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ABSTRACT.   Weak maps of combinatorial geometries are studied, with

particular emphasis on rank preserving weak bijections.   Equivalent conditions

for maps to be reversed under duality are given.   It is shown that each simple

image (on the same rank) of a binary geometry G is of the form GIF © F for

some subgeometry F of G.   The behavior of invariants under mappings is studied.

The Tutte polynomial, Whitney numbers of both kinds, and the Möbius function

are shown to behave systematically under rank preserving weak maps.   A weak

map lattice is presented and, through it, the lattices of elementary images and

preimages of a fixed geometry are studied.

1.  Introduction.  In the field of combinatorial geometry strong maps have

been widely studied ([7], [8], [11], [12] ).  This paper examines the related

concept of weak maps [7]. Weak maps are generalizations of strong maps. The

weak maps which preserve rank are, however, "orthogonal" to strong maps in

the sense of §4 and are singled out for special study in later sections.

In §4 we show that every weak map has a decomposition into an alterna-

ting sequence of rank preserving weak maps and truncations. We also give nec-

essary and sufficient conditions for maps to be reversed under duality.

§§5, 6, and 7 deal with properties preserved by weak images and pre-

images.   §5 describes the action of rank preserving weak maps on circuits, flats,

and minors.   §7 shows how rank preserving weak maps affect the Tutte poly-

nomial of a geometry and various derived invariants, such as the Möbius func-

tion and the Crapo invariant.   §6 discusses maps of binary geometries. These

turn out to have a particularly simple form.  Indeed, any simple (i.e. minimal)

rank preserving image of a binary geometry G is of the form GIF @ F for some

subgeometry F of G

In § 8 weak and strong maps are related by viewing the lattice of modular

cuts in a weak map context. Weak map extensions are discussed and the re-

lation of the weak map partial order to the Higgs lattice order is described.
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2.  Basic concepts.  The material in this section is widely known and is

therefore stated here without proof.  A reader who would like a detailed exposi-

tion of these topics should consult [7] or [2].

A combinatorial pregeometry G is a finite set X, whose elements are called

points, together with a family í G of subsets of X which are called the indepen-

dent sets of G and satisfy these axioms:

(1) 0elG.

(2) If / G ÏG and /' C / then /' 6 7G.

(3) If Ix and I2 are in IG and I/, I = \I2\ ~ 1 then there is a point p GI2

such that/j Up G TG.

Maximal independent sets of G are called bases.   8G will represent the set

of bases for G. Dependent sets of G are those subsets of A!" not in JG. Minimal

dependent sets are called circuits.   CG will represent the set of circuits of G.

The rank in G of a subset A of X, written rGiA), is the size of a maximal in-

dependent subset of A. A subset I of X is in 1G iff rGiI) = |/|.  The G-closure

of a subset A of AT, written ClGiA), is the set of all points p of X such that

rGiA U p) = rGiA). The flats of G are the subsets / of X such that C1G(/) = /.

Flats are maximal subsets of a given rank. The hyperplanes of G are those flats whose

rank is rGiX) - 1.  Each flat is equal to the intersection of all hyperplanes that

contain it. The flats and hyperplanes of G will be denoted by VG and ffG, re-

spectively. The flats of G form a lattice ¿G when ordered by containment.  The

infimum of two flats in ¿G is their intersection.

A pregeometry G on a set X is called a geometry if every two element

subset of X is independent in G, or, equivalently, if G has no circuit C with

|C| = 1 or |C| = 2.

Throughout this paper we will drop the cumbersome and somewhat de-

meaning prefix "pre" and refer to pregeometries simply as geometries.  On the

rare occasions when we wish to specify a geometry in the strict sense we will

use the term "proper geometry".  Also we will not distinguish between a geom-

try and its underlying set if the meaning is clear.  For instance we will use

|G| = « to mean that G is a geometry on a set of size «. We will write riG)

instead of rGiX) and refer to this number simply as the rank of G.  The reader

will already have noticed that we express the union of a set A and a singleton

set {p} as A U p instead of the clumsy A U {p}.

Given a geometry G on the set X with basis set BG then the set BG =

{X - B\B G BG} satisfies the basis axioms and therefore defines another geome-

try G* on X which is called the (Whitney) dual ofG.   Thus 8G* = 8G.

From the definition, bases of G* are complements of bases of G.  It fol-

lows that circuits of G* are complements of hyperplanes of G and hyperplanes
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of G* are complements of circuits of G.  The rank function on G* is rG*iA) =

|41 - KG) + rGiX-A).. In particular r(G*) = \X\ - KG). Also (G*)* - G.

Given a geometry G on AT and p G X, the deletion from G of p, G - p, is

the geometry on X - p with independent sets:   IG_„ ■ {/G IGlp Ö/}.

The contraction of G by p, G\p, is the geometry on X - p whose indepen-

dent sets are given by 7G,   = {/ G ïG|p Ö / and I D p G lG) provided p is not

a circuit of G, and IG/=IG_pifpisa circuit of G.  Let S be an arbitrary

sequence of deletions and contractions of points of X.  For instance, S could be

of the form S = (/pj, - p2, - p3, /p4, ■ • •, - pm).  If the sequence of operations

S is applied to G the resulting geometry M is called a w/«or o/ G.  It is known

[1] that the application of any permutation S' of S to G results in the same

minor M. Thus if A is the set of points to be contracted in the sequence S and

B is the set of points to be deleted in 5 we may express the minor M unambigu-

ously as M = G/A - B. The independent sets of M are as follows:   JM =

{/ C X - 04 U 5)| IU /' G IG for all bases Ï of A). A minor of the form G -

B (no contractions) is called a subgeometry of G. Using our convention of not

distinguishing between a geometry and its underlying set, a subgeometry F of G

can be expressed as F = G - (A' - F).  A minor of the form G\A is called the

contraction of G by A.

Given geometries Gx on Xx and G2 on X2 we form a new geometry

Gj © G2 on Xx U X2 whose independent sets are IGl©G2 = {/, ^il2\fx G TGl,

I2 G IG }.  Gj © G2 is called the czirecr sum of Gx and G2. If a geometry G

can be expressed as the direct sum of two nonempty geometries Gx and G2 then

G is called separable and Gj and G2 are called separators of G.   Equivalently,

Gx and G2 are separators of G if no circuit of G has nonempty intersection with

both Gj and G2.  A nonseparable geometry is called connected.   A separator of

G which is itself connected is called a component of G.

A component of G which consists of a single point p may be of two types.

Regarded as a subgeometry of G, p may be either independent or dependent.  In

the former case p is called an isthmus and in the latter it is called a loop.   If we

wish to indicate that a one point separator is a loop we will place it in paren-

theses. Thus for any geometry H, p is an isthmus of H ® p and p is a loop of

H ®ip).

Duals, minors, and separators interact as follows:

2.1 (G/A - B)* = G*/B -A, in particular (G - p)* = G*lp and iG/p)* =

G* - p.

2.2 iGx ® G2)* = G, © G*.
2.3 iGx © G2)IA -B = [GXHA nxx) -(fin Xx)] © [G2I(A n A"2) -

(ßnx2)].
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Given a set X with \X\ = n we wish to single out certain distinguished

geometries on X. The unique geometry whose bases consist of all the fc-subsets

of X (for some fc with 0 < k < n) is called the free geometry of rank k on X

and written Fx k. The free geometry of rank n on X is called the Boolean alge-

bra on X and written Bx. Every point of Bx is an isthmus.  A geometry having

fc isthmuses and the remaining « - fc points loops is called a pre-Boolean algebra

of rank fc on X.

Certain abstract combinatorial geometries can be represented by more con-

crete objects.  Our preference in this paper will be to represent geometries as

subsets of points in affine space whenever possible.  In an affine representation

loops will be indicated by placing points in parentheses.  Several points touching

one another will indicate that those points form a flat of rank 1, or multiple

point.   Flats of higher rank are shown as lines, planes, etc.  In the affine picture

flats are not drawn unless they are dependent.  For instance a three point line

is drawn but a two point line is not.

3. The weak map partial order. In this section we define and discuss two

order relations, one on the set of all geometries on a set X and the other on the

set of isomorphism classes of n-point geometries.

Defintion 3.1.   Let ?x be the set of all (pre) geometries on a finite set

X. For G and H in Vx we say that the identity map from G to H is weak,

written G —► H, provided IG 2 JH- The proofs of the following two proposi-

tions are straightforward.

Proposition 3.2.   For G and H in Px the following are equivalent:

(1) G->/7.

(2) Each independent set of H is independent in G.

(3) Each dependent set of G is dependent in H.

