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CONTINUA IN WHICH ALL CONNECTED SUBSETS

ARE ARCWISE CONNECTED

BY

E. D. TYMCHATYN(X.)

ABSTRACT. Let X be a metric continuum such that every connected

subset of X is arcwise connected. Some facts concerning the distribution of

local cutpoints of X are obtained. These results are used to prove that X is

a regular curve.

1. Introduction.  Several attempts have been made to characterize the spaces

in which all connected subsets are arcwise connected, e.g. Kuratowski and Knaster

[l],Whyburn [3], [5], [6] and Tymchatyn [2]. In [10] Mohler conjectured

that if AT is a metric continuum such that each connected subset of X is arcwise

connected, then X is a regular curve. The main purpose of this paper is to resolve

this conjecture in the affirmative.

The reader may consult Whyburn [8, V. 2] for a survey of the properties of

hereditarily locally connected continua and [8, III. 9] for a treatment of local

cutpoints. Our notation follows Whyburn [8]. We collect here some basic defin-

itions for the convenience of the reader. A continuum is a nondegenerate, compact,

connected metric space. A continuum is said to be hereditarily locally connected

if each of its subcontinua is locally connected. A continuum is said to be regular

if it has a basis of open sets with finite boundaries. An arc is a homeomorph of

the closed unit interval [0, 1]. If A is an arc and c, d EA then [c, d] denotes

the arc in A with endpoints c and d.  A subset A of a space X is said to be arc-

wise connected if every pair of points of A can be joined by an arc in A.  A point

p in a continuum X is said to be a local cutpoint or local separating point of X

if there is a connected open set U in X such that U - {p} is not connected. The

term neighbourhood will always mean open neighbourhood. We denote the closure

of a set A by Cl(A).
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2. In this section, we study several conditions that are satisfied by continua

whose connected subsets are arcwise connected. The following theorem has played

a central role in the study of these continua.

Theorem 1 (Tymchatyn [2]). Let X be a continuum such that X = AQ U

Ax U • • • where

(i) A0 is not empty and contains no local cutpoints of X,

(ii) for each i = 1, 2, • • • , A, is a closed set,

(iii) for each i =£/, A, C\ A, is void.

Then X contains a connected set that is not arcwise connected.

Lemma 2. If X is a locally connected continuum such that L, the set of

local cutpoints of X, is totally disconnected then L can be written as the union

of a countable family ofpairwise disjoint closed sets.

Proof.  It is well known (see [8, p. 63]) that L is an Fa. Since L is totally

disconnected it is easy to see that L can be written as the union of a countable

family of pairwise disjoint closed sets.

By a null sequence of sets is meant a sequence of sets whose diameters con-

verge to zero.

Theorem 3. Let X be a continuum such that every sequence of disjoint

subcontinua of X is a null sequence.   Then the following are equivalent:

(a) IfAx, A2, • • • is any sequence ofpairwise disjoint closed subsets of X

and x and y are points that are separated by X- (Ax L) A2 U •••) then some

countable subset of X- (Ax U A2 U • • •) separates x and y in X.

(b) If A is any subcontinuum of X and x, y EA then there is an arc in A

which contains x and y and which contains at most countably many points that

are not local cutpoints of A.

(c) If A is any subcontinuum of X then the set of local cutpoints of A is

not contained in the union of countably many pairwise disjoint closed proper

subsets of A.

Proof,  (a) ■* (c). Suppose (c) fails. Then there is a subcontinuum A of

X such that the set of local cutpoints of A is contained in the union of a count-

able family Ax, A2, • • • of closed, proper, pairwise disjoint subsets of A.  We

may suppose without loss of generality that Ax and A2 are nonempty sets.  Let

x EAX and let y EA2. Since every sequence of pairwise disjoint subcontinua of

AT is a null sequence we may suppose that the A, form a null sequence. It follows

that the decomposition space Y obtained from A by identifying each of the sets

A, to a point is a compact metric space. The image of the set Ax U A2 U • • •
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in Y under the natural projection ir is a countable set. Hence A ~(AX VA2 U •••)

separates x and y in A since Y-ir(Ax UA2 U • • •) separates 7r(.x) from 7r(^) in Y. By

[8,111. 9.41] every set in A - (Ax U A2 U • • •) which separates x and y is un-

countable. In particular every set in X which separates x and y is uncountable.

Thus, (a) also fails.

(b) => (c). Suppose (c) fails. Then there is a subcontinuum A of X such

that the set of local cutpoints of A is contained in the union of a countable family

Ax, A2 • ' ' of closed proper subsets of A.  By Sierpinski's theorem there exist x,

y E A - (Ax U A2 U • • •) and each arc in A which contains x and y contains un-

countably many points of A — (A x U A2 U • • •). Hence, every arc in A which

contains x and y contains uncountably many points that are not local cutpoints

of A.  Thus, (b) also fails.

