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ABSTRACT. This paper contains results on the structure of the group,
Diff'é(M), of equivariant c -diffeomorphisms of a free action of the compact
Lie group G on M. Diff'G(M) is shown to be a locally trivial principal bundle
over a submanifold of Diff" (X), X the orbit manifold. The structural group
of this bundle is E’| (G, M), the set of equivariant c -diffeomorphisms which
induce the identity on X. E’ (G, M) is shown to be a submanifold of Diff’ M)
and in fact a Banach Lie group (r < ).

0. Introduction. This paper studies the group of equivariant diffeomorphisms
of a smooth action of a compact Lie group G on a compact manifold M. Spe-
cifically most of the paper deals with the case when G acts freely on M. In this
case there is an orbit manifold X, and an equivariant C"-diffeomorphism f of
M induces a C’-diffeomorphism f of X. This defines a homomorphism P:
Diffg,(M) — Diff"(X) (Diffg(M) is the group of equivariant diffeomorphisms on
M of class C7, 1 <r < ). We obtain some results about the structure of P.

We show P admits smooth local cross-sections (Theorem 3.5). The kernel of P
is the group of C"-equivariant diffeomorphisms of M which induce the identity
on X. This group is the structural group of the locally trivial principal bundle
determined by P. We show ker P is a smooth submanifold of Diff"(#f) and,
that with respect to the induced differential structure, ker P is a Banach Lie
group (Theorem 4.2). Recall Diff"(M) is not a Banach Lie group as composition
isnot C! (r <o).

The main technique introduced is the construction in §2 of G-lifts of sprays
on X. This allows a precise connection between the manifold of maps differential
structures on Diff;(M) and Diff"(X).

1. Preliminaries. M will always denote a compact, connected, C*-mani-
fold, G a compact Lie group. Assume G acts on M (on the left). We denote
by X the orbit space and we let 7: M — X be the orbit projection. If G acts
freely and differentiably (C*) then X has a natural C*-structure such that =«

Presented to the Society, January 26, 1973 under the title The automorphism group
of a compact Lie group action; received by the editors March 22, 1973.

AMS (MOS) subject classifications (1970). Primary $8D0S, 22E65; Secondary 55F10.

Key words and phrases. Diffeomorphism group, equivariant diffeomorphism, Banach
Lie group, principal bundle, spray, free action.

45

Copyright © 1975, American Mathematical Society



46 W. D. CURTIS

is C” and locally trivial (since G is compact).

If g€G wEM we write gw to denote the result of letting g act on
w. We shall also write g to denote the diffeomorphism w — gw (henceforth
all manifolds, actions, etc. are assumed C™). An action of G on M induces
an action of G on TM, the tangent bundle of M. If g € G we write Tg(v)
for the result of acting on v € TM by g The resulting diffeomorphism of TM
is Tg: TM — TM and is just the tangent of g: M — M. Similarly G acts on
T2M = T(TM) by “double tangents”, T?g = T(Tg): T>M — T?>M being the
diffeomorphism corresponding to the group element g.

DEFINITION 1.1. Let G act on M. An automorphism of class C" isa
diffeomorphism f: M — M of class C" which is G-equivariant. We denote by
Diffg;(M) the group of all C"-automorphisms of the action. (Here 1 <r<eo.)

Let Diff"(M) be the group of all C’-diffeomorphisms of M onto M. If
G actson M then Diff;,(M) is clearly a subgroup of Diff"(M).

The differential structure on Diff"(M): We review the standard manifold of
maps construction as applied to make Diff"(M) into a C”-manifold. We recall
that Diff"(M) is locally Banach if 1 <r <oo while being locally Fréchet in the
case r =90, Also in case r = the multiplication and inversion in Diff"(M)
are C* so Diff*(M) is a Fréchet Lie group [5].

Let & TM — T?>M be a C*-spray. There is an open neighborhood O of
the O-section in TM and an open neighborhood U of the “diagonal” in M x
M and a C*-diffeomorphism Exp: 0 — U defined by Exp(v) = (1(v), exp(v))
where 7: TM — M is projection and exp is the exponential of the spray &.
We use Exp to construct “natural charts” around each f € Diff"(M). We define
a neighborhood Nf of f by

Np = {h € DIfff MI(fx), h(x)) EU for all x € M}.