(4) Each G-circuit icircuit of G) contains an H-circuit.

(5) rG(A) > rHiA) for all AQX.

Proposition 3.3.   77ze relation "—►" is a partial order on Vx which we

will call the weak map partial order.   This partial order has greatest element Bx

and least element Bx.  When restricted to proper geometries the partial order

has least element Fx 2.

Definition 3.4.   Two geometries G on A" and G' on X' are isomorphic if

there exists a bijection ß: X —* X' such that IG JG iff ß(I) G TG,. The iso-

morphism class of a geometry G is the collection of all geometries isomorphic

to G.

Let Vn be the set of all isomorphism classes of n point (not necessarily
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proper) geometries.  For reasons that will soon become apparent we will use

virtually the same notation when discussing Pn as we use for Vx.  Whereas G G

Vx means that G is a geometry on X, H G Vn means that H is an isomorphism

class of n point geometries.  By the statement p G G for G G Pn, we will mean

that given a representative G' of G then p represents a point p' of G' and given

another representative G" isomorphic to G' by ß: G' —> G" then p represents

the point ß(p') of G". Using this definition of p G G we may introduce the

well-defined isomorphism classes G - p and G/p, the isomorphism classes of

G' -p' and G'/p' respectively.

We will change notation slightly to indicate the isomorphism classes of the

distinguished geometries of §2. We write Fn k for the isomorphism class of

Fx k, Bn for the isomorphism class of Bx, and Bn k for the isomorphism class

containing the pre-Boolean algebras on X of rank fc. Thus Fn n = Bn=Bn „.

Definition 3.5.   For G and H in Pn we say there is a weafc map from G

to //, written G —> H,if for any representatives G' of G and H' of // there is a

bijection 6 on the underlying sets such that whenever I is an independent sub-

set of H' then b~lil) is independent in G'.  A bijection with this property is

called a weak bijection.

Proposition 3.6.   For G and H in Pn the following are equivalent:

(1) G^H.
(2) There exist representatives G' of G and tí of H with a weak bijection

b: G' -*■ H'.

(3) For any n-set X there exist representatives G" of G and tí' of H both

on X such that G" —► H" in Px.

Proof.  This follows immediately by composing isomorphisms and weak

bijections.

Throughout the remainder of this paper we will make many statements

about weak maps in Vx or P„.  Our general tactic will be to prove statements

for weak maps in Px only. The proof in Px applied to G" and H" of (3.6)

gives the proof for Vn.

Proposition 3.7.   The relation "—+" is a partial order on Pn which we

will call the weak map partial order.   This partial order has greatest element

Bn and least element B*.

Proof.  This partial order is obtained from the weak map partial order

on Px by identifying isomorphic geometries. One checks easily that the partial

order is preserved in the quotient.

Defintion 3.8.   Let G and H be in Px or P„.  A weak map G —*■ H will
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be referred to simply as a map unless we wish to emphasize that it has no

stronger qualities.  A map G —*■ H is called trivial if G = H, nontrivial otherwise.

A map G —► H is called simple if G covers H in the relevant partial order, i.e.

if for all F for which there are maps G —*■ F —> H, exactly one of the maps

G —► F and F —► H is trivial.  It is clear that any map G —► H has a decomposi-

tion into simple maps: G —> Fx —► F2 H

Proposition 3.9.   Let Px k represent the set of all geometries on X of

rank fc and let P„fc represent the set of all isomorphism classes of n point geo-

metries of rank fc.   Px k and Pn k are convex sets in the weak map partial order

on Px and Pn respectively.   Px k has Fx k as its unique maximal element and

its minimal elements are the ik) pre-Boolean algebras on X.   Pn k is the interval

lFn,k> *».k] °f K-

Proof.  That Px k and Pn k are convex sets is clear from the fact that

weak maps cannot raise rank. Any G Gpx k has no independent sets of size

greater than fc so we have the map Fx k —> G. Since KG) = fc, G has a basis

B of size fc.  Let B' be the pre-Boolean algebra which has the points in B as

isthmuses and all other points loops.  Then r(ß') = fc and we have the map

G —► B'. The same argument applied to a representative G" of G G Pn k shows

that there are maps Fnk —> G and G —► Bn k.

o

(••)

Figure 3.10. The weak map partial order on Ps 3 with simple maps shown

The weak map partial order on Px, P„, Px k, and Pn k is not, in general,

a lattice nor does it satisfy the Jordan-Dedekind chain condition.  The nonexis-

tence of suprema and infima is shown in Figure 3.10.  Figure 8.4 shows the

failure of the chain condition.
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4.  Some special types of maps. We will need to distinguish two important

classes of weak maps.

Defintion 4.1. For G and H in Px or Pn we call a weak map G —♦ H

rank preserving if KG) = /•(//). Rank preserving weak maps will be referred to

as rp maps and written as G -^ H.

The next type of map has been widely studied ([7], [8], [11], [12]).

Defintion 4.2.   For G and H in Px or Pn we say there is a strong map

from G to H, written G -™+ ¿7, provided each closed set in ¿f is closed in G

(this definition applies to Pn via (3.6)).  Equivalently, G —► ¿f is strong iff each

G-circuit is a union of /Y-circuits.   A strong map G —> H is called elementary

if KG) - Ktí) = 1. It follows from the first form of the definition that a compo-

sition of strong maps is strong.  From the second form of the definition it is

clear that strong maps are weak. Higgs [11] has shown that any strong map

G -s*+ H has a decomposition into elementary strong maps: G -*-► Fx ■s—* F2

■ ■ ■ Fm -** H. »m

The next three propositions show that these two classes of maps behave in

a manner which is, loosely speaking, orthogonal.

Proposition 43.   Rank preserving maps are preserved under duality.  Thus

G -L£^ H iff G* -^* H*. If the former map is simple then so is the latter.

Proof.  Since KG) = /•(//) every basis of ¿fis a basis of G.  Thus every

basis complement of H is a basis complement of G.  But these basis complements

are exactly the bases of the dual geometries so G* •&+ H*.

Corollary 4.4.   The function sending G to G* is an order isomorphism

between Px k and Px n_k and between Pnk and P„„_fc, under the weak map

partial order.

The first statement in the next proposition appears in [1].

St
Proposition 45.   Strong maps are reversed under duality.  Thus G —► H

iff H* -*** G*. One of the above maps can be simple and the other not simple.

The dual of an elementary map is, however, elementary.

Proof.  The second statement is illustrated by this example.

The map • • -s-* " — b is simple but the dual map decomposes as shown:

[ma mb] * = (»a • b) <— a mm b = [a mm b]*

^*.a(.ft)   <<
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The last sentence of the proposition follows from the fact that if KG) = KH) +

1, then KH*) = «-/•(#) = «- iKG) - 1) = « - r(G) + 1 = KG*) + 1.

The next proposition appears in [7].  The proof given here is new.

Proposition 4.6.   A map that is both rank preserving and strong is trivial.

Proof.  Suppose G —> H is rank preserving and strong.  By 4.3 we have

G* —► H* and by 4.5 we have H* —► G*, so the antisymmetry of the partial

order gives G* = H*. Therefore G = H.

Definition 4.7.   For G in Px with KG) > 0 the truncation of G, 7(G),

is the geometry whose independent sets are:   Ir(G) = {/ G IG| |/| < r(G) - 1}.

Equivalent^ the fiats of KG) are:  {/ Ç ATI / is a G-flat and rG(f) ¥= KG) - 1}.

If G has rank 0 we define TiG) = G   For G in P„, TiG) represents the unique

equivalence class containing the truncations of all representations of G. Thus T

is a function from Px to Px or Pn to Pn.   TkiG) will mean the truncation of

G fc times.

It is clear from the second form of the definition that G —► T(G) is a

strong map and is elementary if KG) + 0.

The next proposition collects some useful properties of truncations.

Proposition 4.8.   Let G and H be in Px or Pn.

(a) G -+ H iff 7"-(G)-r(//)(G) -^ H.

(b) // G —► # then T(G) -* TQI).

(c) Every simple map which reduces rank is a truncation.

Proof,  (a) Each independent set I of His independent in G and has

size |/| < KH) = KG) - iKG) - KH)). Therefore / is still independent in

r(G)-r(H)(G)   conversely if r^-KH )(G) _££>. H then compose that map

with G -^ r(G)-'(//)(G) to get G —► H.

(b) Apply (a) to the composite map G —* H -&+ TQI) to get TiG) —>

1\H).
(c) Suppose G —»•¿Z is a simple rank reducing map. Using (a) we have

G -sL* TiG) ■&* Tr(G)-r("\G) -IE> H. The first of these maps is nontrivial

so both the others must be trivial, and TiG) = H.