(c) =» (b). Suppose (b) fails.  Let L denote the set of local cutpoints of X.

We may suppose without loss of generality that there exist x, y E X such that each

arc in AT which contains both x and y contains uncountably many points of X - L.

For each z E X let A(z) = \J{A C X\A is a continuum, zEA and A - L is count-

able}.

By [7, Theorem 34] each A(z) is closed. Clearly, A(z) is also connected.

Define an equivalence relation ~ on X by setting x ~ v if and only if x E A(y).

Since the set of nondegenerate equivalence classes of ~ is a null sequence, it fol-

lows that ~ is a closed relation.

Let it be the natural projection of X onto the quotient space X/~.  X is

hereditarily locally connected since it can contain no continuum of convergence.

Hence, X/~ is also a Peano continuum. A point z € X/~ is a local cutpoint of

X/~ only if it~i(z) contains a local cutpoint of X.  Also, if p is a local cutpoint

of X and A(p) = {p} then n(p) is a local cutpoint of X/~. We shall prove that

the set of local cutpoints of X/~ is totally disconnected. By Lemma 2 it will

follow that the set of local cutpoints of X/~ is the union of a countable family of

pairwise disjoint closed sets and hence the set of local cutpoints of X is contained

in the union of a countable family of pairwise disjoint closed sets. Thus, it will

have proved that (c) also fails.

Just suppose that the set of local cutpoints of X/~ is not totally discon-

nected. Since X/~ is a Peano continuum the set of local cutpoints of X/~ is an

Fa. It follows by the Sum Theorem for dimension zero that the set of local cut-

points of X/~ contains a continuum A.  Then tt~ ' (A) is a continuum in X which

is the union of uncountably many equivalence classes of ~.  Let c, d E ir~1 (A)

such that c fd.  Let Cbe an arc in 7T-1(>1) with endpoints c and d.   For con-

venience, we identify C with the closed unit interval [0, 1] with its usual order

and its usual metric. To prove the theorem, it will suffice to prove that there is
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an arc D C n~ l(A) such that c, d ED and D - L is at most countable.

let AX,A2, • • • denote the nondegenerate equivalence classes of ~. If xEC-L

thènjce^j UA2U'" . Lstmx be an integer such that diameter (Am n Q >

diameter (A, n C) for each i = 1, 2, • • • .   Let c, = min(Am   n C) and

let dx = max (Am l n C).   Let Bx be an arc in Am    with endpoints cx and

dx such that Fj -L is at most countable. Notice that Am   C\ CE [cx, dx] and

for each i = 1, 2, • • • there do not exist a, b EA, n Csuch that a <cx <dx <b.

Suppose Am j, * * * » Amn have been selected and for each / = 1, • • • , «,

Bj is an arc in Am. with endpoints c- and d- such that B, - L is at most countable

and (Am. n C) C [cx, dx] U • • • U [c;-, dj\. Suppose also that there do not

exist fc G {1, • • • , «} and an integer i E {1, 2, • • •} with a, ô G (C n .4,) -

(fci> dx] U • • • U [cn, </„]) such that a <ck <dk<b.  Suppose the intervals

[c,, d,] are disjoint.

If, for each/,  (A¡ DC)- ([cx, dx] U • • • U [cn, dn]) contains at most

one point, then it is easy to check that D = (C- ([cx, dx] U • • • U [cn, </„]))

U Bx U • • • U Bn is an arc in it~l (A) which contains c and d and D - L is at

most countable.

Let us suppose, therefore, that there exists an integer mn + x such that

0 < diameter i(4„H + l ^Q- ([cx, dt] M • .• • U [c» <*„]))

> diameter ((Af nQ- ([cx, d,]U-U [c„, dn]))

for each / = 1, 2, • • • .

Let

cn + x = min((Amn + i n C) -([cx, dx] U • • • U [cn, dn]))

and let

dn + x = max((Amn+i PIC)- ([cx,dx] U • • • U [c„, dn])).

Let Bn + ! be an arc in Am       with endpoints cn +1 and dn+x such that B - L

is at most countable.

Let D = (C - ([cx, dx] U [c2, d2] U • • •)) U Fj U F2 U • • • . For each

positive integer i, ^ n (Z) - ([cx, dx] U [c2, d2] U • • • )) contains at most one

point. Thus, D - L is at most countable.

