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STABLE THICKENINGS IN THE HOMOTOPY CATEGORYÍ1)

R. L. CHAZIN(2)

ABSTRACT. This paper extends the result that the set of stable thickenings of a simply-

connected complex K are in 1-1 correspondence with [K, BQ] (Q = O, PL, or TOP).

which holds in the smooth, PL, and topological categories, to the homotopy category.

In this paper we consider the notion of thickening (introduced by Mazur and

Wall [14]) in the homotopy category. The main result is the following:

Theorem 1. Let K be a finite, pointed, 2-connected Poincaré complex. Then there

is a natural map r: 0{K) -* [K, BG] which is a bijection.

niHere 0{K) denotes the set of stable thickenings of K, and BG = lim BGn

where G„ is the group of homotopy equivalences of S"_1. As is well known [12],

[K, BG] is in 1-1 correspondence with stable fibre-homotopy equivalence classes

of (stable) spherical fibre spaces over K.

A theorem of this kind has been established in the difierentiable category by

Mazur, in the PL category by Wall [14] and in the topological category by the

author [5].

It is probable that a theorem of this kind holds without the connectivity

hypothesis. Such a theorem would follow, for instance, if we had a nonsimply

connected version of Browder's theorem [2, 1.4.1] that the inclusion A C X of a

Poincaré pair (A', A) is a spherical fibration.(3)

1. Preliminaries. We work in the homotopy category of pointed topological

spaces and homotopy classes of base-point preserving maps.

Let K be a finite, simply-connected CW complex of dimension k with base-

point *, and (M, 3M) a Poincaré pair of dimension m, and base-point * G 3M.(4)

Then a (Poincaré complex-, or homotopy-) prethickening of K will be a base-point
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preserving homotopy equivalence <p: K -* (M, 9 M ), where w > k + 3. We will

denote the codimension of K in M by « = m — k.

Two prethickenings (A/.,(p.) and (A/2,<p2) will be said to be equivalent if there

is a homotopy equivalence of pairs h: (A/¡,9Mi) -* (A/2,9M2) such that the

following diagram commutes:

_.(*!. W|>

*2
*(M2> 9M2>

A Poincaré complex, or homotopy /w-thickening, or briefly, a thickening, of K

will then be an equivalence class of prethickenings. In this paper we work only

in the homotopy category and all thickenings will be Poincaré complex or

homotopy thickenings unless otherwise stated.

This definition is slightly different from Wall's definition for the smooth or PL

cases as we have imposed the requirement of simple connectivity. This is made

necessary by the lack of a suitable embedding theorem for non-simply-connected

Poincaré complexes.

We now consider splittings and embeddings of Poincaré complexes. A splitting

of a Poincaré complex M" is a pair of Poincaré complexes (Aj", 9 A¡"), (A^, 9 A^")

such that 9 Aj = 9 N2 = A7, n N2 and a homotopy equivalence <p: M -* A¡ U A^.

This idea extends in the obvious way to splittings of Poincaré pairs.

Following [8], let Kk be a CW complex and M"a Poincaré complex, and let

/: Kk -* M". Then/is said to be homotopic to an embedding if there is a splitting

{(Ar1",9Ar1"),(A'2'',9AV,),(p} and a homotopy equivalence h: Kk -» A¡" such that

"*->M"

A^ ÇA7? UA^

is homotopy commutative, and such that the inclusion 9 AI" Q N" is (n — k — 1)-

connected. For details, see [9, §2], or [15, Chapter 11]. Levitt [8, 3.1] gives the

following embedding theorem, with the usual restrictions on Poincaré complexes

(which we shall omit, preferring, as in [10], to regard them as part of the

definition):

Theorem 2 (Levitt). Let (Mn,dMn) be a simply-connected Poincaré pair, Kk a

CW complex, n > 2k + 2, andf: Kk -* M". Then fis homotopic to an embedding.

By using this theorem, we can construct an induced map on thickenings:

Proposition 3. Let Kk, Ll be finite, pointed, simply-connected CW complexes and
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/: Kk-* L'a map. lfm > 2k2, 21 + 2, then f induces f* : Um(Ü) -> <3m(Kk).

Proof. Let (M,<p) be a thickening of L; then <pf: Â" -» M. Applying Levitt's

theorem to <p/, we obtain as part of the resulting splitting of (A/",9M") a

Poincaré complex (A¡,9Ai) and a homotopy equivalence h: A"-» (A¡,9A¡) so

that the following diagram is homotopy commutative:

Kk->Ll

N" Ç.lf[ UA^ <—:=—*Mm

Then (A7,, h) is the required thickening of K.

Although the preceding construction requires a severe restriction on the

dimension of M, this will not cause us any difficulty since we will be working in

the stable range.