Definition 4.9.   For G in Px the lift of G, ¿(G), is defined by ¿(G) =

(7j(G*))* (this is the Higgs lift of the map Bx -^ G as defined in [11] or [12]).

For G in Pn, ¿(G) is the unique isomorphism class containing all lifts of represen-

tatives of G.  Thus ¿ is a function from Px to Px or Pn to Pn. ¿fc(G) will de-

note the result of applying a ¿ to G fc times.

The next proposition collects some useful properties of ¿.



WEAK MAPS OF COMBINATORIAL GEOMETRIES 255

Proposition 4.10. Let G be in Px or Pn.

(a) ¿(G) —> G is a strong map and is elementary if KG) =£ n.

(b) Given a strong map H -*** G with KH) - KG) = fc then ¿fc(G) -&* H.

(c) 7//Y-J^>G/fte«¿(/7)-£E*¿(G).

Proof.  Part (a) follows from the fact that ¿(G) —* G is the dual of the

truncation map G* -**-» 7TG*).  For (b) suppose H -*** G with KH) - KG) = fc.

Then G* -^ /Y* and KG*) - KH*) = fc so from 4.8 7*(G*) J*+ H*. We re-

dualize to get iTkiG*))* -&+ H.   But (rfc(G*))* = ¿k(G) since the internal

duals cancel in pairs.  Therefore ¿fc(G) -^ ¿f, as required.  For (c) let ¿f -i£+

G.  Then Ä* -^ G* so by 4.8 T(H*) -£JL* 71(G*)and thereforeL(H) -IE> ¿(G).

Propositions 4.3 and 4.5 described the behavior of rp maps and strong

maps under duality. We close this section by discussing the behavior under

duality of arbitrary weak maps.

Definition 4.11.  A map G —► H extends to a strong map on the same

rank provided there are rp maps Gx -ÎE->- G amd H -*£-* Hx such that the com-

posite map Gj -I£* G —► H -^ Hx from Gx to Hx is strong.

Theorem 4.12.  For a weak map G —> H with KG) - KH) = k the follow-

ing are equivalent:

(a) G —> H extends to a strong map on the same rank.

(b) H*^G*.
(c) LkiH)J2+G.

Proof. If (a) holds we have

st

Dualizing gives H* ■*** H* -**-* G* -^ G*, so H* —> G* as required.  If

H* —> G* then by 4.8 TkQI*) -&+ G*.  Dualizing gives (r*(//*))* = ¿*(/7)

-^ G   If ¿fe(//) -^ G then the composite ¿fc(/7) —* H is a strong map which

extends G —► H on the same rank.

5. Hereditary properties: general.  In this section and the two that follow

we will be concerned with properties that are preserved by weak maps and weak

map inverses.  Some of the results presented in these sections were stated with-

out proof in [13].

Proposition 5.1.   For G and H in Px or PnifG —► H and H is proper

geometry or isomorphism class of proper geometries then so is G.

Proof.   If G is not proper it has a 1 or 2 point circuit.  A 1 point
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G-circuit must contain an //-circuit and hence must be a 1 point //-circuit. A

2 point G-circuit must either remain a circuit in H or contain a 1 point //-circuit.

In either case H is not a proper geometry.

Little else can be said about hereditary properties of arbitrary maps. We

know from the previous sections, however, that any map has a decomposition in-

to simple maps and that these simple maps fall into two classes:  rp maps and

truncations. We have also seen that these two types of maps exhibit quite dif-

ferent behavior, at least with respect to duality. Thus, in studying hereditary

properties it might be wise to consider these two types of maps separately.  Since

truncations are well understood, our approach will be to study the hereditary

properties of rp maps and mention, in passing, how these properties relate to

truncations.

Proposition 5.2.   For G and H in Px, if there is an rp map G •&+ H

and S is a separator of G then the subgeometry S' = H — iX - S)ofH is a

separator of H.

Proof.  If S' is not a separator of H then there is an ¿/-circuit C with

pGCC\S'and qGCniX- S'). We extend the independent set C - p to a

basis B of H. B must also be a basis of G. The point p makes a unique G-cir-

cuit Cx with B. Now Cx must contain an ¿/-circuit C2 and C2 must contain p

(for Cj - p Ç B). If C2 = C then q G C2 so q G Cx, contradicting the fact

that 5 is a separator of G.  If C2 # C then there exists an ¿/-circuit C3 C (C2 U

C) — p.   But this is impossible since (C2 U Q — p C B.

Corollary 53.   Rank preserving maps in Px or Pn preserve separators.

Truncations, however, never preserve separators unless the separators in ques-

tion are loops.

Corollary 5.4.   Rank preserving maps send isthmuses to isthmuses, loops

to loops.

Proof.  A loop must remain a dependent separator and hence must re-

main a loop. The case for isthmuses follows by duality.

Proposition 55.   If G and H are in Px or Pn and there is an rp map

G -L£-* H, then we have the following maps:

(a) G - p -*&+ H - p if p is not an isthmus of H.

(b) Dually, G/p -^ H/p ifp is not a loop of H.

Proof.  Since IG D JH it is clear that {/ G IG| p G/} D {IG JH\

p GI) so G-p —> H - p.  Since p is not an isthmus of H, by 5.4 it is not

an isthmus of G. Thus Kfi - p) = KG) = KH) = r(/7 - p) so G - p -^ H - p.
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Definition 5.6.  Let M = G/A - B be a minor of a geometry G where

A = {p,,P2,---,Pm} and 5 = {pm + 1, Pm + 2>'• ', Pe}. G/A - B is called a

proper expression for M if given any sequence S of one point operations in which

the points of A are contracted and the points of B deleted (i.e. S = (Jpx ,lp2,

' " » lpm, - Pm+l> ' " > - Pe) 0I some permutation thereof) then at no stage

is a loop contracted or an isthmus deleted.  If G/A - B is a proper expression

for M then M is said to be properly expressed by G/A - B.

Proposition 5.7. Any minor can be properly expressed.

Proof.  Let M = G/A' - B' be a minor of G where A' = {px, • • •, pm }

and B' = {pm + j, • • •, Pe}. We know from §2 that M can be expressed by

any sequence of one point operations S' in which the points of A' are contracted

and the points of B' are deleted.  For convenience let S' = Up, • • • , \pm,

~Pm + i'"' > ~ Pe)- ^e begin applying the operations of S', in order, to G.  At

each step /p. at which a loop is contracted we replace ¡pi in the sequence by

— p¡. At each step — p- at which an isthmus is deleted we replace — p^ in the

sequence by /p-. Call the resulting sequence of operations S. Applying 5 to G

also results in the minor M since deletion and contraction are identical opera-

tions if the point in question is a loop or an isthmus.  Furthermore, we have

constructed S so that at no stage of the sequence is a loop contracted or an

isthmus deleted.

A routine check shows that in no permutation of the operations of S is a

loop contracted or an isthmus deleted. Therefore letting A = {p¡ G A' U B'\ pi

is contracted in S) and B = {p. G A' U B'\ p¡ is deleted S] we have that M =

G/A — B is a proper expression for the minor M = G/A' — B'.

Theorem 5.8.  Let G and H be in Px or Pn with G -^ H.  Let M be a

minor of H properly expressed by M = HjA - B and let N = G/A - B be the

corresponding minor of G.   Then there is an rp map N -ÍE* M.

Proof.  Express M by applying the sequence of operations S = (Jpx, • • • ,

IPm>-Pm+l>'"> - Pe) to//where ^ = {px, • • •, pm) and B = {pm + 1,-",

pe}. Now apply the sequence S to G, invoking 5.5 at each step, to obtain the

desired result.

Corollary 5.9.   // there is an rp map G -^ H and H has a free geom-

etry F as a minor then G also has F as a minor.

Proof.  Express F properly and obtain the corresponding minor A^ of G,

then N -&+ F. But N cannot have more independent sets than F,soN = F.

We devote the remainder of this section to discussing the behavior of cir-
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cuits and flats under rp maps. We know from 3.2 that given a map G -*** H

in Px each G-circuit contains an //-circuit.  The next proposition shows that all

//-circuits are contained in G-circuits.

Proposition 5.10. Let G and H be in Px. Given a map G -s£-* H there

exists an injection i from CH to CG having the property that /(C) 2 C for all

circuits C of H and rH(/'(C)) = |/'(C)| - 1.