For each positive integer / let h,-: [c-, dj] —► F- be a homeomorphism such

that hj(c¡) = c¡ and h¡(d¡) = dj. Define h: C —»■ D by

(^        ifjf^ [c* A] for any/,
«(x) = <

¡A/*)    ifxG^,^.].
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Then h is easily seen to be a homeomorphism of the arc C onto D.  Thus D is an

arc in -n~l (A) which contains c and d and D - L is at most countable. Thus,

n(c) = n(d) which is a contradiction.

(c) => (a).  Suppose (a) fails. Then there is a sequence Ax, A2, • • • of pair-

wise disjoint proper closed subsets of X and points x and v that are separated by

X- (Ax U A2 U • • •) such that no countable subset of X- (Ax U A2 U • • •)

separates x and y in X.   Let A = Ax U ,42 U • • • . We shall prove that X con-

tains a subcontinuum F such that x, y E B, no countable subset of B - A separates

x and y in B and F - A contains only countably many local cutpoints of B. Clearly

the set of local cutpoints of B is contained in the union of countably many disjoint

proper closed sets so (c) fails.

We define by transfinite induction a nest of subcontinua Ba) of X as follows:

Let F0 = X.   Let a be a countable ordinal number.  Suppose that for each « < a,

Bn has been defined to be a subcontinuum of X such that x, y E B and no count-

able subset of Bn -A separates x and y in Bn. If, for some n <a,Bn -A con-

tains only countably many local cutpoints of F„, we are done. Suppose, therefore,

that for each n <a, Bn - A has uncountably many local cutpoints of Bn.

Case 1. ais the successor of an ordinal number m.   By assumption Bm - A

contains uncountably many local cutpoints of Bm. It follows from [8, III. 9.21]

that every uncountable set of local cutpoints of a continuum contains a pah of

points that separate the continuum. Thus, there exist aa, baEBm - (A U {x, y})

such that Bm - {aa, ba} is not connected. Let Ba be the closure of the com-

ponent of Bm - {aa, ba} that contains jc and^.  Then, no countable set of

Ba - A separates x and y in Ba.

Case 2. ais a limit ordinal.   Let Ba = On<aBn. We shall show that no

countable subset of Ba - (A U {x, y}) separates x and y in Ba. Let C be a

countable subset of Ba.

Let C' = C U Un<a{an + X,bn+X}. Since C' is countable x and y he in

the same component F of X - C'. There is an arc D in the locally connected,

topologically complete, metric space E with endpoints x and y.  By induction it

is easy to see that D C Bn for each n < a. Hence D EBa- C which implies

that x and y lie in the same component of Ba - C.

Since X does not contain uncountably many pairwise disjoint nondegenerate

subcontinua it follows that for some countable ordinal a, Ba has at most count-

ably many local cutpoints of Ba in Ba - A. This completes the proof of Theorem 3.

Corollary III. 9.21 in Whyburn [8] asserts that if X is a metric continuum

and if G is an uncountable set of local cutpoints of X then there is a countable

subset G0 of G such that every point of G - G0 is of order 2 relative to G - G0.

In particular, there exist a, b EG - G0 such that X - {a, b} is not connected.
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It is easy to see that X - {a, b] has either 2 or 3 components.

If X is as above and C is a connected subset of X then Cl (C) - C contains

at most countably many local cutpoints of Cl (C). For let G be an uncountable

set of local cutpoints of Cl (C). Let a, b EG such that Cl (C) - {a, b} is not

connected. Since C is connected and dense in Cl (C) it follows that C - {a, b} is

not connected. Thus, at least one of a and b is in C and G <£ C1(C) - C.

In order that all of the connected subsets of a regular continuum should be

arcwise connected it is necessary that the continuum satisfy conditions (a)-(b)

of Theorem 3. If X is a regular continuum that satisfies condition (a) of Theorem

3, let y be a connected set in A'.  Let D be a countable dense set in Y and let

a ED.  By Theorem 3 for each d ED there is an arc Ad in Cl(Y) such that

a, d EAd and Ad contains at most countably many points that are not local cut-

points of Cl (Y). By the last paragraph Ad - Y is at most countable. By [7,

Theorem 34] Y U \J{Ad\d E A} is arcwise connected. Thus, there is a countable

set C = \J{Ad - Y\d E A} such that Y U C is arcwise connected.

Question 1. If X is a regular continuum that satisfies condition (a) of

Theorem 3, is every connected subset Y of X arcwise connected?

Question 2. If X is as in Question 1, is every connected Fa in X arcwise

connected? In particular is the set of local cutpoints of X arcwise connected if

it is connected?

Question 3. Let X be a regular continuum such that every pair of separated

sets in X can be separated by á countable set. Is every connected subset of X

arcwise connected?