Now let /: Kk -» *. / induces /*: <Jm(*) -+ <Jn(K). Dm e <Jm(*); by the

trivial w-thickening we shall mean/*(£)"*). We denote this thickening by K0.

Note that if/: Kk —► Ll is a homotopy equivalence and m > 21 + 2,2m + 2,

then/*: Um(U) -> <3>{K') is a bijection. In particular/*: <3m(Kk) -+ ,Jm(K0)

for m sufficiently large.

Stable thickenings. As usual we have the suspension map

By Levitt [8], 2m is an isomorphism for m > k + 2. We let 0{I<C) denote the

common stable value; C7(â) will be called the set of stable homotopy thickenings

OÏK.

Note that in establishing the existence of 0[K), Levitt's result enables us to

dispense with a homotopy analogue of Wall's suspension sequence [1, §5]. No

such analogue exists at the present time and it would be interesting to determine

if one does, indeed, exist.

2. Proof of Theorem 1. We now define maps ^, 4> as follows, with

<J(K)^[K,BG].

To define *, let (Mm,y) be a prethickening of K. As (Mm,dMm) is a Poincaré

pair, there is a unique (up to stable fibre-homotopy equivalence) Spivak normal

fibration v and hence a classifying map c, : M -* BG, unique up to homotopy.

Furthermore, as is well known, [K, BG] is a group, so inverses are defined, and

—c, = c_,. Define >H[M, yD to be the homotopy class of the map c_ry

G [K,BG]. ¥ is well defined since varying (M, y) by an equivalence only varies

yc_, by a homotopy, so that S^ is well defined.

To define $, let (K0,a) be a trivial thickening of K and ß a homotopy inverse
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for a. Let/ = /{ G [/{] G [K,BG] be associated to the spherical fibration £ over

K. Form the associated "disc fibration" f over K by "coning each fibre" [1,

Appendix]. This is a construction analogous to forming the disc bundle associ-

ated to a sphere bundle. Let n be the zero section; (E¿, ¡i) is then a thickening of

K, and we define $([/{]) = [(.£f,/t)]. Note that using ß we also obtain a

thickening of K0 by forming (E',¡i) = ß*(Ec,n). This will figure in the sequel.

$ is well defined, since if we vary/{ by a homotopy, f varies by a fibre homotopy

equivalence mod boundaries and hence we obtain equivalent thickenings.

Note that since K and K0 have the same homotopy type, two fibrations tjI( ij2

are fibre-homotopy equivalent over K iff their induced fibrations /?*tji, ß*ij2 are

fibre-homotopy equivalent over KQ.

For the proof of the theorem, we first prove that i>^ = 1. By analogy with the

difierentiable case we have:

Lemma 4. Let (X, Y) be a Poincaré n-pair, and v the normal fibration ofX, v' the

normal fibration of Y. Then if i: Y C X,

i*v~s{{i*v) * \)~~sv'.

Remark. Here * also indicates join, and ~s denotes stable fibre homotopy

equivalence.

Proof. The first relation follows by stability. We use Browder's version of Wall's

statement of the uniqueness of the Spivak normal fibration, according to which, given

a Poincaré «-pair (X, Y), we obtain a normal (k-l) spherical fibration v over Xand an

element a G nn+k(T(v), T(y\Y)) such that h(a) DU= [X] GHn(X, Y), where « is the

Hurewicz homomorphism, U is the Thorn class of v and T denotes the Thom space.

Then v is unique up to some fibre homotopy equivalence b, and T(b) sends a1 onto

a2. (See [2,1.4.19] for details.) The desired result then follows by checking that com-

mutativity holds in the diagram:

-> *n + k(m)-► «n + kV<y\ T(y\Y)) -?- ffa + ̂ irOI Y))-► »•

-► Hn+k(T(y))-> H   k{T{v), T(y\Y)) -Í-» "     _l(r(H Y))-> -

\nu Insu

Hn(X, Y)->Hn_¿Y)

Note that in the bottom row [X] -* [Y]. Since v \ Y and v' both satisfy

«(!) ní/-[í1e //„-.(n

the assertion follows from the uniqueness theorem. We now apply the result of

Sutherland [13]:

Proposition 5 (Sutherland). Let M be a finite I-connected CW complex over
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which there is a reducible sphere fibering v. Let m: B -* M be the projection of a q-

sphere fibering £ (q > 1) and let y be a negative for £. Then the sphere fibering

ir*(y * v * 1) over B is reducible.

Proof. By the original uniqueness theorem of Spivak, this means that

w* (ij * v * 1) is the normal fibration of B. We apply this to the fibration

E' = jß*£f over K0 defined above. Let it be the projection of E'. Sutherland's

result then asserts that v(dE') is 7t*(tj * v(Kq) * 1), where tj is an inverse for

9£" -* Kq, and t>(K0) is the normal fibration of K0, which is trivial. Computing

$(v(E')) (and hence $(£f)) amounts to computing the classifying map of —v{E').