Proof. Let C be a circuit of H with p G C. Extend the independent set

C - p to a basis B for H. B is also a basis for G.  Let /'(C) be the unique G-cir-

cuit p forms with B.  The circuit /'(C) contains an //-circuit and that //-circuit

must be the unique circuit that p makes with B in //, which is C.  Thus /'(C) D

C. The uniqueness of C establishes the injectivity of /'. We get rH(i'(C)) = /'(C)

— 1 from the fact that /'(C) — p is a subset of the basis B of H.

Corollary 5.11. If there is an rp map G-^H, then |CGI > \CHl

Proposition 5.12. Let G and H be in Px with a map G -^ H.   There

is an injection j from YH to FG having the property that ClHijif)) = f for all

flats f of H.

Proof.  Dualize to obtain the map G* -££* H* and apply 5.10 to get an

injection /' from CH* to CG*. Recall that hyperplanes of a geometry are exactly

the complements of circuits of its dual. Define /: HH —► f/G by /(A) - X -

/'(Ar - h). Thus /(A) is the complement of the G* circuit /'(AT - h) and so is a

hyperplane of G.  Since i(X - h) 2 X - h we have /(A) = X - /'(X - A) C X -

iX - A) = A.  Since A is closed in H it follows that ClH(Jih)) C A. To get equal-

ity we need only show that rH(jQi)) > KH) — 1.

The G*-circuit iiX - A) has //*-rank one less than its cardinality. Thus

we can delete a point p from /'(A" - A) to get an independent set /'(A" - A) - p

which we extend to a basis B of//*. Then X - B is a basis of H whose inter-

section with iiX - A) contains only the point p.  Therefore (A" - B) - p is an

independent set of H of size r(//) - 1 which is contained in /(A). Thus rH(jih))

> KH) - 1, as required.

We have constructed the injection /' on the hyperplanes of H. Now apply

the same construction to the map 7fc(G) -^ TkiH) for fc = 1, 2, • • •, KH)

to define / for all ¿/-flats of rank lower than KH) — 1.  Define /(//) = G to take

care of the one remaining flat.

The injection ; can also be viewed as an injection of the lattice of fiats

LH into ¿G, having the property that it takes flats of rank r to flats of rank r.

That this injection may not preserve the lattice order is shown in Example 5.13.
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Example 5.13.   A construction of the injection / of 5.12 for the map

G -Z2+H given by:

G = a. mb_jp^a.^b=a
c» »d L

The respective lattices of flats are:

abed

abed

,bcd

It is clear that / must be the identity map on all ¿/-fiats other than bed

and that / must take bed to one of be, bd, cd.   No matter which choice is made,

however, the map will not preserve order.  For example, if jibed) = be then we

have d < bed but ;'(<i) <£jibcd).

Definition 5.14.   Let WriG) be the number of G-flats of G-rank r. The

number Wr(G) is called the rth Whitney number of the second kind for the

geometry G.

Corollary 5.15. // G and H are in Px with G -SE-> H then Wr(G) >

WriH) for all integers r.
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Proof.  The inequality follows from the injection/ of 5.12.

6.  Hereditary properties:  Binary geometries.

Defintion 6.1.   A geometry G in Px k is said to be coordinatizable over a

field F if there exists a fc x |A*| matrix M and a bijection b from X to the columns

of M such that a subset / of X is independent in G iff the subset ¿>(/) of columns

of M is linearly independent over F. The matrix M is said to represent G over F.

If M represents G via the bijection b and ß: H —*■ G is an isomorphism then M

represents H via the bijection b ° ß. We may therefore state unambiguously that

M represents the isomorphism class G G Pn provided it represents any representa-

tive G' of G.

Since elementary row operations do not affect the linear dependencies of

columns of a matrix, we may represent any coordinatizable geometry G by a

matrix MB in row reduced echelon form relative to a given basis B of G. We will

assume that the first fc columns of MB represent the basis B so that MB has the

form MB = [IA] where / is the fc x fc identity matrix.

In the next proposition we state, without proof, two well-known facts about

coordinatizability [16].

Proposition 6.2.   For G in Px or Pn, if G is coordinatizable over a field

F then so is G* and so are all minors of G.

Definition 6.3. For G in Px or Pn, G is called binary if it is coordinatizable

over F2, the two element field.  A matrix representing G over F2 is called a

binary representation of G.

We state without proof some well-known equivalences [16].

Proposition 6.4.   For G in Px or Pn the following are equivalent:

(a) G is binary.

(b) G does not have F4 2, the four point line, as a minor.

(c) The symmetric difference of any two G-circuits is a disjoint union of

G-circuits.

We now show that the property of being binary is hereditary under rp maps.

Theorem 6.5.   Let G and H be in Px or Pn with a map G JS-* H. If G

is binary then so is H.

Proof.  If H is not binary it has F42 as a minor. Then by 5.9 G has

F4 2 as a minor so that G is not binary.

Theorem 6.5 naturally raises the question of how rp maps affect geometries

coordinatizable over fields other than F2.  Figure 6.6 shows that coordinatiza-

bility over fields of characteristic other than two is not preserved by rp maps.
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Figure 6.6. The geometry G on {a, b, c, d, e, f, g] whose affine representa-

tion is

is coordinatizable over any field whose characteristic is not two by the matrix

a b   c d  e  f g

M =

10 0  10  11

0  10   110  1

0 0  10  111

The simple rp image H of G obtained by making the independent set

{defj of G into a circuit is called the Fano plane and is not coordinatizable over

any field of characteristic other than two. The Fano plane is coordinatizable over

fields of characteristic two, however.  In fact, the matrix M, above, represents H

over any such field.

Theorem 6.5 shows that the binary geometries (isomorphism classes) form

an order ideal within Px k (Pn k) under the weak map partial order.  The rest of

this section will be devoted to studying the properties of this ideal and the nature

of the rp maps within it.  First we must develop some information concerning

the changes in binary representations under rp maps.

Proposition 6.7.   Suppose G and H are in Px where X= {px,-- •, p„}

and suppose that B= {px, • • •, pk}is a basis for both G and H.  Suppose MB =

[IA] represents G over F and M'B = [¿4'] represents H over F where column

c¡ in both matrices corresponds to the point p¡ of X.   Then there is a map

G -£E-> H iff whenever a subdeterminant D of A is zero over F then the corre-

sponding subdeterminant D'ofA' ithat subdeterminant determined by the same

rows and columns) is zero over F'.
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Proof.   Let G -^-* H and suppose the subdeterminant D of A determined

by columns C = {e't, • • •, c'm} and rows R = {r't, • • •, r'm } is zero over F.  Let

5' be the subset of the first fc columns of M (the identity matrix) consisting of

those columns which do not have a 1 in the rows of R. Then B' U C is a fc x fc

submatrix of M with detM(5' U C) = ± ¿> = 0. Therefore the subset S of X cor-

responding to the columns B' U C is not a basis of G. From the rp map, S can-

not be a basis of H so the determinant of B' U C in M' must also be zero.  So

det^.ifi' U C) = ± D' = 0, as required.

For the converse, if a fc-subset of columns B' Li C of M with B' C B and

C n 5 =0 is not a basis of G then detM(ß' U C) = ± ¿> = 0 where ¿> is the sub-

determinant of A determined by the columns of C and the rows of M in which

no column of B' has a 1.  But then ¿>', the corresponding subdeterminant of M1,

is zero. Thus det^tf' u C) = ± ¿>' = 0 and B' U C is not a basis for //. There-

fore any basis of // is a basis of G and we have the map G -££* //.

Corollary 6.8.   ¿er G a«d ¿/ ¿>e in Px or Pn with G binary and a map

G -££+ H. Let MB = [IA] be a binary representation of H for a given basis B of

H and let M'B = [¿4'] be the binary representation of G whose jth column cor-

responds to the same point p, of X as does the jth column of M. If the ijth entry

a¡j of M is a 1 then so is the ijth entry ai} ofM'.

We state without proof the following proposition due to Crapo [5] which

will be useful in what follows.

Proposition 6.9.   For a connected geometry G in Px and a point p GX

at least one of G - p or G/p is connected.

Theorem 6.10.   Let G and H be in Px or Pn with a nontrivial map

G -í£->- H. If G is binary then H is separable.

Proof.  Induction on n. If n = 0 or 1 there is nothing to prove.  If n = 2

the only nontrivial rp map is •• -^-* • (•), for which the theorem holds.  Assume

the theorem is true for n < m and let G and H have size m.  If the point p G H

is a loop or isthmus then H is separable and we are done.  Otherwise we delete

and contract by p and use 5.5 to get the two rp maps:  G - p -L£> H - p and

GIp-^H/p.
We first show that these maps cannot both be trivial. Indeed if G - p =

H - p and G\p = H\p then |IG_p| = \\H_p\ and |IG/p| = \1H/p\. From the

fact [1] that |IH| = \lH_p\ + Utf/pl h follows that |IG| - \lH\ and the map

G -SS^H is trivial.

