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DEFORMATIONS OF GROUP ACTIONS
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ALLAN L. EDMONDS

ABSTRACT.   Let   G   be a finite group and  M  be a compact piecewise linear (PL)

manifold.   Define a PL G-isotopy to be a level-preserving PL action of  G   on  M X [0, 1].

In this paper PL G-isotopies are studied and PL G-isotopic actions (which need not be

equivalent) are characterized.

1. Introduction.  Let G be a finite group.  An action of G on a space X is a

homomorphism of groups 0:  G—► Uomeo(X), g —> 0*.  A G-isotopy is a level-

preserving action  0  on X x 1,1= [0, 1]. We then denote by 8t the action on X

given by 6gt(x) - it ° 6g(x, t), where ir. X x I —■*■ X is the projection on the first

factor. Also we denote by 9t x 1  the action on X x Z which is 6t at each level.

Two actions 0 and  rp  on X are equivalent if there is an equivariant homeomorphism

h :  (X, i//) -*• (X, 0), i.e., h ° tyg = 0*° h  for all g in G.

The problem which we treat in this paper can now be stated as follows:  If 0  is a

G-isotopy on X x I, when and how nearly is 0O  equivalent to 0j?  In particular,

when is 0  equivalent to 0O x 1?

In the smooth category there is the following result of Palais and Stewart [12] (see

also Palais [11]):

Theorem. Let 0 be a smooth G-isotopy on M x I, where M is a compact

smooth manifold.   Then there is a smooth, level-preserving, equivariant diffeomorphism

(M x I, 0O x 1) —> (M x I, 0) which is the inclusion when restricted to M x 0.

This result is true, in fact, for smooth actions of arbitrary compact Lie groups, but

is false if either the compactness or smoothness assumption is dropped. The focus of

this paper, then, is on the case of not necessarily smooth G-isotopies on compact

spaces.  Most of the positive results refer to piecewise linear (PL) actions on a polyhedron

or on a PL manifold.

In §2 we take care of preliminaries and give some background on PL actions.

In §3 we examine actions on disks and spheres under the relation of G-isotopy

and present a collection of examples of nontrivial G-isotopies.

In §4 we investigate in detail how closely G-isotopic actions must resemble each

other and derive conditions under which G-isotopic actions must be equivalent.  First
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we observe (Theorem 4.1) that if G  is a finite p-group then G-isotopic actions must

have fixed point sets with isomorphic Z -homology groups.  Second we show that a

PL G-isotopy on a compact polyhedron contains only finitely many inequivalent levels

(Corollary 4.3) and examples are constructed to show the necessity of the piecewise

linearity and compactness assumptions (Examples 4.4, 4.5). Third we show (Theorem

4.6) that a certain local unknottedness property is sufficient to guarantee that a PL

G-isotopy 0  on  Yxl is equivalent to the trivial G-isotopy 0O x 1, where  Y is

a compact polyhedron.  In particular this shows that PL G-isotopic free actions on a

compact polyhedron are PL equivalent.  Finally we describe (Theorems 4.8, 4.9)

precisely how PL G-isotopic actions can differ, showing that the examples of §3 detail

essentially all the possible differences.

The results presented here constitute a part of the author's thesis, written at the

University of Michigan under the direction of Professor Frank Raymond.

2.  Preliminaries. We assume knowledge of the basic concepts of transformation

groups and of elementary PL topology as given, for example, in Bredon [2] and Hudson

[7], respectively.

It is convenient to let A(G, X) denote the set of all actions of G on X. If h

is a homeomorphism of X and  0 is in A(G, X), then h ■ 0 denotes the action

given by (h ■ <pf = h ° <fi ° hT', for all g in G.  Thus h:  (X, 0) —*• (X, h • 0) is

an equivariant homeomorphism.  If 0 is an action, then Fix(0)   will denote the set

of fixed points of 0.

If F is a polyhedron (the underlying space of a locally finite, finite-dimensional

simplicial complex), then A¥L(G, Y) denotes the set of PL actions, i.e., actions 0

such that each homeomorphism  0s  is PL. We emphasize here that throughout this

paper G  will denote a finite group.

Since most of this paper deals with PL actions, we mention here for future

reference two basic elementary lemmas about PL actions. The proofs are both reason-

ably straightforward exercises in subdivision technique, and hence are omitted.

Lemma 2.1.  Let  0  be in APL(G, Y) and K be a triangulation of Y.   Then

there is a subdivision of K on which    0 defines a group of simplicial isomorphisms.

We wish to make explicit the fact that a PL G-isotopy is a G-isotopy in

APL(G, Yxl). In particular it must be PL as an action on  Y x I and not just PL

at each level.

