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ABSTRACT. This paper contains results on the structure of the group,

DiffG(M), of equivariant C-diffeomorphisms of a free action of the compact

Lie group G on M. DiffJjíAÍ) is shown to be a locally trivial principal bundle

over a submanifold of T>\tf(X), X the orbit manifold. The structural group

of this bundle is lf(G, M), the set of equivariant C'-diffeomorphisms which

induce the identity on X. E?(G, M) is shown to be a submanifold of Diff^Af)

and in fact a Banach Lie group   (r < ~).

0. Introduction. This paper studies the group of equivariant diffeomorphisms

of a smooth action of a compact Lie group  G on a compact manifold M.   Spe-

cifically most of the paper deals with the case when G  acts freely on M.   In this

case there is an orbit manifold X,  and an equivariant  C-diffeomorphism / of

M induces a C-diffeomorphism /  of X.   This defines a homomorphism P:

DiffG(Af) —► Diff(X) (DiffG(A/)  is the group of equivariant diffeomorphisms on

M of class C, 1 < r < °°). We obtain some results about the structure of P.

We show P admits smooth local cross-sections (Theorem 3.5). The kernel of P

is the group of C-equivariant diffeomorphisms of M which induce the identity

on X.   This group is the structural group of the locally trivial principal bundle

determined by P.  We show ker F is a smooth submanifold of Diff(A/)  and,

that with respect to the induced differential structure, ker P is a Banach Lie

group (Theorem 4.2).  Recall Diff(M) is not a Banach Lie group as composition

is not C1 (r < °°).

The main technique introduced is the construction in §2 of G-lifts of sprays

on X. This allows a precise connection between the manifold of maps differential

structures on DiffG(7W)  and Diff(X).

1. Preliminaries. M will always denote a compact, connected, C°°-mani-

fold, G a compact Lie group.  Assume  G  acts on M (on the left). We denote

by X the orbit space and we let  n: M —> X be the orbit projection.  If G acts

freely and differentiably  (C°°)  then X has a natural  C°° -structure such that  tt
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is C°°  and locally trivial (since G is compact).

If g G G, w G M we write gw to denote the result of letting g act on

w.  We shall also write g to denote the diffeomorphism w —* gw (henceforth

all manifolds, actions, etc. are assumed C°°). An action of G on M induces

an action of G on  TM, the tangent bundle of M   If g G G we write  Tg(v)

for the result of acting on  v G TM by g.   The resulting diffeomorphism of TM

is  Tg: TM —► TM and is just the tangent of g: M —► M.   Similarly G  acts on

T2M = T(TM) by "double tangents",  T2g = T(Tg): T2M-+ T2M being the

diffeomorphism corresponding to the group element g.

Definition 1.1.   Let  G  act on M.  An automorphism of class C is a

diffeomorphism /: M —► M of class C which is G-equivariant. We denote by

DiffG(iW) the group of all C-automorphisms of the action. (Here   l<r<°°.)

Let  Diffr(M) be the group of all C-diffeomorphisms of M onto M.  If

G acts on M then DiffG(Af) is clearly a subgroup of Diff(M).

The differential structure on   Diffr(A0:  We review the standard manifold of

maps construction as applied to make  Diff(Af)  into a C°° -manifold.  We recall

that  Diff(M)  is locally Banach if  1 < r < °° while being locally Fréchet in the

case r = °°.  Also in case r = °° the multiplication and inversion in  Diffr(M)

are C°°  so  Diff°°(M) is a Fréchet Lie group [5].

Let  ¿f: TM —* T2M be a C°-spray. There is an open neighborhood 0 of

the  0-section in  TM and an open neighborhood  U of the "diagonal" in M x

M and a C°°-diffeomorphism Exp: 0 —* U defined by Exp(u) = (t(v), exp(u))

where t: TM —*■ M is projection and exp is the exponential of the spray |.

We use  Exp to construct "natural charts" around each / G Diffr(M). We define

a neighborhood Nf of / by

Nf = {h G Difr(M)\(f(x), h(x)) GU for all xGM).

Letting  rr(f*TM) denote the space of all C-sections of the induced bundle

f*TM, with the  C-topology, we define af: Nf —► V(f*TM) by a/h)(x) =

(x,Exp~l(f(x),h(x))). af maps Nf bijectively onto an open set  Tr(f*TM)

and the collection of all charts (Nf, af) for /G Diff(M) is a C°-atlas. This

C°-structure is independent of the choice of spray.  For further discussion of

this manifold of maps construction, we refer to [1], [3], [5].

For use later we now consider some properties of G-invariant sprays.

