THE AUTOMORPHISM GROUP OF A COMPACT GROUP ACTION

BY

W. D. CURTIS

ABSTRACT. This paper contains results on the structure of the group, $\operatorname{Diff}_G^r(M)$, of equivariant C^r -diffeomorphisms of a free action of the compact Lie group G on M. $\operatorname{Diff}_G^r(M)$ is shown to be a locally trivial principal bundle over a submanifold of $\operatorname{Diff}^r(X)$, X the orbit manifold. The structural group of this bundle is $E^r(G, M)$, the set of equivariant C^r -diffeomorphisms which induce the identity on X. $E^r(G, M)$ is shown to be a submanifold of $\operatorname{Diff}^r(M)$ and in fact a Banach Lie group $(r < \infty)$.

0. Introduction. This paper studies the group of equivariant diffeomorphisms of a smooth action of a compact Lie group G on a compact manifold M. Specifically most of the paper deals with the case when G acts freely on M. In this case there is an orbit manifold X, and an equivariant C^r -diffeomorphism f of M induces a C^r -diffeomorphism \overline{f} of X. This defines a homomorphism P: $\mathrm{Diff}_G^r(M) \to \mathrm{Diff}_G^r(X)$ ($\mathrm{Diff}_G^r(M)$ is the group of equivariant diffeomorphisms on M of class C^r , $1 \le r \le \infty$). We obtain some results about the structure of P. We show P admits smooth local cross-sections (Theorem 3.5). The kernel of P is the group of C^r -equivariant diffeomorphisms of M which induce the identity on X. This group is the structural group of the locally trivial principal bundle determined by P. We show ker P is a smooth submanifold of $\mathrm{Diff}_I^r(M)$ and, that with respect to the induced differential structure, ker P is a Banach Lie group (Theorem 4.2). Recall $\mathrm{Diff}_I^r(M)$ is not a Banach Lie group as composition is not C^1 $(r < \infty)$.

The main technique introduced is the construction in §2 of G-lifts of sprays on X. This allows a precise connection between the manifold of maps differential structures on $\operatorname{Diff}_G^r(M)$ and $\operatorname{Diff}^r(X)$.

1. Preliminaries. M will always denote a compact, connected, C^{∞} -manifold, G a compact Lie group. Assume G acts on M (on the left). We denote by X the orbit space and we let $\pi: M \longrightarrow X$ be the orbit projection. If G acts freely and differentiably (C^{∞}) then X has a natural C^{∞} -structure such that π

Presented to the Society, January 26, 1973 under the title *The automorphism group* of a compact Lie group action; received by the editors March 22, 1973.

AMS (MOS) subject classifications (1970). Primary 58D05, 22E65; Secondary 55F10. Key words and phrases. Diffeomorphism group, equivariant diffeomorphism, Banach Lie group, principal bundle, spray, free action.

is C^{∞} and locally trivial (since G is compact).

If $g \in G$, $w \in M$ we write gw to denote the result of letting g act on w. We shall also write g to denote the diffeomorphism $w \to gw$ (henceforth all manifolds, actions, etc. are assumed C^{∞}). An action of G on M induces an action of G on TM, the tangent bundle of M. If $g \in G$ we write Tg(v) for the result of acting on $v \in TM$ by g. The resulting diffeomorphism of TM is $Tg: TM \to TM$ and is just the tangent of $g: M \to M$. Similarly G acts on $T^2M = T(TM)$ by "double tangents", $T^2g = T(Tg): T^2M \to T^2M$ being the diffeomorphism corresponding to the group element g.

DEFINITION 1.1. Let G act on M. An automorphism of class C^r is a diffeomorphism $f: M \longrightarrow M$ of class C^r which is G-equivariant. We denote by Diff G(M) the group of all C^r -automorphisms of the action. (Here $1 \le r \le \infty$.)

Let Diff^r(M) be the group of all C^r -diffeomorphisms of M onto M. If G acts on M then Diff^r_G(M) is clearly a subgroup of Diff^r(M).

