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co-COHESIVE SETS

BY

BARBARA F. RYAN(!)

ABSTRACT.   We define and investigate u-cohesiveness, a strong notion of

indecomposability for subsets of the integers and their isols.   This notion says, for

example, that if  X  is the isol of an oj-cohesive set then, for any integer   n,

Y + Z = (*)   implies that, for some integer   k, 4^*1 < Y  or   Z.   From this

it follows that if f(x) S Tx, the collection of almost recursive combinatorial poly-

nomials, then the predecessors of f/^X)  are limited to isols  g\(X)  where

g(x) S Tx.  We show existence of to-cohesive sets.  And we show that the isol of

an to-cohesive set is an n-order indecomposable isol as defined by Manaster.  This

gives an alternate proof to one half of Ellentuck's theorem showing a simple alge-

braic difference between the isols and cosimple isols.   In the last section we study

functions of several variables when applied to isols of w-cohesive sets.

1. Introduction.  Let E denote the nonnegative integers, 5(5) all subsets

of E, A the isols, and  to) the recursive equivalence type of a Ç 5.   Let / be

a fully effective map from  \J E" (n G E), one-one onto E. For a G P(E),

n > 0, define

a(n) ={(«.,•••, an) G an\ax >-">an\   and   (*\ = J(a^).

For AT G A, let  (*) denote </((£))> where to) = X. An isolated set a is

called cohesive if for all r.e. sets co, there is a finite set ß Ç a  such that either

(a - ß) Ç co or (a - ß) Ç E - co.  In this paper, we investigate the following

stronger notions of cohesiveness.

Definition. For n > 0, an infinite set a Ç 5 is n-cohesive if for all r.e.

sets co, there is a finite set ß Ç a such that either (a~ß) Çco or (a~ß) ÇE-oj.

Definition. A set a CE is co-cohesive if a is n-cohesive for every

integer n G E.
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It is clear that if a Ç 5 is n-cohesive (co-cohesive) and ß is recursively

isomorphic to a then ß is also n-cohesive (co-cohesive). Let Ac be the col-

lection of all isols of co-cohesive sets.

In §2, we show the existence of co-cohesive sets, and in particular show that

any infinite set of integers has an co-cohesive subset. We also show that if a is

n-cohesive then ((^) G Pn - Sn, the «-order indécomposables (Manaster's sets

Pn, Sn  are defined in §2). Thus we have a very simple method of constructing

n-order indecomposable isols, where n is a finite ordinal. Unfortunately our

techniques do not seem to extend to the transfinite case. Now if we take X G Ac

then (*) G Pn - Sn  for all n > 0.  So we have a "uniform" procedure for con-

structing finite indecomposable isols.  Using a more general technique than ours,

Ellentuck in [3] proves the following restatement of the last result: There is an

X G A such that (*) G Pn - Sn for all n > 0. By showing that the same

statement is false in the cosimple isols, he has a simple algebraic difference between

the two theories.

We also investigate how a function of an isol in Ac  can be decomposed.

Let  Tx = the collection of all almost recursive combinatorial polynomials of one

variable, i.e. a function f:E—*E is in Tx   iff there is an integer k > 0  such

that, for some finite string of nonnegative integers c0, cx,' ' •, cn, f(x + k) =

2 c¡(x). Let fA  be the canonical extension of / to the isols. (For a discussion

of combinatorial functions, almost recursive combinatorial functions and extension

procedures see [5] and [6].) For /, g G 7\, define / < g if there is « G Tx

such that f + h = g.  And define an equivalence relation on Tx   by / ~ g if

there is an integer k > 0 such that f(x + k) = g(x + k). Then Theorem 3

says that the only predecessors of fA(X), where / G Tx   and X G Ac, are isols

of the form gA(X) for some g G Tx   with g < f.   Since g<f implies that

gA(X) < fA(X) for all X G A, it is always the case that an isol of the form

gA(AT) is a predecessor of fA(X). Theorem 3 says these are the only predeces-

sors of fA(X) if AT G Ac.

It is easy to show that any co-cohesive set has a subset whose isol is univer-

sal. This allows us (in Theorem 4) to define a map  9X: Tx —*■ A which pre-

serves addition and composition, and such that / ~ g iff 9x(f) = 9x(g), and

9X(TX) is an ideal in A.

