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ABSTRACT. Let F be a local field of characteristic zero and G a connected

algebraic group defined over F. Let G be the locally compact group of F-rational

points. One characterizes the group B(G) of g e G whose conjugacy class is rela-

tively compact. For instance, if G is F-split or reductive without anisotropic fac-

tors then B(G) is the center of G. If H is a closed subgroup of G such that G/H

has finite volume, then the centralizer of H in G is contained in B(G). If, more-

over, H is the centralizer of some »EG then G/H is compact.

1. Introduction. For a locally compact group G, Tits [12] has described

the subgroup B(G) of all elements in G which have precompact conjugacy classes

by introducing the concept of automorphism of bounded displacement (a.b.d.).

An automorphism a of G is an a.b.d. if the set {cx(g)g~l \g G G] has compact

closure.  It is easy to see that x G B(G) if and only if the inner automorphism

ax of G induced by x is an a.b.d.

Let F be a locally compact nondiscrete field of characteristic zero, G an al-

gebraic group defined over F and G the F-rational subgroup of G. Thus the group

G is canonically equipped with a topology of a locally compact group.  For an

automorphism a of G defined over F, we say that a is an a.b.d. if the restriction

a(G is an a.b. d. of G.   In §2 we study the a.b. d of G in the spirit of Tits and

obtain a structure theorem for B(G). The main results are the following:

2.1. Theorem. Let G be a connected algebraic group defined over F, G

its F-rational subgroup, a an automorphism of G defined over F and N the unipo-

tent radical of G.

(i) // a is an a. b. d. of G, then for any unipotent element n of G, a(n) = n

and for any torus To/G defined and split over F, a(t) = t for all t G T.

(ii) If for any nGN, a(n) = n and if for any torus To/G defined and split
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over F, a(f) = r for all t G T, then a is an a. b. d.   (Here N and Tare the F-rational

points ofN and T respectively.)

2.2. Corollary. Let G and G be as in 2.1. Then

B(G) = f){ZG(T) | T is a torus of G defined and split over F} nZG(N)

where ZG(T) (resp. ZG(N)) denotes the centralizer of T (resp. N) in G; in particu-

lar, B(G) is closed.

2.3. Corollary. Let G and G be as in 2.1. If G is reductive, then B(G) =

fï {PIP is a minimal parabolic F-subgroup of G}.

2.4. Theorem. Let G and G be as in 2.1. Suppose (i) that G is F-split or

(ii) that G is reductive with no F-anisotropic simple factors. Then there is no non-

trivial a. b. d. In particular, B(G) equals the center Z(G) of G.

In §2, we also prove that complex analytic linear groups or simply connected

complex analytic groups have no nontrivial complex analytic a.b.d. and so for

such groups, B(G) = Z(G) (see 2.8).

2.1 and 2.2 are the analogue of Tits' results for real analytic groups while 2.3 is

another characterization of B(G) for reductive linear groups. 2.4 and the result for

complex analytic groups are analogous to various results of Tits [12] and Green-

leaf-Moskowitz-Rothschild [4].

Using techniques suggested in [4] and [10] we prove in §3 results for alge-

braic groups similar to those for semisimple analytic groups [10] and connected

locally compact groups [4]. The main theorem is

3.1.  Theorem.   Let G and G be as in 2.1, then any finite central measure

on G is supported on B(G).

A closed subgroup H of a. locally compact group G is called a generalized

uniform subgroup of G if the homogeneous space G/H of left cosets admits a finite

invariant measure.  In §4 we prove results on the centralizer ZG(H) of H in G and

a compactness condition of G/H for linear groups all of which have an analogue

[4], [5] for connected Lie groups.

4.1. Theorem. Let G, G be as in 2.1 and H a generalized uniform sub-

group of G.   Then ZG(H) C B(G).

4.2. Corollary.  Let G, G and H be as in 4.1.  Then the commutator

subgroup of ZG(H) has compact closure.

In [11] an example of a totally disconnected group G such that the com-

mutator subgroup of ZG(H) does not have compact closure is given.  In the case
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that Fis ap-adic field, 4.2 proves the result for a class of totally disconnected groups.

As an analogue of Borel's density theorem [1], we prove

4.3. Corollary.   Let G, G and H be as in 4.1. Suppose that B(G) =

Z(G), then ZG(H) = Z(G). In particular, this is the case when G is F-split or

when G is reductive with no F-anisotropic simple factors.

