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ON ENTIRE FUNCTIONS OF FAST GROWTH
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S. K. BAJPAI, G. P. KAPOOR AND O. P. JUNEJA

ABSTRACT.   Let

(*) A*) =    V„z "
n=0

be a transcendental entire function.   Set

Ai(r) = max \fiz)\,       m(r) = max {la \r "}
\z\=r n>0

and

N(r) = max {XJm(r) = \a„\r "}.
n>0

Sato introduced the notion of growth constants, referred in the present paper

as  S -order   A.  and  S_-type   T,  which are generalizations of concepts of clas-

sical order and type by defining

(**) X = lim sup (logt<7lAi(-)|log r)
r-K*>

and if  0 < \ < o»,  then

(*•*) T = lim sup (logt<7_1 ]M(r)\rX)

for  q = 2,3, 4, • • • where   log'   'x = x   and   log'9'* = logOog'9-1 'x).   Sato

has also obtained the coefficient equivalents of (**) and (***) for the entire func-

tion (*) when   \n = n.   It is noted that Sato's coefficient equivalents of  \   and

T  also hold true for (*) if  n's are replaced by   \n's in his coefficient equivalents.

Analogous to (**) and (***) lower  S_-order   v  and lower  S -type   t  for entire

function  /(z)   are introduced here by defining

v = lim inf (log'^AÍMIlog r)

and if  0 < \ < ~   then

t = lim inf (\og[q~ 1]M(r)\rX),       q = 2, 3, 4,

For the case  q = 2,   these notions are due to Whittakar and Shah respectively.

For the constant   v,   two complete coefficient characterizations have been found
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which generalize the earlier known results.   For t coefficient characterization only

for those entire functions for which the consecutive principal indices are asymp-

totic is obtained.   Determination of a complete coefficient characterization of t re-

mains an open problem.   Further S„-growth and lower  Sg-growth numbers

for entire function /(z)  we defined

*=  lim^dogl«-1'^)^),

for  q = 2, 3, 4, • • •   and   0 < A, < <*>.   Earlier results of Juneja giving the co-

efficients characterization of  6   and   p.  are extended and generalized.   A new

decomposition theorem for entire functions of  S -regular growth but not of

perfectly   ¿"„-regular growth has been found.

1.  Let fiz) = 2~_0anz "  be a transcendental entire function.  Set the

following:

M(r) =" M(r, f) = max \fiz)\,     m(r) = m(r, f) = max {|a„|/"},
|z|=r n>0

and

N(r)=N(r, f) = max {X„\m(r) = |a„|/"}.
n>0

M(r), m(r) and N(r) are known as the maximum modulus, maximum term and

the rank of the maximum term, respectively, for f(z). It is well known that the

functions log M(r) and log m(r) ate increasing convex functions of log r.

Further, it is known that N(r) is an unbounded, nondecreasing step function of

r with a left-hand discontinuity at jump points. The values attained by N(r) at

these points are called principal indices. We denote by {p(ns)} the jump points

of N(r) and its range by   {Xn }.  Following Sato [9], we define

o-i) x = limsupi£ÄL
r-x» r      log r

and

m    ,. log[q-1]M(r)
(1.2) T = hm sup-^j-^ ,       q = 2, 3, A, ■ • ■ ,

where log'*7'.* stands for log log • • • (q  times) x and (1.2) has a meaning

only when 0 < X < °°. Sato [9] obtained the following coefficient characteriza-

tion for X and  T.

Theorem S. Let fiz) = ^-¿¡„z" be an entire function with the constants

X and T as defined in (1.1) and (1.2), then

,     ,. nlog^-^n
(1.3) X = hm sup—¡-:—¡rr-
v    ' /.-<»      log |a„|   l
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and

(1.4) 7* = lim sup laj^log1*-2!-^
n-»»» eA

for q » 2, 3,4, • • •.

Note that, if instead of fiz) = 2"=0a„z", we choose the entire function

/(z) = 2"_0a„z ", then Theorem S holds true if we replace n  by  X„  in (1.3)

and (1.4). The constants X and  T are, in fact, the generalizations of the no-

tions of order and type introduced in Valiron [13, p. 34]. We call these constants

Sato çth-iterate order and Sato çth-iterate type and, for simplicity, S -order X

and Sq-type  T.  Similar to Sq-order X and S^-type  T we introduce the

following:

0-5) ^Inlrfto
r->oo        log r

and

n cs ,     v    ■ r*°gt«~11*Mfr)(1.6) f = hminf--j--.
f~+oo r

We call these constants lower Sq-order v and lower S^-type  t.  In fact, these

constants are generalizations of the concepts of lower order and lower type intro-

duced respectively by Whittakar [14] and Shah [11]. Whenever X = v,f(z) is

said to be of 5 -regular growth and if, in addition  T = t, it is said to be of

perfectly Sq-regular growth.  In case v < X, j\z) is of Sq-irregular growth. We,

further, introduce the Sq-growth number 8   and lower Sq -growth number ju

for fiz) by the following:

(1.7) ô = hm
6_,._ suplogt<?-2]Ar(r)

inf r*-

The purpose of the present paper is to investigate the coefficient characterizations

of the constants defined above.  It will be seen that the results which we obtain

generalize and improve considerably the results contained in [1], [5], [10], [11],

etc. To avoid unnecessary repetition, we shall denote throughout the paper,

m = (K+i-\r -°g
•n+1

Hnk) = (\k+l-\kr1iog
a»k

%+l

for the entire function fiz) = T^=0anz ".

