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ISOTROPIC IMMERSIONS AND VERONESE MANIFOLDS

BY

T. ITOH (!) AND K. OGIUE (2)

ABSTRACT.  An n-dimensional Veronese manifold is defined as a mini-

mal immersion of an n-sphere of curvature n/2(n + 1) into an {n(n + 3)/2 — l}-

dimensional unit sphere.   The purpose of this paper is to give some characteriza-

tions of a Veronese manifold in terms of isotropic immersions.

1. Introduction.  A Veronese surface may be characterized from a differ-

ential-geometric point of view as a minimal immersion of a 2-dimensional sphere

of curvature 1/3 into a 4-dimensional unit sphere.  As a generalization of a

Veronese surface, a Veronese manifold is defined as a minimal immersion of an

«-dimensional sphere of curvature n/2(n + 1) into an {« + n(n + l)/2 — 1}-

dimensional unit sphere.

The minimal immersions of a sphere into a sphere are completely deter-

mined by doCarmo and Wallach [2], among which a Veronese manifold can be

considered as the simplest one.

On the other hand, O'Neill [5] defined a notion of isotropic immersions.

The purpose of this paper is to provide some characterizations of a Veronese

manifold in terms of isotropic immersions.

2. Preliminaries. A Riemannian manifold of constant curvature is called a

space form. We denote by Mm(c) an m-dimensional space form of constant cur-

vature c.

Let Af be an «-dimensional Riemannian manifold isometrically immersed in

M"+P(c). Then the second fundamental form a of the immersion is given by

a(X, Y) = VXY-VXY and it satisfies a(X, Y) = a(Y, X).

We choose a local field of orthonormal frames c«, • • •, en, en+1,* • •,

en+pinAf+P(c)in such a way that, restricted to Af, ev, • • •, en are tangent

to Af. With respect to the frame field of M"+P(c) chosen above, let w ,* • •,

w", cj" + l, • ' •, w"+p be the field of dual frames.  Then the structure
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equations of Mn+P('c) are given by (3)

(2.1) <iu/=-Ec^A cA      coi + "a = 0,

(2.2) rf«á = - £ «¿ A «f + cw* A «*.

Restricting these forms to M, we obtain the structure equations of the im-

mersion:

(2.3) ua = 0,

(2-4) d<J = - £ <Jf A oJ,      to} + J, = 0,

(2.5)       *4 = - Z <4 a «; 4- nj,   oj = i- £ R;:fc/Wfc a <j.

From (2.1) and (2.3) it follows that £ oof A co1' = 0. Therefore by Cartan's

lemma, we may write

(2.6) w? = E Ä§«>,      Ä$ = Äf|.

The second fundamental form a and hf¡ are related by o(e¡, ej) = Jj /z?-ea or o =

£*!«* ® "* ® ea- The equation of Gauss is given by

(2.7) R)kl = -c(8k8n - 8\8jk) + £<%#-Ä*^>

Let i?,y = 2^Rikj an(j p be the Ricci tensor and the scalar curvature of Af, re-

spectively. Then they satisfy

(2.8) R.. = (n - l)c8v + ZKkKj - *W

(2.9) p = n(n - l)c + £ AgÄg - Hall2,

where Hall denotes the length of the second fundamental form so that Hall2 =

Yi hfjhfj.  In particular, if the immersion is minimal, then they satisfy

(2.8)m Rq-in-m,, -ZX*!/.

(2.9) p = «(n-l)c-llall2.

Let KN = Z(hfk4j - hßikKMhn ~ hnh& Then *» is a nonneSative

scalar on M and is a geometric invariant.

If we define hf¡k by

(3) we use the following convention on the range of indices unless otherwise stated:

A, B, C, D = 1, • • •, n, n + 1, • • •, n + p; i, /, k, I = 1, • • •, n; a, ß = n + 1, • • •, n + p,

and we agree that repeated indices under a summation sign without indication are summed

over the respective range.
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£ h^k = dh% - Z Ktf<~Z «f*«/*+ 2>S«g.

then from (2.2), (2.3) and (2.6) we have hfjk = hfk¡. Let v' be the covariant dif-

ferentiation with respect to the connection in (tangent bundle) © (normal bundle).

Then it follows that Va - 2 hfjk <J ®J®oik®ea.

Let i) = n~12 a(e,-, e¡) be the mean curvature vector and H = II % II be the

mean curvature. Then it is known that the second fundamental form of the im-

mersion satisfies a differential equation, that is, we have

Lemma 2.1 [1]. If M is an n-dimensional submanifold immersed in

Mn+P(c), then

ViAlloll2= ¡v'oIP + Za^AA«

= llv'all2 -KN - £ hpfjhlfâ + n(c + H2)\\a\\2 -n2cH2 + nHAH,

where A denotes the Laplacian.