Theorem 4. Let X be a regular continuum. If C is a connected subset of

X then C cannot be decomposed into countably infinitely many pairwise disjoint

sets that are closed in C.

Proof.   Let C be a connected subset of X.   Suppose C = \J^-XA, where

the A, are pairwise disjoint proper subsets of C which are closed in C.  Since

every sequence of pairwise disjoint connected sets in a regular space is a null

sequence we may suppose the sequence A,) is a null sequence.

Define an equivalence relation ~ on C by letting x ~ y if and only if there

is a natural number i such that x, y EA,. Let -n be the natural projection of C

onto C/~. Now C/~ with the quotient topology is a connected countable space.

We shall obtain a contradiction by proving that C/~ cannot be connected because

it is a countable, Tx, normal space. It is clear that C/~ is a Tx space since

7T-1(p) is closed in C for each p E C/~. It remains to prove only that C/~ is

normal.

Let M and N be disjoint closed sets in C/~. Then tt~ ' (M) and n~ l (N)
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are disjoint closed sets in C.  Since C is normal there exist disjoint open sets U

and Kin C such that it~l(M)EU and tT" '(AOC V. Since the sequence A,) isa

null sequence of closed sets in X it follows that n~ \~n(C - U)) is a closed set in

C which misses n~1 (M). Hence, U-n'1 (ir(C - U)) and V - n~1 n(C - V) are

neighbourhoods of n~1 (M) and ir~ ' (N) respectively whose images under ir are

disjoint neighbourhoods of M and N respectively in C/~.

Corollary 5. A connected subset of a regular continuum has either one

or uncountably many arc components.

Proof. The arc components of a connected subset of a regular continuum

are closed (see [7, p. 334]); hence Theorem 4 applies.

3.   Continua that are not regular.   For the remainder of this section

let X be a fixed continuum that is not regular but which contains no nonnull

sequence of pairwise disjoint subcontinua.

Definition. Let M be a subcontinuum of a continuum X and let x,y EM.

We say M satisfies property P(x, y) if no finite set separates x and y in any neigh-

bourhood of M.

Theorem 6. IfXis a continuum that is not regular then X contains a

connected subset that is not arcwise connected.

Proof. We may suppose as in [2] that X is a hereditarily locally connected

continuum and that every sequence of pairwise disjoint subcontinua of X is a null

sequence. By Lemma 2 we may suppose that for each subcontinuum F of X the

set of local cutpoints of F is not totally disconnected.

Let a E X such that X is not regular at a. Let M denote the set of points

of X which cannot be separated from a by a finite set in X.   By Whyburn [8,

V. 4.4, 4.5] M is a nondegenerate continuum.  By Whyburn [8, III. 9.2] at most

a countable number of points of M are local cutpoints of X.

The first three claims can be proved by contradiction. The proofs are straight-

forward and are omitted.

Claim 1. M satisfies P(a, b) for each b EM- {a}.

Let b EM- {a}. Let Mx)XlEA be a maximal nest of subcontinua of M

each of which satisfies property P(a, b) and let Pab = f\eAMx. Then Pab is a

continuum which is irreducible with respect to satisfying P(a, b), for if U is a

neighbourhood of Pab then Mx C U for some X G A and hence no finite set separ-

ates a and b in U.  We shall describe in great detail the structure of the continuum

Pab-
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In [2, Theorem 6] the author considered the case where Pab is an arc. To

see that Pab may be quite complicated let y be the continuum constructed in the

proof of Theorem 6 in [2]. Then Y = A0 U Ax U A2 U • • • where Ax, A,'"

are pairwise disjoint arcs and A0 is also an arc. Let Z be the decomposition space

obtained from Y by contracting A, to a point for each i = 1, 2, • • • . Then Z =

Pab where a and b are the endpoints of the arc A0.

Claim 2.  Ifc.dE Pab then Pab satisfies P(c, d).

Claim 3. // U is a neighbourhood ofxEPab such that b$U then there

is a point c in the boundary ofU and a continuum P C Pab - Usuch that P

satisfies P(b, c).

If x E Pab is not a local cutpoint of X and Q and F are continua in Pab

which satisfy P(a, x) and P(x, b) respectively then F U Q is a continuum satisfying

P(a, b) and so F U Q - Pab by the irreducibility of Pab.

Claim 4. //x G Faft - [b] then there exists a proper subcontinuum of

Pab which satisfies P(a, x).

Proof.  Suppose the claim is false. Let x EPab - {b} such that no proper

subcontinuum of Pab satisfies P(a, x).

If U is any neighbourhood of b in Pab then Cl (U) - U contains at most

countably many local cutpoints of Cl(U) by the argument following Theorem 3.