Definition 1.2.   If G  acts on M we say a spray  %: TM —+ T2M is

G-invariant if, for all g CG, we have   T2g ° % = %° Tg.

The following proposition is easily proved.

Proposition 1.3.   // % is a G-invariant spray, then the domain of exp^

is an invariant subset of TM and exp^  is G-equivariant.
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Using notation as before we have

Lemma 1.4.   // £ is a   G-invariant spray then   0 may be chosen to be

G-invariant.   Exp: 0 —*■ M x M is then  G-equivariant, where ' G acts on M x

M by g(xvx2) = (gxv gx2). It then follows that  f/=Exp(0) is an invariant

set.

Proof.  Let  Qx  be a neighborhood of the  0-section such that Exp isa

diffeomorphism on  0¡. If we choose a G-invariant Riemannian metric on M,

then for sufficiently small e > 0 we will have  We = {v G TM\ Hull < e} C Oj

(since M is compact).  But   W£  is G-invariant since we have used an invariant

metric. If g G G, v G 0 = We we have  Exp(7g • v) = (r(Tg ■ v), exp(Tg ■ v)) =

(%t(v), g exp(u)) = g Exp(u).  This proves the lemma.

77ie group DiffG(M):  If G acts freely on M then there is a homomor-

phism P: DiffG(Af) —► Diff(X). The main results of this paper are concerned

with the structure of P. P is defined by P(f) = /j   where /j   makes the follow-

ing diagram commute.

/.

A preliminary result is

Proposition 1.5.   DiffG (A/) is a submanifold of Diff(M) for any action

of G on M (free or not).

Proof.   Let % be an invariant spray. Such always exist, e.g. take  % to

be the geodesic spray of an invariant Riemann metric. We show that the natural

chart at the identity map is a submanifold chart. We have

a: N -* rr(TM),   a(/)(x) = Exp" » (x, fix)).

Let TrG(TM) C ^(TM) consist of all C-vectorfields f on M such that

Tg ° f = f ° g for all g G G (i.e., all invariant vectorfields). Using the fact that

by Lemma 1.4 Exp is equivariant, one immediately sees that afTV n DiffG(M)) =

a(N) n ^(TM). This proves the proposition.

Assumption.  Henceforth we consider only free actions of G on M.

In order to investigate the homomorphism P defined above we shall, in the

next section, construct a special type of spray on M.  This spray will allow us to

relate the differential structure on DiffG(A/) to that on Diff(X).

2. Construction of G-lifts of sprays. Suppose G acts freely on M, n:

M —*■ X orbit projection.  If 17 is a spray on X then a spray on M, say  £,
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is called a lift of r? if the following commutes.

TM—*-+ T2M

Tn T2n

TX ■+ rx
If, in addition, % is G-invariant we will say  % is a G-lift of 77. We shall prove

Theorem 2.1. If 77 is any spray on X then there exists a spray % on

M which is a G-lift of 77.

The proof of Theorem 2.1 will be based on several lemmas.

Let   {Ui}i (1 in some index set) be an open cover for X. Let Mt =

W_I(0/) for each 1.   {M¡)¡ is an open cover of M and   {TM¡ = t~1(M¡)}¡ is

an open cover of TM.

Lemma 2.2.   There is a C°°-partition of unity   {</?,.},., subordinate to

{TM¡}¡ such that each <çt is G-invariant, i.e., <pi°Tg = ipi for all gGG.

Proof.  Choose a C-partition of unity,   {</'/}< subordinate to   {U¡}¡.

Let <fi¡ = ip¡ o n » t.   {<p¡}¡ is easily seen to have the desired properties.

The next lemma is general in nature.  Let  Y, Z be C°-manifolds, f, 77

C°-sprays on  Y, Z. There are vector bundle isomorphisms

a: T(Y x Z) -* TY x TZ,      a(v) = (7V,(u), Tn2(v)),

ß: TOY xTZ)->(T2Y)x (T2Z),      ß(2) = (Tir^w), Trt2(w)).

Thus we have a bundle isomorphism

5 = ß » Ta: T2(Y xZ)-+(T2Y)x (T2Z).

Lemma 2.3.   Let y be the unique map making the following diagram com-

mute.  Then y is a spray on  Y x Z.  (We shall write % * t\ for y.)

T2(Y x Z) -5-»- (T2Y) x (T2Z)

% X T7

T(Y x Z) -SU (TY) x (TZ)

Proof.  If Y is modelled on E and Z is modelled on F, then the

local version of the above diagram is

Uy.VxExFxEy.FxE xF^+(UxExExE) x (V x F x F x F)

% x T7

UxVxExF -*■ (U x E) x (V x F)
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We have:

a(x, y, u, v) = (x, u, y, v),

ô(x, y, u, v, u, v, u", v") = (x, u, u, u", y, v, v, v").