2. We shall need the following lemmas to prove our theorems in the follow-

ing sections.  Lemmas 1 and 3 generalize the results contained in Valiron [13, p.

33], and Whittakar [14].  Lemmas 4-7 generalize the results contained in [7],

[10], [11].
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Lemma 1.   Let f(z) = 'Z'n°=oanz "  be an entire function of Sq-order X

and S -type  T; then

OU i, lo&[q]m(r)      y     y log'*-11^)
(2.1) hm sup —;- = X = hm sup-;-

r-*~ r      log r r--«» log r

and if 0 < X < oo,  then

log1«-1]m(r)
(2.2) T = lim sup zr

Proof.   (2.1) and (2.2) follow in a straightforward manner by using the

following well-known results [13, pp. 31—32].

(2-3) m(r) < M(r) < m(r) [2N(r + r/N(r)) + 1 ]

and

(2.4) logm(r) = log  m(r0) + P -^- dx.
ro   x

Lemma 2.   Let (i) log'9- 1^<¡>(x) be a positive increasing function of x;

(ii) hminf1Ogtrll0(jC)   =a      (0<a<oo).
X-oo logX

77ten, for each pair of positive numbers ß, y satisfying the inequalities a<ß;

a/ß < y < 1, there is a sequence xx, x2, • • •, xn —► °° such that

(2.5) log1""21<t>(x) <xß      (xl<x<xn).

This lemma is due to Whittakar [14] and so we omit the proof.

Lemma 3.   Let fiz) be an entire function of lower Sq-order v and lower

Sq-type t; then

(2.6)        , = lim ̂JsiLllm . lim inf lafií-ÉL
r-*" log r r*oo        log r

and, whenever 0 < X < °°,

(2.7) ( = liminf'°8"';"'"(r)
r-*» r

where X denotes Sq-order of fiz).

Proof.  Let

,.    . rlog^-^N(r)
a = hm inf-:-.

r-»»        log r
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Then, from (2.3) and (2.4) we have a < v. Now, let a < °°. By Lemma 2, if

a<ß,a/ß<y< 1, then there exists a sequence Rx, R2, • • • , Rn —► °° for

which

(2.8) log1 « - - !N(r) < ß log r   for R% < r < Rn.

Take positive numbers 5, e such that 7 < § < 1, 7/5 < e < 1   and write

Sn = Rn  so that RI < Sen < Sn < 1ÁRn  (n>nx). From (2.4) we have for

these values of Sn,

(2.9) log m(Sn) < eN(Sn) log Sn

and

(2.10) log m(Sn) > log m(Sen) + (1 - e)N(Se„J loS 5« > \ lo8 m(5«)'

Now by using (2.8), we have for these values of Sn,

(2.11) (1 - e) log m(Sn) < L"^1- dx<(l- e) logSn expl«-2^.

Thus, from (2.8)—(2.11) we get

logM(Sn) < log m(Sn) + exp["-3](2Snf + o(l).

This implies that

(2.12) log M(Sn) ~ log m(Sn)   if v > 6.

In the case when v = 0, (2.6) and (2.7) are obvious. Further, from (2.10) we

have

(2.13) log[«]m(Sn) < (1 + o(l)) log1«"1 ¡N(Sn).

From (2.12) and (2.13) the result of the lemma follows.

Lemma 4. Let f(z) = T^=Qanz " be an entire function of lower Sq-

order v; then for an arbitrary sequence of integers {X„ } from {X„} and

the corresponding sequence   {a„   } from   {a„} we have
m

(2.14) v > ß = lim inf X„   logI<?-1IX„        /log |a„   I"1.
m-*oo     "m "m-1 "m

Proof.   If (3 = 0, then (2.14) is obvious.  Hence, let 0<|3<oo   Then,

for given e > 0, ß > e and for all m > m0(e), we get

(2-15) fc-,   |>[log[*--lx„       ]~X"m'("-e)
m "m-1

Define
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(2.16) 1°S'-nm=^r¡-W<7-I,X„m_i+p,      p>l, m = l,2,---.

Then, for r„        <r<r„, from (2.15) and (2.16) we get
m-1 m

logI<?1A/(r)>logtí?-11{X„    logr + log|a„   1}
m tn

(2.17) > log^-H {p expl*-2k'-£i£+ie-p('3-£))

>(ß + o(l))log r.

