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FUNCTION ALGEBRAS
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WILLIAM R. ZAME(')

ABSTRACT.   A complete description is given of the analytic structure

of maximal dimension in the spectra of a wide class of concrete function algebras

generated by analytic functions.   A connection is also given with point deriva-

tions on such algebras.

I.    Introduction.    Let   B   be a function algebra acting on its spectrum

(maximal ideal space)  Sp B, with Shilov boundary  TB. According to a well-

known result of Rossi [15], the functions in B obey a weak maximum modulus

principle on  Sp B - TB.  One of the principal themes in the theory of function

algebras is the "explanation" of this analytic-type behavior by the existence of

analytic structure in Sp B. More precisely, let us say that an analytic variety

(of dimension n)  in Sp B is a pair (X, r)  where X is an analytic variety

(of pure dimension n),  r: X —► Sp B is a continuous map, and b ° r is analytic

for each b e B.  Then the question is:  what are the nontrivial analytic varieties

in SpS?

Although Stolzenberg's example [16] shows that one does not have the

existence of nontrivial analytic structure in all situations, a number of global and

local conditions which imply the existence of analytic structure have been found

by Gleason [11], Browder [8], Clayton [9] and others. A different approach,

due to Bishop [3], which depends upon the existence of functions in B with

finite fibers, leads to the construction of 1-dimensional analytic structure in Sp B.

Bishop's ideas have been expanded and exploited by Stolzenberg [17], Bjork [5],

[6], Alexander [1], [2], the author [20], and others, and have proven very use-

ful in dealing with questions of approximation.

In this paper, we shall be concerned with the classification of high-dimen-

sional analytic structure.  For a fairly wide class of concrete function algebras,

those which contain a sufficiently rich collection of analytic functions, we are

able to completely describe the analytic structure of maximal dimension which
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is present in the spectrum.  In fact, the set of points in the spectrum through

which an analytic variety of maximal dimension passes admits the structure of

a complex analytic manifold, and the functions in the algebra are analytic on this

manifold.

In §11, we collect some definitions and preliminary results; §111 is devoted

to the classification of maximal dimensional analytic structure, and §rV dis-

cusses some connections with point derivations. We make use of some of the

ideas of Bishop [4] and a previous paper of the author [21] (which also contains

a summary of the needed results from Bishop's paper); some knowledge of these

papers will be helpful, but not really necessary.  For general information about

function algebras we refer to Gamelin [10] and Stout [18] ; we use Gunning and

Rossi [12] as a reference for the theory of several complex variables.

II.    Preliminaries.   Throughout, we let   S   be a Stein manifold of di-

mension n with global local coordinate  o = (ox, o2, • • • , on); i.e., (S, o) is

a Stein-Riemann domain.  If U is an open subset of S,  then  0(U) denotes

the algebra of functions analytic on  U,  endowed with the topology of uniform

convergence on compact sets.  For  V C U,  we let ruv:   0(U) —► 0(V) denote

the restriction.  If K is a compact set, then   {0(U), truv: KG V C U } is an

inductive system of topological algebras; we denote the inductive limit by  0(K).

We may identify  0(K) as the algebra of germs on K of functional analytic

near K; the topology is the finest which renders the natural maps ru; 0(U) —►

0(K)  continuous.  If / is analytic near K,  we denote its germ on A" by  f;

/ is a representative of f. We sometimes abuse notation to consider an element

of 0(K) as a complex-valued function on K; this should cause no confusion.

We denote differentiation with respect to the coordinate  o by D0 ; thus,

if a = (ttj, a2, • • • , a„) is a multi-index,

.<*! +cl2 + ••■+<*„
Da = --

bo  * • ■ • bonn

Observe that the operators £>" : Q(U) —► Q(U) commute with the restrictions

ruv; thus they induce continuous operators on  0(K). We will say that a sub-

algebra A  of 0(K) is stable if

(i) fe.4  for each feO(S), and

(ii) DPf e A for each f e A and each multi-index a.