The differential structure on Diff^r(M): We review the standard manifold of maps construction as applied to make Diff^r(M) into a C^{∞} -manifold. We recall that Diff^r(M) is locally Banach if $1 \le r < \infty$ while being locally Fréchet in the case $r = \infty$. Also in case $r = \infty$ the multiplication and inversion in Diff^r(M) are C^{∞} so Diff^{\infty}(M) is a Fréchet Lie group [5].

Let $\xi\colon TM \longrightarrow T^2M$ be a C^∞ -spray. There is an open neighborhood O of the 0-section in TM and an open neighborhood U of the "diagonal" in $M\times M$ and a C^∞ -diffeomorphism Exp: $O \longrightarrow U$ defined by $\operatorname{Exp}(v) = (\tau(v), \operatorname{exp}(v))$ where $\tau\colon TM \longrightarrow M$ is projection and exp is the exponential of the spray ξ . We use Exp to construct "natural charts" around each $f\in \operatorname{Diff}^r(M)$. We define a neighborhood N_f of f by

$$N_f = \{h \in \text{Diff}^r(M) | (f(x), h(x)) \in U \text{ for all } x \in M\}.$$

Letting $\Gamma^r(f^*TM)$ denote the space of all C^r -sections of the induced bundle f^*TM , with the C^r -topology, we define $\alpha_f \colon N_f \to \Gamma^r(f^*TM)$ by $\alpha_f(h)(x) = (x, \operatorname{Exp}^{-1}(f(x), h(x)))$. α_f maps N_f bijectively onto an open set $\Gamma^r(f^*TM)$ and the collection of all charts (N_f, α_f) for $f \in \operatorname{Diff}^r(M)$ is a C^∞ -atlas. This C^∞ -structure is independent of the choice of spray. For further discussion of this manifold of maps construction, we refer to [1], [3], [5].

For use later we now consider some properties of G-invariant sprays.

DEFINITION 1.2. If G acts on M we say a spray $\xi: TM \to T^2M$ is G-invariant if, for all $g \in G$, we have $T^2g \circ \xi = \xi \circ Tg$.

The following proposition is easily proved.

PROPOSITION 1.3. If ξ is a G-invariant spray, then the domain of \exp_{ξ} is an invariant subset of TM and \exp_{ξ} is G-equivariant.

Using notation as before we have

LEMMA 1.4. If ξ is a G-invariant spray then 0 may be chosen to be G-invariant. Exp: $0 \longrightarrow M \times M$ is then G-equivariant, where G acts on $M \times M$ by $g(x_1, x_2) = (gx_1, gx_2)$. It then follows that U = Exp(0) is an invariant set.

PROOF. Let \mathcal{O}_1 be a neighborhood of the \mathcal{O} -section such that Exp is a diffeomorphism on \mathcal{O}_1 . If we choose a G-invariant Riemannian metric on M, then for sufficiently small $\epsilon > 0$ we will have $W_{\epsilon} = \{v \in TM | \|v\| < \epsilon\} \subset \mathcal{O}_1$ (since M is compact). But W_{ϵ} is G-invariant since we have used an invariant metric. If $g \in G$, $v \in \mathcal{O} = W_{\epsilon}$ we have $\operatorname{Exp}(Tg \cdot v) = (\tau(Tg \cdot v), \operatorname{exp}(Tg \cdot v)) = (g\tau(v), g \operatorname{exp}(v)) = g \operatorname{Exp}(v)$. This proves the lemma.

The group $\operatorname{Diff}_G^r(M)$: If G acts freely on M then there is a homomorphism $P \colon \operatorname{Diff}_G^r(M) \longrightarrow \operatorname{Diff}^r(X)$. The main results of this paper are concerned with the structure of P. P is defined by $P(f) = f_1$ where f_1 makes the following diagram commute.

$$\begin{array}{c}
M \xrightarrow{f} M \\
\pi \downarrow \qquad \downarrow \pi \\
X \xrightarrow{f_1} X
\end{array}$$

A preliminary result is

PROPOSITION 1.5. Diff_G^r(M) is a submanifold of Diff^r(M) for any action of G on M (free or not).