Lemma 2.2. Z,er  Y be a compact polyhedron and 9  be a G-isotopy in

APL(G, Y x I). Then any triangulation of Y x I with respect to which 6  is

simplicial has a subdivision on which 0  is simplicial and in which the levels containing

vertices are triangulated as subcomplexes.
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3.  Actions on disks and spheres.  Let 0 be in A(G, 5"-1). Then there is an

associated action C(<j>) in A(G, D") defined by

\y\p(ylly[)   iîy±0,

0 if y = 0.

Here \y | denotes the usual euclidean norm. A trivial calculation shows that C(0)

is indeed a well-defined action, which we refer to as the action obtained from 0 by

"coning".  Note that if 0 is smooth, C(0) will be smooth only if 0 is a linear

action; however, if 0 is PL, then C(0) is also PL.  If 0 is in A(G, D"), let

0|5"-1   denote the action which is the restriction of 0 to 5"_1.

Proposition 3.1. Any action 0 in A(G, D") is canonically G-isotopic to

the action C(0|5"_1).

Proof.  Define a G-isotopy as follows:

!0 if y = 0 and t = 1,
(1 - 00*0/(1 -1))    if 0 < \y\< I -1 and t # 1,

WO/17D if I-t<\y\<l and y + Ù.

One easily checks that 0f gives a well-defined, level-preserving action of G on D" x

Z.  Clearly 0O = 0 and 0j=C(0|5"_1) as desired.

Note that the G-isotopy produced above is PL if 0 is. It follows immediately

from Proposition 3.1 that two actions in A(G, D") are G-isotopic if and only if their

restrictions to 5n-1   are.  Further, any action in A(G, D") is G-isotopic to an

action with contractible fixed point set and contractible orbit space, since the cone

action has these properties.  Proposition 3.1, together with the preceding remarks, is

the basis for several examples of nontrivial G-isotopies.

Example 3.2.  Let  M be a compact contractible «-manifold  (n > 4) with

nonsimply connected boundary. (See Curtis [4].)  Then M x D1   is homeomorphic

to D" + I, and there is an obvious action 0 in A(Z2, D" + i) such that Fix(0) =

M x 0. By the preceding propositions 0 is G-isotopic to C(015").  However, 0 is

not equivalent to C(0|5") since the fixed point set of the latter is homeomorphic to

the cone over bd M, and hence not locally euclidean at the origin.

Example 3.3. Let  G  denote the icosahedral group (of order 60). There is a

well-known (see [2, pp. 55ff.] ) action 0 in A(G, D"), n large, such that 0 has no

fixed points. On the other hand 0 is G-isotopic to C(0|5"-1), which has a fixed

point at the origin.

Example 3.4. Let  W be a PL /z-cobordism between a lens space L  of dimen-

sion greater than or equal to 5 and having fundamental group Zp, with p > 5  and

p =£ 6, and a manifold V which is not PL homeomorphic to L.  Milnor [10] showed

that there are infinitely many (PL distinct) choices for V. The universal covering

C(<pf(y) =
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space W of W is then an «-cobordism between 2T = 5" and 27'. Hence IV- S" x

I and covering transformations give an action of G = Z on 5" x Z which is linear

on 5" x 0. Coning over the nonlinear end, 5" x 1, yields an action 0 of G on

D" + ' such that 0|5" = 0|bd D"+l is linear-although 0 is not PL equivalent to

a linear action. By Proposition 3.1, 0 is G-isotopic to C(0|5"), a linear action. Thus

0 and C(0|5") yield G-isotopic but inequivalent PL actions with a single fixed point.

Using standard facts about rt-cobordisms (see, e.g., [9] ) one sees that 0 is topologically

equivalent to C(0|5"), a linear action.

Example 3.5.  Let L  be a fc-dimensional lens space with fundamental group

Z , p > 3  an odd integer, and M be L minus the interior of an open ball, so

bd M =■ 5fc"1.  Smoothly embed M in Dn\ n odd, n > 2fc + 3, so that  bd M =

MC\bàD". Then according to Jones [8, 3.2] there is an action 0 of G = Z2  on

D"  with  Fix(0) = M   Again by Proposition 3.1, 0 is G-isotopic to C(0|5"_1).

But   Fix(C(0[5"_ ')) = Dk. (For an easier way of finding examples of such actions

see Bredon [2, pp. 49ff.].)

Example 3.6.  Bing [1] constructs an action of G-Z2   on 53  with fixed

point set a wildly embedded 2-sphere, where the set of wild points is a Cantor set.

Deleting the interior of a small invariant 3-disk around a nonwild point gives an action

0 on the complementary 3-disk D with a wildly embedded 2-disk for fixed point set.