Letting I'V(f*TM) denote the space of all C"-sections of the induced bundle
f*TM, with the C’-topology, we define ap: Np— '(F*T™M) by adh)(x) =
(x, Exp~ 1 (f(x), h(x))). a, maps N, bijectively onto an open set IV(F*1™)
and the collection of all charts (Vy, ay) for f€ Diff"(M) is a C™-atlas. This
C>structure is independent of the choice of spray. For further discussion of
this manifold of maps construction, we refer to [1], [3], [S].

For use later we now consider some properties of G-invariant sprays.

DEFINITION 1.2. If G actson M we say a spray & TM — T2M s
G-invariant if, for all g € G, we have T?go ¢ =%o Tg.

The following proposition is easily proved.

PROPOSITION 1.3. If & isa G-invariant spray, then the domain of expy
is an invariant subset of TM and exp, is G-equivariant.
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Using notation as before we have

LEMMA 14. If ¢ isa G-invariant spray then O may be chosen to be
G-invariant. Exp: 0 — M x M is then G-equivariant, where "G acts on M x
M by g(x,, x;) = (gx,, gx,). It then follows that U = Exp(0) is an invariant
set.

ProoF. Let (), be a neighborhood of the (-section such that Exp isa
diffeomorphism on ;. If we choose a G-invariant Riemannian metric on M,
then for sufficiently small € >0 we will have W, = {v€ TM|lvl <€} C 0,
(since M is compact). But W, is G-invariant since we have used an invariant
metric. If g€ G, vE 0 = W, we have Exp(Tg * v) = (7(Tg * v), exp(Tg * v)) =
(gr(v), g exp(v)) = g Exp(v). This proves the lemma.

The group Diff;;(M): If G acts freely on M then there is a homomor-
phism P: Diff;(M) — Diff"(X). The main results of this paper are concerned
with the structure of P. P is defined by P(f) =f; where f, makes the follow-
ing diagram commute.

M—f—bM
1
X—Q’X

A preliminary result is

ProPOSITION 1.5.  Diff;;(M) is a submanifold of Diff"(M) for any action
of G on M (free or not).

PROOF. Let { be an invariant spray. Such always exist, e.g. take £ to
be the geodesic spray of an invariant Riemann metric. We show that the natural
chart at the identity map is a submanifold chart. We have

a: N— I"(TM), o(f)(x) = Exp~(x, fix)):

Let TG(TM) CT'(TM) consist of all C"-vectorfields ¢ on M such that
Tgo¢=¢og forall g€G (ie., all invariant vectorfields). Using the fact that
by Lemma 1.4 Exp is equivariant, one immediately sees that oV N Diff;(M)) =
o(N) N T'G(TM). This proves the proposition.

AssuMPTION. Henceforth we consider only free actions of G on M.

In order to investigate the homomorphism P defined above we shall, in the
next section, construct a special type of spray on M. This spray will allow us to
relate the differential structure on Diffg;(M) to that on Diff"(X).

2. Construction of G-lifts of sprays. Suppose G acts freely on M, m:
M — X orbit projection. If n isaspray on X then a spray on M, say &,
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is called a lift of n if the following commutes.

TM——’é-—* M

Tr T*n

X —1 > 7°X
If, in addition, ¢ is G-invariant we will say ¢ is a G-lift of n. We shall prove
THEOREM 2.1. If n isany spray on X then there exists a spray & on
M which is a G-lift of 7.

The proof of Theorem 2.1 will be based on several lemmas.

Let {U;}; (i in some index set) be an open cover for X. Let M, =
a~1(U) for each i {M;}, is an open cover of M and {TM,=71"'(M)}, is
an open cover of TM.

LEMMA 22. There isa C®-partition of unity {y;}, subordinate to
{TM}}; such that each ¢; is G-invariant, ie., ¢;° Tg = ¢, forall g €G.

ProOF. Choose a C*-partition of unity, {y;}; subordinate to {U},.
Let g;=y,omeo 1. {g]}; iseasily seen to have the desired properties.
The next lemma is general in nature. Let Y, Z be C®-manifolds, £, 7
C®™-sprays on Y, Z. There are vector bundle isomorphisms
Y xZ)—TY xTZ, o) = Tn,@), Tr,(v),

B: T(TY x TZ) — (T*Y) x (1°Z),  B(2) = (Tm;(w), Tm,(W)).

Thus we have a bundle isomorphism

§ =B o Ta: TA(Y x Z) — (TY) x (T?2).
LEMMA 23. Let v be the unique map making the following diagram com-
mute. Then v isaspray on Y x Z. (We shall write & « 0 for v.)