Let T¡ = the collection of all almost recursive combinatorial polynomials

f(xj) of the variable x¡. Let  T« = the collection of all finite sums of functions

in U T¡ (i G E). Tx  is closed under addition, composition and predecessor. In

§3, we extend Theorems 3 and 4 of §2 to functions in T^.

Theorem 3 does not hold if we allow product terms in our functions. For

example if f(xx, x2) = xx'X2 and XX,X2 G Ac then in general the prede-

cessors of fA(Xx, X2) axe not restricted to isols of the form gA(Xx, X2) for
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some g < f.  §4 gives a characterization of the predecessors of fA(Xx, • • •, Xn)

where / is an arbitrary almost recursive combinatorial polynomial and Xx, X2,

X3, • • •   is a "universal sequence" of isols (see §§3 and 4 for definitions).

2. Basic results.

Lemma 1. For any n and any infinite subset a of E, a has an n-cohe-

sive subset ß.

Proof. Let coj, co2, • • •  be a list of all r.e. sets. We will construct a

sequence Oq D ax D a2 D • • •  of infinite subsets of a such that, for any

i>0,

Let cxq = a.  Suppose we have a¡. Then

HOn ""üand HOn {E ■ w*+t)J
are partitions of    or}"'  into two disjoint sets.  By Ramsey's theorem [7]   a¡

has an infinite subset  y such that either

yC«) Ç /"{Ç) O Wf+1]    or   y™ C /-{("') n (5 - co/+1)].

Therefore (T) Ç col+1   or (%) Ç (5 - coi+1).  Let a/+1 = 7. Now, for each

i G 5, choose x¡ G af different from x0,- • •, *,._,   (since each af is infinite

this is always possible).  Let ß = {jcf|iG5}. Then 0  is an infinite subset of o¡.

We claim ß is n-cohesive.  Suppose  co is any r.e. set. Then there is an i

such that  co = co,-.  Let ß' = [x¡\j > i}. Then ß' Ç a¡. We chose a¡ such

that either

0  ̂  ">   °r   (n ) £ * - "'•
Therefore, ("„') Ç co,. or  (£') Ç 5 - cof.  Since ß' = ß - {xx,- • •, x¡_x}, ß

is n-cohesive.

Lemma 2. ^4«^ infinite subset of an n-cohesive set is n-cohesive.

Proof. Follows directly from the definition.

Lemma 3. // a is n-cohesive and m < «, then a is m-cohesive.

Proof. We need to show only that a n-cohesive implies a (n - ^-cohe-

sive. Suppose a is «-cohesive but not (« - l)-cohesive. Then there is an r.e. set co

such that, for all finite subsets ß of a, QZßx) <t " and (nZßx) t E - co. Let A =
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/-1(co) x 5.   Let  coj = J(A). Then co¡   is r.e.  Suppose there is a finite sub-

set ß of a   suchthat  (a~ß) Ç cúx. Then (a - j3)("} ÇA.   Let x0  be the

smallest element of (a - ß). Then it follows that   [a - (ß U {x0})](n_1) Ç

/-1(co). Therefore,

('T?*V
Similarly if (aZß) ç E - cjx.

Corollary I. If a is n-cohesive then to) G A.

Proof. If a is «-cohesive then a is 1-cohesive or cohesive and hence

isolated.

Lemma 4. If X is the isol of an n-cohesive set then  Y + Z = (x) implies

that there isa k G 5 such that (x~k) < Y or (x~k) < Z.

Proof. Clear from the definition of n-cohesive.

In [4] Manaster defines a sequence of triples (Pa, Sa, Ia) as follows: I0 =

{X\X is finite}.  For ordinals a > 0,

Pa = ÍX\X =Y + Z=*YG   U   4' V ZG   \J  l\
\ a'<ar a'<a       )

Sa=k=7 + ZAZf    \J  Ia,
\ a'<a

=*(3F)(aH0[2= V+W A KfÊ    (J   4' A W $   \J   Ial\.
a'<a a'<a      J)

/a  is the ideal generated by Pa U Sa. It can be shown that a < ß => Pa Ç Pß,

Sa £ Sß> 4 ^ V' Ua'<a + 1   4' ™ 4; ^a n Sa =   Ua'<a 4'-
In the following theorem we consider only (Pa, Sa, Ia) where a is finite.

Elements of Pn - Sn  are called n-order indécomposables.

Theorem 1. // X is the isol of an n-cohesive set then (x) G 5„ - Sn

and X»ein-Sn.