However, 0|52 = 0|bd D   is nice—in fact, by classical results, equivalent to a linear

action. Hence, by Proposition 3.1, 0 is G-isotopic to  C(0|52), which is equivalent to

a linear action.  Since' 0 cannot be equivalent to a linear action this gives another

example of inequivalent but G-isotopic actions.

Note that in each of these examples the action 0 is equivalent to (0|5"_1) x 1

on a small boundary collar 5"-1 x I, hence each G-isotopy produced by Proposition

3.1 is equivalent to 0 at each level except the final C(0|5"-1) level. The following

observation is an amusing application of Proposition 3.1.

Proposition 3.7.  Let 0 be in AVL(G, 5"). Then 0 is PL G-isotopic to an

action equivalent to the join of a fixed point free and a trivial action  \p * I, in
APL(G, 5"-'--1 *Sr).

The proof follows easily using Proposition 3.1 and induction on dimension, together

with the fact that the closed complement of a PL «-disk in 5"  is also a PL «-disk.

Note that if 0 is a semifree action, then the G-isotopies produced by 3.7 are also

semifree, so the resulting \p  is free.  If G is a p-group (or if 0 is semifree) the

integer r is uniquely determined as the dimension of Fix(0).

An obvious modification of Example 3.3 shows that r is not uniquely determined

in more general situations. It is interesting to ask how unique the action  $  is. Even

in the case of Zp  actions the action  \¡j  is not unique up to G-isotopy, as the

following example shows.
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Example 3.8.   In Example 3.4 a free action of  Z    on 5" x I was constructed

which is linear on the end 5" x 0 and not equivalent to a linear action on 5" x 1.

Let  0 be the action on S" + 1   obtained by coning over each end of 5" x Z.  Then

to "desuspend" 0 as in Proposition 3.7 one can clearly choose  0  to be either the

linear action or the nonlinear action. These are inequivalent actions, and are not even

G-isotopic, by Theorem 4.7 of the next section.  The actions are, however, clearly "G-

concordant", where by a G-concordance we mean an action on   Y x I which pre-

serves  F x 0 and  vx 1, but which is not necessarily level-preserving.

This latter observation turns out to be the case in general:  The fixed point free

action  0  is unique up to G-concordance.  This fact follows from the following easy

observation. The proof, which used the techniques of Propositions 3.1 and 3.7, togeth-

er with Theorem 4.1 of the next section, is left to the reader.

Proposition 3.9. Actions 0 and 0 in AVL(G, 5") are PL G-concordant

if and only if their suspensions 0 * 1 and 0*1 in APL(G, S" * 5°) are PL G-

isotopic.

4. When are G-isotopic actions equivalent?  Let  y be a polyhedron and let 0

in A(G, Y x I) be a G-isotopy.

Theorem 4.1. If G is a p-group, p prime, then the inclusions  Fix(0/) C Fix(0),-

i = 0, 1, induce isomorphisms ZZ#(Fix(0,-); Zp) « ZZ#(Fix(0); Zp).

Proof.  It suffices to consider the inclusion  Fix(0o) C Fix(0).  Since  Y x 0 is

invariant under the action 0, a standard inequality in Smith theory (see Bredon [2,

p. 144] for the result when  G = Z ; the general result for p-groups follows easily by

induction on the order of the group) implies that

¿ rank ZZ,-(Fix(0), Fix(0o); Z ) < ¿ rank H¡(Y x I, Y x 0;Zp),
1=0 i=0

for all «. The right-hand side, however, is 0.  Thus ZZ„,(Fix(0), Fix(0o); Zp) = 0,

implying the desired isomorphism.

In particular, Theorem 4.1 says that the inclusions Fix(0f) C Fix(0) induce

a one-to-one correspondence of path components. Also observe that this shows that a

G-isotopy of a free action must be a free G-isotopy; for restricting to a p-subgroup which

acts with fixed points would yield a contradiction to the theorem. Of course Theorem

4.1 is true much more generally.  All that is really needed is that the inclusions  Y x

i C Y x I induce Z -homology isomorphisms and that each  Y x i is invariant under

the action.

In light of the examples of §3 it is reasonable to ask how many inequivalent

levels there may be in a nontrivial G-isotopy. Theorem 4.2, Corollary 4.3, and

Examples 4.4 and 4.5 provide an answer to this question.
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Theorem 4.2. Let  Y be a polyhedron and 0  in APL(G, Y x I) be a PL

G-isotopy.  Suppose there is a triangulation of Y x I so that 8 is simplicial and such

that all vertices lie in   Y x {0, 1}.   Then there is a level-preserving PL equivalence

(Y x (0, 1), 0,/2 x 1) — (Y * (0, 1), 0)

which is the identity on   Y x XA.