3. Isotropic submanifolds. For a unit vector X, o(X, X) is called the normal

curvature vector in the direction of X. An isometric immersion is said to be iso-

tropic if every normal curvature vector has the same length at each point, that is,

the length of the normal curvature vector depends only on the point. In particular,

if the length of the normal curvature vector is equal to À (a function on the sub-

manifold), then the immersion is said to be X-isotropic. The following two lemmas

are due to B. O'Neill [5].

Lemma 3.1. An isometric immersion is isotropic if and only if(o(X, X),

a(X, Y)) = 0 for all orthogonal vectors X and Y.

Lemma 3.2. A X-isotropic immersion satisfies

(i) <a(X, X), o(Y, Y))+2 \\o(X, -Y)f = X2,

(ii) <a(X, X), a(U, V))+2(o(X, U), o(X, V))=0,

(iii) (a(X, Y), o(U, V))+<<KX, U), o(Y, V))+ <o(X, V), o(Y, li))=0,for

orthonormal vectors X, Y, U, V.

4. Isotropic minimal submanifolds.  In this section we consider isotropic

minimal submanifolds immersed in a space form and give a characterization of a

Veronese manifold.

If Af is an «-dimensional X-isotropic minimal submanifold, then it follows

easily from Lemma 3.2 (i), (ii) that

(4-1) Tth«khaki=*A(n + 2)X28ii.

This, combined with (2.8)m, implies the following:
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Proposition 4.1. Let M be an n-dimensional X-isotropic minimal submani-

fold immersed in M"+P(c). Ifn>3, then M is Einstein

(Rij = {(n-l)c-Wn + 2)\2}8ii)

so that X is constant.

We shall prove several lemmas.

Lemma 4.1. If M is an n-dimensional isotropic minimal submanifold im-

mersed in Mn+P(c), then

KN=^M4+Zhfjhfj"aklhßki-

Proof.   From (4.1) we have

(4.2) \\o\\2=Zh<*jhfj = iMn + 2)\2.

The definition of KN, together with (4.1) and (4.2), yields

(4.3) KN = 2n-i\\of-2Y1htkh%hfM,

On the other hand, Lemma 3.1 and Lemma 3.2 imply

e »M = a2 . s m=o, £ m+2£ *s*s=o.
a a a a

(4.4) T1h°ihfj + 2Zhffi = \2,
a a

a a a

where /, /, k, l are distinct. Therefore we can see that

i.j.k.l*  \a,ß /

(4.5) -|S  (z««) + z(z««)
^ «,/,/*  \a,ß I       i*j\a,ß I

«'#/' \a,0 /

i,j,k,l*\a,ß ) l,k,l*\a,ß

(4'6) + 2Z(£ *Sftftö ) + l(z «SMftM)+ "^

where Zi,/,fc,;* denotes the summation over distinct /, /, k, L   It follows from

(4.2) and (4.6) that
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Lemma 4.2. Lei Af ¿>e an n-dimensional isotropic minimal submanifold im-

mersed in M"+P(c).    Tlien

"     (n + 2)(« — 1)

The equality holds if and only if M is a space form.

Proof.  From (4.1), • • •, (4.5), we have

n(n + ¿)       u,k,i^\c,ß

+ 3 £ ( £ »WfyjO - 2Z (z Wä*§)
i,j,k*\a,ß ) i*j\a,ß J

-4*2Z(ZW+8Z(ZW&A&
&j\a I h*/ \a,0

2(« + 4)|| l|4 _ 8"g»4 + 6v /V ha-h*h?.h?.
(n + 2)2°        („ + 2)2      %\ÍS   V   ;  V  '7

2«llall4 ^ {■<-, «X2     / 3»3    .,)2 ...3
4

>-
2« h II4

(« + 2)(« - 1)-

The equality holds if and only if

ZWf, = o. ZWjk = o>
oc.ß «

(4.7)

nUnU     2(n-l)

holds for distinct i, /, k, I.

If (4.7) holds, then from (2.7), (4.4) and (4.7) it follows that

*.- to-yffî) **> -•*»
so that Af is a space form.   Q.E.D.

We are now in a position to prove the following:
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Theorem 4.1. Let M be an n-dimensional X-isotropic minimal submanifold

immersed in M"+P(c),c'> 0. //

(0 n > 3,

(ü) X>0,
(iii) KN < (ncl(n + l))llall2 + (2¡(n + 2))ll a II4,

(iv) the immersion is full,

then M is a space form of constant curvature nc¡2(n + 1) and p — n(n + l)/2 — 1

so that M is immersed as a Veronese manifold.