Thus, by taking the limit inferior in (2.17), (2.14) follows whenever  0 < ß < <*>.

In the case when ß = °°, choose an arbitrarily large number 7 instead of

(ß - e), and then following exactly as above, we get v > 7.  Since  7 is arbitrary,

it follows v = 00. This completes the proof of Lemma 4.

Lemma 5.  Let fiz) = ^=0anz " be an entire function of lower Sq-

order v (0<p<o°) suchthat   {ii(n)} forms a nondecreasing function of n

for n>n0; then  p<a where

(2-1°) a = hminf-;—:—¡rrr-.
n-~ log \a„\

Proof.   Since   {^(n)}  form's a nondecreasing function of n  and fiz) is

entire, it follows that  \¡j(n) > \p(n - 1) for infinitely many values of n.   Choose

n>n0  and  \¡/(n - 1) < log r < $(n); then m(r) = |a„|r "  and N(r) = X„.

It follows from Lemma 3, that

(2.19) N(r) > exp1«" » '((1» - e)log r)

for all r>rQ(e) and 0<e<v<°°. Let  \am \z m-  and  \am \z m2

(nij, m2 > n0; \p(mx - 1) > r0(e)) be any two consecutive maximum terms,

then nii<m2-l   and let mx <n <w2.  Since  \am  \z m*   is a maximum

term, we have

N(r) = Xmi    for  ftJM, - 1) < log r < *(mx).

Then, from (2.19), we have for every r in this interval

Xmi>«-pl«--»((*--*e)logi).

In particular,

NO) = \nx> expl<7_ 1 ' [(4>(rnx) -'C)(v - e)] •

where C = min [1, \í(\]/(mx) - \p(mx - 1))].  Further, we have  \p(mx) =

\p(mx + 1) = • • • = )¡/(n - 1) and so
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log \a„o\ + log laj"1 =   ¿   (Xm - Xm_x)Um - 1)

(2.20)
<

/logl'-'lX^,       \

<K -\-iMn - O < (X„ - x„o_x)\^-¡-^^ + c).

This gives, on proceeding to limits,  v < a, whenever  0 < v < °°.  For i> = 0

it is obvious and for v = °°, it follows exactly on the same lines as above with

the same reasonings as in Lemma 4.

By combining Lemmas 3 and 4 we have the following which includes a

theorem of Shah [10] and Juneja and Singh [7] for q = 2.

Lemma 6.   Let f(z) = X"=0anz n  be an entire function of lower Sq-

order v such that   {\p(n)} forms a nondecreasing function of n for n > n0,

then  v = a.

Lemma 7.   Let fiz) = l^^^a^ "  be an entire function of lower Sq-

order v,  then

(-Xnm + x-Km)Wq-1]X„m
(2.21) !>>7 = liminf-;—¡-;-¡-

m-°° log \an    an       |
"m    "m +1

for any arbitrary sequence of integers   {Xn   }^=1  from   {X„} and for the

corresponding coefficients   {a„   } from   {a„} of fiz).
m

Proof.   For y = 0  or negative (2.21) is obvious, hence, as usual, first let

0 < 7 < «o. Then for all large   m > m0(e)   and  0 < e < y, we have

(2"22)       ^^-KjW^X^Xy-^logKJa^J.

Summing the inequalities obtained from (2.22) by replacing m  by n0, n0 +

1,- • • , k, we get

(7 - e) log

(2.23)
a»k+i

k

I
tn — m q

<   E (à«      -K )iog[<?_11x„
*rL        "m + l        nm'     b "r

(X„       -X„ )log[q-1,X„

Hence, from Lemma 4 and (2.23), we get y < v. The case when  y = °° follows

on the same reasonings as those of Lemma 4.  This completes the proof of the

lemma.

3. In this section we shall prove the following theorems

Theorei

order v,  then

Theorem 1. Let fiz) = ^=Qanz "  be an entire function of lower S
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(3.1) -»= max a({«m})
{"mt

and

(3-2) v=  max0({nm})
{nm}

where

X„   logl9-11X„m_i

(3.3) a({nm}) = limjnf    m.     ,      ^
"m

and

(X«m + ,-X»m)l0gt<7_11X»m
(3.4) ß({nm}) = lim inf      "t*        "-:-*- .

log|a„m/a„m + il

For q = 2,  the result (3.1) is due to Juneja [6] but the method of proof

given here is a different and more elegant one.  It is pointed out here that the

characterizations (3.1) and (3.2)(x) are complete in the essence of the definition of

lower S -order given in the present paper.

Proof.   From Lemmas 4 and 7, it is evident that

(3.5) ^m»<(v»

and

(3.6) v> max|3({nm}).
{nm}

x„
Now, consider the function g(z) = SJ=1a„ z    s  where   {X„ }  denotes the

sequence of principal indices of fiz).  It is easily seen that g(z) is an entire

function and that fiz)  and g(z) have the same maximum term and rank for

every value of r.   So,by Lemmas 1 and 3, 5" -order and lower Sq-order of g(z)

are the same as those of fiz). Hence, g(z) is of lower Sq-order  v.  Further,

since  ip(ns) forms a strictly increasing function of s, Lemma 6 applied to g(z)

gives

(3.7) v = <*({ns}).