Proof. We prove the first part of the theorem by induction on «.  If

n = 1   then X is the isol of a cohesive set and therefore X G Px - Sx. Assume

the theorem is true for m < n - 1.  Suppose (x) = Y + Z. Then by Lemma 4,

there is a kGE such that  (x~k) < Y or (*"*) < Z.   Since
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either

-œ"-î)+œ:')+-+c->-«+e)
or

Since X is the isol of an n-cohesive set, X - k is the isol of an n-cohesive set.

Then, by Lemma 3, X - k is the isol of an m-cohesive set for  1 < m < n - 1.

By the inductive hypothesis, for 1 < m < n - 1, (x~ k) G 5m - Sm Ç 5m C 5„ _ x

G /„_!•  Since In_x   is an ideal

Therefore, Y G /„_,   or Z G In_x. Therefore, by definition of Pn, (x) G 5„.

By inductive hypothesis („*i) G 5„_j - Jmm.%. And, for any integer r, r(nxx)

< (x). It is shown in Theorem 8.1 of [4] that for any Z E Ia, there is a finite

m such that any linear decomposition of Z includes at most m  isols of Pa - Sa.

Hence (x) £ In_x.  Since

Pn-Sn=Pn-\J    /a = ^n.-4-l.       (Xn)ePn-Sn-
a<n xw/

It is clear that the function xn  is an almost recursive combinatorial poly-

nomial of the form, xn = c„(*) + cn_x(nx.x) + • • • + cxx + c0.  By the first

part of the theorem, for  1 < i < n, (x) E Pt - S¡ Ç /„. Therefore, X" EIn-Sn.

Theorem 2. // a is an infinite subset of E, then  a has a subset  ß

which is (¿-cohesive.

Proof. By Lemma 1, there is a sequence a D ax D • • •  of infinite sets

such that an is n-cohesive. For each n, choose x„ G an  different from xx,

• ' ', xn_x. Let ß = {xn\n > 0}. Claim ß is co-cohesive. For any n, ß =

[xx,' • •, x„_x} U ß' where ß' Ca„, Thus ß'  is n-cohesive. Therefore ß is

n-cohesive.

Corollary 2. There is an isol X such that (x) E Pn - Sn for all

n>0.

Lemma 5. Any infinite subset of an o>cohesive set is (¿-cohesive.
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Proof. Follows from the definition of co-cohesive and Lemma 2.

Theorem 3. // f(x) E Tx, X E Ac and  Y < fA(X), then there is a

g(x) E Tx  such that gA(X) = Y and g < f.

Proof. First suppose f(x) = (* ). Induct on i. If i = 0, then fix) = 1

and the theorem is true. Assume the theorem is true for i - 1.  Suppose f(x) =

d).  Suppose   Y < fA(X) = (x). Then by Lemma 4, there is a k E E such

that either (xjk) < Y or (xJk) < (f ) - Y.  In the first case, Y = (xJk) + Z

where Z < (f) - (x7k) < r(xx) for some integer r.  Then Z = Zx + • • •

+ Zr where Z;- < ({xx ) for each  1 < / < r.  By the inductive hypothesis, for

each  1 < / < r there is a g¡(x) < (,fj)  such that g]A(X) = Z¡. Let g0(x)

= (xJk) znd g = g0+gx +-■• + gr. Then ¿f» < f(x) and *(*) = Y.

In the second case,  (xZk) < (f ) - Y implies that  F < (f ) - (r7fc) and

then the rest follows as above.

Suppose f(x) E Tx   and  Y < /A(A") then there exists k E E such that

f(x +k) = 2,"=0 ct(*t ) for some «, c0, • • •, c„ E E and   F < fA(X) <

/A(JT + *) - 2/L0 cf(f). Then

^  Z   I  ^      (0 < i < n,  1 < / < cf)
í      /

where  Ytj < (^) for 0 < i < n  and  1 < / < ct. Therefore, for 0 < i < n

and  1 < / < c¡, there exists g¡j(x) E Tx such that gi]A(X) = F^.  Let

Pli««      (0 < i < n,  1 < / < c,.).
i        /

Then gA(X) = Y.

In [2], Ellentuck defines the notion of a universal isol.  It is easy to see that

his definition is equivalent to the following:  an isol X is universal if for any pair

of almost recursive combinatorial functions / and g, fA(X) = g\(X) implies

that there is an integer k such that for any x > k, f(x) = g(x). We want to

show that any co-cohesive set has a subset whose isol is universal. Modify Ellen-

tuck's method of showing the existence of universal isols [2] by replacing the set

of integers  E with an arbitrary infinite set a Ç 5 and topologize 5(a) as he

topologizes P(E). Then Lemmas 1, 2 and Theorem 1 of [2] go through routinely

to give the following lemma.