PROOF. Let ξ be an invariant spray. Such always exist, e.g. take ξ to be the geodesic spray of an invariant Riemann metric. We show that the natural chart at the identity map is a submanifold chart. We have

$$\alpha: N \longrightarrow \Gamma^r(TM), \quad \alpha(f)(x) = \operatorname{Exp}^{-1}(x, f(x)).$$

Let $\Gamma_G^r(TM) \subset \Gamma^r(TM)$ consist of all C^r -vectorfields ζ on M such that $Tg \circ \zeta = \zeta \circ g$ for all $g \in G$ (i.e., all invariant vectorfields). Using the fact that by Lemma 1.4 Exp is equivariant, one immediately sees that $\alpha(N \cap \text{Diff}_G^r(M)) = \alpha(N) \cap \Gamma_G^r(TM)$. This proves the proposition.

ASSUMPTION. Henceforth we consider only free actions of G on M. In order to investigate the homomorphism P defined above we shall, in the next section, construct a special type of spray on M. This spray will allow us to relate the differential structure on $\mathrm{Diff}_G^r(M)$ to that on $\mathrm{Diff}^r(X)$.

2. Construction of G-lifts of sprays. Suppose G acts freely on M, π : $M \longrightarrow X$ orbit projection. If η is a spray on X then a spray on M, say ξ ,

is called a lift of η if the following commutes.

If, in addition, ξ is G-invariant we will say ξ is a G-lift of η . We shall prove

THEOREM 2.1. If η is any spray on X then there exists a spray ξ on M which is a G-lift of η .

The proof of Theorem 2.1 will be based on several lemmas.

Let $\{U_i\}_i$ (i in some index set) be an open cover for X. Let $M_i = \pi^{-1}(U_i)$ for each i. $\{M_i\}_i$ is an open cover of M and $\{TM_i = \tau^{-1}(M_i)\}_i$ is an open cover of TM.

LEMMA 2.2. There is a C^{∞} -partition of unity $\{\varphi_i\}_i$, subordinate to $\{TM_i\}_i$ such that each φ_i is G-invariant, i.e., $\varphi_i \circ Tg = \varphi_i$ for all $g \in G$.

PROOF. Choose a C^{∞} -partition of unity, $\{\psi_i\}_i$ subordinate to $\{U_i\}_i$. Let $\varphi_i = \psi_i \circ \pi \circ \tau$. $\{\varphi_i\}_i$ is easily seen to have the desired properties.

The next lemma is general in nature. Let Y, Z be C^{∞} -manifolds, ξ, η C^{∞} -sprays on Y, Z. There are vector bundle isomorphisms

$$\alpha$$
: $T(Y \times Z) \longrightarrow TY \times TZ$, $\alpha(v) = (T\pi_1(v), T\pi_2(v))$,

 β : $T(TY \times TZ) \longrightarrow (T^2Y) \times (T^2Z)$, $\beta(2) = (T\pi_1(w), T\pi_2(w))$. Thus we have a bundle isomorphism

$$\delta = \beta \circ T\alpha : T^2(Y \times Z) \longrightarrow (T^2Y) \times (T^2Z).$$

LEMMA 2.3. Let γ be the unique map making the following diagram commute. Then γ is a spray on $Y \times Z$. (We shall write $\xi * \eta$ for γ .)

$$T^{2}(Y \times Z) \xrightarrow{\delta} (T^{2}Y) \times (T^{2}Z)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \xi \times \eta$$

$$T(Y \times Z) \xrightarrow{\alpha} (TY) \times (TZ)$$

PROOF. If Y is modelled on E and Z is modelled on F, then the local version of the above diagram is

We have:

$$\alpha(x, y, u, v) = (x, u, y, v),$$

$$\delta(x, y, u, v, u', v', u'', v'') = (x, u, u', u'', y, v, v', v'').$$

If ξ , η are the principal parts of ξ , η we easily see

$$\gamma(x, y, u, v) = (x, y, u, v, u, v, \bar{\xi}(x, u), \bar{\eta}(y, v)).$$

This local form shows γ is a spray.