If U is connected, then by Lemma 2 there exists an arc / of local cutpoints of

Cl (U). Now / intersects the boundary of U in a set that is compact and at most

countable so U contains an arc of local cutpoints of U and hence of Pab.

By the last paragraph, there exists a sequence I,) of pairwise disjoint arcs

in Pab - {b} such that lim sup I, = {b} and for each i = 1, 2, • • • each point of

I, is a local cutpoint of Pab.

Let c, and d, be the endpoints of/,-. Since Pab contains only countably

many local cutpoints of X we may suppose c, and d, are not local cutpoints of X.

By the argument following Theorem 3 we may suppose that c, and d, are points

of order 2 in Pab, that c, and d, separate Pab into either 2 or 3 components and

that the component K, of Pab - {c,, d,} which meets I, contains neither a nor b.

By Whyburn [3, §4] we may suppose that every point of/,- - [c,, d,} disconnects

K,. Let (by [8, III. 9.21])z. El, - {c,, d,} be a point of order 2 in Pab such

that z, is not a local cutpoint of X.  Then z, separates K, into exactly two com-

ponents.  Finally, we may assume that the sets K¡) are pairwise disjoint.  For

each i let U, be a neighbourhood of K, such that Cl (U¡) n Cl (Uj) is empty for

i #/.  Notice that C1ÍF,) = K, U {c,, d,}.
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By Claim 3 there is a component F of Pab - K, such that F satisfies either

P(a, c¡) or P(a, d,). We may suppose without loss of generality that F satisfies

P(a, c,). Since c, is not a local cutpoint of X it follows that F does not satisfy

P(c,, b) for otherwise F would be a proper subcontinuum of Pab which satisfies

P(a, b). By Claim 3 it follows that there is a component Q of Pab - K, such that

Q satisfies P(d,, b). Let Pac. C F and Pd.b EQ be continua which are irreducible

with respect to satisfying P(a, c¡) and P(d¡, b) respectively. If Pac. n Pd.b is in-

finite let U be any neighbourhood of Pac. U Pad.. Let A be a finite set in Í7 and

let x E (Pac¡ n Pd.b) - A.  By Claim 2, Fac. satisfies F(a, x) and Fad. satisfies

F(x, b). Since Í/ is a neighbourhood of both Pac. and Fad , A does not separate

a from x or jc from ô in C/.  Thus ^4 does not separate a from b in £/ and so

Fac. U Fd.& is a proper subcontinuum of Pab which satisfies P(a, b). With this

contradiction we conclude that Pac. n Pdb is finite.  A similar argument can be

used to show that every point of Pac. n Fd .ô is a local cutpoint of X.

By using the facts that Pab - K, does not satisfy P(a, b) while Pab satisfies

P(a, b), that C1(F,) - K, = {c,, d,} and that c, and d, are not local cutpoints of

X one can easily prove by contradiction that C1(F() satisfies P(c,, d,). Since c,

and d, are not local cutpoints of X it follows from the remark following Claim 3

thatF^F^UF.-UF^.

Since z, separates c, and d, in C1(F() it follows from Claim 3 that C1(F()

satisfies P(c,, z¡). Since c, is not a local cutpoint of X, Pac. U C1(F,) satisfies

P(a, z¡). Let Paz. E Pac. U C1(F() be a continuum which is irreducible with respect

to satisfying P(a, z,).

Since b $ Pac. U Cl(K,) we may suppose that, for each i, z,+x E Pd.b.

Hence, C1(F/+1) C Pd.b. By Claim 2 we may suppose that Pa,+Xb c Pd¡b ~^i+i-

It now follows that Pa'z. C Pac. U C1(F(.) C Pac.^ C Faz/+1.   '

Since Pab is irreducible with respect to satisfying P(a, x) it follows that

x £ Paz. for each i but x G lim sup Faz. = Pab. We may suppose that for each i

there is x, E P     - Faz._   such that lim x, = x.   Since Faft contains at most

countably many local cutpoints of X we may suppose each x, is not a local cut-

point of X.

For each i = 2, 3, • • • there is a continuum Frf.   ,-., , C Pd.   , ■, H F
"t-i'i+i       "i—1°      aci+i

such that Pd._xc     is irreducible with respect to satisfying P(d,_x, c,+ x). Notice

thatx,, z(.GFd._lc.+1.

For each i let W, be a neighbourhood of Pab - K, and ^4,- a finite set such

that A, separates a and b in W, and H//+ • C W, U £/,. for all i, / = 1, 2, • • • .