Proof. Observe that each (y, s) in  Y x (0, 1) lies in the interior of a unique

simplex A  of Y x I (its "carrier") and within this simplex the point (y, s) lies on

a unique line segment whose end points lie in faces of A  in  Y x 0 and in  Y x \\

that is, A  can be written as the join A0 * Ax   where A0 = A C\ Y x 0 and Ax =

A n Y x 1.

Since 0  is linear on simplices, 0  linearly permutes the line segments described

above; this fact allows one to set up the claimed equivalence.  For each y  in  Y let

L(y) denote the unique line segment defined as above, passing through (y, XA), lying

in A = A0 * Ax, starting at  (w, 0) and ending at  (z, 1).

Then, using the linear structure of simplex A, map the line segment y x I PL

homeomorphically onto L(y) by

(y, t) M (1 - t)(w, 0) + t(z, 1).

Note that this gives a level-preserving map.

Doing this for each y in  Y yields a level-preserving equivariant PL map

(Y x I, 01/2 x 1) —* (Y x I, 0) which one easily verifies to be a homeomorphism

of F x (0, 1) with itself. This completes the proof of the theorem.

Corollary 4.3. Let Y be a compact polyhedron and let 8 in APL(G, Y x I)

be a PL G-isotopy. Then 8t, 0 < t < 1, passes through at most finitely many mutually

PL inequivalent levels.

Proof.  By Lemmas 2.1 and 2.2 there is a triangulation of Y x I with respect

to which 0  is simplicial and such that the levels which contain vertices are triangulated

as subcomplexes.  By Theorem 4.2, 8t changes equivalence type at most at these

finitely many levels containing vertices. This completes the proof.

Now we present examples which show the necessity of the compactness and

piecewise linearity in Corollary 4.3.

Example 4.4.  A Z2-isotopy on Ds  which passes through infinitely many

mutually inequivalent levels. The construction proceeds in several steps:

(1)  Let p be an odd prime.  According to Bredon [2, pp. 49ff.] there is a

smooth involution fp: S5 —► 5s  with fixed point set L(p), a 3-dimensional lens

space with fundamental group Z .  Deleting the interior of a small invariant disk

neighborhood of a fixed point on which f   is equivalent to a linear involution yields
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a smooth involution gp :  D5 —> D5   which on 54   is equivalent to the standard linear

involution with 52  as fixed point set. Thus we may assume that the involutions gp

all agree on 54.  Note that the fixed point set of gp  is L(p) minus a disk, and

hence has fundamental group Z .

(2) Let Pj, p2, •••   be the sequence of odd primes.  For each positive integer

fc let hk: D5—► Ds  be the involution which is g      (shrunk down) on the subdisk

(l/fc)Ds   and is linear on the annular region D5 - (l/k)Ds.

(3) Construct a level-preserving involution H on D5 x I as follows:   At levels

1/fc, fc = 1, 2, •••, set ZZj ,k = hk; let ZZ|54 x I and H0  be linear; fill in between

levels  1/fc and 1/(1 + fc) by coning from the point  (0, (1/fc + 1/(1 + fc))/2) in a

manner similar to that in Proposition 3.1.

One checks easily that this gives a well-defined Z2-isotopy, which is PL except at

one point.  Further, the fixed point sets at levels  1, 1/2, 1/3, •••  have pairwise

distinct fundamental groups, hence the actions at these levels are all inequivalent.

Example 4.5.  A smooth Z2-isotopy on R5 x I passing through infinitely many

inequivalent levels. We need only modify the preceding example slightly.  Let /:

(Ds -0) x I —► (Rs - int Ds) x I be a level-preserving diffeomorphism.  Then with

H as above there is theL level-preserving, smooth, involution K = J°H°J~l, which

clearly goes through infinitely many inequivalent levels.  Further, ZC|54 x Z is orthogo-

nal at every level and hence we may extend K to all of R5 x I smoothly, by coning

at each level, to get the desired  smooth Z2-isotopy.

The preceding work indicates that in some loose sense the obstructions to proving

that a given G-isotopy 0  in A(G, Y x I) is equivalent to the "trivial" G-isotopy

0O x 1   are local in nature. We propose now to make this observation precise.

Let  y be a polyhedron and 0  in APL(G, Y x Z) be a PL G-isotopy.  The

G-isotopy 0 is locally unknotted if for each (y, t) in  Y x I, with t < 1, there is

a 0f-invariant (closed) PL neighborhood  U of y in  Y and an equivariant PL em-

bedding h:  (U x Z, 8t x 1) —> (Y x [t, 1], 0) onto a neighborhood of (y, t) in

y x [t, 1], such that h(z, 0) = (z, t) for all z in  U.  For t = 1  require that there

be a 0j-invariant PL neighborhood   U  and an equivariant embedding   h:

(U x Z, 0j x 1) —> (Y x I, 8) onto a neighborhood of (y, 1) in  Y x I, such that

Kz> I) = (z> 1) for all z in  U.  If there is a level-preserving equivariant PL homeo-

morphism (Y x Z, 0O x 1) —► (Y x I, 8) whose restriction to  Y x 0 is the inclu-

sion then 0  is said to be unknotted.