LEMMA 2.4. Let notation be as above, $p: Y \times Z \longrightarrow Y$ projection. Then the following diagram commutes.

$$T^{2}(Y \times Z) \xrightarrow{T^{2}p} T^{2}Y$$

$$\xi * \eta \qquad \qquad \uparrow \qquad \qquad \downarrow \xi$$

$$T(Y \times Z) \xrightarrow{Tp} TY$$

PROOF. This is immediate from the local representation of Lemma 2.3, or an invariant proof can be given. We omit details.

Now return to $\pi: M \to X$. Suppose $U \subset X$ is open and $\varphi: \pi^{-1}(U) \to U \times G$ is an equivariant diffeomorphism such that $\pi_1 \circ \varphi = \pi$. (G acts on $U \times G$ by g(x, g') = (x, gg').) Recall that X is covered by such U. If η is a fixed spray on X, then η induces a spray on U which we denote η_U . Let $\mu: TG \to T^2G$ be the canonical left-invariant spray of G [6, p. 222].

Then $\eta_U * \mu$ is a spray on $U \times G$.

LEMMA 2.5. Let G act on $U \times G$ as above. Then $\eta_U * \mu$ is G-invariant.

PROOF. Let $v \in T(U \times G)$, $\alpha(v) = (v_1, v_2)$. Now

$$\begin{split} T^2g \circ (\eta_U * \mu)(v) &= T^2g \circ (T\alpha)^{-1} \circ \beta^{-1} \circ (\eta_U \times \mu)(v_1, v_2) \\ &= T(Tg \circ \alpha^{-1}) \circ \beta^{-1}(\eta_U(v_1), \mu(v_2)) \\ &= T(\alpha^{-1} \circ (1 \times Tg)) \circ \beta^{-1}(\eta_U(v_1), \mu(v_2)) \\ &= T\alpha^{-1} \circ \beta^{-1} \circ (1 \times T^2g)(\eta_U(v_1), \mu(v_2)) \\ &= T\alpha^{-1} \circ \beta^{-1}(\eta_U(v_1), T^2g \circ \mu(v_2)) \\ &= T\alpha^{-1} \circ \beta^{-1}(\eta_U(v_1), \mu(Tg(v_2))) \\ &= T\alpha^{-1} \circ \beta^{-1} \circ (\eta_U \times \mu)(v_1, Tg(v_2)) \\ &= \eta_U * \mu(Tg(v)). \end{split}$$

Let ξ_U be the spray on $\pi^{-1}(U)$ such that the following diagram commutes.

$$T^{2}(\pi^{-1}(U)) \xrightarrow{T^{2}\varphi} T^{2}(U \times G)$$

$$\xi_{U} \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

Since φ is an equivariant diffeomorphism, we see ξ_U is a G-invariant spray on $\pi^{-1}(U)$.

We can now prove Theorem 2.1.

PROOF OF THEOREM 2.1. Cover X by open sets U_i such that for each i there is an equivariant diffeomorphism $\varphi_i \colon \pi^{-1}(U_i) \longrightarrow U_i \times G$ as above. Let $\xi_i = \xi_{U_i}$ be as above. Let $\{\varphi_i\}_i$ be an invariant partition of unity subordinate to $\{TM_i\}_i$ as in Lemma 2.2. Let $\xi = \Sigma_i \varphi_i \xi_i \colon TM \longrightarrow T^2M$. ξ is a spray on M. Using the invariance of the φ_i we easily see ξ is invariant. It remains to show ξ is a lift of η . Let $v \in TM$.

$$T^2\pi \circ \xi(v) = T^2\pi \left(\sum_i \varphi_i(v)\xi_i(v)\right) = \sum_i \varphi_i(v)T^2\pi \circ \xi_i(v).$$

