X admits the structure of a semitree with  T strongly order

compatible.

A semitree (X, P, <) is continuous on the diagonal (with respect to a

topology  T for X) if and only if for each x G X and each open set  U con-

taining x, there exists an open set  V containing x such that   V A V =

{y Az\y,zG V}EU.

Theorem 7.4.   Let (X, P, <) be a semitree with strongly order compati-

ble topology  T. If (X, T) is continuous on the diagonal, then X admits the

structure of a commutative idempotent monotone mob that satisfies condition 0

and has compact maximal totally ordered subsets.

Theorems 7.3 and 7.4 were proved in [16]. Observe that any tree satisfies

the hypotheses of either theorem [25]. The following lemma provides further

examples.

Lemma 7.5. A semitree (X, P, <) is continuous on the diagonal with

respect to any locally chainable topology  T for X.

Proof.   Let x GU GJ. Let  V be the chain component of U containing

x. Then  V is T open and   V AVEU.

Until Theorem 7.10, let (X, P, <e) be a semitree, let M consist of the

<e maximal elements in X, and give X the chain topology  T(P). Recall

that X = (J {[e, m)\m GM} by Theorem 3.1. Consider the product set

B = X{[e, m]\m EM}. For each m EM, give   [e, m]   the order topology. The

box product topology for B has basis consisting of all boxes X{Um \m E M}

where  Um   is open in   [e, m]   for each m EM.  Motivation for using this

topology on B can perhaps be provided by Lemma 4.12.

For each m EM, define

Am = {aEB\ if n EM and n^m, then a(n) = e},

and let A = {Am \m E M}. The axes in B consist of the union A = [J A. For

each m EM, let nm: B—► [e, m] be projection and let fm be irm restricted

to Am. The next lemma is well known.

Lemma 7.6.   For each mEM,fm  is a homeomorphism.

Lemma 7.7.   The subspace topology on A induced by B is exactly  T(A),

the strong topology in A induced by A  where each Am E A  is given the

subspace topology induced by B.
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Proof.   Let  TA   denote the subspace topology on A  induced by B.

Clearly   TA C T(A) since  T(A) is the largest topology that preserves the given

topology on each Am E A.  Let a G UE T(A).  Suppose first that a(m0) =£ e

for some mnEM. Then  Um   —UC\Am    is open in Am , and a G

ffm vm (Um \M)) nA c U showing that  UEJA. Second suppose that

a(m) = e for all m E M. Then  Um = U n Am   is open in ,4m   for all

mGM,  and a G X{/m(£/m)|w GM} n,4 C U showing that  UGJA. Thus

T4 = T(A) completing the proof.

Define /: A —> X by the formula f\,    =/_,   for all mGM.   As an

easy consequence of Lemma 7.7, the function / is a continuous surjection.  A

function g: Y—► Z, where  Y and Z are topological spaces, is a quotient map

if and only if g is a continuous surjection such that g~1 (U) open in  Y where

U E Z implies that  U is open in Z.

Lemma 7.8.   The function f is a quotient map.

Proof. Let   UEX besuchthat rl(U) is open in A. Then /_1(£/)n

Am   is open in Am   for all mGM.   So  i/Ti [e, /n] =fm(f~l(U) n ¿m) is

open in   [e, m]   for all m G M. Finally,  U is open in X by Theorem 4.5 and

Lemma 4.6.

However, the function / need not be pseudo open (much less closed, open,

or perfect).  If X is a fan, then / is a homeomorphism. Therefore with the

chain topology any fan is homeomorphic to the axes in a box product of arcs.

Conversely, A  is closed in B and admits the structure of a semitree in a

natural way.

Define the usual equivalence relation K(f) in A  by the formula aK(f)a'

if and only if f(a) = f(a') where a, a' G A.   Let p be the natural projection

onto A/K(f), the decomposition space of /.  Then there is a commutative

diagram

fop~l\

A/K(f))

where f°p~l   is a homeomorphism [7].

Theorem 7.9.   With the chain topology any semitree is homeomorphic to

a quotient space of the axes in a box product of arcs.

Simply put, a semitree is a quotient space of a fan. Theorem 7.9 is in one

sense the best possible theorem. The topologies in the theorem are  T(A) and

T(P), and these are the maximal strongly order compatible topologies for A
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and X,  respectively.  If the minimal strongly order compatible topologies,   TP

and   T0, are used instead, then the function / need not even be continuous

(observe that  TP is the product topology restricted to A).  For an example,

reflect the comb  (C, T0) of §5(c) about the line x = 1. Then for any e G X

there is x G X such that f~ ' (X\Me (x)) €? Tp where / is the function corre-

sponding to e.  Moreover, the situation in general cannot be rectified by simply

enlarging  TP.  For an example, reflect the broom B  about the line x = 1   [20].

Then for any eGX there exists  UG T(P)\T¿   with f~l(U) G Jp where /

is the function corresponding to e. Thus /: (A, TA) —► (X, T0) is not a

quotient map for any choice of strongly order compatible topology  TA  (that is,

Tp C TA E 7(A)). Part of the next theorem is any easy application of Theorem

7.9 or the results of §5(c).  Further applications of Theorem 7.9 await develop-

ments in the theory of box products.