4.4. Theorem.   Let G, G and H be as in 4.1. Suppose that H is the cen-

tralizer of some element x G G, then G/H is compact.

When F = R, 4.4 is a particular case of a theorem of Mostow [9, Theorem

7.1]  and when F is p-adic, 4.4 is the analogue of Tamagawa's result [13, The-

orem 1].

Finally, I would like to express my gratitude  and appreciation to Professors

H. Jacquet and M. Moskowitz who gave much encouragement and generous help

throughout the writing of this paper.

2. The structure of B(G). Throughout this paper, F denotes a locally com-

pact nondiscrete field of characteristic zero, i.e. F is either the field R of real num-

bers, the field C of complex numbers or a p-adic field (i.e. a finite extension of

the field Qp).  By an F-group we mean an algebraic subgroup G of GL(n) defined

over F where GL(w) denotes the group of n x n invertible matrices over an alge-

braically closed extension of the field F   By the unipotent radical of G we mean

the maximal (Zariski) connected normal unipotent subgroup N of G.  It is well

known that N is defined and split (triangularizable) over F   By an F-split torus in

G we mean an algebraic subgroup T of G defined and diagonalizable over F.   An

F-group G is said to be F-split or split over F if G has a maximal torus which is

F-split. We denote by G (resp. N, T) the subgroup of all F-rational points in G

(resp. N, T); in other words G = Gfl GL(n, F).  It is known that G is Zariski-

dense in G.  By a Borel subgroup of G we mean a maximal solvable connected sub-

group L of G. Any closed subgroup of G which contains a Borel subgroup is

called a parabolic subgroup.  For the general theory of algebraic groups, the reader

is referred to [2] and [3].   Recall that an automorphism a of G defined over F

is an a.b.d. of G if the restriction a]G of G is an a.b.d. of G, i.e. [a(g)g~l \gGG}

has compact closure. An element x G G is bounded if the inner automorphism

ax of G is an a.b.d. and B(G) is the set of bounded elements.

§2 concerns itself with the proof of results stated in 2.1, 2.2, 2.3 and 2.4.

We begin our proof with the following lemma:

2.5. Lemma Suppose X, Y G M(n, F) are nilpotent matrices such that the

set {(exp tX) (exp - tY) 11 G F} has compact closure.   Then X = Y.
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Proof.   Since X and Y are nilpotent, P(t) = (exp tX) (exp - tY) is a poly-

nomial in t with coefficients in M(n, F).  In other words each entry P¡Áf) of P(t)

is a polynomial in t with coefficients in F.   That the set {F(r) 11 G F} has com-

pact closure is equivalent to that each set {\P¡j(t)\\t G F} is bounded.  Hence each

P¡j(t) is a constant and P(t) is a constant matrix.  Thus dP/dt = 0 and in particular

0 = ±P(t)\t=o=-Y + X.

This proves the lemma.

We recall some facts about a torus.  The group of all characters of a torus T

defined and split over F is the set of all group homomorphisms ip : T —► GL(1).

Since T is F-split, all the characters of T are defined over F.   Now T is isomorphic

to GL(iy for some natural number r, so we may write for each t G T, t =

(aj.ar), a¡ G GL(1) and take the F-rational points T of T to be GL(1, F)r.

The mappings a¡ : T —► GL(1) defined by o¡(t) = a¡, t G T, i = 1, . . . , r, form a

basis for the group of characters of T.  Therefore for each character $> of T,

m - n otarm = ii <(/)
i=i i=i

for some integers m(i).

We claim that if the set {\¡j(t) \ t G T} is bounded (with respect to the topol-

ogy of F), then \p(t) = 1 for all r G T. Indeed, for each i = 1, . . . , r, let t =

(1, . . . , 1, a,, 1, . . . , 1), a,. G Fx, then we have \p(t) - af W and {a^(,'>|afGFx}

bounded.  Therefore, for each / = 1, . . . , r, m(f) = 0 or equivalently \j/ = 1.

Proof of 2.1. Let T be the collection of all F-split tori T in G. If a is an

F-rational a.b.d. of G and T G J, then a(T) is again an F-split torus.  Let

{uj, . . . , vn} be a basis of F" consisting of simultaneous eigenvectors of a(T)

and w = 2"_j bivi be a simultaneous eigenvector of T. We have for each s G a(T),

s(Vj) = \p¡(s)v¡, i = 1, . . . , n, and for each t G T, t(w) = <p(t)w where each <//,-,

i = 1, . . . , n (resp. <¡>) is a character of a(T) (resp. T).