Suppose $T^2\pi \circ \xi_i(v) = \eta(T\pi(v))$ for each i with $v \in TM_i$. Then we will be done. If $v \in TM_i$ we compute as follows:

$$\begin{split} T^2\pi(\xi_i(v)) &= T^2\pi(T^2\varphi_i^{-1} \circ (\eta_U * \mu) \circ T\varphi_i(v)) \\ &= T^2(\pi \circ \varphi_i^{-1}) \circ (\eta_{U_i} * \mu) \circ T\varphi_i(v) = T_p^2 \circ \eta_{U_i} * \mu \circ T\varphi_i(v) \\ &= \eta_{U_i} \circ Tp(T\varphi_i(v)) = \eta_{U_i} \circ T\pi(v) = \eta(T\pi(v)). \end{split}$$

Here $p: U_i \times G \longrightarrow U_i$ is projection and we have used Lemma 2.4. This completes the proof of Theorem 2.1.

3. The structure of P. Henceforth η will be a fixed spray on X and ξ will be a fixed G-lift of η . Recall that the domain of \exp_{ξ} is $Dom(\exp_{\xi}) = \{v \in TM | 1 \in Dom(\beta_v)\}$ where β_v is the maximal integral curve of ξ with initial condition v. Similarly $Dom(\exp_{\eta}) = \{w \in TX | 1 \in Dom(\gamma_w)\}$ where γ_w is the maximal integral curve of η with initial condition w. Since ξ is a lift of π we see ξ and η are $T\pi$ -related, so $T\pi(Dom(\exp_{\xi})) \subset Dom(\exp_{\eta})$ and the following diagram commutes.

We shall use ξ and η to construct the differential structures on Diff^r(M) and Diff^r(X) respectively. Using the above properties of ξ and η we easily see we may choose open sets $\mathcal{O}, \overline{\mathcal{O}}$ containing the 0-sections of TM, TX, respectively, such that the following hold: (1) \mathcal{O} is G-invariant; (2) $T\pi(\mathcal{O}) = \overline{\mathcal{O}}$; (3) Exp_{ξ} and $\operatorname{Exp}_{\eta}$ map \mathcal{O} and $\overline{\mathcal{O}}$ diffeomorphically onto neighborhoods U and \overline{U} of the respective diagonals; (4) $(\pi \times \pi)(U) = \overline{U}$. Also, we clearly have $(\pi \times \pi) \circ \operatorname{Exp}_{\xi} = \operatorname{Exp}_{\eta} \circ T\pi$.

As in §1 we get natural charts (N, α) , $(\overline{N}, \overline{\alpha})$ at the identities in $\operatorname{Diff}^r(M)$ and $\operatorname{Diff}^r(X)$. Since ξ is an invariant spray we see, as in Proposition 1.5, we get a submanifold chart at 1_M , (N^*, α^*) where $N^* = N \cap \operatorname{Diff}^r_G(M)$, $\alpha^* = \alpha | N^* : N^* \longrightarrow \Gamma^r_G(TM)$.

Let $\mathrm{Diff}_0^r(X)$ be the group of all C^r -diffeomorphisms, h, of X such that there is an equivariant C^r -diffeomorphism of M with $\pi \circ f = h \circ \pi$ (i.e., f covers h). It is easily seen that $\mathrm{Diff}_0^r(X)$ is an open subgroup of $\mathrm{Diff}^r(X)$ and hence a manifold. Clearly the map P defined earlier is a surjective homomorphism $P\colon \mathrm{Diff}_G^r(M) \to \mathrm{Diff}_0^r(X)$. Let $\bar{N}^* = \bar{N} \cap \mathrm{Diff}_0^r(X)$, $\bar{\alpha}^* = \bar{\alpha}|\bar{N}^*$, so that $(\bar{N}^*, \bar{\alpha}^*)$ is a chart at the identity on $\mathrm{Diff}_0^r(X)$.