Lemma 6. Any infinite set of integers has a subset whose isol is universal.

Theorem 4. There is a map 9X: Tx -* A such that for any f, g E Tx

(1) f~g iff ex(f) = 9x(g),

(2) 9x(f(g)) = fA(9x(g)),
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(3) ex(f + g) = ex(f) + ex(g),
(4) 6X(TX) is an ideal in A.

Proof. Choose a set  a which is co-cohesive.  By Lemma 6, a has a sub-

set ß suchthat X = <j3> is universal.  Define 9X: Tx -»-A by 0x(f) =

fA(X).  If f ~ g, then fA(X) = gA(X) since X is infinite.  Hence  6x(f) =

9x(g).  If ex(f) = 6x(g) then f ~ g since X is universal. Parts (2) and (3)

follow directly from the fact that the extension procedure preserves both com-

position and addition of functions.  Part (4) follows from part (3) and Theorem 3.

Let  T*  be the set of all equivalence classes in Tx. Since "~"  preserves

addition in Tx, we can define addition in T* by   [/] + [g] = [f + g], and

[/] < [g]   if there is   [n] G Tx* such that   [/] + [n] = [g]. Then Tx* is

an ideal.

Corollary 3. T* under addition is isomorphic to an ideal in A.

3. Functions in T„. We want to extend Theorem 3 to functions of more

than one variable. Let S be the collection of all almost recursive combinatorial

polynomials, i.e. f(xx,' • •, xn) ES iff / is an almost recursive combinatorial

function such that for some integer  k,

f^^,--,xn + k) = Zciv...,inQ)---Q)

with all c¡  ... ¡   >0 and only a finite number of them nonzero and, for all

/ < k,

/(/, x2, • • •, xn), ••',f(xx,- — , x„_x, j) E S.

Then T„   is the subset of S consisting of all those functions which do not in-

volve product terms. Theorem 3 easily generalizes to functions in T„.

Theorem 5. If fET„ and *,,••• ,X„EAc,and Y<fA(Xx,---,X„)

then there is a function g E T„ such that  Y = fA(Xx, • • •, Xn) and g < f.

Proof. Since fET^f is of the form f(xx, • • •, xn) = fx(xx) +• • •

+ /„(*„) where fx,-• •, fn E Tx.   Y < fA(Xx,- • •, Xn) implies  Y= Yt +

"•+ Yn  where each  Y¡ < fiA(X¡). By Theorem 3, Yt = gt(Xj) for some

g, E Tx   and g, < f¡. Hence g = gx +• • • + gn.

We can define an equivalence relation on T„ (or S) just as we did on Tx.

Thatis.for f, g E S, f ~g iff f(xx + k,-~,xn +k) = g(xx +k,-~,xn + k)

for some integer k.   Let T*  be the set of equivalence classes in T„  and define

+ and < as on Tx.  In order to extend Theorem 4, we need an analogue of

Lemma 6, to give us a "universal sequence" of isols.
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Let  X = (5(/u))w  where p  is an arbitrary infinite subset of E.   Denote a

vector  (dj, a2,- • •) E X  by a.  Let Q = collection of all vectors a = (ax,

Oj,- • •) G X  such that (1) all the sets a¡ are finite and (2) except for a finite

number of coordinates, the sets a/ = 0. For 5 Ç 5, let  ||S||  denote the cardi-

nality of 5. If a, ß_ E Q, define N(a, §) = {£ a Ç ¿ ¿ Dß_ = 0}. The col-

lection  N = {A(g, ßj: a, ß_E Q} forms a basis, and X  with the topology in-

duced by this basis is easily shown to be a complete metric space. Then by the

Baire Category Theorem, if a set A Ç X  is of the first categroy (i.e. the countable

union of nowhere dense sets) then X - A  is nonempty. We will use a straight-

forward generalization of Ellentuck's techniques [2] to prove the following lemma.

Lemma 7. Any infinite set of integers p. has a sequence of subsets ôx, 52,

• • •  such that for any f, g E S, if fA(<Sx), • • •, <5„» = gA((ox>, • • •, <S„>)

then f ~ g.