Since a is an a.b.d., the set

(1) {a(t)rl\tGT}

has compact closure and hence so does the set {(x(t)t~1(w)\ t G T} of transforms

of w by elements of (1). Now for any t G T, we have

a(t)rl(w) = r'wotlii»,) = Dw-1)*,«*))»*-

Denote by 0~' the map defined by <p~l(t) = 0(i-1). It's easy to see that for

each i = 1, . . . , n, <p~l • (^¡°a) is a character of T and that for b¡ ¥= 0,

0_1 .(^oo¡) is bounded on 71   Hence for b¡ ¥* 0, we have 0-1 • (^¡°ol) = 1 or
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<P(0 - $i(a(t)) for all t G T.  Hence for all t G T, we have

t(w) = 0(r)w= ¿Z 0^,(0(0)0,- = £v(f)(W/) = a(f)(w).

Since w is an arbitrary eigenvector for t and both t and a(t) are semisimple, we

have a(f) = t for all t G T.

Now we show that for any unipotent element gGG, a(g) = g. (It follows

from this that a is trivial on N since a is defined over F and N is Zariski-dense in

N.)  Let da be the differential of a and X be the nilpotent matrix in M(n, F)

such that exp X = g.   Then da(X) is again nilpotent.  Since a is an a. b. d., the set

{a(exp tX) (exp tX)~ l\tGF} = {(exp í da(X)) (exp - r*)| f G F}

has compact closure.  So by 2.5, we have da(X) = X.  Hence a(exp X) =

exp da(X) = exp X or a(g) = £.   Thus (i) is proved.

To prove (ii) we show first that for any T G T, g G G, [a(g)g~ l,t] = 1 for

all t G T.  Since g~lTg is again a torus defined and split over F, we have, for all

t GT,

g-' tg = o^-! ig) = a(g)~l ta(g).

And so [a(g)g~l,t] = 1.

Now let G = D • N and G = D »AT where D is a Levi F-subgroup of G. Let

P be a minimal parabolic subgroup of D and M be a Levi F-subgroup of P. Then

there exists a maximal F-split torus S in M such that M = ZD(S) and M/S is com-

pact (see [3, Corollary 4.16 and Proposition 9.3]). Hence there is a compact set

C in M such that M = CS. By a theorem of Bruhat and Tits (see, for example,

[7] ), we have D = KMK where K is a compact subgroup of D. Hence G = KCSKN

and for any g in G, we have g = kcsk'n where k, k' G K, c G C, s G S and nGN.

So

a(g)g_1 = a(k)a(c)a(s)a(k')a(n)n~lk'~is~lc~ik~1

= a(k)a(c)sa(k')k'-is~lc-lk-1

= a(kck')(kck')~l,

because a(n) = n and [a(fc')&'_1, s] = 1. Hence the set {a(g)g~l\ gGG) has

compact closure and the proof of 2.1 is complete.

Remark.   In the above proof, we note that the compactness of K and C

in fact implies that the set {a(g)g~1 \ g G G} is compact and hence closed. In

particular, if x G B(G), then the conjugacy class rx of x in G is closed. (In gen-

eral, for any x G G, Fx is locally closed, but need not be closed.)

Let us prove 2.2:

Recall that x G B(G) «=> ax is an a.b.d. of G.  It follows from 2.1 that
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B(G) =  n  ZG(T) n ZG(N).
TeJ

As ZG(N) and ZG(T), T G X are defined over F, so is the subgroup

B =   fi ZG(T) n ZG(N)
Te 3"

and B(G) is exactly the F-rational points of B; in particular B(G) is closed.  Thus

we have proved 2.2.

Proof of 2.3.  Since G is reductive and

B(G) = H {ZG(T) | T G T } = H {ZG(T) | T is a maximal F-split torus},

it suffices to show that

(I {ZG (7)|T is a maximal F-split torus} = fl {PIP is a minimal parabolic F-subgroup}.

Now for any maximal F-split torus T of G, there exist two opposite minimal para-

bolic F-subgroups P and P' of G such that ZG(T) = P n P' and ZG(T) = F n F\

So fl ZG(T) D D P.   On the other hand for any minimal parabolic F-subgroup

P of G, there exists a maximal F-split torus T of G in P such that ZG(T) is a Levi

subgroup of P.  Hence C\ZG(T) C D P and the proof of 2.3 is complete.