LEMMA 3.1. $P(N^*) \subset \overline{N}^*$.

PROOF. Let $f \in N^*$, $P(f) = \overline{f}$. We must show $(x, \overline{f}(x)) \in \overline{U}$ for each $x \in X$. Let $x = \pi(y)$. Then $(x, \overline{f}(x)) = (\pi \times \pi)(y, f(y))$ as is easily seen. But $(y, f(y)) \in U$ and $(\pi \times \pi)(U) = \overline{U}$ so the lemma follows.

Let ρ be the unique map making the following diagram commute.

LEMMA 3.2. There is a continuous linear map, $\rho_1 \colon \Gamma_G^r(TM) \to \Gamma^r(TX)$, such that $\rho_1 | \alpha^*(N^*) = \rho$.

PROOF. We first show that for $\zeta \in \Gamma_G^r(TM)$ there is a unique map, $\rho_1(\zeta)$ in $\Gamma^r(TX)$ such that $T\pi \circ \zeta = \rho_1(\zeta) \circ \pi$. If $\pi(u) = \pi(v)$ we must show $T\pi(\zeta(u)) = T\pi(\zeta(v))$. If $\pi(u) = \pi(v)$ then v = gu for some $g \in G$. But then $T\pi(\zeta(v)) = T\pi(\zeta(gu)) = T\pi(Tg \circ \zeta(u)) = T\pi(\zeta(u))$. This defines ρ_1 and, working locally, one easily verifies that ρ_1 is continuous linear and, in particular, that $\rho_1(\zeta)$ is actually in $\Gamma^r(TX)$. Let $h \in N^*$, $v \in M$. Then

$$\begin{split} \rho_1(\alpha^*(h))(\pi(v)) &= T\pi(\alpha^*(h)(v)) = T\pi(\exp_{\xi}^{-1}(v, h(v))) \\ &= \operatorname{Exp}_n^{-1}(\pi(v), P(h)(\pi(v))) = \overline{\alpha}^*(P(h))(\pi(v)). \end{split}$$

This proves $\rho_1 | \alpha^*(N^*) = \rho$.

52 W. D. CURTIS

It follows from Lemma 3.2 that P is C^{∞} in a neighborhood of the identity. Since P is a homomorphism and right translation is C^{∞} it follows P is C^{∞} everywhere.

PROPOSITION 3.3. ρ_1 is a continuous linear surjection with split kernel.

PROOF. Recall there is a bundle VT(M) of vertical vectors. $VT(M) = \ker(T\pi) \subset TM$. VT(M) is a G-invariant subbundle of TM. Let H be an invariant subbundle of TM which is complementary to VT(M) (π is essentially a principal G-bundle so H is just an affine connection. See [4].) Let $\Gamma_G^r(VT(M))$ and $\Gamma_G^r(H)$ be the spaces of G-invariant G-sections of the two subbundles. We immediately have $\ker \rho_1 = \Gamma_G^r(VT(M))$. Using the G-invariance of the subbundle it is easy to see $\Gamma_G^r(TM) = \Gamma_G^r(VT(M)) \oplus \Gamma_G^r(H)$. So $\Gamma_G^r(H)$ is a complement for $\ker(\rho_1)$.

That ρ_1 is onto is just the well-known existence of the horizontal lift of a vectorfield with respect to an affine connection on a principal bundle. (See [4].)

COROLLARY 3.4. ker P is a split submanifold of $Diff_G^r(M)$.

PROOF. $\alpha^*(N^* \cap \ker P) = \alpha^*(N^*) \cap \Gamma_G^r(VT(M))$, as is easily checked. The corollary follows.

THEOREM 3.5. P admits smooth local cross-sections.

PROOF. Let $\lambda_1 \colon \Gamma'(TX) \to \Gamma_G'(TM)$ be continuous linear with $\rho_1 \circ \lambda_1 =$ identity. Choose an open set W_1 containing 0 in $\Gamma'(TX)$ such that $\lambda_1(W_1) \subset \alpha^*(N^*)$. Let $W = (\overline{\alpha}^*)^{-1}(W_1)$ and $\lambda(h) = (\alpha^*)^{-1} \circ \lambda_1 \circ \overline{\alpha}^*(h)$ for $h \in W$. Then h is a smooth section of P near the identity so the theorem is proved.