From (3.5) and (3.7), we get (3.1).

To prove (3.2), we observe that (2.6) gives

(3-8) X„  >exp^-^[(p-e)(Uns)-C)]

(')   For q = 2, see [8].   However the result was also known to the first author for

2.
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where

C=min[l,y2(^/(ni)-^(nJ_1))].

Now, by substituting the value of 4>(ns) in (3.8), we get

(3-9)     —¡ïksj—>("-í)-i^r ■
Taking limit inferior as s —► °° in (3.9), we get

(3.10) ß({ns})>v.

Hence, from (3.6) and (3.10) we get equation (3.2) for fiz).  This completes the

proof of Theorem 1.

The following corollary follows easily from the above theorem.

Corollary. //  {X„ } denotes the sequence of principal indices of fiz) =

S"=0a„z "  and p(ns) denotes the jump points of N(r),  then

log^-'V
v = lim inf ■

log p(ns)

For q = 2,  this corollary is due to Gray and Shah [3].

Sato's result (1.6), which gives Sq -order in terms of the coefficients of the

entire series fiz) - I,^=0anz"  may be written as

n log[</_1]n
X = lim sup—;—;——r— = max a*({nm})

»—       l°SK\ {nm}
m-

where

nmlog1<?-11"
a*({nm}) = limsup

m

logia«  I
m

and   {nm}  is a subsequence of  {n}  and   {a„   }  is the corresponding sequence

of  {an} from fiz). Thus, our result (3.1) for the lower Sq-order is an analogue

of (1.6) for the case of S^-order.  Now, we investigate whether a result analogous

to (3.2) holds for the case of S -order also, i.e., a relation of the type

X=  maxß*({nm})

{nm}

where

(X„        -X„   )logt<?-1JX„
a*,r      ix      ,- "m + 1        nmJ     6 "m+1
ß*({nm}) = hm sup —

log \a„  ¡an   ■   |
"m      m +1
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holds in the case of Sq -order. Very simple examples show that this need not

hold in general.  However in the next theorem, we obtain a result in this direction

which holds under some restrictions and at the same time generalizes the results

of Shah [10] and Bajpai [1] for q = 2 and for q = 3,A,5,- • • , respectively.

These results are valid only when  X„ = n.

Theorem 2. Let fiz) = l,"=0anz "  be an entire function of Sq-order X,

such that   {ip(n)} forms a nondecreasing function of n for n > n0,  then

(3.11)
,   ,.        (K+i-K)Wq-l]K+l
X = hm SUp -:-:-;-;-

«-«," log|a„/an+1|

Proof.  Let

ß = lim sup
(■Vm-O-oB1*-11^!

log k-„/ûr„+1l

As usual, first let ß > e > 0, then for all n > n0(e), we have

(3.12) (ß + e)log \ajan+x\ > (X„+1 - \)\og^-l\+l.

Summing all the inequalities obtained from (3.12) after writing n = n0,n0 +

1,- • • , m, we get
m

(ß + e)log\anQ/am + x\>   Z   (Xn+1 - ^log1«"1-\.+1
n=nQ

(3.13)
Am + l106 Am + 1-

From (3.13) we easily get

(3.14) ß>X.

Conversely, when   {\p(n)}  forms a nondecreasing function of n,  then by

writing

-08 !«„„/«„ +11 = <h0+i ~ K0M"o) + ■ • ■ + OVi - K)Wn)

we have

log
•fl-rl

/An+1     Kn\      I   a„
(K+i-\)Hn) = [-T—zrrhogl-11-

0 \An+l      An/       \an+l

Hence, we get

(3.15) ß = hm sup-:—;—;-¡-< X.
„-n.»1' log|a„/a„+il

By combining (3.14) with (3.15) we get (3.11).  This completes the proof of the
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theorem.  The case ß = 0 is obvious and ß — °° can be treated similar to ß > 0.

As a corollary to Theorem 2, we get the following result of Gray and Shah

[3].

Corollary. // {X_ } denotes the sequence of principal indices of fiz) =

^=0anz " and   {p(ns)} denotes the jump points of N(r), then

iog"-y,
A = lim sup ■—

S-*oo log p(ns)

Theorem 3. Let fiz) = ~L"-0anz "  be an entire function of Sq-order X,

then

log['-,lX„
(3.16) v < X lim inf

" W«-"x„+x ■

Further, if fiz) is of Sq-irregular growth and if v<p<X then fiz) is of the

form g^z) + h^z) where gß(z) is of Sq-order <p and hjz) = 2~=0am z mP

satisfies the inequality

(3.17) !>>iuliminf-—[o   .t.—-—.
P—   log"   1JXmp+1

For q = 2, this result is due to Whittakar [14].