If B is a topological algebra, then  Sp B denotes the spectrum (maximal

ideal space) of B; i.e., the space of nonzero continuous, complex-valued homo-

morphisms of B,  equipped with the weak-* topology. If b e B, then %,  the

Gelfand transform of b,  is defined by h(ip) « $(b) for each v? e Sp B.  The

map b l—► b represents B as an algebra of continuous functions on  Sp B.

With each stable subalgebra A  of 0(K) we associate a function algebra
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A, which is the uniform closure in C(K) of the image of A  under the natural

map  0(K)—> C(K).  Such algebras might be called stable function algebras.   If

K is a compact subset of C",  then P(K) (the closure in  C(K) of the poly-

nomials), R(K) (the closure in  C(K) of the rational functions with poles off

K), and H(K) (the closure in  C(K)  of 0(K))  ate stable function algebras;

H(K) provides a particularly good model for what follows.  The following prop-

osition was proved in [21].

Proposition  I. If   A  is a stable subalgebra of 0(K), then  Sp A =

Sp A ; in particular Sp A  is compact.

In view of the above, the algebras A  and A  are essentially interchange-

able for our purposes, since we are primarily concerned with the spectrum; it will

usually be more convenient to work with A  rather than A.  Observe that the

natural map K —> Sp A  is an injection; we suppress the map and simply regard

K as a subset of Sp A.  Note that A"= {g: g e A } is the uniform completion

of A - {f : f e A }.  Thus the analytic structures in Sp A  and  Sp A  are also

identical.

We let ô = (ôj, ■ • • , 5„):  Sp A —► C" ;  this map plays a special role in

what follows. In particular, we have the following result from [21].

Proposition 2.   // A  is a stable subalgebra of   0(K)   and   ? e C,

then  ô-1 (J) is totally disconnected, and hence the topological dimension of

Sp A does not exceed 2n.

In view of the above, there is certainly no analytic structure of (complex)

dimension greater than n in Sp A ; we will completely describe the n-dimen-

sional analytic structure.

III. Analytic structure. If A is a stable subalgebra of 0(K) we

let £2(4) denote the collection of homomorphisms ip e Sp A for which there

is a constant cip> 0 such that

for each f eA  and each multi-index a, where, as usual, we have written  \a\

= ax + a2 + • • • + an, a! = ax\   a2! • • • a„!  and

\\f\\K = sup {|f(x)|: x e A-}.

Our first result is as follows.

Theorem 1. // A  is a stable subalgebra of 0(K) then  Í2(4) admits

the structure of an n-dimensional complex-analytic manifold in such a way that:

(i) the manifold topology is finer that the weak-* topology;

(ii)  f|i2(4) is analytic for each  f e A ;
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(iii)  O¡í2(y4) is a local analytic isomorphism, so that (£204), â|£2(4)) is

a Riemann domain;

(iv) for each  f e A,  each  if e Sl(A) and each multi-index  a,   (Z)"f)"(<¿>)

= £>s%>) (Dq denotes differentiation with respect to 6);

(v)  each component of Q,(A)  is a Stein manifold;

(vi) Â\SXA) is dense in £2(4) in the topology of uniform convergence on compact sets.

Proof.   The argument is similar to ones employed by Bishop [4], Cartan

[23] and Rossi [24], so we omit some details.   Fix a homomorphism  y? e £2(y4).

IffeA  and  f = (f ,,-•■, f„) e C"   with  |f| = max|fy|< c'1   then we set

(0 f„G) = E«tW/eä

where  fa = fi 'f22 ' " * ?«"■ This series converges uniformly on compact sub-

sets of  {f:   |f|<c~'}and f    is an analytic function on that domain.  If we

define t/?f(f ) =f^(f),  then straightforward calculations establish that ^  is a

homomorphism of ,4  into  C, <¿>?(1) = 1  and

(2) Dazflfi(^) = (Daaf)ip(0.