Theorem 7.10 (Naito-Wolk). For a semitree (X, P,<), the following

are equivalent:

(i) X is finite;

(ii) X contains no infinite totally unordered subset;

(iii) X has a unique weakly order compatible topology;

(iv)  (X, T(P)) is compact.

Proof. Obviously (0 and (ii) are equivalent and (iii) implies (iv).  Also (i)

implies (iii) was shown in § 5(c).  For (iv) implies (i), use the open cover

{X\(M\{m})\m EM}. To see that (i) implies (iv) from Theorem 7.9, observe

that if X is finite, then the box and product topologies on B coincide and B

is compact.

Similarly, a semitree X is countable if and only if (X, T(P)) is Lindelof.

Also any fan  (X, T(P))  is seen to be completely normal and paracompact. Thus,

if a fan  (X, T(P)) has real arcs, then  (X, TCP)) is Lindelof if and only if it is

separable. In this connection note that a countable semitree (X, T(P)) with

real arcs is contractible. These are probably only partial results, and so the proofs

are omitted.

The final theorem is quite striking and uses in its proof many ideas of

§§2-5. It indicates close parallels between semitrees and one dimensional

simplicial complexes, and it extends (except for the countability and metrizability

statements) to semitrees with arbitrary arcs.

Theorem 7.11.  // (X, P, <e) is a semitree with real arcs, then the follow-

ing properties are equivalent for the space (X, T(P)): (i) compactness; (ii)

first countability; (iii)   second countability; (iv) metrizability; (v) countable

compactness; (vi)  a compactness; (vii) local compactness; (viii) X contains

no infinite combs or fans; (ix) X is a dendrite.
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Proof. By prior results, (i) implies all of the other statements.  It will be

shown that (ii) implies (viii) and (viii) implies (i).  Similarly, (v) or (vii) imply

(viii) which will complete the proof.  Suppose that  (X, T(P)) is first countable.

Assume that X contains two infinite sets {a¡}°°= ¡   and  {b¡}°¡°= 1   such that

{a,}  is totally ordered and if a0 = sup a¡, then a¡ < b¡ and a0 A b¡ = a¡

for each i = 1, 2, • • • ; that is, assume that X  contains an infinite comb.

Let x be a cluster point of {a¡}^=1   in   [e, a0], and let  U1,U2,''m   be a

countable open basis at x.  For each i = 1, 2, • • •, let an_ E U¡\{x, an , • • •,

«„,._!}.   let   Ui n K{ hn) = Kf %)'   andlet   dnieKi'Cni)-   Then

^\U,^=i \d„.> b„.]   isa  T(P) neighborhood of x  that contains no  U¡ for

i = 1, 2, • • •. This is a contradiction, and so X contains no infinite combs.

Assume that X contains an infinite totally unordered set {fl,-}Jl y   and a point

x  such that x = a¡ A a¡ for all i, / = 1, 2, • • •.  Let  Ul, U2, • • •   be a count-

able open basis at x.  For each / = 1,2,-**, let   U¡ C\ [x, a¡] = [x, b¡)  and

let ciE(x,bi). Then X\\J°¡L1 [c¡, a¡]   isa  T(P) neighborhood of x  that

does not contain   U¡  for any  i = 1, 2, • • •.  This is a contradiction, and thus

X contains no infinite fans.  Therefore, (ii) implies (viii).  Suppose now that X

contains no infinite combs or fans.  Assume that X has infinitely many maxi-

mal elements.  Consider  B¡, the branches at e.   If there are infinitely many

branches at e, then it would be easy to construct an infinite fan at e.   So there

are finitely many branches at e,   and one of them contains infinitely many max-

imal elements.  Let B1 E Bj   be such a branch, and let m1EBl   be maximal.

Consider the following family of branches:

B2 = {B\B is a nondegenerate branch at a E (e, mx) and B O [e, wj = {a}}.

Considering   B1    as a subsemitree (a chainable closed subset) of   X   and

applying Corollary 3.3 to Blt one obtains By = [e, m1] U U B2.  If B2   con-

tains infinitely many branches, then there are two possibilities.  On the one hand

there might be infinitely many points a E (e, mx) having nondegenerate branches

B at a G (e, m j ),  and it would be possible to construct an infinite comb in By.

On the other hand there might be infinitely many branches at a single point

a G (e, mx), and an infinite fan could be constructed.  So   B2  contains only

finitely many branches, and one of them contains infinitely many maximal ele-

ments.  Let B2 E B2  be such a branch at al E (e, m^), and let m2 EB2

be maximal. Proceed inductively with this construction obtaining two infinite

sets {af}JI i   and {/«,.}£. t   such that {a,}  is totally ordered and if a0 =

sup a¡, then a. < m/ and a0 A m. = a¡ for each i = 1,2,***. Thus an

infinite comb has been constructed in X, a contradiction.  So X in fact has

only finitely many maximal elements, and (viii) implies (i).
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