Since x, and zf are not local cutpoints of X we may suppose that x¡, z, £ Aj for

all i and /. Note that for / = 1,2, • • • , z,+j and x/+;. lie in the component of W,-A,
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which contains b and, for; = 1, ••♦,«- 1, z,_, and x,_.- lie in the component

of W, - A, which contains a.

For each i = 2, 4, 6, • • • , /></._lC(.+1 E Wx n • • • n W, n W,+ x so there

exists an arc C¡ joining x, to z, in (Wx C\ • • • D W,_x n W,+ x) - (Ax U • • • U

A¡_ x U Ai+ j).  The arcs C, are pairwise disjoint by construction. This contradicts

our assumption that every sequence of disjoint subcontinua of Xis a null sequence.

The claim is proved.

Claim 5. If x EPab then there is a unique continuum Pax (resp. Pxb) in

Pab which is irreducible with respect to satisfying P(a, x) (resp. P(x, b)).

Proof.  Just suppose A and B are two subsets of Pab which are irreducible

with respect to satisfying P(a, x). Let y EA - B and let z E B - A such that y

and z are not local cutpoints of AT.   Let Pyb E Pab be a continuum which is

irreducible with respect to satisfying P(y, b). By the remark following Claim 3

Pab = A U Pyb thus zEPyb. By Claim 4 there exists a continuum Pzb C P' b -

{y} such that Pzb satisfies P(z, b). Thus, B U Pzb is a proper subcontinuum of

Pab which satisfies P(a, b). This is a contradiction.  The claim is proved.

Claim 6. Ifx, y E Pab then either Pax C Pay or Pay C Pax.

Proof. Suppose Pax £ Pay and Pay </L Pax. By Claims 2 and 5,x £ Pay

and y ^ Pax. Since Pab contains at most countably many local cutpoints of AT,

we may suppose x and y are not local cutpoints of X.

Since Pax U Pxb = Pab, yEPxb. By Claim 4, Pyb £ Pxb. Thus, x £ F^

and Pa>, U Pyb is a proper subcontinuum of Pab which satisfies P(a, b). This

is a contradiction.  The claim is proved.

Let 2p"b denote the space of closed subsets of P 6 with the Hausdorff
P    h

metric topology.  Let C denote the closure in 2 aD of {Pax\x EPab).

Claim 7. C is homeomorphic to the closed unit interval [0, 1].

P   h
Proof.  2      is a compact metric space that is partially ordered by inclu-

P   h
sion. This partial order is a closed relation on 2     .  Since C is compact, we

need only prove that C is connected and totally ordered under inclusion (Ward

[9])-
Let C E C. We start by showing that if x EC then Pax C C.  For let x,)

be a sequence in Pab such that Pax) converges to C in C. If, for arbitrarily

large i, x E Pax. then Pax C Pax. for all such i by Claims 2 and 5 and hence

Pax C Urn sup Pax. = C.  If, on the other hand, Pax. C Pax for arbitrarily large

i and if U is a neighbourhood of C such that a and x can be separated by a finite
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set in U, then for some sufficiently large i Pax. can be separated in U by that

same finite set. This contradicts Claim 2. By Claim 6, these are the only two

cases we need consider. Thus, x EC implies Pax C C.

Let C, D G C such that C$D.   Let x G C - D such that x is not a local

cutpoint of X and let y ED.  Then x £ P    since Pay C £>.   By Claim 6 yE

Pax C D.  Thus DEC and C is totally ordered by inclusion.

If C is not connected then there exist C, D E C with CE\D such that for

each EEC either F C C or D C F.  Now, Z) - C contains at least two points x

and y such that x and .y are not local cutpoints of X.  Then Pax = Fa;; = D.  By

Claim 4x =y.  With this contradiction we conclude that C is connected. The

claim is proved.

Claim 8. Ifx,) is a sequence in Pab such that the sequence Pax) converges

in C then x¡) converges in Pab.

Proof.  Just suppose that x,) and y¡) are two sequences in Pab which con-

verge to x and y respectively such that the sequences Pax.) and Pay.) both con-

verge to C E C. We may suppose that, for each i, x() and y¡) are not local cut-

points of X and neither sequence is constant.

By Claim 6 we need to consider only three cases.

Case 1. For each i, Pax. C Pax.     and Pay. C Pay.    . If, for each i and

/, Pa    C Pay then C = Pay   and the sequence y,) would have to be constant.

We may suppose, therefore, that for each i Pax. C P     CPax     . As in the

proof of Claim 4 if y E Pax. n Px.b and y is not a local cutpoint of X then

7 = x¡. Since Paft contains at most countably many local cutpoints of X, P     n

Px.b is at most a countable set.  Since Pay,_x Í Pax- ^ follows that Pa& -

(Px b U Paj,,_j) is a nonempty open subset of Pab which is contained in Pax..