2.6. Corollary.  Let G be a connected F-group and B be as above.  Then

B is a normal F-subgroup of G with its unipotent radical central and every F-split

torus of B is central in B. // G is reductive, then B is also reductive and quasi

F-anisotropic (i. e. any F-split torus of B is central in B. See [3].).

Proof.  Since B(G) is normal in G and since G is Zariski-dense in G, B is

normal in G.  The unipotent radical U of B is a normal subgroup of G contained

in N and hence [U, B] = 1. The rest of the corollary is obvious.

Remark.   When B is reductive, B(G) is compactly generated [3, Theorem

13.4]. When B is not reductive, then in the case where F is a p-adic field, B(G)

is not compactly generated since F and hence the rational points U of U are not

compactly generated; while in the case where F = R or C, B(G) is compactly gen-

erated since in this case both the rational points of a Levi subgroup of B(G) and

U are compactly generated.  In fact, B(G) is compactly generated for any con-

nected locally compact group G [5, Proposition 2]. Though B(G) is not neces-

sarily compactly generated for algebraic groups G, it is always an [FD] ~ group

as shown in the following corollary.  (A locally compact group G is an [FD] ~

group if the commutator subgroup G' of G has compact closure.)

2.7. Corollary. Let G be a connected F-group.   Then B(G) is an [FD] ~

group.
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Proof.  Let B be as above and let B = M • U and B(G) = M-U where M

is a Levi F-subgroup of B and U its unipotent radical.  By 2.6, U is central in

B(G) and hence B(G)' = M1. Thus it suffices to show M G [FD]~. To see this,

we observe first that M is compactly generated [3, Theorem 13.4]. As a closed

subgroup of B(G), M is an [FC] " group.  Therefore by a result of Grosser and

Moskowitz [6, Theorem 3.20] that the class of compactly generated [FC]~

groups coincides with the class of [FD] ~ groups, we have M an [FD] ~ group

and this completes the proof of 2.7.

Proof of 2.4.  Let a be an a.b.d of G.  First we prove the case when G

is F-split.  Let T be an F-split maximal torus of G and L be a Borel subgroup of

G that contains T.  If we prove that a(g) = g for all g G L, then by a result of

Borel [2, Corollary 11.4, p. 263], we shall have a(g) = g for all g G G.

Now L = T- Lu where Lu is the subgroup of unipotent elements of L [2, p.

244].  By 2.1, we have a(g) = g for all g G T and for all unipotent elements

gGG and in particular for all g G Lu. Since a is defined over F and Lu is Zar-

iski-dense in Lu, it follows that a(g) = g for all gGLu.  Thus a(g) = g for all

gGL and a is the identity mapping of G.

Now we prove the case when G is reductive with no F-anisotropic simple

factors.  Let H be the subgroup of G generated by the unipotent elements of G

and the elements of C\{T\T G T} and H be the Zariski-closure of H in G.  Then

H is a closed F-subgroup of G [2, Proposition 1.3] and a = id on H. It is obvi-

ous that H contains every maximal connected F-triangularizable subgroup of G.

Hence (G/H)F is compact [3, Proposition 9.3].  But G is reductive with no aniso-

tropic simple factors, thus G = H and the result follows.

Examples.   For a connected F-split group G, we know by 2.4 that there

are no nontrivial F-rational a.b.d. of G, but G, may admit nontrivial non-F-ration-

al a.b.d.  For example, take G = G = C*, then G is a (Zariski) connected alge-

braic group defined and split over C.  The map a : G —► C x defined by a(z) = z

for all z G G is obviously an a.b. d.; but a is not defined over C.  However if we

regard Cx as an algebraic group over R, then a is R-rational and is an a.b.d. of

Cx.  (Here G is not R-split.)

We note that Lemma 2.5 or rather its proof has another interesting corollary

in the case of complex analytic groups, namely:

2.8. Proposition.  Suppose that either

(i) G is a complex analytic linear group, or

(ii) G is a simply connected complex analytic group.

Then any complex analytic a. b. d. of G is trivial.  In particular, since inner auto-

morphisms are complex analytic, B(G) = Z(G).
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2.8 is a special case of [4, Theorems 10.5 and 10.6] where the following is

proven: If G is a complex analytic group with a faithful finite-dimensional real

analytic linear representation, then G has no nontrivial complex analytic a.b.d.