Proof. Let  (f¡, gj) be a list of all pairs of recursive combinatorial func-

tions (of any number of variables) such that /, ¥■ g¡. For each i, let </>,-, i^

be recursive operators inducing f¡, g¡ respectively.  Let p¡ be a list of all one-

one partial recursive functions from 5 to 5.  Define H(<p, \p, p) = {£ G X:

V(?) Ç. domain of p, and p [v(Ç)] = <K£)}-  By a straightforward generalization

of Lemma 2 of [2] to vectors we can show that each set H(¡p¡, i¡/¡, pj) is no-

where dense.

Let ak be a list of all vectors in Q.   Define H(<p, \¡/, p, ak) = {| U ak:

£ G H(ip, ii, p)}. Since HQp, ty, p, sfc) is just a translation of H(y, ty, p), it

is also a nowhere dense set.  Let A = (J H(<p¡, i//f, p¡, ak) union over all integers

i, j, k.  Then A  is the countable union of nowhere dense sets. Hence X - A

# 0.  Let ô G X - A.   First notice that all coordinates of 5  are infinite. For

suppose not, i.e. suppose 8t is finite for some i. Let f(x¡) = x¡ and g(x¡) =

II6JI. Then / i- g, but <p(6) is recursively isomorphic to \p(§) where <¿>, \¡i

induce f, g respectively.

Now we show that ¿ satisfies our lemma. Suppose /, g E S, f i- g, but

/a(<V> * ' ' » ̂ n» = Sa(<5i>> * * * » ß„>). Since f-ies> there is an integer k

such that f(xx + k," • ,xn + k) = f¡(xx, • • • ,xn) and g(xx +k,"-,xn + k)

= i¡(xi>' * * » x„) for some pair of recursive combinatorial functions (f¡, gj).

Since / ¥• g, f¡ i- g¡. For i = 1,« • •, n, let a¡ be a subset of 8¡ with ||a(|| =

fc  Then

/,A«51 - al>. • * * . <6n - ûn>) * V,a(<51  " öl>. ' ' " . <5n " an>)'

Hence there is a p¡ such that (Sx - ftp• • •, 6H — o„, 8B+1,• • •) 6

//(fy, ^,» P/)- But then jg G .4, which contradicts the fact that j> G X - A.
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Theorem 6. 77zere is a map 6: T„ —*■ A such that

0) f~g iff 0(f) = 0(g),
(2) e(f(gx,•. •, gn)) = fA(e(gx), e(g2),• • •, *<*„)),

(3) 0(f + g) = 6(f) + 6(g)
(4) e(T„) is an ideal in A.

Proof. Let ju be co-cohesive. Let S1,S2,"*  be subsets of /n, such

that X¡ = (5,), i = 1, 2, • • •   form a "universal sequence" of isols. For

/(*,,.••, *„) G Tm  define (?(/) = /A(*,, • • •, Xn). Then properties (l)-(4)

follow as in the proof of Theorem 4.

Corollary 4. T* under addition is isomorphic to an ideal in A.

4. Functions with product terms. In Theorem 5, we defined a map, 6, such

that 6(Tm) is closed under predecessors. In this section we want to investigate

the predecessors of isols in 0(S). That is, let fi bea fixed, co-cohesive set.  By

Lemma 7, ju has a sequence of subsets, 6j, 52, S3, • • •  such that  (Xx, X2, X3,

• • •) = ((Sj), <ô2>, (S3>, • • •)  is a "universal" sequence of isols. Use this sequence

to define a map 6: S -* A by 0(f(xx, • • •, *„)) = fA(Xx, • • •, Xn). The

following lemma shows that 8(S) is not closed under predecessors.

Lemma 8. // fES ~Tm then  6(f) has a predecessor U <£ 8(S).

Proof. Since f(xx,' " , xn) E S, there is an integer k such that

f(xx + k, • • •, xn + k)  is a recursive combinatorial function.   Since

f(xx, • • •, xn) Í T„, f(xx + k, • • • , xn + k) contains a term of the form

where for some r =£ s, ir > 1  and is > 1. Then the function

*'*'< (?) * ' v) <f*x + **" * *x»+ k)

and (xr - k)(xs - k) < f(xltm • •, x„).  So we can restrict ourselves to prede-

cessors of (Xr - k)(Xs - k). Choose  ar Ç 5r and as C 8S such that  ||ot,J| =

lla,ll = k  Let

ß, - /[((Sr - ar) x (8S - as)) n {(x, y) E E2\x < y}]

J[((8r - ar) x (Ss - as)) n {(x, y) E E2\x > y}].

and

h
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Let  U m (ßx), V = (ß2). Then U + V = (Xr - k)(Xs - k). Suppose  U, V E

6(S). Then there exist g, h E S such that 6(g) = U, 6(h) = V.   Since

6((xr - k)(xs - k)) = (Xr - k)(Xs -k)=U+V=6(g)+ 6(h) = 6(g + h),

(xr - k)(xs - k) ~ g + h.  Thus there is a  k' such that

(xr + k')(xs + k') = g(xr + k', xa + tí) + h(xr + k', xs + k').