There are now three cases to consider.
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(1) G - p -^ H - p and G/p -^ H/p are both nontrivial. In this case

we have by induction that H - p and H/p are separable so by 6.9 H must be

separable, as required.

(2) G - p = ¿/ - p and G/p J£-> ¿//p is nontrivial.  Let MB = [¿4] be a

binary representation of H and M'B = [IA '] be the corresponding representation

of G. Assume that the point p corresponds to column cn of M and c'n of M'.

The fact that G - p =H - p means that the first n — 1 columns of M and M*

are identical, i.e. c¡ = Cy for all /' < «.   By 6.8 the l's of cn are also l's of c'n.

Further, there are some O's in cn which are l's in c'n for otherwise we would have

G = H. Let R0 = {rows rt of M\ ain = 1} and let Rx = {rows r. of M\ ain = 0

but a'in = 1}. Note that R0 and Fx are both nonempty.  Let Lx = {columns

Cj of M| c;- has a 1 in a row of R x}. Note that ¿ j is nonempty (it contains at

least some subset of {cx, • • •, ck}). We will check that no c=GLx has a 1 in a

row of R0. If Cj has a 1 in the row r of R0 and the row r" of Rx then the

2x2 submatrix of A determined by columns c- and cn and rows r and r" is

[} }] so it has determinant zero. By 6.7 the corresponding subdeterminant of

A' must be zero. However that submatrix is [} ¿], a contradiction.  Let R2 =

{rows r¡ of M| r¡&Rx and r(. has a 1 in a column of ¿j} and let¿2 = {columns

c- of M| Cj Ö ¿ j and c- has a 1 in a row of R2}. More generally let R¡ = {rows

rf of M| r¡ Ö U ir/ R¡ and r,. has a 1 in a column of L¡_,} and let L¡ = {columns

Cj of M| Cj Ö CJJ-Z"11Z,/. and c- has a 1 in a row of R¡}. Note that if c¡ G L, then

c- does not have a 1 in any of the columns of UJ¡T/ ¿,-  Furthermore no c' G

L¡ has a 1 in a row of R0 for, if so, we would have a zero subdeterminant of

A' which was nonzero in A.

Let ¿ = U/=i¿ and let R be the set of all rows which have l's in the

columns of ¿, i.e. R = {J^LxRt.

Then ¿ is a nonempty set of columns of M all of whose 1 's are in the

rows of R. Let ¿' be the complementary set of columns and let R' be the

complementary set of rows of M. Clearly cn G L'.

R was defined so that there are no l's of columns of ¿ in R'. There are

also no l's of columns of ¿' in R. Indeed if c is a column of M with a 1 in

R then let t be the smallest integer such that c has a 1 in a row of Rt. Then

C is in Lt and hence not in ¿'.  It follows that if we alter the matrix M by

permuting the rows of R to the top and the columns of ¿ to the left, the re-

sulting matrix will have the form:

¿

R

R'

K o I

|_°   N2]
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Viewed in this form it is clear that no minimal linearly dependent set of columns

can contain columns of ¿ and ¿'.  Therefore, if Xx and X2 are the subsets of

X corresponding to ¿ and ¿' respectively, nó circuit of H has nonvoid intersec-

tion with both Xx and X2. Thus the subgeometries of H on the sets Xx and X2

are separators of H. This completes case (2).

(3) G/p = H/p and G - p -LE-»-// - p is nontrivial. In this case delete

and contract p from the dual map G* -IE-> H* to get the two maps iG/p)* =

G*-p-lZ+H*-p = iH/p)* and (G - p)* = G*/p -*** H*/p = (// - p)*, of

which the first is trivial. This is precisely the situation of case (2), so applying

that proof we find H* is separable. Therefore H is separable and the proof of

the theorem is complete.

Corollary 6.11. Let G and H be in Px or Pn with a map G JS-*- H.

If G is binary and M is a connected minor of H then M is also a minor of G.

Proof.   Express M properly as M = H/A - B. By 5.8 there is a map

G/A - B -iE-»> M. But G/A - B is binary and M is not separable so we must

have G/A - B= M.

The equivalences stated in the next definition can be found in [16].

Definition 6.12.   For G in Px or Pn, G is unimodular if it is binary and

does not have the Fano plane (see 6.6) or its dual as a minor. Duals and minors

of unimodular geometries are unimodular.

G is graphical if it can be represented as a graph. Equivalently, G is graph-

ical if it is unimodular and does not have K* or K* 3 as minors QC5 is the com-

plete 5-graph and K3 3 is the complete 3x3 bipartite graph). Minors of graph-

ical geometries are graphical.

G is planar graphical if it can be represented as a planar graph. Equiva-

lently, G is planar graphical if G is graphical and does not contain Ks or K3 3

as minors.

Proposition 6.13.  The properties of being unimodular, graphical, and

planar graphical are all preserved by rp maps.

Proof. It suffices to note that the Fano plane, Ks, and K3 3 are con-

nected and to apply 6.11. This proposition is also an immediate consequence

of 6.17.

Our next goal is to give a complete description of simple rp maps of

binary geometries.  Before getting to the main theorems, however, we require

a few technical results.

Proposition 6.14. Let G and H be in Px with a map G -£E-* H.  Suppose

F is a separator of H and the subgeometry F' of G given by F' = G - iX - F)
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satisfies rGiF') = rHiF).   Then the map G -IE-* H decomposes as follows:

G -£*+ G/F' © F' -&+ H.

Proof. The map G -ÎE* G/F' © F' exists for any subgeometry F' of G

since JG/P.9F. = [Ix U/2|/. G IG/F-,/2 G IF,}= {T, U/2|/, U/3 G ÍG

for each maximal independent set I3 of F', /2 G IF,} Ç JG. For the map

G/F' © F' -^ ¿/ note that any basis of H is of the form Ix UI2 where /x is

a basis for the separator H - F and I2 is a basis for F. Then /x U /2 is a basis

for G and since KF') = r{F), I2 is a maximal independent subset of F'. There-

fore /j U Z2 is a basis of G/F' © F', as required.

Lemma 6.15. Let G be a connected geometry containing more than one

point. Either G contains two points either of which can be deleted without

separating G, or G* contains two points either of which can be deleted without

separating G*.

Proof.  If G has only two points then G must be the two point multiple

point F2 j. Deleting either point leaves the connected geometry Fx x. If G

has more than two points let px, p2, p3 be points of G.  By 6.8 at least one of

G - p¡, G/p¡ must be connected for each /'.  Among these three possibilities

there must be two connected G - p¡'s or two connected G/pf's and the two

G/p/s provide connected deletions G* — p¡ of G*.

Theorem 6.16.  Let G and H be in Px or Pn with G binary and a map

G •*£-*■ H.  There exists some component iminimal separator) F of H such that

F'= G - iX — F). Otherwise stated, there exists a component F of G which is

equal to its preimage in G viewed as a subgeometry of G.

Proof.  By induction on n. If n = 0 or 1 there is nothing to prove. If

« = 2 the only nontrivial case is G = a •• b -£E-»- a •(•/>) = // and the com-

ponent »a of H is equal to the subgeometry «a of G. Assume the proposition

is true for n < m and let G and H have m points. If H is connected then by

6.10 G = H and the proposition is trivially true. Otherwise let H = FX®F2 ©

• • • © F¡ where each F¡ is nonempty and connected. Three cases arise:

(1) Some component F¡ of H contains only the point p.  Then p is either

an isthmus or a loop of H. If p is an isthmus of H then it is certainly equal to

the subgeometry p of G and we are done. If p is a loop of H, delete p from H

and G to get the map G - p ■ss-* H - p.  By induction H - p has a component

F such that F = iG - p) - ((A" - p) - F). But then F is a component of H

and F = G - (A- - F).

(2) Some component, say Fx, of H contains three or more points. We

apply 6.15 to the component Fx and obtain one of two results: (a) There
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exist points p and q of Fx such that both Fx - p and Fx - q are connected.