(Y x 2) 2 (1Y) x (122)
v Exn
Y x 2) -2 (I7) x (12)

ProOF. If Y is modelled on E and Z is modelled on F, then the
local version of the above diagram is

UxVxExFXExFxExF2(UxExExE)x(VxFxFxF)

v Exn

UxVxExF 2 > (Ux E)x (V x F)
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We have:
ofx, y, u, v) = (x, u, y, v),
”n
80, vy u, v u, v, w0, V) = u i, w00, YY),

If £, 7 are the principal parts of £, 7 we easily see

¥, ¥, 4, V) = (%, ¥, 4, v, 4, v, £x, u), n0, v)).
This local form shows 7 is a spray.

LEMMA 24. Let notation be as above, p: Y x Z— Y projection. Then
the following diagram commutes.

(¥ x 7—LPs 2y
E*q £
Y x Z)LTY

PrROOF. This is immediate from the local representation of Lemma 2.3, or
an invariant proof can be given. We omit details.

Now return to m: M — X. Suppose U C X is open and ¢: n~1(U) —
U x G is an equivariant diffeomorphism such that m;, e ¢ = . (G acts on
Ux G by g(x, 8" =(x, gg).) Recall that X is covered by such U. If n isa
fixed spray on X, then n induces a spray on U which we denote 7. Let
p: TG — T%G be the canonical left-invariant spray of G [6, p. 222].

Then ny +u isasprayon U x G.

LEMMA 2.5. Let G act on U x G as above. Then ny * u is G-invariant.

PROOF. Let v € T(U x G), a(v) = (v;, v,). Now

T?g o (ny « W) = Tg o (Ta)~! o f~1 o (ny x M)v;, v,)
= T(Tg o a~ 1) o B~ (ny(v,y), u(v;))
=T ! o (1 x Tg)) ° B~ (ny(v,), Hv,))
=Ta~! o p~1 o (1 x T2e)(ny(v,), u(,))
=Ta™! o ™ (ny(v,), T2 ° u(v,))
= Ta~! o B (ny(v,), u(Te(v,))
=Ta~' o 71 o (ny x W)y, T2(v,))
=y = K(TZV)).



50 W. D. CURTIS
Let &, be the spray on #~!(U) such that the following diagram commutes.

2
T (a~ (V) ——2—T*(U x G)
EU Nu * MK

Tt~ (U)) —2— T(U x G)

Since ¢ is an equivariant diffeomorphism, we see %, is a G-invariant spray on
=~ 1(U).

We can now prove Theorem 2.1.

ProOF OF THEOREM 2.1. Cover X by open sets U; such that for each i
there is an equivariant diffeomorphism ¢;: n“(Ui) — U; x G as above. Let
§ = EU: be as above. Let {y;}; be an invariant partition of unity subordinate
to {TM;}; asin Lemma 2.2. Let &= Zypk: TM — T2M. & is a spray on M.
Using the invariance of the ¢; we easily see £ is invariant. It remains to show
¢ isaliftof n. Let vETM.

T’mo g) = T'n (Zil so.(v)E,-(v)) = 2 o Q)T © £(v).

Suppose T27 o §,(v) = n(Tn(v)) for each i with v € TM;. Then we will be
done. If v € TM; we compute as follows:

T2 a() = T*n(T2¢] ! © (ny * 1) © T (v))
=T*(mo g7 ") o (ny, » 1) © To,(v) = T} © ny, + 1o Ty, (v)
=1y, ° To(Te ) = ny, ° Tn(v) = n(Tr)).
Here p: U; x G — U; is projection and we have used Lemma 2.4. This com-
pletes the proof of Theorem 2.1.

3. The structure of P. Henceforth n will be a fixed spray on X and £
will be a fixed G-lift of n. Recall that the domain of exp, is Dom(exp,) =
{v € TM|1 € Dom(B,)} where B, is the maximal integral curve of £ with ini-
tial condition v. Similarly Dom(exp,) = {w € TX|1 € Dom(y,,)} where 7,,
is the maximal integral curve of 1 with initial condition w. Since £ is a lift of
m wesee £ and n are Tr-related, so Tm(Dom(exp;)) C Dom(exp,) and the
following diagram commutes.