Since 1 and v(K0) are trivial, and using Lemma 4, this is equivalent to c_,, which

is homotopic to c^, and we have the following commutative diagram:

(9F* |£")

where D( is a zero section for E' -* K0.

Thus í>^ = 1, $ is 1-1 and ty is onto.

It remains to prove, for instance, that $ is onto. Let (Mm,y) be a thickening

of K. Using the path fibration c of [11, 2.8.9] (relativized) we can replace

(Mm,9Mm) by a homotopically equivalent pair ((M"",dM'm),y'), which is a

thickening, and such that the homotopy inverse m' of y' is a fibration. Thus we

may assume that (Mm, 9Mm) itself is a fibration; we have

(M™, dMm)

Let (F,dE) be the relative fibre. Applying the homotopy sequence of the

fibration

• - • ^ ^(M"1) -» *„(*) -> 7v,(F) - v,(M") -» ^..(AT) ^ • • •

we find that all homotopy groups by F vanish and hence that F is contractible.

It remains  to  show  that  9F = F n 9M is  actually  a  homotopy  S"~

(m = n + k). We do this using a relative Serre spectral sequence with

E^ = Hp{K,Hq{F,dF))

and F00 = subquotients of H„(M, 9A/). We must show that
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Hj(F,dF) = 0,       j¥=n,

= Z,      / = n.

Using the exact homology sequence of (F, ó\F) it then follows that 9F is a

homology S"~l.

Lemma 6. Hj{F, 9F) = 0,/ < n.

Proof. A" is simply connected and dim K = k; so

Hj(M,dM) « Hn+k~J{M) = Hn+k-J(K) « 0,    if/ < «.

Let J be the first index > 0 such that HS{F, 9F) =t 0. Then

F¿? = H0(K,Hq(F,dF)) sé Hq(F,dF)

(coefficients in a field). For the differentials we have, with p = 0,

pr </f.    ET        </'       ET

^r,q-r+l * ^0,0        ' ^-rtf+r-1 •

The right-hand group is always zero, as F is a first quadrant spectral sequence.

For q < s, F,??_f+1 is zero; hence F,f?_r+i is 0 for r > 1, and all differentials

vanish,  so  that  E¿q ^ E™q.   In  particular,  for  q = s we  obtain  0 ¥= E™,

Q Hs(M,dM) and the latter group is zero for s < n, a contradiction.

Next consider //„(F, 9F). We have E^ = H„(F, 9F), and differentials

fr d'^   jpr      </'     ET
r.n-r+1        ' •C'O^i        * ^-jyi+T—1 •

As before, the right-hand group is always zero. For the left-hand group we look

at F^„_r+1. This is always 0 for r ¥= n + 1, since in that case Hn_r+l(F,9F) = 0.

For r = n + 1 we have

E^U0 = Hn+l(K,H0(F,dF))

= 0,   since « + 1 » dim K.

Hence all differentials vanish and

H„(M, 9A/) = E& = F¿, a //„(F, 9F).

But Hn(M,dM) ss Z/*^) = Z. Hence H„(F,dF) = Z and i/„_i(9F) = Z so

that 9F is a homology (n — l)-sphere.

Finally, H¡(F,dF) = 0 for / > n. For, by finite dimensionality, (F, 9F) has a

highest dimensional nonzero homology group, say, in dimension q. Now consider

the spectral sequence with El+2iq-\ ~* Ek,q ~* Ek-2,q+\- The right-hand group is

Hk-2(K,Hq+i(F,dF)) and hence is zero; the left-hand group is Hk+2(K,Hq(F,

9F)) and is zero as K is ¿-dimensional. Hence, the middle term survives to F°°,
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and gives a nonzero summand for the right side of the equation

dim Hr{M, 9M) = 2 ££

where the summation is carried out for p + q = r. Since by definition of q,

k + q > m, we get the required contradiction.

It remains to prove that 9F is simply connected; it will then follow from the

Whitehead theorem that 9F is a homotopy (n — l)-sphere.

Consider the homotopy ladder of the fibration

(M, ÖM)

(F,3F)

We obtain

••• -* 7T2(F) P$

7T2(3F) —> 7T2(dM) —+ TiJK)

Pt
"200 -r* ffj^ —" ffi^ —" fiW ~   fiW

By hypothesis, we have w¡(3A/) = ^(A)

gives w,(3F) = 0. This completes the proof

■n^F)—tit^M)—fir^K)^- •••

0; so 9 is onto. Then tr2(K) = 0
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