(b) There exist points p and q of F* such that both F* - p and F* — q are

connected. If (a) holds, delete p from H and G to get the map G - p -LE->- H -

p = Fj - p ©F2 © • • • ®F¡. By induction some component of H - p is equal to

the corresponding subgeometry of G - p. If the component in question is F¡

for some /' G {2, • • ■, /} then F¡ is also a component of H and is equal to the

corresponding subgeometry of G so we are done.  If none of the Ft for /' G

{2, • ■ •, /} is equal to its corresponding subgeometry of G, then the component

in question must be Fx - p.   Also if none of the F¡ for /' G {2, • • •, /} will work

then the component Fx - q of H - q must be equal to its corresponding sub-

geometry of G - q. Letting F' = G - (A" - Fx) we have F' - p = Fx - p,

F'-q=Fx - q, and, obviously, F'-p -q = Fx -p - q. Further, Fj-p is con-

nected and has two or more points so q cannot be an isthmus of Fx -p. Therefore

rHiFx - p - q) = rHiFx - p) = rHiFx - a). These same equalities hold in G,

i.e. /"G(F' - p - q) = rGiF'- p) = rG(F' - a), so the rank axioms require that

rGiF') = rGiF' - p - q). In particular rG(F') = rHiFx) so we may apply 6.14

to get the decomposition G -£E-»- G/F' © F' -^ Fx ® F2 ® ■ • ■ ®F,. The

restriction of the latter map to F' -I£->- F, has F' binary and Fx connected so

by 6.10 we have F' = Fx, and we are finished with (a), (b) follows from (a)

by duality.

(3) Every component F¡ of H has two points. This means that each F¡

is a two point multiple point. H is then coordinatized by the binary matrix

C,, ' ' ' , C.        C.  ,.,'"', c
"1>      ' "fc

M

fc+l' '"2k

[.'        '   ]

where both Fs represent fc x fc identity matrices.  By 6.8 we can coordinatize

G by a matrix M' which consists of adding some 1 's to the columns ck+ x through

c2k of M.   If we can show that there is some column c'¡, for /' G {fc + 1, • • • ,

2fc}, of M' to which no 1 was added then the proof is finished, for then the

component of H corresponding to columns c¡ and c¡_k of M is still a multiple

point of G  Therefore suppose that each of the last fc columns of M' has had at

least one 1 added to it.  In this case one can check that there is some square

submatrix S' contained in the submatrix N consisting of the last fc columns of

M* whose main diagonal concides with the main diagonal of N and which has

exactly two 1 's in each row and column.

Then S' has determinant 0 over F2 but the corresponding submatrix S

of M is the identity, so det(5) = 1. By 6.7, this contradicts the existence of

the map G-&-* H.
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The proof of Theorem 6.16 is complete.

Theorem 6.16 is not true if G is not binary as shown by the map

/-nV

Theorem 6.17.   For G in Px or Pn and G binary each simple rp map of

G is of the form G -î£->- G/F © F for some subgeometry F of G.

Proof.   First consider the case where G is connected.  By 6.10 any sim-

ple rp image H of G is separable and by 6.16 there exists a separator F of H

with F = G - (A" - F). Apply 6.14 to the map G -IS-*- H to get the decomposi-

tion G -ÎE* G/F ® F -^ H. Since G is connected, the first map is nontrivial

so G/F ®F = H, as required.

If G is separable, the result follows from the fact that Fx © • • • © FJF

© F © • • • © Fm = (F, © • • • © Ft ® ■ ■ ■ © Fm)/F © F for a subgeometry F

of F,..

Let #G be the number of components of G.

Theorem 6.18. // G and H are in Px or Pn with G binary and there is a

simple rp map G -LE-> H, then #H = #G + 1.

Proof.  A simple map is trivial when restricted to all but one component

of a separable geometry, so it suffices to show that if G is connected then #H =

2. Assume G is connected.  By 6.17 H = G/F ® F for some subgeometry F of

G. If G/F and F are both connected the proof is over. Otherwise we consider

two cases, both of which lead to contradictions.

(1) F is separable. Write F as a direct sum of two nonempty separators,

F = FX®F2. Then F, = G - (Ar - F,) so apply 6.14 to get the decomposi-

tion G -^ G/Fx © Fx -s£^ G/F ® F. The first map is nontrivial since G is

connected. We will show the second map is also nontrivial to contradict the

fact that the map G -^ H is simple.

Since G is connected there exist G-circuits with nonempty intersection

with Fj and F2.  Let C be such a circuit for which |C - F| is minimal.  |C - F|

is not zero for then Fx and F2 could not be separators of F. Therefore C - F

is a dependent subset of G/F. However, C - F is independent in G/Fx, so the

map G/Fj © F, -XE* G/F © F is nontrivial. Indeed, if G - F were dependent

in G/Fx then some subset S of G - F would extend to a circuit C of G such

that C' - S CFX. Then we find points q in C n F2 and p in S and apply the

circuit axioms to find a G-circuit C" with q G C" and C" Ç C U C' - p.   Then

C" intersects both Fx and F2 and |C" - F| < |C - F|, contradicting the mini-

mality of \C- F\.
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(2) G/F is separable.  Dualize the map G -££->- G/F © F to get G* -**-*

iG* -F)® G*HX - F). Then the subgeometry G* - F of G* is separable and

we can apply the argument of case (1) to obtain the contradiction.

We note in 8.4 that the weak map partial order does not satisfy the Jor-

dan-Dedekind chain condition, even when restricted to Px k or Pn k. We now

see that the chain condition does hold within the binary ideal of PXk and Pn k.

Corollary 6.19. Let G be in Px or Pn with G binary. Any rp map

G -ÏE-> H decomposes into exactly #H - #G simple maps.

Proof.  By 6.18 each simple map increases the number of components

by exactly one.

We have shown that within Px k or Pn k the connected binary geometries

(isomorphism classes in the case of Pn k) form an antichain in the weak map

partial order. The order ideal generated by this antichain contains only binary

geometries and it is easy to see (by adding l's to binary representations) that

it contains all the binary geometries of Px k or Pn k respectively. Within this

ideal the chain condition holds, there being #H — #G simple rp maps between

G and its image H. All simple maps within this ideal are of the form G -£E-*

G/F ® F for some connected subgeometry F of G.

The connected geometries form an order filter in the weak map partial

order on PXk or Pnk of which the binary geometries are minimal elements. They

are not, however, the only minimal elements as is shown by the example of Fig-

ure 6.20.

Figure 6.20.  An affine representation of a connected geometry G (whose

dependent hyperplanes are abcde, abcf, abcg, abch, adef, adeg, adeh, afgh, bdfg,

begh, cdgh, cefh) which is not binary but for which every simple rp image is

separable.
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However, G - fis binary.  In fact it is representable by the following planar

graph:

G-f  -

We close this section by proving a proposition which is useful in the theory

of bracket rings of geometries [17] where it bears on the question of whether or

not the bracket ring of a unimodular geometry is an integral domain.

Proposition 6.21. Let G be a binary geometry in Px k where \X\ = 2k.

Suppose there is an rp map G J£-> H. IfBx,X-Bx, B2, and X - B2 are all bases

of G then Bx and X - Bx are bases for H iff B2 and X - B2 are bases for H.

Proof.  It suffices to prove the proposition when G -IE-»- H is a simple map.

Thus we can assume H = G/F © F.  Since Bx and X - Bx are both bases for

G/F © F we must have \BX C\F\= |(A* -Bx)nF{ = rGiF), so |F| = 2rG(F).

Therefore neither |Z?2 n F\ or |(AT - B2) O F| can exceed rG(F) so they both

must equal rGiF). Then B2 and X - B2 ate both bases for G/F © F

7. Hereditary properties: Tutte-Grothendieck invariants.

Definition 7.1.   An invariant is a function / defined on the class of all

geometries such that /(G) = /(//) if G is isomorphic to H. It is clear that an in-

variant / is unambiguously defined for an isomorphism class G G Pn by /(G) =

/(G') for any representative G' of G.  A Tutte-Grothendieck invariant is an in-

variant taking values in a commutative ring such that /(G) = fiG/p) + /(G - p)

for any point p of G which is not an isthmus or a loop and /(G) = fiSx ) • /(52)

for any complementary separators Sx and S2 of G. The Tutte polynomial,

tGiz, x), of G is the unique two variable polynomial function which is a Tutte-

Grothendieck invariant and has the property that tGiz, x) = z if G is an isthmus

and tGiz, x) = x if G is a loop. This concept was introduced by Crapo [6] and

studied extensively by Brylawski [1].
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Many interesting invariants can be derived from the Tutte polynomial and

its derivatives. The first column of Table 7.2 provides a list of such invariants

expressed in terms of tGiz, x) with references given where appropriate. The second

column of the table describes the behavior of the invariants under rp maps and

refers to the result in this section where the proof is given. Most of the rest of

this section is devoted to proving the statements that appear in that second column.