Proof.  Let rt be the value at which N(r) jumps from a value < X„

to a value > Xn +x. Then

log[q-1]N(rt-0)
v < lim inf

r-+~ log rt

IogIfl---Ar*(rf-0) logI<?-1JX„
< X lim inf-—r-—r-TTZ—TTT ** X lim inf

W iog-«--.w,+<9^AT^ W-1]\+l

KThis establishes (3.16). For establishing (3.17), let us define jtm(z) = 2'anz n,

where  2'  denotes the summation over n, for which

(3.18) Oog"-2lX„rX"/M>|a„|.

Then g^z) is of Sq-order < p. Further, define

hß(z)=f(z)-gll(z)= ¿am zXmP

p = 0      p

where am     satisfies the inequality complementary to (3.18).  Hence
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W«»Mfr) ^ l0gI<?"11 [1°g Kp] + Kp l°gr]

log r      " log r

log"" * 1 [- (Xm //a) log""11 Xm   + Xm   log r]
> " P P

logr

Write rp = (elogt<?-2]Xm )1/M, then for rp<r<rp+l, we have

W"A/(r)     W'-11^ /M W'-''^
(3.19)     10g.   MW >-;-p— > m,    [q_-u    P    (1 4- o(l)).logr logr logl<?     JXm

Taking limit inferior in (3.19), we ultimately have (3.17).  This completes the

proof of Theorem 3.

4. In this section we shall obtain the coefficient equivalents of (1.6) which

in particular will include the results of Basinger [2] (2) and generalize a result of

Shah [11]. We note that our characterization in terms of the coefficients of (1.6)

is not complete but is valid for a wider class of entire functions even when q =

2. We shall further obtain some relations involving type, lower type and coeffi-

cients of the power series which will generalize the results of Juneja [5] even for

q = 2. Thus, we prove the following:

Theorem 4. Let /(z) = 2~_0a„z "  be an entire function of S -order X,

then

(4.1) t > max lim inf \an   \      m logXIX"m w[g-2]   ""»--

k-,}   m~ m eX

Proof.   Let   {nm} be a strictly increasing sequence of positive integers.

Set

B = B({nm}) = lim inf \an   f'*"* log""2' ^~- .
tri—xx> fît cA

If B = 0, then  t > B is obvious.  Let B > e > 0. Then for all sufficiently

large m, we have,

(4.2) [(B-e)flogI'-2»\f,M_1/cX}--]     «      < K,J-

Now Cauchy's inequality and (4.2) give

(4.3) rX"'"[(5-e){log"-2lX„       /eX}'1]^"™       <M(r)
m —■ 1

(2)  This result was also known to all of us even for  q = 2.
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for all r and all sufficiently large m.  Let us suppose that

X„ X„ X„
m

logP = X„    logr + ^-logOS-e^^Mog1._ri.Íln.k-l].
X       5V        '      X       6 eX       '

Then, if

logD + log1«-11 \,       M < X logr < logo + log[q-1]X„JeX

where D = e/B  if q = 2  and Z> = 1/5  if q = 3,4, 5, • • • , we get

(4.4) log P > (X„  /X) log [D(5 - e)] > e log [D(B - e)] exp1« " 2 ] rx/ö.

Hence, from (4.3) and (4.4) we obtain

(4.5) log1"-1]M(r)      ÍB log (e(B - e)/B)  if q = 2,

r b if 9 = 3, 4, 5, • • • ,

for all r > r0(e).  Hence

lim inf Hq~ yM(r)  =t>B   for <? = 2, 3, 4, • • • .
i—►«> r

Since  f>Z?({nm})  for every sequence   {nm},  it follows that  r>

max/„   \B({nm}).  Hence the theorem.

As a corollary to Theorem 4, we get the following result which in particular

for q = 2 is due to Basinger [2].

Corollary. Let fiz) = H°^=Qanz " be an entire function of Sq-order

X,  such that

--♦oo      loglw       'X,,

then

t >L lim inf |a„|X/X" logl£?-2>X„/eX.

Theorem 5. Let fiz) = S"_0a„z "  be an entire function of Sq-order

X, suchthat   {ii(n)} forms a nondecreasing function of n for all n>n0, then

(4.6) t < lim inf |a„\X,X" log'9"2'X„/eX.

For q = 2,  this result is due to Basinger [2].

Proof.   First, let  0<r<°o.  Then, from Lemma 3, for all r>r0(e)

and t > e > 0, we have

(4.7) log m(r) > exp1"7"2' {(* - e)rx}.
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If a„ z    -   and a„ z    2  denote two consecutive maximum terms of-, n2

fiz), then as   {^(n)}  forms a nondecreasing function of n, we get, for n, <

n < n2 - 1, that

(4.8) tf(n2 - 1) = i/,("2 - 2) « • • • « *(n) « • • • - •*(»,)

and

(4.9) |a„|/" = la./"2    for r« «*<">.