As in Claim 4 there exists an arc I, of local cutpoints of Pab such that F, C Pab -

(Px .b U Pay._ ) C P     - Pa>,._ . Now construct as in Claim 4 a sequence ^4f)

of pairwise disjoint arcs such that for each i x¡, y, E A,. Since every sequence of

disjoint continua in X is null, x = y.

Case 2. For each i Pax. D Pux.+ i and Pay. D Pay¡+1.

Argue as in Case 1.

ase 3. For each i Pax. C Pax¡+, and Pay. D Pa,f+,. Then Pax¡ C FaJ)/

for each i and /. Let C be a neighbourhood of x in Pab such that the boundary

of U contains no local cutpoints of X and y $ U.   For each i let zt- EPx.y n

(boundary of Í/). Then, Pax.. C Paz  C Pay. so that hm Faz. = C.

If for some subsequence z¡) Paz¡. c¿ Paz/.     for each /, then we are in

Case 1 with the sequences x.) and z,.). If for some subsequence z.-.) Paz. ^.Pazi
1 I '; 7 + 1
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for each ; then we are in Case 2 with the sequences z¡) and y¡).   If the

sequence z¡) contains a constant subsequence we may suppose z, — z for

each i.    Let w¡) be a sequence in Faz which converges to z.   Then limP

= Faz = C.    We may now apply Case 1 to the sequences w¡) and x().

The claim is now proved.

We are now in a position to adapt the proof of Theorem 6 in [2] to the

continuum Pab.

We shall attach to Pab an infinite sequence of pairwise disjoint closed sets

A, such that no pair of points of Pab can be separated by a finite set in Pab U

OJA,).
Let « be a homeomorphism of the closed unit interval [0, 1] onto C such

that «(0) = {a} and «(1) = Pab. Define /: [0, 1] —* Pab by letting

jx, Xh(r) = Pax,
/v) ■ {

( lim x,,   if h(r) = Um Pax¡.

By Claim 8 /is a continuous function. Notice that if x EPab is not a local cut-

point of X then /~ * (x) is a singleton.

If A is a set in X and e > 0 we let S(A, e) denote the e-neighbourhood of

AinX.

By the proof of Claim 4 if r G [0, 1], then h(r) = {/(/■)} U (\J{h(s)\ s <r}).

Let 0 < r < 1. For e > 0 there exists, by the proof of Claim 4, 5 > 0 such

that r < s < S + r implies h(s) E h(r) U S(f(r), e).

Let Yr = \J{Pxb\xEPab - h(r)}. Let r,) be a sequence in [0, 1] which

is strictly decreasing to r such that, for each i, f(r¡) is not a local cutpoint of X.

It can be shown as in the proof of Claim 4 that Yr = UFy(r.)ö and Yr U {/(/•)}

is compact.

If 0 < s < 1 and U is any neighbourhood of h(s) then no pair of points of

h(s) can be separated in U by a finite set. We may suppose therefore that either

for each i there exist c,, d,E [0,1] with c,<r< d, such

(1) thatf(c,) = f(d,) E (h(r) nfrn S(f(r), I/i)) - {/(/•)}, or

. for each i there exists an arc C, C S(f(r), 1/i) such that
If)

C, n «(1) consists precisely of the two endpoints of C¡,

(2) one endpoint of C, is in h(r) - {f(r)} and the other is

in «(1) - h(r). The arcs C, may be taken to be pairwise

disjoint.

Suppose (1) holds.  Let E, = {/(c,)}. We wish to show that Urn c, = r.

Just suppose that for each i c,<s<r.  Then h(s) U Yr is a continuum in Pab
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which satisfies P(a, b). If s < t < r and f(t) is not a local cutpoint of X then

f(t) ^ h(s) U Yr. This contradicts the assumption that Pab is an irreducible con-

tinuum with respect to satisfying P(a, b). Thus, Urn c, = r.   Similarly, lim d, = r.

Now suppose (2) holds.  Since every sequence of disjoint subcontinua of X

is a null sequence, there exists a sequence ef) of positive numbers converging to

zero such that if D, is the component of [£(«(1), e,) U C¡] - h(l) which meets

C, then D, n D= 0 for i ^ / and the diameters of the D, converge to 0.

Let M, = Cl(D,) n («(/•) - {/(r)}) and N, = C\(D,) n (Yr - {/(r)}). If

M, (resp. N,) has an isolated point let c, (resp. d,) be an isolated point of M,

(resp. N,). If M, (resp. N¡) has no isolated points let c, = inf {s G [0, 1] \Cl(D¡)

n h(s) is uncountable} (resp. d, = sup {s G [0, 1] \C\(D¡) n Pf^b is uncountable}).