Observe that any free PL G-isotopy is automatically locally unknotted and that

Examples 3.4, 3.5, 3.6 and 3.7 give knotted PL G-isotopies on D" x Z.  (We note

that Example 3.6 is "topologically unknotted" although PL knotted.)

Theorem 4.6. Let  Y be a compact polyhedron, and 8 in APL(G, Y x I)

be a G-isotopy.   Then  9 is unknotted if and only if 8  is locally unknotted.
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Proof. An unknotted G-isotopy is seen to be trivially locally unknotted. Thus

assume that 0 is locally unknotted. The major portion of the proof is then devoted

to showing the following statement:

Lemma 4.6.1. For sufficiently small e > 0 there is an equivariant level-preserv-

ing PL homeomorphism (Y x [0, e], 0O x 1) —> (Y x [0, e], 0), which is the in-

clusion on  y x 0.

Assuming Lemma 4.6.1 for the moment, the proof is completed in the following

tedious but elementary fashion.

First note that using Lemma 4.6.1 we can find for every t, 0 < t < 1, a t', t <

t' < 1, and an equivariant level-preserving PL homeomorphism (Y x [t, t'], 9t x 1)

—► (Y x [t, t'], 0) which is the identity when restricted to Y xt.

There is also t < 1  and an equivariant level-preserving PL homeomorphism

(y x [t, 1], 9t x 1) —>• (Y x [r, 1], 0) which is the inclusion on  Y x t.  To see

this note that, turning the above argument upside down, there is t < 1  and an

equivariant level-preserving PL homeomorphism h:  (Y x [t, 1], 0j x 1) —►

(Y x [t, 1],0) suchthat «  restricted to  Yxl  is the inclusion.   Then define

«*:(yx [r, l],0,xj)->.(yx [t, l],9) by «* = «»(«-» x 1).

One easily checks that h* is the desired homeomorphism.

Now put all of this together using the compactness of the unit interval to obtain

a partition 0 = t0 < tx < ••• < tk+ x = 1 of I together with equivariant level-pre-

serving PL homeomorphisms, for i = 0, 1, • • *, fc,

«': (Y x [r,-, r/+1], 9t. x 1) -> (Y x [rf, ti+i], 0)

such that «' restricted to  Y x tt is the inclusion. Finally patch together the «''s

to obtain the desired unknotting H:  (Y x Z, 0O x 1) —• (Y x I, 9). Define H on

[t{, ti+ j]   by H = h' ° («'j-1   x 1) o ••• « (h°t    x 1).  One easily checks that this

gives a well-defined, level-preserving, equivariant PL homeomorphism.  Modulo Lemma

4.6.1 this completes the proof of the theorem.

Lemma 4.6.1 is proved in two steps. First observe that there is an equivariant

PL embedding c:  (Y x I, 90 x 1) —> (Y x I, 0), not necessarily level-preserving,

onto a neighborhood of Y x 0 in  Yxl, such that c restricted to   Y x 0  is the

inclusion.

The existence of the equivariant embedding c follows immediately from a "local

equivariant collaring implies equivariant collaring" theorem of Bredon [2, pp. 224-230]

by making the minor modifications necessary to add piecewise linearity to both

hypothesis and conclusion.  Bredon's argument uses "local collaring respecting orbit

type implies collaring respecting orbit type" in the orbit space; this can easily be done

piecewise linearily.  Then this collar is lifted to the total space using the covering
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homotopy theorem of Palais (see [2, pp. 92ff.] ). This lift is of necessity PL. We take

this opportunity, however, to point out that Connelly's short proof [3] of the collaring

theorem, in which piecewise linearity is an optional variant, adapts quite easily to the

equivariant case, working completely within the total space, thus eliminating the need

to apply the covering homotopy theorem.

Second, we alter c on a neighborhood of Y x 0 to make it level-preserving

there. This part of the proof is similar to that of the "compatible collar" theorem of

Hudson and Zeeman.

Let K and L be triangulations of Yxl so that 0O x 1   and 9, respectively,

are simplicial actions, and so that the equivariant embedding c is a simplicial map

K —*■ L.  Choose  0<e<6<l  so that no vertices of K are in  Y x (0, 5) and

so that  y x [0, e] C c(Y x [0, 5]) C Y x I. (This requires compactness.)