If %, r¡ are the principal parts of £, 17 we easily see

y(x, y, u, v) = (x, y, u, v, u, v, f(x, u), r¡(y, v)).

This local form shows 7 is a spray.

Lemma 2.4.   Let notation be as above, p: Y x Z —> Y projection.   Then

the following diagram commutes.

T2(YxZ)    Tp>T2Y

£*r?

T(Y xZ)-
Tp + TY

Proof.  This is immediate from the local representation of Lemma 2.3, or

an invariant proof can be given. We omit details.

Now return to n: M —► X. Suppose  U C X is open and <p: ir~1 (U) —►

U x G is an equivariant diffeomorphism such that  nl ° <p = it. (G acts on

U x G by g(x, g) = (x, gg').) Recall that X is covered by such  U.   If 77 is a

fixed spray on X, then 77 induces a spray on  U which we denote riy. Let

ju: TG —> T2G be the canonical left-invariant spray of G   [6, p. 222].

Then r)y * p. is a spray on  U x G.

Lemma 2.5.   Let G act on U x G as above.   Then r)v * p is G-invariant.

Proof.  Let v G T(U x G), a(v) = (vlt v2). Now

T2g o (Vu * M)00 = T2g o (Ta)-1 of'.(%x p)(vlt v2)

= T(Tg°a-1)oß-1(riu(vl),p(v2))

= T(a~l o (1 x Tg)) o ß-ifr^vj, p(v2))

= Ta'1 o r1 o (1 x T^Xvu^l p(v2))

= Ta-1 o /r W»>i). T2g o p(v2))

= Ta-1oß-\Vu(vl),p(Tg(v2)))

= Ta-1 o /T1 o (rtu x p)(vv Tg(v2))

= r\u* KTg(v)).
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Let  i-y  be the spray on  7r    (U)  such that the following diagram commutes.

T2(*-X(U))-
T\

lu

->T2(U x G)

Vu * P

T(*-l(U)) T<P
■* T(U x G)

Since ip is an equivariant diffeomorphism, we see  i^  is a  G-invariant spray on

*->(£/).

We can now prove Theorem 2.1.

Proof of Theorem 2.1.  Cover X by open sets  U¡ such that for each i

there is an equivariant diffeomorphism <p,-: 7r~'(£/,-) —► U¡ x G as above.  Let

%¡ = %u_ be as above.  Let   {<£,},- be an invariant partition of unity subordinate

to   {TMi}¡ as in Lemma 2.2.  Let  % = 2,-^ij,-: TM —* T2M.  % is a spray on M

Using the invariance of the  ip¡ we easily see  % is invariant.  It remains to show

£ is a lift of 77.  Let  vG TM.

T2n o Kw) = 7** ( X ^(u)?,.(«)J = Z *,(«>)*** ■ *<(»).

Suppose   r27r o £.((;) = 7?(7Xu))  for each i with  u G TM,..  Then we will be

done.  If v G TM¡ we compute as follows:

T2n(Uv)) = rVrV* o (77t/ * M) o T^(v))

= T2(n o „->) o („^ * ¿u) o 7-^ü) = 7« o Vu¡ * „ o r^u)

= Vu- o Tp(T^(v)) = Vu. ° Tn(v) = tï(7V(u)).
1 1

Here p: U¡ x G —► U¡ is projection and we have used Lemma 2.4.  This com-

pletes the proof of Theorem 2.1.

3. The structure of P.   Henceforth 77 will be a fixed spray on X and  £

will be a fixed G-lift of 77. Recall that the domain of expj  is Dom(exp£) =

[v G TM\l G Dom^)} where ßv is the maximal integral curve of £ with ini-

tial condition u.  Similarly  Dom(expn) = {w G TX\l G Dom(7w)}  where  yw

is the maximal integral curve of 77 with initial condition w.  Since  £ is a lift of

7T we see  £ and 77  are  TV-related, so  77r(Dom(expt)) C Dom(exp ) and the

following diagram commutes.

Tit
Dom(exp£)-► Domiexp^)

exp£

M- ■+ X

exPr
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We shall use  £  and  77  to construct the differential structures on  Diff(M)

and Diff(X) respectively.  Using the above properties of £  and 77  we easily

see we may choose open sets  0, Ü containing the 0-sections of TM, TX, respec-

tively, such that the following hold:  (1)  Ö  is G-invariant; (2)  Tir(O) = C¡;

(3)  Expt  and  Exp    map   0  and   Ö diffeomorphically onto neighborhoods

U and   U of the respective diagonals; (4) (it x n)(U) = U.  Also, we clearly

have  (tt x 7r) o Exp* = Expn ° Tn.