Thus, from (4.7)-(4.9) we get

(4.10) X„\¡/(n) 4- loglaj = Xn^(n2) + log\a„2\ > exp1""2' {(t- e)e^<">}.

If B* = \an\X,X" log[q-2]XJeX then from (4.10) we get

(4.11) B* >e-^(n>expr^- exp^"2' {(/ - e)ex^n)}] log[?_21^ .

We note that the minimum value of the function

P(r) = log-4--2- g/-xexpl"^ expl<?-2' {(f - e)rx}~\

is obtained by solving the following equation

(4.12) X„ = Xr\t - e) "ff  exp[m ] {(t - e)rx}
m=\

where the product II  is understood to have a value one when q = 2.  Let rn

be the value of r, for which this minimum is attained.  It is easily seen that

**>   *-»t-f«?™p(l))   if q m 3,4, 5, • • •,

From (4.11)—(4.13) for 0 < r < °°, we get lim inf^^.,» B* > t. In the case when

t = 0, (4.6) is obvious, while if t = °°, then (4.11)—(4.13) are obtained by re-

placing t by an arbitrary large number t*, which ultimately by making t* —♦

oo, leads to lim in^^« B* = °°. This completes the proof of the theorem.

By combining the corollary to Theorem 4 with Theorem 5, we get the follow-

ing theorem, which in particular generalizes a result of Shah [11].

Theorem 6. Let fiz) = ^=0anz " be an entire function of Sq-order X,

such that

(i)   {^(n)} forms a nondecreasing function of n, and

(ii) log[<--2lX„~logf<!,-2lX„+,  as n-*co;

then t = lim inf,,^. |a„ |X,K" log' « " 2 ] X„/eX.

Now we shall prove our main theorem of this section which is a coefficient

equivalent of (1.6) for all those entire functions for which the principal indices
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{X„ }  satisfy an asymptotic relation log'17   21X„  ~log1<7   2lX„

of interest to see if this result holds without this restriction.

It will be

Theorem 7. Let fiz) = Z"=0anz "  be an entire function of S -order X

and lower Sq-type t, for which   {X„t} denotes the sequence of principal in-

dices. If logl"-2lX„   ~log [q~2]Xn      , as k
"fc+i

(4.13') . t = max <

{"mH
ninf \an   I*'*""1 log1«-21

oo,  then

X„Kn )"m-1  {

eX     j

n
Proof.   Consider the function g(z) = H°k°=Qan z    k where   {X„ }  de-

notes the sequence of principal indices of fiz).  It is easily seen that  g(z) is an

entire function and that fiz)  and g(z) have the same maximum term and rank

for every value of r. So, by Lemmas 1 to 3, it follows that fiz) and g(z) have

the same 5 -order X and lower 5^-type  t.   Since   {X„ }  denotes the sequence

of principal indices it also follows that   {\¡/(nk)}  is a nondecreasing function of

k.   Thus, from Theorem 6, we get

(4.14) f = liminf|a„  I       Mog1""21
fc-oo "k

7fc-l

eX

But from Theorem 4, we have

(4.15) t> max < lim inf \a„
.X'Xn.

m logl<?-2] V"w-l)

eX     Í

Hence, from (4.14) and (4.15), we get (4.13') fot fiz).   This completes the proof

of the theorem.

Theorem 8. Let fiz) = l,"-0anz "  be an entire function of Sq-order X,

(0<X<°o), Sq-type  T and lower Sq-type t; then

(4.16)

where

r¡R<t<T<Q

Q = lim sup
*n-l x

and

R = lim inf
n-*°° "n-1

x/(^-x„_i]
log[«--21   A"~»

_ |exp [lim inf„^.00(X„_1/X„) - 1]    if q = 2,

"     11    if q = 3, 4, 5, • • • .
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For <7 = 2  and  X„ = n  this result is due to Juneja [5].

Proof.   First, let 0 < R < Q < «», then for every  e > 0 and for suffi-

ciently large n > n0(e)  such that R > e > 0, we have

*-e<KX--lx/(*"~x,-l) logl«-2lX„_,/X,

Q + e > KK-/'^"^"-0 log[*-2lX„/X.

Writing (4.17) for m = n0, n0 + 1, • • • , n  and multiplying together, we get

(4.17)

n

r-il X"--(Xn-X      x)log(R-e)-   Z   (Xm-Xm_,)logt«.-11
~t0 Am — tir

(4.18)
<Xlog

■»n-l

<log(ß + e)-   X  (Xm-Xm_1)logt'-11
m="o

X   •

Now, if qr = 3, 4, 5, • • • , and n(t) = Xm, if Xm_, < í < Xm,  then

(4.19)

♦   £   ^t-ii^.fc^t-iiîfci.V
m=n0+l\ A A    /

= -X„ |og««--I ̂ +/"""' „«¿log"-» ( + X_    , log!«"» -^f-
A xnn+l A 0 A

>-Xnlog1«
x     ns1-_î,iog"»>\1_1/x A"o

A«n-ilog («-n _^"n-l

= -Xnlogl«-»-^- + 0(Xn).