Proof. It follows from Lemma 2.1, Proposition 4.1 and Lemma 4.1 that

llv'all2 = 2KN - ^2 » o II4 - «311 all2

On the other hand, assumption (iii) and Lemma 4.2 imply that KN <

(n2?7(n + l))llalP. This, together with (4.8) and assumption (iii),yields v'a = 0

and

h2^ n _ „2       nc   „   ,„  ,     2

Hence

so that

^"(« + 2)(«-l)lla"4-

Therefore it follows from Lemma 4.2 that M is a space form. This, combined with

assumption (iv), Theorem in [3] and Theorem 1 in [4], completes the proof. Q.ED.

5.  Isotropie immersion of a space form into a space form. In this section we

consider an «-dimensional space form M"(c) immersed in M"+P(c). The following

lemma is due to O'Neill [5].

Lemma 5.1. IfM"(c) is a X-isotropic submanifold immersed in M"+P(c),

then

(1) 3II a (X, Y) II2 +c-c = X2,

(2) 2(c - c) + X2 = 3(a(X, X), a(Y, Y)\

(3) {a(X, Y), a(Z, U)).= (a(X, X), a(Y, Z)> = {a(X, Y), a(X, Z)> = 0,

for orthonormal X, Y, Z, U. Moreover if-((n + 2)/2(« - 1))X2 Kc-c'KX2,

then p>n(n + l)/2.
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From Lemma 5.1 we have

Z«X = *2.       3ZW + c-c = X2,
a a

2(c-c) + X2 = 3Z «««?,
ct

where all indices are distinct. It follows from (4.5), (4.6) and (5.1) that

(5.2) h2 = (3n)~l{(n + 2)X2 + 2(n - l)(c - c)},

(53) II o II2 = «2#2 - «(« - 1) (c - Z),

KN = (2«/9X(« + 2)X2 - (n - l)(c - Z)}2 - (2n/9)(n - \)(X2 -c + Z)2
(5.4)

- (4«/9)(n - 1)(X2 - c + c)(X2 + 2c - 2c) - 2«X4,

ZW*M$i = (2"/9)(« - D(a2 - c + ?)2

+ (n/9)(« -1)(X2 + 2c - 2c)2 + „X4.

The following is easily seen.

Proposition 5.1. If M"(c) is an isotropic submanifold immersed in

M"+P(c), then M"(c) is a pseudo-umbilical submanifold in M"+P(c).

Finally we prove the following.

Theorem 5.1. Let M"(c) be an n-dimensional compact oriented space form,

which is isotropically immersed in Mn+P(c). If

(i)  0</f2<(2(„ + l)/rc)c-c,

(ii) the immersion is full and p > 1,

then H2 = (2(n + l)/«)e — Z and p = n(n + l)/2. Moreover M"(c) is immersed

as a Veronese manifold in some totally umbilical hypersurface of M"+P(c)-

Proof. Since H > 0 on M"(c), in view of Proposition 5.1, we can choose

en+1 = H-1i) so that

(5.6) hri=HSU-

Let s = 2(3>n+1«§«! = Hall2 - nH2 = n(n - !)(& - c + Z). Then, using

(5.6), we get
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ViAs = VIA II a 112 - nWdHW2 - nHAH

(5.7) = llv'all2 + ¿ZKjAhtj - nWdHW2 -nHAH

= 2>£M«+   £   (hl-rf-nHAH+ZWt1)2.
ß>n+l i*j

On the other hand, using Lemma 2.1, (5.4) and (5.5), we have

(5.8)

Since

¿ZhJjAhJj = nHAH + n(c+ H2)h\\-n27ll2 -n2H4

- (2/9)(w - 1)(» + l)(n + 2)(X2 -c + c)2.

(5.9) V-t'-V-JhW-' + V-tn-M + l)'-

it follows from (5.7) and (5.8) that

2(«+l)       ,2+ \-(hn+ l->2

0>>

Since M"(c) is compact, oriented and (2(n + l)/«)c — 7; — H2 > 0, we have

(5.10) A|fc = 0   for ß > « + 1    and   *jgl = 0 for i * j

and
s = 0  or Z/2 = (2(« 4- l)/n)c - c.

If s = 0, then M"(c) is totally umbilical, so that p = 1, which contradicts the as-

sumption.  Hence H2 = (2(n + \)¡rí)c — c", which implies that Hall2 and s are

constant.  Since H > 0 and s > 0, (5.2) and (5.9) imply -((« + 2)/2(« - 1))X2 <

c — "c < X2 so that p > n(n + l)/2. Moreover it follows from (5.7) and (5.10) that

2 hJjAhJj = 0 which, together with Lemma 2.1, implies that v'a = 0. Therefore, by

Theorem in [3] ,p = n(n + l)/2.

Furthermore it follows easily from v'a = 0 that the mean curvature vector

S) is parallel.  This combined with Proposition 5.1, implies that M"(c) is immersed

in some totally umbilical hypersurface of M"+P(c) as a minimal submanifold and

hence must be a Veronese manifold.    Q.E.D.
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