Table 7.2.   The behavior under rp maps of invariants derived

from the Tutte polynomial

Invariants of G in terms

of rG(z, x)

Behavior of these invariants

under the nontrivial rp map

G-^/Y.

i. /G(i, 0= I8GI       [H

2. fG(2, l)=liGl HI

3. fG(l,2)= IIG*I        HI

4. rG(2, 2) = 2IA"I [ll

5. fG(0, 0) = 0 [ 11

6. fG(l, 0) = Im(G)I where u(G) =

u(0, 1) of the lattice LG as defined

by Rota [14].

7. fG(2, 0), for a graph this invariant is

the number of acyclic orientations [ 15] ;

for a unimodular geometry it is the num-

ber of nonhomogeneous unimodular co-

ordinatizations of G times 2#G
[3].

8. 3fG/3zl(0;0) = ß(G) where (3(G) is

the higher invariant described by Crapo

[5]

9. (OfcrG/3zfc)|(0>0))/fc! = ck, the

coefficient of the term of fG(z, 0) in

which z   appears.

10.   rG(l — \, 0)= xG(^)> the characteristic

polynomial of G [7].

11. Zk¥,\k)((<)ktGßzk)\(0<0))/k\ \w,\

where w¡ is the coefficient of X' in

XG(X), also known as the /th Whitney

number of the first kind of G [9].

decreasing

decreasing

decreasing

equal

equal

nonincreasing,

decreasing if G is loopless (7.3)

nonincreasing,

decreasing if G is loopless (7.3)

nonincreasing (7.4)

nonincreasing (7.4)

for X. > 1, XG(X) behaves erratically

under rp maps (7.6)

nonincreasing (7.4)

The statements concerning the first five invariants of Table 7.2 require no

elaboration. Statements 6 and 7 follow from the next proposition and statements

8, 9, and 11 are a consequence of Proposition 7.4.
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Proposition 7.3.  Let G and H be in Px or Pn with a nontrivial rp map

G -ÎE-»- H.   Then tGiz, 0) > tHiz, 0) for all z > 0 and the inequality is strict

provided G has no loops.

Proof.  Induction on n. If n < 2 there are no nontrivial rp maps. If n = 2

the only case is G = a •• b -^ • (¿) = H. In this case tGiz, 0) = z and tHiz, 0)

= 0 and the proposition clearly holds.

Assume the proposition is true for n < m and let n = m. If H is a Boolean

algebra then it has no nontrival preimages. If H is a pre-Boolean algebra contain-

ing a loop then tHiz, 0) is identically zero, whereas rG(z, 0) > 0 for all positive

z and tGiz, 0) > 0 if G has no loops.  Otherwise H has a point p which is neither

a loop nor an isthmus.  From 5.5 we get the maps G - p -î£-> H - p and

G/P -££-> H/p.   Recalling that tG = tG_   + tG,   we have by induction that

tG_piz, 0) > tH_piz, 0) and tG/piz, 0) > tH/p(z, 0),so tGiz, 0) > tHiz, 0) for

all z > 0. To show that the inequality is strict if G is loopless we need only show

that one of the maps G - p -LE-> H - p or G/p -£E-+ H/p is nontrivial and the do-

main geometry is loopless. G - p is certainly loopless so if G - p J-E-»- H - p

is nontrivial we are done. Therefore assume G — p = H — p. Then G/p ■**-* H/p

is certainly nontrivial for, if not, then rG = tH, so |IG| = fG(2, 1) = tH{2, 1) =

llj/l and the map G -I£-> H would be trivial. It remains to show that G/p has

no loops, or, equivalently, that there is no point q G G such that p and q form a

two point G-circuit. Indeed if p and q formed a two point G-circuit then either

they would form a two point //-circuit which, together with the assumption that

G - p = H - p, would require that G = H, or p would be a loop in H, contradict-

ing the original assumption on p.

Proposition 7.4.   // G and H are in Px or Pn and there is an rp map

G-^H then

^G

bzk

dktH

(z, 0) dzh (z, 0)

for all z > 0 and all positive integers k.

Proof.  It is trivially true for all geometries of two or fewer points. As-

sume it is true for all geometries with n <m and let n = m. If H is a Boolean

algebra there is nothing to prove.  If H is a pre-Boolean algebra containing a loop

then (3fcíyí/9zfc)l(Z(o) is identically zero whereas (dfciG/8zfc)|(z 0) > 0 for all z >

0. Otherwise H has a point p which is neither an isthmus nor a loop. Using 5.5

we get the maps G - p -^-* H - p and G/p -IE-»- H/p.  By induction these maps

satisfy the proposition so the fact that tG = tG_   + rG,   together with the line-

arity of differentiation gives the desired result.
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The next result follows immediately from the fact [1] that tGiz, x) =

rG*(x, z) and 4.3.

Corollary 7.5. Propositions 7.3 and 7.4 also hold ifz is replaced by x,

evaluations at iz, 0) are replaced by evaluations at (0, x), and loops are replaced

by isthmuses.

Evaluations of the characteristic polynomial Xg(a) °f G for values of X

greater than 1 play a central role in the theory of combinatorial geometry, govern-

ing the critical exponent of a coordinatizable geometry and the minimal number

of colors needed for a proper coloring of a graphical geometry [7].

That the behavior of these invariants is not monotone in the weak map

partial order is shown in Figure 7.6.

(a) An affine representation of F43.

(•)

(b) A graphical representation of F43.

O

(c) The minimum numbers of colors for a proper coloring.

2 3 2

(d) The critical exponents over F2.

12 1-

Figure 7.6.   Nonmonotone behavior of important invariants

8.  Elementary images and preimages. In this section we discuss various

loosely related topics having to do with the relations of strong and weak maps.

We begin by introducing a distinguished interval in the weak map partial order.

Defintion 8.1.   For a geometry G in Px, let Iv(G) represent the interval

[TiG@p), G ® ip)] in the weak map partial order on PXUp-  7ÏG ®p) is re-

ferred to as G with p added in general position and G © ip) is referred to as G

with p added as a loop.

A single point extension of G is a geometry H in PXuP sucn that r(/7) B KG)
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and for which H - p = G.  It is clear that r(G © p) and G ®ip) are single point

extensions of G.

Proposition 8.2.   The interval Iv(G) consists exactly of the single point

extensions of G.

Proof.   Suppose H is in Iv(G).   Then 7T(G ©p) -^ H -**+ G ® ip).

The point p cannot be an isthmus of H for then it would also be an isthmus of

G ®ip) (5.4). Thus we can delete p to get the maps F(G ®p)-p SE->- H - p

-^ (G © ip)) - p. But F(G ©p) - p = (G © ip)) - p = G so H - p = G.

If H is a single point extension of G, since /■(//) = /-(G) we clearly have the

map H -rE-»- G © (p).  Further, the map G ®p —*■ H reduces rank by one so

7T(G © p) J£-* H, as required.

Proposition 8.3.    The interval Iv(G) under the weak map partial order

is a lattice in which the supremum of two geometries F and H of Iv(G) is

described by îFyH = JF U lH.

Proof.  First let us determine that the set lF\jH of subsets of X U p

defined by T-fVh = *F u ^h satisfies the independent set axioms. It is clear

that <f> G lF\jH and subsets of elements of Ïf\jh are in JpVH-

Now suppose / and / are in lF\jH with |/| = |/| — 1. We must find some

q GJ such that / U q G lFyH. This condition is clearly met if / and / are both

in ÎF or both in lH, so assume that / G JF and J G lH. Recalling that lF_p

= IH_p = IG, we see that the only nontrivial case is where both / and / con-

tain p for otherwise they are both in TF or \H or both. Therefore suppose that

p is in / and / and look at C1F(/), the closure of / in F. If there is a point q G

(/ - p) — Qlpiî) then / U q is in IF and we are done.  Otherwise (/' - p) C

Clpil). But / - p is independent inFand|/-p| = |/| = r(ClF(/)) so that

ClpiJ -P) = Clpil) D I. But C1F(/ -p)-p = ClGiJ -p) = ClHiJ -p)-p =

ClHiJ - p), the latter equality since / is independent in H. Therefore I - p C

ClHiJ - p). But |/ - p| = \I - p\ - 1 so ClHQ - p) %. ClHiJ - p). Therefore

there exists a point q G J - p such that (/ - p) U q is independent in H and

ClHHI - p)Vq) = ClHiJ - p). But then p Ö ClHHI -p)L)q) so (/ - p) U

gUp=/U#is independent in H. We have established that F V H is a geometry.

F U // is clearly a supremum since any geometry E with F -^ F and

F -^ H must have IF 2 lF U 1^ = í^y//-  Finally F V ¿/ is in Iv(G) since

W)-p = i/G TF u 1*1 P^ = *f-p u VP = Ig-

That Iv(G) does not satisfy the Jordan-Dedekind chain condition is shown

in Figure 8.4.
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Figure 8.4.   An affine representation of Iv(G) where G is

represented by

&.