And, if q = 2, then for all n> n0(e), we have

" X

"    Z   (Am -^m-l)1^"^1

(4.20)
Vi-l

> -X„ log — + (X„_, - X„o+,) + o(X„)

> -Xn log -Ç-= + X„(log r? + 1 - e) + o(Xn).
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Further,

-   i  (Xm-Xm_1)logí'-11Y
m=n 0

X

—W«-11-^  +X„0-ilog[<?-1]X„o

(4.21) +      i   (^-ifWHlU.,
m — fjQ+iy /

= -X„logt'-14n + X„o_1W'-11Xno

+ f "     n(0c.logI<?-1](
»0+l

where  n(i) = Xm_,   if Xm_, < t < Xm. Then, if q = 3, 4, 5, • • •

/=J*    .«(r^log^-11^-

(4-22) -(G + £k)*m^r*T

[Ai-yi a„-[>a„]
nr=2i log"--21 (x„o+ ,/x) + n^2, logf- » i ([Vxn]A)   °(aJ

and for q = 2, we get

(4.23) / =  F ^dt < (X„ - X,o+,).

From (4.18)-(4.23) we get (4.16) whenever 0 < R < Q < °°. In the case when

R = 0, (4.16) is obvious.  If R = °°, then (4.18)-(4.23) are obtained exactly as

above by replacing R - e  by any arbitrary large number R*, which ultimately

leads to  r = °°.  In the case when Q = °°, then (4.16) is obvious.  This completes

the proof of Theorem 8.

Theorem 9. Let fiz) = T,™=0anz "  be an entire function of Sq-order X

and Sq-type  T suchthat   {\p(n)} forms a nondecreasing function of n; then

(4.24) <T<Q<eT,    if q = 2,

\t=Q   if 9 = 3,4,5,- ••.
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In the case when X„ = n and q = 2, Theorem 8 is due to Juneja [5].

Proof.  If T = °°, then (4.24) is obvious in view of Theorem 3. Let

0 < T < »o. Then, for every e > 0, and for sufficiently large n > n0(e), we

have

(4.25)

Writing

(4.26)

lq-UJL^log^KiogOT+ei-log'*-1'^

„-i
log|a„| = log|a   |-   £   0<m + i-KMm)

> log |a„0l - (X„ - X„o)\¡/(n - 1)   (by hypothesis)

/*"~*"o\       \an
= log|a. 14-        _ JlogM-

"o      \Xn ~Xn_xJ    °\a„_x

Hence, from (4.25) and (4.26), we get

(4.27)   l„g(r + e) > lo,'-■ I^ + A [log„.,, + (£^-) log|¿-

for ah n> n0(e).  By taking exponentiation of (4.27), we have

. (T+e)>\an/'X"
'n-l

MA„-x„0)/x„(x„-x„_.)        _    x

Iogk"2lef

for all n > n0(e). Now, by taking limit superior, we ultimately get

(4.28) T> lim sup
'n-l

X/(X„-\„_i) »

logI<,-2]^L
eX

Thus, by combining (4.16) with (4.28), we get (4.24) whenever 0 < T < °°. This

completes the proof of the theorem.

Remark.   It is evident from (4.16) that if log[ q ~ 2 ] X„ _, ~ log1 q " 2 ] X„

and  0<R- Q<°°, then fiz) is of perfectly Sq-regular growth, of Sq-order

X and 5 -type  Q. However the converse of this need not be true in general as

can be seen from the following example. If fiz) = ez   + ez  then fiz) is of

Sq-order,  X = v = 2, T=t=\  and R = 0 while Q = oo.

5. In this section we shall prove some theorems involving the coefficients

of the entire series and growth numbers.  It will be seen that these theorems gen-

eralize the results of Juneja [4] even for q = 2. Further, we shall also prove a

decomposition theorem for entire functions which are of Sq-regular growth but
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not of perfectly S -regular growth.  Such a theorem is not known even for

q = 2.

Theorem 10. Let fi\z) = l^=0anz "  be an entire function of Sq-order

X, Sq-growth number p and lower Sq-growth number 5  such that  i/.(n) forms

a strictly increasing function of n,  then

(5.1) p = BQ and 8 = BR

where B = X if q = 2, B = 1  if q = 3, 4, 5, • • • , and Q and R are de-

fined as in Theorem 8.

This theorem generalizes an earlier result of Juneja [4] which is valid only

when X„ = n  and q = 2.

Proof.  Since   {^(n)}  forms a strictly increasing sequence of n, the

X„th term will be the maximum term for  |z| = r, if and only if,

(5.2) N(r) = Xn    and   m(r) = |a„ |rX»

for  ip(n - 1) < log r < ^(n).  Then, for given  e > 0, and for sufficiently large

n > n0(e), we have

(5.3) (p-e)<rKlog^-2]Xn

and

(5.4) (S+e)>r-xlogl<'-2lXn

for all r satisfying  \¡i(n - 1) < log r < i//(n). Then from (5.3) and (5.4)

0u-e)<ra„/a„_1lX/(X""X"-l)log[<7-2lXn,

(5.5)

(s + e)> K+lK\XKXn+l~K)^[q-2]xn.