Dom(exp )L’ Dom(exp,,)
£ n

exp; exp,

M LD ¢
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We shall use £ and 7n to construct the differential structures on Diff"(M)
and Diff"(X) respectively. Using the above properties of ¢ and n we easily
see we may choose open sets (, 0 containing the O-sections of TM, TX, respec-
tively, such that the following hold: (1) O is G-invariant; (2) Tm(0) = 0;

(3) Exp; and Exp, map 0 and O diffeomorphically onto neighborhoods
U and U of the respective diagonals; (4) (7 x m)(U) = U. Also, we clearly
have (m x m) o Exp, = Exp, o Tm.

As in §1 we get natural charts (V, o), (V, @) at the identities in Diff"(M)
and Diff"(X). Since £ is an invariant spray we see, as in Proposition 1.5, we get
a submanifold chart at 1,,, (V*, &*) where N* = N N Diff;;(M), o* = alNV*:
N* — To(TM).

Let Diffg(X) be the group of all C’-diffeomorphisms, &, of X such that
there is an equivariant C”-diffeomorphism of M with wo f=hon (ie., f
covers h). It is easily seen that Diff((X) is an open subgroup of Diff"(X) and
hence a manifold. Clearly the map P defined earlier is a surjective homomorphism
P: Diffl,(M) — Diff}(X). Let N*=N N Diff§(X), &*= alN*, so that (V*, a*)
is a chart at the identity on Diffg(X).

LEMMA 3.1. P(N*) C N*.

PROOF. Let f€ N* P(f) =f. We must show (x, f(x)) €U for each
XEX. Let x =a(»). Then (x, f(x)) = (7 x m)(y¥, fy)) as is easily seen. But
O, f)EU and (7 x M)(U)=T so the lemma follows.

Let p be the unique map making the following diagram commute.

N* e, a*(V*)
P p

* _
N*—2—— o* (V)
LEMMA 3.2. There is a continuous linear map, p,: T'g(TM) — I'(TX),
such that p,la*(V*) = p.

PrOOF. We first show that for { € IT';;(TM) there is a unique map, p,(5)
in I"(TX) such that Tme ¢ = p,(¢) o w. If n(u) = 7n(v) we must show
Trn(€w) = Tn)). If n(u) = n(v) then v=gu for some g E G. But then
Tn(§()) = Tn($(gu)) = Tn(Tg ° §(u)) = Tn(S(u)). This defines p, and, working
locally, one easily verifies that p, is continuous linear and, in particular, that
P () is actually in I'"(7X). Let h €EN*,v €EM. Then ’

p1(@* () (n(v)) = Tr(a*(r)v)) = Tr(expy ' (v, h(v)))

= Exp, ! (n(v), P(h)(n(v))) = «*(@(R))(m(v)).
This proves p, la*(V*) = p.



52 W. D. CURTIS

It follows from Lemma 3.2 that P is C™ in a neighborhood of the iden-
tity. Since P is a homomorphism and right translation is C* it follows P is
C® everywhere,

PROPOSITION 3.3. p, is a continuous linear surjection with split kernel.

PROOF. Recall there is a bundle VT(M) of vertical vectors. VI(M) =
ker(Tn) C TM. VT(M) is a G-invariant subbundle of 7M. Let H be an invar-
iant subbundle of TM which is complementary to VIT(M) (n is essentially a
principal G-bundle so H is just an affine connection. See [4].) Let I'g(VT(M))
and T';(H) be the spaces of G-invariant C-sections of the two subbundles.

We immediately have ker p, = I'z(VT(M)). Using the G-invariance of the sub-
bundle it is easy to see I'g(TM) = I'g(VT(M)) @ T'g(H). So T'g(H) is a com-
plement for ker(p,).

That p, is onto is just the well-known existence of the horizontal lift of a
vectorfield with respect to an affine connection on a principal bundle. (See [4].)

COROLLARY 34. ker P is a split submanifold of Diffg(M).

PROOF. o*(V* N ker P) = a*(V*) N TL(VT(M)), as is easily checked.
The corollary follows.

THEOREM 3.5. P admits smooth local cross-sections.

PROOF. Let A;: I"(TX) — I'z(TM) be continuous linear with p, o A, =
identity. Choose an open set W, containing 0 in I'(TX) such that A, (W,) C
o*WV*). Let W= (@*)"!(W,) and A(h) = (@*)"! o A, o a*(h) for h E W.
Then & is a smooth section of P near the identity so the theorem is proved.

Let E"(G, M) = ker P. E'(G, M) is the group of self-equivalences of the
bundle 7 of class C". In case r = we see E'(G, M) is a Fréchet Lie group
since it is a subgroup and closed submanifold of Diff”(M) which is a Fréchet
Lie group [5].