As in § 1 we get natural charts (N, a), (N, a) at the identities in  DifF(Af)

and  Diff(X).  Since  £  is an invariant spray we see, as in Proposition 1.5, we get

a submanifold chart at   \M, (N*, a*) where N* = N n DiffG(M), a* = a\N*:

n* -* rG(™)-

Let  Diffo(A") be the group of all C-diffeomorphisms, h, of X such that

there is an equivariant  C-diffeomorphism of M with  n ° f= h ° tt  (i.e.,  /

covers h). It is easily seen that  Diffg(A0 is an open subgroup of Diff(X) and

hence a manifold. Clearly the map P defined earlier is a surjective homomorphism

P: DiffrG(M) —► Differ).  Let Ñ* = Ñ n Diff£(X), o? = á~\Ñ*, so that (A7*, o?)

is a chart at the identity on  Diff^X).

Lemma 3.1.   P(N*)CÑ*.

Proof.  Let fGN*,P(f)=f. We must show (x, f(x)) G <7 for each

xGX.   Let x = Ti(y). Then (x, f(x)) = (tt x 7r)0, /I») as is easily seen.  But

(y, f(y)) G U and (tt x 7t)(L0 = U so the lemma follows.

Let p  be the unique map making the following diagram commute.

AT* —-—> a*(N*)

N*-► a*(N*)

Lemma 3.2.   There is a continuous linear map, pt : TG(TM) —*■ Tr(TX),

such that pt \a*(N*) = p.

Proof.  We first show that for f G YrG(TM) there is a unique map, pj(J)

in Tr(TX) such that  Ttt ° f = Pl(f) o ff. if ,,(«) = j^) we must show

7Vr(r(")) = 7Xf(t>)).  If 7t(m) = n(v)  then  u = gu  for some g G G.   But then

7¥f(w)) = TTT(S(gu)) = Tn(Tg o f(M)) = Ttt($(u)). This defines Pl   and, working

locally, one easily verifies that  px   is continuous linear and, in particular, that

PjG") is actually in V(TX).  Let hGN*,vGM.  Then

Pl(a*(h))(n(v)) = Tn(a*(h)(v)) = Ttt^»(u, Ä(u)))

- Exp-'ÍTTÍU), KhXrfv))) = â*(P(h))(TT(v)).

This proves pt |a*(/V*) = p.
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It follows from Lemma 3.2 that P is C°°  in a neighborhood of the iden-

tity. Since F is a homomorphism and right translation is C°°  it follows P is

C°°  everywhere.

Proposition 3.3.   pt  is a continuous linear surjection with split kernel.

Proof.   Recall there is a bundle   VT(M) of vertical vectors.   VT(M) =

ker(77r) C TM.   VT(M) is a G-invariant subbundle of TM.   Let H be an invar-

iant subbundle of TM which is complementary to   VT(M) (tt is essentially a

principal G-bundle so H is just an affine connection.  See [4].)  Let  TrG(VT(M))

and  TrG(H) be the spaces of G-invariant C-sections of the two subbundles.

We immediately have  ker px = TG(VT(M)). Using the  G-invariance of the sub-

bundle it is easy to see  TrG(TM) = TG(VT(M)) 0 TrG(H).  So  TG(H) is a com-

plement for ker(pj).

That pj   is onto is just the well-known existence of the horizontal lift of a

vectorfield with respect to an affine connection on a principal bundle. (See [4].)

Corollary 3.4.   ker P is a split submanifold of DiffG(M).

Proof.  a*(N* n ker F) = a*(N*) n TG(VT(M)), as is easily checked.

The corollary follows.

Theorem 3.5. P admits smooth local cross-sections.

Proof.   Let X,: rr(TX)—+ rG(TM) be continuous linear with p, ° Xj =

identity. Choose an open set  Wx   containing 0 in  Tr(TX) such that  X^Wj) C

a*(N*). Let  W = (a*)-1 TO  and  \(h) = (a*)'1 ° X, ° â~*(h) for h G W.

Then A  is a smooth section of P near the identity so the theorem is proved.

Let Er(G, M) = ker P. Er(G, M) is the group of self-equivalences of the

bundle  7r of class C.  In case r = » we see Er(G, M) is a Fréchet Lie group

since it is a subgroup and closed submanifold of Diff°°(jW) which is a Fréchet

Lie group [5].