Let $E^r(G, M) = \ker P$. $E^r(G, M)$ is the group of self-equivalences of the bundle π of class C^r . In case $r = \infty$ we see $E^r(G, M)$ is a Fréchet Lie group since it is a subgroup and closed submanifold of $\operatorname{Diff}^{\infty}(M)$ which is a Fréchet Lie group [5].

If $r < \infty$ we cannot argue the same way since $\operatorname{Diff}^r(M)$ is not a Banach Lie group. In the next section we show that, nonetheless, $E^r(G, M)$ is a Banach Lie group. The following is immediate from Theorem 3.5 and Corollary 3.4.

THEOREM 3.6. P: $\mathrm{Diff}_G^r(M) \longrightarrow \mathrm{Diff}^r(X)$ is a principal bundle with group $E^r(G,M)$. If $r=\infty$ this bundle is C^∞ while if $r<\infty$ we have a continuous bundle.

The following problem is unsolved.

Determine conditions on π so that the bundle P is trivial, i.e., so that P admits a global cross-section. (If π is trivial, then so is P, as is easily seen.)

4. The group $E^r(G, M)$. In this section we assume $r < \infty$. We know by Corollary 3.4 that $E^r(G, M)$ is a C^{∞} -Banach manifold. We shall prove that

 $E^r(G, M)$ is a Banach Lie group which is C^{∞} -anti-isomorphic to a Banach Lie subgroup of $C^r(M, G)$.

In [2] it was shown that $C^r(M, G)$ is a Banach Lie group. There is a Banach Lie subgroup E of $C^r(M, G)$ defined by

$$E = \{h \in C^r(M, G) | h(gv) = gh(v)g^{-1}, \text{ for all } g \in G, v \in M\}.$$

E acts on the right of M by v * h = h(v)v. (These things are discussed in [2] in more detail, the only difference being that in [2] G acts on the right and E on the left.) This action defines an injective antihomomorphism $\Phi: E \longrightarrow \mathrm{Diff}_G^r(M)$ and $\Phi(E) = E^r(G, M)$ as one easily sees.

THEOREM 4.1. Φ maps diffeomorphically onto $E^r(G, M)$.

PROOF. It is enough to show that Φ and Φ^{-1} are C^{∞} in some neighborhoods of the respective identities. There is a map $\Phi^*\colon C^r(M,G) \to C^r(M,M)$ defined by $\Phi^*(f)(v) = f(v)v = \mu(f(v),v)$ where $\mu\colon G\times M \to M$ is the group action. This is a C^{∞} -map because there is a commutative diagram

where $\sigma(f)=(1_M,f),\ \Omega(k)=\mu\circ k$. Both σ and Ω are easily seen to be C^{∞} . $\Phi=\Phi^*|E$ so Φ is C^{∞} .

Now consider Φ^{-1} . Recall we have $0 \subset TM$. $\Gamma'(VT(M) \cap 0)$ is the set of C'-vectorfields on M which take values in $VT(M) \cap 0$. We define ψ : $\Gamma'(VT(M) \cap 0) \longrightarrow C'(M, G)$. Let $M \times_X M$ be the submanifold of $M \times M$ consisting of all (v, w) such that $\pi(v) = \pi(w)$. There is a C^{∞} -map $\theta \colon M \times_X M \longrightarrow G$ by $\theta(v, w) = g$ if w = gv. Since G acts freely, this is well defined and θ is C^{∞} as is seen by working locally. Now \exp_{ξ} maps $VT(M) \cap 0$ into $M \times_X M$ as the following calculation shows. Let $v \in VT(M) \cap 0$. Then

$$(\pi \times \pi)(\operatorname{Exp}_{\xi}(v)) = \operatorname{Exp}_{\eta}(T\pi(v)) = (\tau(T\pi(v)), \operatorname{exp}_{\eta}(T\pi(v)))$$
$$= (\pi(\tau(v)), \operatorname{exp}_{\eta}(0)) = (\pi(\tau(v)), \pi(\tau(v)))$$

where 0 is the zero vector in the tangent space to X at $\pi(\tau(v))$.