For each t with  0<t<c~1,  set Pt={weC:   |w|<f}andfix

X e Pt.  The usual Cauchy estimates for analytic functions show that there is a

constant d > 0  such that

(3) \D<3zg(X)\<ß\dm\\g\\Pt

for each multi-index ß and each function g e 0(Pt). If we substitute f^,  for

g in (3), apply the identity in (2) and estimate the series in (1), we arrive at the

following inequality

(4) kMty<wt*Qi-ti$rmHi±

By considering the case ß = (0, • • • , 0), we conclude that fx(î) = 0 if ||f \\K

= 0 and that ipx  determines a continuous homomorphism on A; hence |<¿\(f)l

< Il f \\k- *n v-ew of Proposition 1 and the definition of £2(4 ), it follows that

ipx e £2(4).  Observe that  <p0 = <¿> and that o(i¿\) = X 4- 0(<¿>).

Now for each  i// e £2(4),  each s with 0 < s < c~¿, let

Wf>. s)= {*w: weC\|w|<s}.

The collection   {W(i//, s)} is a subbase for a Hausdorff topology on £2(/l) rela-

tive to which ô is a local homeomorphism.  Thus ô induces on £2(^4) the

structure of a complex-analytic manifold and (£2(4). o¡£2(4)) is a Riemann domain. It

is easy to see that the manifold topology is finer than the weak-*, and that these

topologies agree on the sets  W(ip, s).

For each f e A, <¿> e Cl(A) we obtain the following power series expansion
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for f on  W(<p, c~v):

f(*w) = <Pw(î) = Z<AD«f)wa/a\

= Z(^f)[5(0-^)]7a!

so that  f|£2(4) is analytic. This establishes (i), (ii) and (iii); (iv) follows by

straightforward calculation, which we omit.

To establish (v) and (vi), let A* denote the closure of Â\£l(A) in

0(£2(4)). Then A* is a complete, point separating algebra of analytic func-

tions on a "Riemann domain which contains the coordinates and is closed under

differentiation.  By a result of Bishop [4],  Sp A* admits the structure of a

Riemann domain (with the weak-* topology from A#) and the natural map

£2(4) —► Sp A*  is a homeomorphism into.  Moreover, for each v e Sp A#,

there is a compact set Lv C £2(4)  and a constant cv > 0  suchthat

HDasg)\<a\cla%\\L

for each geA#.  But now it immediately follows that  ye £2(4); i.e.,  Sp A*

= £2(j4).  It then follows easily that each component of £2(4) is holomorphi-

cally convex, and thus Stein. An application of the Oka-Weil approximation theo-

rem yields  A# = Q(£l(A)),  which completes the proof.

The following simple corollary gives a sufficient condition that the conclu-

sions of Theorem 1 are not trivial.

Corollary \. If A  is a stable subalgebra of Q(K) and the interior of

K is not Stein (and is nonempty), then £2(4) <£ K.

Several remarks seem in order at this point.  First, it is not always the case

that  £2(,4)  is itself a Stein manifold; for let  CC [0,1]   be a Cantor set and

A = 0(K), where

K= {(zx,z2)e C2. \zx\2 + |z2|2=ceC}.

It is easily seen that  £l(A) has uncountably many components, and is therefore

not Stein (see Harvey and Wells [14] for a relevant discussion).  Second, it is not

always the case that the weak-* topology and the manifold topology agree, even

on components of £2(^1), as the following example demonstrates.

For each positive integer k,  let

Yk = {(zx, z2): U, - 1 + 3-fc| < 1 - 3-fc, |z2| < 1 - 3~k},

Y'k= {(zi.z2): lzi-l +3-fc + 9-fc|<l-3-*-9-fc, |z2|<l-3-k-9-fc},

and let

Y0= {(zx,z2): |z1|<2, |z2|<2},

Y'0= {(zx,z2): \zx-l\<l,\z2\<l}.
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Set ^k       *k      Y k for k = 0, 1, Thus each Lk  is a closed polydisk

with an open polydisk removed from its side.  We may connect Lk  to  Lk+ x

with a thin tube   Tk  in such a way that these tubes are disjoint from the   Yks

Figure 1

and from each other, and converge to the point  (1, 1) e L0 (see Figure 1).  Set

K -        Lk U  IJ Tk
fc=0 fc=0

and let A = 0(K). By an argument similar to one in Gunning and Rossi [12,

p. 43], it may be seen that  £204) is connected but infinitely sheeted over the

point (7/6,0). Moreover, we can choose a sequence  tp0,<px,--- in £2(4)

suchthat  a((¿y) = (7/6, 0)  for each /, but </>,- —»• <p0   (weak-*); i.e., the weak-*

and the manifold topology do not agree.  This example also displays other path-

ologies:  Sp A  is connected but admits no natural embedding in a Stein manifold;

£204)  is not a weak-* open subset of Sp A; and the Shilov boundary of A

contains points of £204).