If r < °° we cannot argue the same way since  Diffr(Af) is not a Banach

Lie group.  In the next section we show that, nonetheless, Er(G, M) is a Banach

Lie group. The following is immediate from Theorem 3.5 and Corollary 3.4.

Theorem 3.6. P: DiffG(Af) —» Diff(X) is a principal bundle with group

Er(G, M). If r = °° this bundle is C°° while if r <°° we have a continuous

bundle.

The following problem is unsolved.

Determine conditions on rr so that the bundle P is trivial, i.e., so that P

admits a global cross-section.  (If 7r is trivial, then so is F, as is easily seen.)

4. The group Er(G, M). In this section we assume r < °°. We know by

Corollary 3.4 that Er(G, M) is a C°°-Banach manifold. We shall prove that
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Er(G, M) is a Banach Lie group which is C°-anti-isomorphic to a Banach Lie

subgroup of C(M, G).

In [2] it was shown that  C(M, G) is a Banach Lie group. There is a

Banach Lie subgroup E of C(M, G)  defined by

E= {hG Cr(M, G)\h(gv) = gh(v)g~ \  for all g G G, v G M].

E acts on the right of M by  v * h = h(v)v. (These things are discussed in [2]

in more detail, the only difference being that in [2]   G  acts on the right and E

on the left.) This action defines an injective antihomomorphism 4>: E —► DiffG(/W)

and  <ï>(F) = Er(G, M) as one easily sees.

Theorem 4.1.   4> maps diffeomorphically onto Er(G, M).

Proof.  It is enough to show that  <ï> and  <I>- !   are  C°°  in some neigh-

borhoods of the respective identities.  There is a map $*: C(M, G) —► C(M, M)

defined by <fr*(f)(v) = f(v)v = p(f(v), v) where p.: G x M —► M is the group

action. This is a C°-map because there is a commutative diagram

C(M, G)-> Cr(M, M)

\ /

C(M, M x G)

where  a(f) = (\M, f), Q(k) = p. ° k.   Both a and  £2  are easily seen to be C°°.

$ = 4>*|F so 4> is C.

Now consider i>_1.  Recall we have  0 C TM.   Tr(VT(M) n 0) is the set

of C-vectorfields on M which take values in   VT(M) n 0. We define  ^:

Tr(VT(M) n 0) -* C(M, G).  Let MxxM be the submanifold of M x M

consisting of all (v, w) such that  7r(u) = 7r(w). There is a C°°-map  6: M xx

M —► G by 6(v, w) = g if w = gv. Since  G  acts freely, this is well defined

and 0  is C°°  as is seen by working locally. Now expt  maps  VT(M) O 0

into M xx M as the following calculation shows.  Let  v G VT(M) n 0. Then

(it x TrXExPi(u)) - Expn(r7T(u)) = (t(Ttt(v)), exVr)(TTr(v)))

= (tt(t(v)), exPrI(0)) = (tt(t(v)), tt(t(v)))

where  0  is the zero vector in the tangent space to X at  tt(t(v)).

Thus we have a C°-map  $: Tr(VT(M) n 0) —> C(M, G) by  i^(£) =

6 o Expf o £. We show that  \p  takes the subspace  TG(VT(M)n 0) into the

subgroup E of C(/W, G).  G acts on M xx M by g(u, w) = (¿u, ^w) and

one easily sees  9(gv, gw) = gd(v, w)g_1. Thus if f G TG(VT(M) n 0), we get
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iKDfew) = ö(Expt(ffew))) = 9(Expt(Tg(Ç(w))))

= 9(g Expfi(w))) - g^Exp^wMg'1 = g[4>(ï)(w)]g~l-

Thus we have a C"-map  $: TrG(VT(M) n 0) —► E.

We show finally that \¡/ « a* = <ï>~ * in a neighborhood of the identity.

Choose an open set V C Fr(G, M) such that a*(F) C TrG(VT(M) n 0). Let

A G K  Let /=$-»(*). Then

!// o a*(h) = \p ° (**(<!>(/)) = 6 o Expj o (a*$(f)).

So

(^ » a*(h))(w)e(ExTpè([a*^(f)](w))) = 6(Exps(Ex^1(w, A™)™)))

= 6(w, f(w)w) = flw).

Therefore  \p ° a*(h) =/= $~1(h) as desired. This completes the proof of 4.1.

Theorem 4.2.  Er(G, M) is a Banach Lie group (r < °°).

Proof. <i> is a diffeomorphism of the Lie group E onto Er(G, M) and

O is an antihomomorphism so the multiplication and inversion in Er(G, M) are

smooth.
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