Thus we have a C^{∞} -map $\psi \colon \Gamma^r(VT(M) \cap \mathcal{O}) \longrightarrow C^r(M, G)$ by $\psi(\xi) = \theta \circ \operatorname{Exp}_{\xi} \circ \xi$. We show that ψ takes the subspace $\Gamma^r_G(VT(M) \cap \mathcal{O})$ into the subgroup E of $C^r(M, G)$. G acts on $M \times_X M$ by g(v, w) = (gv, gw) and one easily sees $\theta(gv, gw) = g\theta(v, w)g^{-1}$. Thus if $\zeta \in \Gamma^r_G(VT(M) \cap \mathcal{O})$, we get

54 W. D. CURTIS

$$\begin{split} \psi(\zeta)(gw) &= \theta(\mathrm{Exp}_{\xi}(\zeta(gw))) = \theta(\mathrm{Exp}_{\xi}(Tg(\zeta(w)))) \\ &= \theta(g\;\mathrm{Exp}_{\xi}(\zeta(w))) = g[\theta(\mathrm{Exp}_{\xi}(\zeta(w)))]g^{-1} = g[\psi(\zeta)(w)]g^{-1}. \end{split}$$

Thus we have a C^{∞} -map $\psi \colon \Gamma_{G}^{r}(VT(M) \cap \mathcal{O}) \longrightarrow E$.

We show finally that $\psi \circ \alpha^* = \Phi^{-1}$ in a neighborhood of the identity. Choose an open set $V \subset E^r(G, M)$ such that $\alpha^*(V) \subset \Gamma_G^r(VT(M) \cap O)$. Let $h \in V$. Let $f = \Phi^{-1}(h)$. Then

$$\psi \circ \alpha^*(h) = \psi \circ \alpha^*(\Phi(f)) = \theta \circ \operatorname{Exp}_k \circ (\alpha^*\Phi(f)).$$

So

$$(\psi \circ \alpha^*(h))(w)\theta(\operatorname{Exp}_{\xi}([\alpha^*\Phi(f)](w))) = \theta(\operatorname{Exp}_{\xi}(\operatorname{Exp}_{\xi}^{-1}(w, f(w)w)))$$
$$= \theta(w, f(w)w) = f(w).$$

Therefore $\psi \circ \alpha^*(h) = f = \Phi^{-1}(h)$ as desired. This completes the proof of 4.1.

THEOREM 4.2. $E^r(G, M)$ is a Banach Lie group $(r < \infty)$.

PROOF. Φ is a diffeomorphism of the Lie group E onto $E^r(G, M)$ and Φ is an antihomomorphism so the multiplication and inversion in $E^r(G, M)$ are smooth.

REFERENCES

- 1. R. Abraham, Lectures of Smale on differential topology, Notes at Columbia University, 1962-63.
- 2. W. D. Curtis, Y.-L. Lee and F. Miller, A class of infinite dimensional subgroups of Diff'(X) which are Banach Lie groups, Pacific J. Math. 47 (1973), 59-65.
- 3. H. I. Eliasson, Geometry of manifolds of maps, J. Differential Geometry 1 (1967), 169-194. MR 37 #2268.
- 4. S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. 1, Interscience, New York, 1963. MR 27 #2945.
- 5. J. A. Leslie, On a differential structure for the group of diffeomorphisms, Topology 6 (1967), 263-271. MR 35 #1041.
- 6. S. Sternberg, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 33 #1797.

DEPARTMENT OF MATHEMATICS, KANSAS STATE UNIVERSITY, MANHATTAN, KANSAS 66506