It is perhaps more reasonable to ask whether the manifold topology agrees

(at least on connected components) with the norm topology on  £204)  as a sub-

set of the Banach space dual of A. We shall have a little more to say about this

following the proof of Theorem 3.

The following result assures us that we have indeed identified all the  n-di-

mensional analytic structures in  Sp A.

Theorem 2. Let A be a stable subalgebra of 0(K) and let X be a

subvariety of an open set in  Ck, of pure dimension n.  If t: X—► Sp A  is

one-one and continuous, and i°r is analytic for each  f e A, 'then X has no

singularities and r is an analytic isomorphism of X onto an open subset of

£204).
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Proof.  For each open set  U in S, containing K, let Au be the clo-

sure in 0(U) of  (feO(U):  fe.4}; Av  is then a closed, point-separating sub-

algebra containing the coordinates and closed under differentiation.  By the the-

orem of Bishop [4] used earlier,  Sp Au is a Stein manifold with global local

coordinate  d = (dx, ■ • • , ôn). If r$v:  Sp Av —*■ Sp Ar, is the adjoint of

the inclusion, then Sp A  is the projective limit of the system   {Sp A Ut rfiv }.

Then we have the commutative diagram of Figure 2, where rp is the adjoint of

the inclusion and is also the projective limit map.

[21].

For more details, we refer to

SpA SpArj

Fix a point x0 e X; there is no loss in assuming that  ô ° î"(x0) = 0 e C".

If £ is a nondegenerate, connected subset of (ô ° r)-1(0), then t(E) is a non-

degenerate connected subset of ô-1(0) C Sp A, which contradicts Proposition

2. Hence  (ô° r)-1(0) is totally disconnected; since it is an analytic set, it must

be discrete.  Let  Qx   be a relatively compact open neighborhood of x0  such

that ßi H (ô° r)_1(0) = {x0}, and set  e = min{|ô° r(y)\: y eQx-Qx }>0.

If we set   Q =  {y e Qx:   \d° T(y)\ <e}, then it is easily seen that  5 ° riß

is a proper mapping of Q into P= {z e C:   \z\ < e}. -By [12, Theorem 21,

p. 108], (Q, (ô ° t)\Q, P) is an analytic cover; let its sheeting number be  X.

Choose a point z0 eP for which F = (o° t)~1(z0) n Q has precisely X

elements.  There is an open set  U containing K such that r^ ° r(F)  also has

X elements.  Observe that rfj° r is continuous and  ô°r*/°T = 5°T is an-

alytic; since  ö determines the analytic structure of Sp A y,  it follows that

rfr° t is analytic. An argument similar to that of the preceding paragraph shows

that r J ° r is locally proper, and hence an open map.  If we set Q" = rj) ° t(Q),

it is easy to check that  5\Q"  is also proper and hence that  (Q", d\Q", P) is an

analytic cover.  But  ô is a local homeomorphism so that  o\Q"  is then a cover-

ing map; since P is simply connected, the sheeting number of d\Q" must be 1.

But F" = rfj ' t(F)  is a subset of Q"  containing X elements, and  d(F") =

z0  so that we necessarily have  X = 1  also.  Thus we may conclude:  r*j ° t\Q

is an analytic homeomorphism onto  Q", ô ° t\Q is an analytic homeomorphism
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onto P,  and  ôio"  is an analytic homeomorphism onto P.  In particular, Q

contains no singularities of X.