Subdivide K adding vertices only in  Y x 8  to obtain ZCt   such that  Y x 8  is

a subcomplex and  0O x 1  is still simplicial, as in Lemma 2.2. This induces via c a

subdivision Z,j   of L which adds vertices only in c(Y x 8) so that c: Kx —► Lx

is simplicial.  Subdivide Z,j   adding vertices only in  Y x e obtaining L2   so that

y x e is a subcomplex and 0 is still simplicial on L2. We can do this since 0 is

level-preserving. This pulls back to a subdivision K2  of Kx   so that c: K2 —► L2

is simplicial and the respective actions are simplicial.  Now c~1(Y x e) is a subcom-

plex of ZC2   and all vertices of K2  he in  Y x 0, c~i(Y x e), and  Y x [8,1].

Now define an equivariant stretching PL homeomorphism /:  (Y x Z, 0O x 1) —►

(Y x I, 0O x 1) such that / is the identity on  Y x 0 U Y x [8, 1]   and such that

f(c~1(Yxe))=Yxe.

We define / on vertices and extend it linearly on Simplexes.  Consider a vertex

v of K2  which lies in c~1(Y x e). This vertex v lies in the interior of a unique

simplex A  of Kx    (its carrier).  Simplex A  can now be expressed as the join

A0 *AX  where A0  is the face of A  lying in  Y x 0 and Ax   is the face of A

lying in  Y x 8. Then v lies on a unique line segment / whose end points lie in A0

and in Ax. Now / meets c~1(Y x e) only at v, since c(l) is a straight line

segment going from  Y x 0 to c(Y x 8) and hence cuts  Y x e at just one point,

namely c(v). On the other hand / meets  Y x e in just one point, which we define

to be f(v). This defines / on the vertices of c~1(Y x e). On the rest of the

vertices of ZC2   define / to be the identity. Now, thinking of / as a map from K2

into Kx   extend / linearly on simplices of K2.  This clearly gives a PL homeomor-

phism  Yxl —► Y x Z.  We just have to check that / commutes with the action

0O x 1, and it suffices to check this on vertices. This follows immediately, however,

since  0O x 1  is simplicial on ZCj;for, 0O x 1  permutes the line segments / de-

scribed above, and on these line segments / clearly commutes with 0O x 1. Now /

induces a subdivision K3  of ZCj   so that /: K2 —► K3  is simplicial and K3  has

vertices only in   Y x 0,  Y x e, and  Y x [8, 1].
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Define h:  (Y x [O,e],0o x 1)—>-(yxZ, 0) by h = cf~1- Then h:

K3\Y x [0, e] —► L2  is a simphcial equivariant homeomorphism mapping  Y x e to

y x e.  Since K3  has no vertices in  Y x (0, e), «  must be level-preserving.  This

completes the proof of Lemma 4.6.1 and so the proof of the theorem.

We note that Example 4.5 of a smooth Z2-isotopy on R"  shows the necessity of

compactness in the theorem, since it is not hard to see that any smooth G-isotopy is

locally unknotted.

Since any free PL action is automatically locally unknotted, we have the follow-

ing corollary.

Corollary 4.7. If Y is a compact polyhedron, then any free PL G-isotopy

on  Y x I is unknotted.

In particular, since any G-isotopy between free actions is free, by Theorem 4.1,

this means that if 0 and  0  are free PL actions on  Y which are  PL G-isotopic,

then there is a   PL isotopy F:   Yxl—*■ Y x I such that F0 = 1  and Fx «0 = 0.

It is interesting to ask whether there is a notion of unknottedness which makes

Theorem 4.6 true in the topological category—certainly the equivariant collaring

theorem holds, and it would suffice to be able to find the level-preserving collar of

Lemma 4.6.1.  In particular, is any locally smooth action (in the sense of Bredon [2])

unknotted?  The topological version of Corollary 4.7 does hold, by a completely

different proof, see [5] and [6].

We conclude this section with two theorems which show precisely the relationship

between G-isotopic actions in the PL category.

Theorem 4.8. Let M be a closed PL n-manifold and 9  be a G-isotopy in

APL(G, M x I).  Then there is a sequence of actions 0O, •••, 0r in APL(G, M)

suchthat 0O = 0O, 0r = «'0j   where h is PL isotopic to   1, and, for  1<i <

r,  0f + j = 0j except on the invariant disjoint union of the interiors of PL n-balls.

Proof . The idea is to push M x 0 up through invariant submanifolds of

M x I, one cell and its translates at a time, until one reaches M x 1.

Call a sequence of actions as in the statement of the theorem a "sequence from

0O  to  0j."  Let K be a triangulation of Mxl so that  0  is simplicial and the

levels 0 = t0 < tx < ••• < tk = 1   containing vertices are triangulated as subcomplexes,

by Lemmas 2.1 and 2.2.  It suffices to consider just the case tx = 1.  For if, for

example, we have sequences from 0O  to 8t    and from  8t    to 8t , say 0O =

0O, •••, (¡>r =f ' 9t , and 9t   = 0O, •••, 0, = « • 8t , then we obtain a new sequence

from 0O  to 9t

0O = 0O,...,0„    /• 0O./.0í = (7oA).0í2.