Hence on proceeding to limits, we get

(5.6) p<BR    and S > BQ.

Further, from (1.7) we have log'9-21 N(r) < (¡i + e)rx for a sequence of values

r-rx,r2,---,rn —* °°. Hence, (5.2), for n's corresponding to these values of

rn's, yields

log[*-2lX„ <(p + e)rn<(p + e)|a>„+1|A/(X»+»-X»).

This gives

(5.7) BR < At-

Similarly, it can be shown that
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(5.8) BQ>5.

From (5.6)-(5.8) we get (5.1).

Theorem 11. Let fiz) = ^"-^„z "  be an entire function of Sq-irregular

growth, then  t = p = R = 0.

For q = 2, this result is due to Srivastava and Singh [12]. Proof of this

theorem is easy so we omit it.

Theorem 12. Let fiz) = 1^=0anz " be an entire function of S -order

X, S -growth number 5 (< °°), lower S -growth number p and Sq-type T,

and lower Sq-type t; then

log[<7-2]X„
(5.9) p < 6 lim inf     [q.2u-•

n->~  log1''     'X„+,

Further, if 0<t<rj<T (<°°), then fiz) can be written in the form f(z) =

gn(z) + hn(z) where gn(z) is of Sq-order <X and of Sq-type < t? if of Sq-

order X, and hn(z) = Sj_0a„ z   *•  satisfies the inequality

(5-10) t > v Hm inf

p

logt'-2lX„

-- W--2-xn
p+i

Proof.  Let rt be the value at which N(r) jumps from a value < X„   to

a value >X„ +x. Then

logI<?-2,Ar(rf-0)
p < lim inf--\--

f->~ rt

loglq-2]N(rt + 0) log''?-2l^(rf-0)
< lim sup-a"-am inf 1—I0-2I »r/    7~^7"

r-*» r, i-»    logl<?   ¿iN(rt + Q)

log[<?-2]X„
<5 lim inf      I0-2K-•

n-~    log"     'Xn+,

This proves the first part of the theorem.  For proving the second part, let gJz) =

E'anz " where  2'  denote the summation over those n's for which

(5.11) |a„ I < (77/logI « - 2 ! X„/eX)A" A.

Then, gn(z) is of Sq-order < X, and S,-type < n if gn(z) is of Sq -order X.

Define
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hn(z)=fiz)-gn(z)= Z a   Z "P
p = 0     p

where a„ 's satisfy the reverse of the inequality (5.11).  If Af(r, hn) =

max^^Jn^Oz)!, then

log1'- - ]Af(r, hv) > log[£?- •] {\anV ""}

[K K K 1
> logl'-2|-^ log 77 - -f log^-11-^- + X„p log rj

for all r and p.  Let log rp = X + X-MogI<?_11X„ /eX,  then, if rp<r<

rp+v weset

log1«"--Mr, «„) > logl<?-21 [(X + X-1 log tj)X   ].

(e-xrp+x?Wq-2] [(X + X-1 log v)X„ ]

loglq-2i(Kn+l/eX)
p+1

From this we get

r

log!«-21X„

. , log'- - ' -AW^  e~™ "W^TxT"  if « = 3'4'5' • • • '
r = hminf—-—^-—— > ( "p+i

A„

e(XX + log T?)e- xx lim inf r—£-   if ? = 2.
n-»oo      A.
* "P+1

By choosing

x= j-X-1 log-7   if 4 = 3, 4, 5, • • • ,

/(1-logî-yX   if <7 = 2,

we get (5.10). This completes the proof of the theorem.

6. We have seen in Theorem 11 that if fiz) is of S -irregular growth then

lower Sq-type is zero.  In such a case it is natural to seek a constant p (0 <

v < p < X)  for which

«,,) um|nf log'«-■'«(,)

and i4p  is finite and nonzero. We shall call Ap  to be S^-p-type for the entire

function fiz) and whenever p = v this constant will be called S^-type.  For
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q = 2, this concept is due to Srivastava and Singh [12]. Coefficient equivalent

of (6.1) is as follows:

Theorem 13. Let fiz) = ^..0anz "  be an entire function of Sq-p-type

Ap,  then

A. =  max {lim inf \a„   f A"« tog*«-2' "m"I>
{nm}(^-    "" eP    j

provided the principal indices   {Xn } satisfy the asymptotic relation loglqr_2'X„ ~

log1<7-2lX„        as s—*<=°.

We omit the proof of this theorem as it follows on the same lines as the

proof of Theorem 7.

Analogues of Theorems 4 to 6 can also be obtained in terms of Ap.
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