Let LB   be a compact subset of Q such that ô ° t maps L6   homeomor-

phically onto P6 = {z e C:   |z| < 5 }, where  0 < S < e.  Let   V be an ar-

bitrary open set in S which contains K.   It is easy to check that r% ° t\Q is

an analytic homeomorphism, as is a\Qv, where Qv = r*, ° t(Q). If L'¿ =

r*/° r(Ls), then ¿g   is a compact subset of Sp Av and  5 maps L'¿ home-

omorphically onto P6. Observe that yQ = rp • t(x0) is in the interior of L'¿.

The usual Cauchy estimates show that

|Z)|¿(y0)|<a!(S-1)la'll<?llL.

for each multi-index a and each g e 0(Sp Av). As in the proof of Theorem 1,

we see that Dpi(y^) = (D*hy(y0) for each h e A v. If we set tfi = r(x0) and

L\ = t(Ls), then we have:

\*(D%f)\ = \(Daoff(yQ)\ = \D%f(y0)\

<a!(ô-1)|a|ll/llL" <a\(b-1yaHf°r*v\\L' < a!^-1)""!!?^

for each multi-index a and each feO(V) for which feA   Since   V is

arbitrary, it follows that  y = r(x0) e £204); hence  t(X) C £204).

It only remains to show that r is continuous when £2(4) has its mani-

fold topology, for then the analyticity of a ° r will yield that r is analytic,

one-one, and hence a homeomorphism. Continuity of r will follow if we can

show that t(Q) = W(y, e), since as was observed in the proof of Theorem 1, the

manifold and weak-* topologies agree on sets of the form W(ip, e). Observe first

of all that the inequality (6) is valid for all S < e and hence is valid for 5 =

e; i.e.

WZ^OKaiie-T'lIfll*

so that  c^ < e_1   and c"1 > e.  Let q e Q and set  f = ô • r(q); we claim

t(Q) = fç-  For, if f e 0(V) and  f e A,  then we can expand / in a power

series near y0 = r*, ° t(x0) :

At) = Z(D%fboW(t) - 5(yo)T/<*'~

Since  5 maps Qv homeomorphically onto the polydisk P C C", this power

series converges on  Qv,  and in particular at yx = r\ ° r(q). A direct calcula-

tion now shows that f(yx) = f(r(q)) = «¿»¿-(O-   Since   V and  f  are arbitrary,

we have  t(Q) = W(y, e), which completes the proof.

A slight modification of the latter part of the above argument leads to the

following topological characterization of £204).
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Corollary 2. // <¿>eSp.4,  then ¡p e £2(4) if and only if there are

a set  W C Sp A, containing tp, and germs fx,f2,---,fneA such that

(fj, f2, • • • , fn) is a homeomorphism of W (in the weak-* topology) onto an

open subset of C.

By mimicking the above arguments, we can derive (less definitive) results

for analytic structure of lower dimension.  For  1 < k < n,  let  £2fe04)  denote

the set of homeomorphisms <p e Sp A  for which there is a constant c > 0  such

that   \^p(D^f)\ < cdcM\\f\\K   for each  fe4,   each multi-index a  of the form

a = (ax, a2, • • • , ak, 0, • • • , 0). Then we have the following analogs of the

above results; the proofs are virtually identical and are omitted.

Theorem l'. If A  is a stable subalgebra of 0(K) then  Clk(A) admits

the structure of a k-dimensional complex-analytic manifold in such a way that:

(i)  the manifold topology is finer than the weak-* topology;

(ii) f]£2fc04) is analytic for each f e A;

(ni) p = (ô,, • • • , dk) isa local analytic isomorphism, so that (£lk(A), p)

is a Riemann domain ;

(iv) for each feA each ¡p e £2fc(4) and each a = (a,, • ■ •, ak, 0, ■ ■ •, 0),

££%) = TO>);
(v) each component of £2fc(4) is a Stein manifold;

(vi) A\ülc(A) is dense in £2fc(4) in the topology of 'uniform convergence on compact sets;

(vii) for k <j < n, &. is constant on each component of £2fc04).