Therefore suppose that r, = 1  and that all vertices of K lie in M x {0, 1}.
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Next it suffices to find a sequence of actions from 0O to 01/4, 0O = 0O, •••,

0r =/ • 8Vl. For by the same argument there would be a sequence 0j = 0O, •••,

\¡js = h • 8¡A. Then

0O = ^o> • • • » 0r>

(To A-1) o 0s, . . . , (f o ft-») - 0O = (fo «-1) . öj

would be the desired sequence from 0O  to 01#

Let K' be the first derived subdivision of K described as follows:  Star each

simplex A  of K at an interior point A, where A  is the barycenter of A  if

A C M x {0, 1}, and À  is chosen to he in A CtM x % otherwise.  Also be sure to

choose  (8gA)" = 9gÂ  for all g in G.  Then 0  is simplicial with respect to K'

and Jlíxlí is a subcomplex of K'. Let Z^  and K'0    denote the restrictions of

K and K' to M x 0.

Construct a sequence of subcomplexes MQ, Mx,'•', Mm   of K'  suchthat

(1) M0 = M x 0, ir/m =Mx!4, and each M¡ is 0-invariant;

(2) Mi+ j n Aff = Aff -./J»M1+ j - Ji+ j, where ^ and //+ j   are each

0-invariant disjoint unions of the interiors of PL «-balls;

(3) there is a sequence of PL homeomorphisms f¡ : M¡ —► M such that f0 =

■n\M x 0, fm = 7T ° h)M x V¿, where «  is a  PL homeomorphism of-Mm = M x *A

which is PL isotopic to  1, and fi+x =f¡ on I;+1n M¡, all i.   Here as usual

■n: M x I —> M is the projection map.

Given this construction the proof is completed by defining <¡>¡ =f¡ • (0|Mf).

Then 0O = 0O, 0m =fm • (8\M x %) = (it ° h) • (8\M x %) = k • 9^,where fc is

an appropriate homeomorphism which is PL isotopic to   l;and 0i+i=0,- except

on M¡+ j - (Mi+ j O Mj-), an invariant disjoint union of the interiors of «-balls.

Let Ax, •'•, Am  be the simplexes of KQ  arranged in order of decreasing di-

mension, just one representative for each "orbit" (if A  is a simplex and g is in  G,

either A = 8gA  or A  and 6gA  have disjoint interiors).  Define M¡ inductively by

M0 = K'0  and Mi+X = á(M¡ - f¡) U7.+ 1  where

/,-  U  8* intstar(«i/+i,M,.),     g in G;

and ./i+i =U   0*intlinkO4/+i,A/t). Here M+= K' and

M+j = cl ÏM++X -  U   H star(i/+,,M+)l

= cl Tm X I -  (J     U     0* starOÍ,, K')~],
L ^   /</+i J
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the part of M x I lying above Mi+X. One checks that f¡ is a disjoint union of

open «-balls which have a common boundary with those of Ji+X- Also M¡ is PL

homeomorphic to M.  This all follows since one can verify inductively that

star(i |+ j, Mf) n 8g star(i /+,, M¡) C bd star(i (+ x, M¡).

(The easiest approach to this seems to be via dual cells, as below.) It is now easy to

verify properties (1) and (2) above. So it remains only to construct the PL homeo-

morphisms f. : M¡ —► M.

The details of the construction are elementary but a little complicated, since we

wish to be sure the final result is PL isotopic to the identity. The point is that if

tt\M¡ were one-to-one for each i, then we could define f{ = 7iWf.    and be done.  Since

this is not the case in general, we work a little harder.

It is useful to give another description of the M¡ in terms of dual cells.  For a

simplex A fa K let D(A, K') = {ÈXÈ2 ••• Êf: A<BX< ••• <B¡, B¡ in K} be

the dual cell to A  in K'. (See Hudson, for example, [7, pp. 29ff].) If A is a fc-

simplex, then D(A, K') is an (« + 1 - fc)-cell. The dual cells give a cell decomposi-

tion of M x I with respect to which 0  is cellular.  If A  happens to lie in K0,

there are both D(A, K'0) and D(A, K').

With Ax, •'•, Am  as before then we may observe that

J\=    (J  fl*fat(4+1  *bdZ)/+j) and Ji+X =  U   8g int[bd A'i+X *Di+x],
g g

where Di+ x = D(Ai+ x, K') n (M x to) and  "*" denotes join. We now use the

dual cell description of M¡ to define f¡.