Then «(c,-) D C1(F»,) is at most countable.

As in (1) lim c, = lim d, = r.  Let F,. be an arc in D, U {cf, d,} with end-

points c,- and d,.

We wish to prove that for each e > 0 and each s G [0, 1] either

(**) (Ks) KYsn S(f(s), e)) - {/(s)} * 0

or there exists an arc in S(f(s), e) - E, which joins h(s) to «(1) - h(s). We need

only consider s G [0, 1] such that f(s) = f(c¡) or f(s) = f(d,).

Clearly, (**) is satisfied if both M, and N, have an isolated point. Suppose,

therefore, that M, does not have an isolated point.  Let s G [0, 1] such that

f(s) = f(c,) and suppose e > 0 is given such that

(h(s) C)Ysn S(f(s), e)) - {/(s)} = 0.

By (*) there is a sequence of arcs F;. C S(f(s), e) - {/(s)} which join h(s) to

«(1) - h(s) such that hm F;. = {/(s)}. Let e¡ and ff be the endpoints of F¡. We

may suppose F¡ n «(1) = {e^, f¡) where e{- E h(s) and f¡ G «(1) - h(s).

Just suppose that for each ; E, n F;- ̂  0. Then each e¡ E Cl(D¡). By the

choice of c, and by the assumption that M, is a perfect set each neighbourhood

of e- contains uncountably many points of Yc.. Since Yc¡ U {/(c,)} is compact

e¡EYc.. Ifs<c¿then

e¡ g («(s) nysn S(f(s), e)) - {/(s)}

which is a contradiction. If c,- < s then for each / let e, G [0, 1] such that

f(e'j) = e¡. We get as in (1) that lim e'j = s and hence eventually e¡ EYS- h(c¡)

which is again a contradiction. We conclude that for all sufficiently large ;

E, n Fj =0. Thus, (**) is satisfied.

If there exist c<Vi<d such that f(c) = f(d) E 5(/(%), 1) - {/(^)} let

CQi, 1) = {/(c)}. Otherwise, let C(lA, 1) be an arc in S(h(l), 1) with endpoints
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f(c) and /(cf) where V*<c <lA<d <3á and CQá, 1) is obtained as was E, above.

Let Ax = CQÁ, 1). Suppose Ax, • • • ,An_x have been constructed to be

pairwise disjoint closed sets such that for each i = 1, •••,«- 1

(i) yly is the union of a finite number of arcs and points each of which was

obtained as was E, above,

(ii) for each a G [1/2', 1 - 1/2'] there is a component C of A, such that C

meets both/([l/2'', a]) - {f(a)} and f([a, 1 - 1/2']) - {f(a)},

(iii)Pab nA,DPab - /([0, l/2'+1] U [1 - l/2'+2, 1]).

For each x G [1/2", 1 - 1/2"] let C(x, n) C S(h(l), 1/2""1) - (¿, U • •«

u -4n_i) be an (possibly degenerate) arc chosen as was E, with endpoints f(c(x, rij)

and f(d(x, «)) where 1/2" + * < c(x, «) < x < d(x, «) < 1 - 1/2" +1, C(x, «) minus

its endpoints lies in X - h(l) and C(x, «) satisfies (**). The set of open intervals

]c(x, n), d(x, n)[ such that x G [1/2", 1 - 1/2"] is an open cover for the compact

set [1/2", 1 - 1/2"] hence there exists a minimal finite set {Xj, • • • ,xk} C

[1/2", 1 - 1/2"] suchthat

]c(xx, «), d(xx, ri)[ U • • • U ]c(xk, «), d(xk, «)[

covers [1/2", 1 - 1/2"].  It is clear that conditions (i)—(iii) are satisfied for «.

Let An = C(xx, ri) U • • • U C(xk, ri).

Let Y = Pab U Ax U A2 U • • • . Since every sequence of disjoint subcon-

tinua of A!" is a null sequence y is a continuum.

To prove that Y contains a connected set that is not arcwise connected it

suffices by Theorem 1 and the fact that Pab contains only countably many local

cutpoints of X to prove that if z is a local cutpoint of Y then either z G A, for

some i or z is a local cutpoint of X.  Let z G Pab such that z is not a local cut-

point of X and z ^ A, for any i. It follows from the fact that/_1(z) is a single-

ton that if U is any connected neighbourhood of z in Pab such that U - {z} has

more than one component then U - {z} has exactly two components one of which

is contained in {f(y)\y </_1(z)} and the other is in {f(y)\f~l(z) <y}. It

is now easy to see that z is not a local cutpoint of Y and the theorem is proved.
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