Theorem 2'.  Let A be a stable subalgebra of Q(K) and let X be a

subvariety of an open set in C'  of pure dimension k.  If r:  X—► Sp A  is

one-one and continuous, f ° r is analytic for each  feA and  &• • t is con-

stant for fc</<n,  then  X has no singularities and  t is an analytic isomor-

phism of X onto an open subset of £2fc04).

Corollary 2'. If ¡peSpA then (pe£2fc(4) if and only ifthere are a set WCSp.4,

containing <p, andgerms fx,---,fkeA such that (fx, • • •, fk) is a homeomorphism of W

(in the weak-* topology) onto an open subset of Ck, and ôj\W is constant for k<j<n.

IV.  Point derivations.  If 5 is a commutative topological algebra with

identity, and  \p e Sp B, we recall that a point derivation on  B at  ¡p is a linear

functional  T:  B —► C such that

T(bxb2) = <p(bx)T(b2) + T(bxMb2)

for each bx, b2 e B.   Equivalently, we may identify a point derivation with an

element of the algebraic dual space of (Ker v*)/(Ker <p)2.  As Browder [7], [8]

has shown, there is an intimate and remarkable connection between point deriva-

tions on Banach algebras and analytic structure in the spectrum.  In the present
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context, we have the following result concerning continuous point derivations on

stable function algebras.

Theorem 3. Let A be a stable subalgebra of 0(K), ¡p e Sp A = Sp A,

and let P    denote the complex vector space of continuous point derivations on

A at ip.   Tfien the dimension of V^ (over C) does not exceed n; if ipe £2(4),

the dimension is precisely n.

The proof will utilize the following lemma, which may be proved via a

standard application of Cartan's Theorem B (a similar lemma appears in [22] ).

Lemma. Let M be a Stein manifold of dimension n, let m be a point of M and

let p1,p2,---,pne 0(M), give coordinates at m For each fe 0(M), there are complex

numbers X,, X2, • • • , X„,  and functions gx, • • • ,g2„ + i>hx, '" , h2n+x   in

0(M), each vanishing at m,  such that

f = fim) + ¿X1(juI.-MI(m))+   £   gJu.
i=i /=i

Proof of Theorem 3.   There is evidently no loss of generality in assum-

ing that A   is closed in  0(K). Then f^(A) is closed in  Q(U) for each open

set  U containing K; i.e., Av= {f e 0(U):  fe.4}. If T is a continuous

point derivation on A  at  ip, then  T clearly induces a point derivation  Tu

on Av at  ipy — r*,(ip). Recall from Bishop's theorem [4] that  Sp Av isa

Stein manifold with global coordinate (dx, ■ • ■ , d„), and that Ay = Ö(Sp Av).

Thus if J = kernel tpv, the lemma implies that J/J2  is n-dimensional, as its

dual.  Hence there are  Xx, • • • , X„ e C such that  Tv = ^"=xh(^u ° 9/9a/)

on Av; since  Tw = Tv ° ruv, it follows that the X,-  are independent of the

choice of U.  Since  T is continuous and the natural map A —► A  has dense

range, it follows that the map  T —► (X,, • • • , X„):  V^ —► C"  is well defined,

one-one and linear. Hence the dimension of ß    does not exceed n,  as assert-

ed.

If ip e £2(4),  then the maps g >—* dg(<p)/dô■ (j = 1, 2, • • • , n) ate de-

fined for each g e A, (since functions in A" are uniform limits of functions in

Â, they are certainly analytic on £204))  and are easily seen to be linearly in-

dependent, continuous point derivations on A   at  <p.

Unfortunately, the dimension of P    does not characterize those homomor-

phisms ip which belong to  £2(4), even in the case n = 1.  Hallstrom [13] has

constructed examples in which  dimcl?  = n = 1   for almost all points ip e Sp A

while  £2(4) = 0.

If it could be shown that, for each <p e £204), the space of (not necessarily

continuous) point derivations on 4  at  ^ were finite dimensional, then it would
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follow by results of Browder [8] that  £204) would be an open subset of Sp A

(relative to the norm topology) and that the norm topology and manifold to-

pology would agree on  £2(4).
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