Let L  be the cell complex subdividing M x I whose cells are of the form

A x 0, A x 1, or A x I, where A  is a simplex of K0.  Let l! be the first derived

subdivision of L  obtained by inductively starring cells A x 0, A x 1, and A x I

at (A, 0), (A, 1), and  (A, to), where A  is the barycenter of A, A  in K0. Then

for Simplexes A  of L0 =K0, D(A, L') makes sense and is clearly setwise equal to

D(A, L'Q) x [0, to]. There is a level-preserving PL homeomorphism h: M x

[0, to] —*-M x [0, to] such that «|Af x 0 is the identity, h(D(A, L')) = D(A, K'),

for all A  in L0= K0, and there is a subdivision L* of L' adding vertices only

in M x to so that «: L* —► K' sends simphces linearly into simplices. One con-

structs h inductively over the dual cells D(A, L'). To define h, let Bx,'°m,Bq  be

(all) the simphces of L0  in order of decreasing dimension.  Suppose  h  is defined on

D(BX, L')U ••• UD(B¡,L'), and then define « on D(Bi+x,L')=D(Bi+x,L'0) x [0,to].

Observe that h is already defined on bd D(Bi+x,L'0) x [0, to] ; extend in any way,

subdividing as necessary, to

D(Bi+,, L'0 ) x % -* D(Bi+ j, K') n (A/ x %);

then extend, by coning from Bi+ x, to all of Z)(Z?/+1, ¿').
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Now define fi:Mi—*M tobe 7r° (h~lW¡). Since «-1 is by construction PL iso-

topic to the identity, we have only to verify inductively that 7r is one-to-one on h~ï(Mi),

for all i. This is clear for i = 0; suppose it is true for i, and consider «-1(Mi+1). By

induction   ir\h~í(Mí+1 n M¡)   is one-to-one.   It clearly suffices to show that

Ti\h~l(bdA'i+x *Di+x) is one-to-one. But by construction

h~l(bdA'i+x * Z>i+i) = bdA'i+x *h~l(Di+l) = bdAi+x * [D(Ai+,, L'0) x to] ;

also 7r|bd^4I+j is the identity, tt[D(Aí+x,L'0) x to] =D(Ai+x,L'Q) in a one-to-one way,

and it preserves join coordinates here. Thus it is one-to-one on h~1(bdAi+1+Di+x) as

desired. This completes the proof of Theorem 4.8.

In our final result we improve the preceding theorem to obtain <t>r = 8X, rather

than 0r = « • 0 j   for some «  PL isotopic to  1.

Theorem 4.9. Let M be a closed PL n-manifold ana 8 be a G-isotopy in

APL(G,MxI).  Then there is a sequence of actions 4>0,'°°,4>k in APh(G, M)

such that 0O = 0O, <t>k = 0j, a«<i each 0I + j = <¡>¡ except on the invariant disjoint

union of the interiors of PL n-balls.

Proof . By Theorem 4.8 there is a sequence 90 = 0O, •••, <¡>r = h ' 9X, where

« is PL isotopic to  \M. Let H: M x I —► M x I be a PL isotopy such that

H0 = h and ZZj = 1M.

Now use an equivariant version of the proof (see Hudson [7, pp. 130ff.]) of

"isotopy implies isotopy by moves" to find a sequence «j, •••, hs of PL homeomor-

phisms of M such that «j =h,hs= lM, and hi+ x = h¡ except on the 0j-invariant

disjoint union of the interiors of «-balls. One then defines 0¿ = hx • 9X   to obtain a

sequence from 0r = Aj • 0j   to «s • 0j =8X.

For completeness we sketch the construction of the «,'s. Let K triangulate M

so that 0j  is simplicial and so that 8gx  leaves AC\8\A  pointwise fixed, for any

A in K and g in G.  One need only pass to a second derived subdivision to obtain

this property-see Bredon [2, pp. 115ff.]. Suppose a: K —► I is linear on simphces.

Hudson shows that if the diameter of a(K) is sufficiently small then the map

am = it ° H(i, a) (i.e., ajx) = tt ° H(x, a(x)), where it: M x I —*■ M is the projection)

is a PL homeomorphism. Thus we may find a finite sequence of such maps a:

K —*■ I such that ax   is identically zero, as is identically one, a¡+x - a¡ except on

the 0 j -translates of the open star of some vertex vi+ x   in K, and the diameter of

each a¡(K) is "sufficiently small." Then define «,- = ffy .  This completes the proof

of the theorem.

Finally, we remark that Theorems 4.8 and 4.9 clearly put a premium on under-

standing actions on disks.  In particular, given 0 in A(G, D") one would like to
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know in some sense all  0  in A(G, D") suchthat  0|5"   i = 0|5"   *.
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