If r <o we cannot argue the same way since Diff"(M) is not a Banach
Lie group. In the next section we show that, nonetheless, E"(G, M) is a Banach
Lie group. The following is immediate from Theorem 3.5 and Corollary 3.4.

THEOREM 3.6. P: Diff;;(M) — Diff"(X) is a principal bundle with group
E"(G, M). If r =00 this bundle is C> while if r <o we have a continuous
bundle.

The following problem is unsolved.
Determine conditions on 7 so that the bundle P is trivial, i.e., so that P
admits a global cross-section. (If # is trivial, then so is P, as is easily seen.)

4. The group E"(G, M). In this section we assume r <<, We know by
Corollary 3.4 that E"(G, M) is a C*-Banach manifold. We shall prove that
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E'(G, M) is a Banach Lie group which is C®-anti-isomorphic to a Banach Lie
subgroup of C'(M, G).

In [2] it was shown that C"(M, G) is a Banach Lie group. There is a
Banach Lie subgroup E of C"(M, G) defined by

E = {h € C'(M, G)h(gv) = gh(v)g™", forall g€ G, v€E M}.

E acts on the right of M by v % A = h(v)v. (These things are discussed in [2]

in more detail, the only difference being that in [2] G acts on the right and E
on the left.) This action defines an injective antihomomorphism &: E —> Diffg(M)
and ®(F) = E'(G, M) as one easily sees.

THEOREM 4.1. & maps diffeomorphically onto E'(G, M).

PROOF. It is enough to show that & and ®~! are C* in some neigh-
borhoods of the respective identities. There is a map ®*: C"(M, G) — C'(M, M)
defined by ®*(H)(v) = flv)v = u(f(v), v) where u: G x M — M is the group
action. This is a C*-map because there is a commutative diagram

P

C'(M, G) (M, M)

o Q

C"M, M x G)

where o(f) = (1,4, ), k) =p o k. Both o and Q are easily seen to be C™.
&=*E so & is C.

Now consider ®~!. Recall we have 0 C TM. I"(VT(M) N () is the set
of C'-vectorfields on M which take values in VT(M) N (0. We define y:
(M) N 0) — C"(M, G). Let M x5 M be the submanifold of M x M
consisting of all (v, w) such that n(v) = n(w). Thereisa C*-map 6: M xy
M—G by 6(v, w)=g if w=_gv. Since G acts freely, this is well defined
and 8 is C™ asis seen by working locally. Now exp; maps VI n 0
into M x, M as the following calculation shows. Let v € VT(M) N 0. Then

(m x m)(Exp,(v)) = Exp,(Tn(v)) = (7(Tn(v)), exp,(Tn(v)))
= (@(7(v)), expy(0) = (a(r(V)), 7(r(v)))

where O is the zero vector in the tangent space to X at w(7(v)).

Thus we have a C”-map ¢: I"(VT(M) N Q) — C'(M, G) by Y(§) =
8 o Exp; o . We show that  takes the subspace Tg(VT(M)N 0) into the
subgroup E of C'(M, G). G actson M x, M by g, w) = (gv, gw) and
one easily sees 6(gv, gw) = gf(v, w)g~!. Thusif ¢ € TL(VT(M) N 0), we get
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YQE)gw) = 0(Exp(§(ew))) = O(Exp,(T2E(W)))
= 0(z Exp,(§(w))) = gl0(Exp,CW)N]e~" = g[¥)W)lg™".

Thus we have a C*-map ¥: Tg(VT(M) N 0) — E.

We show finally that ¥ o a* = &~ ! in a neighborhood of the identity.
Choose an open set ¥V C E'(G, M) such that o*(V) C Tg(VT(M) N 0). Let
hEV. Let f=& '(h). Then

Vo a*(h) = ¥ © a*(@(f) = 6 © Exp; o (@*B()).
So

(¥ ° a*BNWIExp([c* SN (W) = 6(Expe(Expg ' (w, fw)w)))
= 0w, flw)w) = flw).
Therefore ¢ o a*(h) = f = &~ '(h) as desired. This completes the proof of 4.1.
THEOREM 4.2. E'(G, M) is a Banach Lie group (r < o).

PrOOF. & is a diffeomorphism of the Lie group £ onto E"(G, M) and
@ is an antihomomorphism so the multiplication and inversion in E"(G, M) are
smooth.
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