It is easy to check that if g(xr + k', xs + k') + h(xr + k', xs + k') =

(xr + k')(xs + k') then either g or n  is of the form axr + bxs ± c, a, b,

c E E.   Suppose g is. Then  U = aXr + bXs ± c.  From the definition of the

set j3t, it is easily seen that mXs < U for all m E E.  Thus, in particular,

(a + b)Xs <U = aXr+ bXs ± c.  Therefore, Xs < Xr + c.   Since Xs  is

infinite and Xr is co-cohesive, Xs = Xr ± d for some d E E.   However,

xs f xr ± d  Thus  U £ 6(S).

Essentially what we did to construct the predecessor in Lemma 8 was to

divide the "rectangle" Xr-Xs into two "triangles", U and   V.  This is really

the only way we can get a predecessor of Xr • Xs which is not an isol in 8(S).

Consider an arbitrary f E S.  Then there is a k such that fA(Xx, • • • , Xm) <

(Xx ' ' ' Xm)k. So we can restrict ourselves to predecessors of the form X¡ ...

X,    where X, , • • •, X,    are from the fixed "universal" sequence of isols X,,
'n '1 'n *

X2, • • • and need not be distinct. We will show that essentially the only prede-

cessors of X¡ • • • X¡ which are not isols in 0(S) are obtained by taking the

"«-dimensional rectangle" X¡ • • • X¡ and dividing it into «! "n-simplexes".

Let px, p2,' ' ', p„i be the permutations on {1,• • •, n}, with px the iden-

tity permutation. Let Enk = {(xx,"-,xn)\xpkixj>--'>xPk(n)} for

k = 1,- •., n! and 5„>0 - E" - \Jk=i En>k. Let ßk = (5^ x-xî^fl

E„,k and  Yk = <ßk\ Then

Suppose Z < X^ • • • X¡n. Then Z = Y0 + Y\ +• • • + Y'nl where each Y'k < Yk.

In the following lemma, we show that the only predecessors of  Yk are isols  U

such that either  U or   Yk - U is of "lower degree" than «.

Lemma 9. Suppose U+ V= Yk. Then either U or  V is of the form

cxZx + • • • + cnZn, where et,• • •, cn E E and, for each j = 1,• • •, n,

Z,<X, "-X,     -X,     '•• x¡.
' 'i '/-l       '/+! ln

Proof. First consider  Yx = (ßj). Notice ßx Ç ¿i<">. If U+V=YX,

then there exist disjoint sets coj, co2 Ç E"  such that  </(tOj n ßx)) = U,

</(co2 C\ ßj)) = V and J(cox), J(co2) are r.e.  Since p is co-cohesive, it easily
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follows that there is a finite subset v of p such that either (p - vy-"' Ç co!

or (p - v)(n' Ç co2. Assume the first case holds. Then //"* - (p - v)^ D

M(n) - co, 2 /3, n co2. Therefore

ßx n co2 ç ßx n [/i<"> - (p - v)W]

'"Pf" (5í, -i")*"** (5/„ - ")

Ç 5/, X---X S/n -(ôt] -p)x«««x(5Íb-p),

and clearly 0, O co2  is recursively separated from its complement in 5,   x • • •

x S.-   - (5,   - v) x • • • x (5,   - v). Hence
'n     v 'i v 'n      '

F= <0, n co2) < xti • • • xin - (X^ -*,)••• (X,n - fc„).

where it, - ||5,   n i>||. Then clearly X  • • • X,   - (X,   -*.)••• (X   - jfc_)
' k 1 n 1 n

and hence  F is of the desired form CjZj + • • • + cnZn.

Now consider  K^., for k > 1. Define q: E" -+ E" by <?((*,,— , x„))

= (xp (i)»***»*/» («))• Then q(ßk) Ç pW and predecessors of  Yk  can be

mapped into predecessors of  Yx   and the above argument for   Y used.
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