Only the position of p is indicated. Note that the chain condi-

tion is not satisfied.
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The lattice Iv(G) is closely related to some more familar  structures in a

manner which we describe below.

Definition 8.5.   Suppose G is in Pz and ¿G is the lattice of flats of G.

The pair (X, Y) of flats in ¿G is called a modular pair if rG(A) + rGiY) =

rGiX V Y) + rGiX AY). A modular cut of the lattice ¿G is a nonempty order

filter M in ¿G having the property that if X and Y are in M and (A", Y) is a

modular pair then X A Y is in M.  There is a 1-1 correspondence between single

element extensions of G and modular cuts of ¿G [4], given as follows:  If H is

a single point extension of G then the set of all G-flats / such that rGif) =

rHif U p) is a modular filter of ¿G and all modular filters determine single

element extensions in this manner.

Higgs [11] and Brylawski [1] have shown that for each elementary map

G -a*-* H where G and H are in Px there exists a unique geometry F on the set

X U p such that G = F - p and H = F/p. Equivalently, there is a 1-1 corre-

spondence between single element extensions of a geometry G (other than G ©

ip)) and elementary images of G which sends each single element extension F

to the elementary image F/p.   By dualizing one sees that there is a 1-1 corre-

spondence between single element extensions of G* and elementary preimages of

G which sends each single element extension F of G* to the elementary preimage

F* — p of G. Shortly, we will relate all these notions to the lattice Iv(G).

First we prove a general proposition about extending maps.

Proposition 8.6.   Let G and H be in PXUp with p not an isthmus of G

or H and suppose there is a map G - p -î£->- H - p.  Let MG_   be the modular

cut of LG_   consisting of all G - p flats f such that rG_ (f) = rG(jU p).

There is a map G -**+ H iff [ClH_pif)\fG MG_p and rG_pif) = rH_p(f)} C

MH-P.

Proof.  Suppose G -^ H and let /be in MG_p with rG_p(J) = rH_p(f).

Let / be a maximal //-independent subset off. Then / is also a maximal G-in-

dependent subset of/  Since /GMG      we have that rG_ if) = rG(fL) p) so

p makes a G-circuit C with /. This circuit contains a circuit C in H and C must

contain p. Therefore p G C1H(/) = ClHij). So rH_piClH_pif)) = |/| =

0/(CW-PCO U p) and ClH_pif) GMH_p.

Conversely, suppose the latter condition holds.  Since KG) = r(¿/) and we

have the map G - p -î£-* H - p we need only show that independent sets of H

containing p are independent in G.   Let / be independent in H with p G I. Then

ClH_pU-p)4MH_p. ButrG_piClG_pH-p))=V-p\ = rH_piClG_pH-p))

soClG_p(/-p)ÖMG_p.  Thus
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rG_pU - P) - 'G_p(ClG_p(/ - P)) < rGiClG_pH - p) U p) = rG0)

so / is independent in G.

Corollary 8.7.   77/e 1-1 correspondence between single element exten-

sions and modular cuts of G which was described in 8.5 is a lattice isomorphism

from Iv(G) to the lattice of modular cuts ordered by containment.

For the purposes of the next proposition let us define a 0-less lattice to be

a partially ordered set that lacks only a least element to be a lattice.  The first

part of this proposition appeared in [8].

Proposition 8.8.   Suppose G is an Px k.  The elementary images and pre-

images of G form 0-less lattices under the weak map partial order on Px k_x

and Px k+i respectively.   The former 0-less lattice is isomorphic with Iv(G)

with its least element removed and is obtained by contracting each member of

Iv(G) iexcept G © ip)) by p.   The latter is isomorphic with Iv(G*) with its

least element removed.

Proof.  It was stated in 8.5 that the function sending the single element

extension F of G (F =£ G © (p)) to the elementary image F/p was a bijection.

If F' and F" are in Iv(G) - {G © ip)} and there is a map F' -^ F" then we

have F'lp -ît* F"/p since p is not a loop of F". Conversely if F'/p -IE->- F"Ip

then the independent sets of F" containing p must be independent in F' and the

independent sets of F" not containing p are just the independent sets of G. There'

fore F' -£E-»- F", as required.

The statement concerning elementary preimages now follows from the ob-

servation that the elementary preimages of G are exactly the duals of the elemen-

tary images of G*. The images of a geometry G do not, in general, form a con-

vex set in the weak map partial order.  For instance

but the former and latter geometries are elementary images of

y

a        d        e

while the middle geometry is not.
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Before leaving the topic of extensions of maps let us make a few further

comments concerning the existence and nonexistence of certain extensions.

Proposition 8.9.   Let G be in PXUp with p not an isthmus of G and sup-

pose there is a map G — p -^ H.   The set E of all extensions tí of H for which

there is a map G -ÍE-> tí is a nonempty lattice ideal of Iv(/Z).   The largest ele-

ment ofE is thus the unique freest extension of the map G - p ■**-*■ H to a

map on G.

Proof. E is nonempty since it clearly contains H © (p).  For the rest it

suffices to show that E is closed under suprema.  Suppose Hx and H2 are in F.

Then IHj C IG and ÏH2 Ç JG. Therefore I//j U JH2 = THiVh2 S ¿g and

Hx V H2 is an image of G.

The analogous statement for extensions of preimages F -ÎE* G - p is not

true. The best that can be said is that the set of all extensions F' of F such that

F' -^ G is a nonempty order filter of Iv(F).   That it is not closed under Ín-

fima is shown by the following example:   Let

c bcP

F-ar>^ and C^J*

Then there is a map F •JZ* G - p. Letting

Fl      a S and     F2 = a

pc-

it is clear that Fx and F2 are in Iv(F) and there are maps F¡ -£E->- G. However

c  -

Fi   A Fo =  ,    S^        ("P)  B F •  (p)

so there is no map from Fx A F2 to G.

There is one potentially useful situation in which extensions may not exist.

Suppose we have a map F -ÎE-»- H and suppose that the deletion map decomposes

to F - p -LE->- G -£E-»// - p. The following example shows that there may exist

no extension G' of G for which there are maps F -£E-> G' -EE-> //. After deleting

p the map

b c

>       » .       (.a)  = H.
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decomposes to

HUr, -  „     *C      -^-> b#        • (,a)-H-P.
ab     ,d *        t¿

However there is no extension G' of G for which there are maps F -^* G'

In [10] Higgs described a lattice order on Px as follows: associate with

each G in Px the vector VG = iR0iG),RxiG), • • •, F„(G)) where fl,.(G) =

{S C X\rGiS) = /'}. These vectors are ordered by VG > VH if there is some in-

teger k such that Ä,.(G) = R¡iH) for /' = 0, 1, 2, • • •, k - 1 and Ffc(G) <g Ffc(//).

It is easy to see that the induced order on Px is a lattice with greatest element

Bx and smallest element Bx.

The Higgs lattice order and the weak map partial order are related by the

following proposition.

Proposition 8.10.  The identity map from Px under the weak map partial

order to Px under the Higgs lattice order is an order preserving map.

Proof.   Let G and H he in Px and suppose there is a map G —►//. We

wish to compare the vectors VG and VH. Suppose k is the smallest integer for

which RkiG) ¥= RkiH). If the subset S of X is in Fk(G), then rG(5) = k. Thus

the map G —► H requires that rHiS) < k. But we cannot have rHiS) = / < k for

then R,iG) i= RtiH). Therefore rHiS) = kso Ffc(G) ̂  RkiH) and we are done.

9. Final remarks.  This section is a brief discussion of a remaining problem

in the theory of weak maps.

The fundamental problem is to find a complete description of the action of

simple rp maps on geometries. The importance of this problem lies in the fact

that any geometry G can be constructed from the free geometry of appropriate

size and rank by the action of a sequence of simple rp maps.

For instance, we have seen in 7.2 and 5.15 that the Whitney numbers of

the first and second kinds behave systematically under rp maps.  The question of

whether a geometry exists for which the Whitney numbers of either kind are not

unimodal is equivalent to the question of whether such a geometry can be con-

structed by a single simple rp map from a geometry in which the Whitney num-

bers are unimodal. A complete understanding of simple rp maps might resolve

this question.

In §6 we described simple rp maps of binary geometries. That description

does not hold for arbitrary maps. We conjecture, however, that it holds in the

following case.

F-p
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Conjecture 9.1.   If G and H are in Px or P„ with #G < #// and if

there is a simple map G -SE->- // then H = G/F © F for some subgeometry F of

G.  Further, #// = #G + 1.
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