However, the present result is proven by considerably simpler means. We note

that if a complex analytic group is neither linear nor simply connected, then the

conclusion fails. For example, let H be the Heisenberg group

For simplicity, we denote by (x, y, z) a typical element of H   It is easy to see

that Z(H) = {(0, 0, z) \z G Ç}.  Let T = {(0, 0, k + im)\k, m G Z} be a discrete

central subgroup of H and G = H/T. Simple computation shows that the commu-

tator subgroup [H, H] = Z(H). Hence [G, G] = Z(H)¡T is compact, and so G is

an [FD] ~ group.  In particular G is an [FC] ~ group and B(G) = G.   Therefore

any inner automorphism of G is an a.b.d.  The present proof of (i) and (ii) re-

quires a to be a complex analytic automorphism as does [4, Theorem 10.6].  Sim-

ple examples show that the result fails for real analytic automorphisms of a com-

plex analytic group.  However, in the case of [4, Theorem 10.5] it is sufficient to

consider only real analytic automorphisms.

Proof of 2.8. Let G be a complex analytic group and (S be its De algebra.

Let a be a complex analytic a.b.d. of G and da be its differential. Since G is

generated by a canonical neighborhood F of 1 in G and a is a homomorphism, it

suffices to show that a(g) = g for all g G V.

Now for each gGV, there exists an x G $ such that exp x = g.   For t G C,

let
ß(f) = a(exp tx) (exp tx)~ ' = (exp t da(x)) (exp - tx).

Since a is an a.b.d., {ß(t) \t G C} has compact closure.

If G is linear, then each (/, /)th entry /3¿/(r) of ß(t) is a bounded complex

analytic function on the entire plane. Hence by Liouville's theorem j3f- is a con-

stant.  Since ß(0) = /, it follows that ß(t) = (ßjj(t)) = / for all r G C.  Hence for

t= l,u(g)=g.

Now let G be simply connected. Consider the adjoint representation Ad: G

—► GL(($).  The set { Ad(ß(t)) I r G C} again has compact closure.   So, as in the

linear case, each Ad(ß(t))tj is a constant and Ad(ß(t)) = / for all t G C.  Hence

{ß(t) | r G C} C Z(G) and it is easy to see that {ß(t)} is a subgroup of the con-

nected component Z(G)0 of Z(G).  Since G is simply connected, Z(G)0 contains

no nontrivial compact subgroup [8]. Therefore ß(t) = 1 for all t G C and in par-

ticular a(g) = g.

1      x

0      1

.0      0
y
u

x.y.zGC
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3.  Layerings of G.  We use the notations of §2.  Let 1(G) denote the group

of inner automorphisms of G.

Recall that a measure p on a locally compact group G is said to be central

if p is I(G)-invariant, i.e., if p(axA) = p(A) for all ax G 1(G) and all Borel sets

A in G.  The main object of this section is to prove 3.1 that any finite central

measure of G is supported on B(G). First we need the following technical result.

3.2. Theorem. Let G be a connected F-group and G the subgroup of F-

rational elements of G.   Then there exists a layering of G terminating at B(G),

i. e., a finite collection of closed 1(G)-invariant subsets G = I03I, 3-0

Xm = B(G) such that for each x G X¡ - X¡+,, / = 0, 1, . . . , m - 1, there exists

a relative neighborhood V of x in X¡ with infinitely many pairwise disjoint con-

jugates.

It is easy to see that by means of simple inductive arguments 3.1 follows

from 3.2 immediately.

For detailed discussions of 'layerings' one may refer to [4].  The proof of

3.2 here differs from those of [4] and [10] for semisimple analytic groups and

connected locally compact groups mainly in the case when F is a p-adic field.  We

show first that there exist layerings of G terminating at ZG(N) and at O ZG(T)

(T G T) respectively. Then by means of the following Lemma 3.3 adapted from

[4] and the structure of B(G) (see 2.2), we obtain a layering of G terminating

at B(G).

3.3. Lemma [4, Lemma 2.2]. Let C, D be two closed l(G)-invariant sub-

sets of a locally compact group G such that there are layerings G = X0 D • • • D

Xm=Cand G = Y0D '•> D Yk=D.   Then there exists a layering of G that

terminates with CC\D.

3.4. Lemma.  Let Fr be equipped with the topology induced by the norm

of F.   Then for each x^0GFr, there exist an open neighborhood Eofx in

Fr and a sequence of natural numbers kx<k2< ••• such that &(J)E are pairwise

disjoint where we set 6(i) = pk' with p > 1 any natural number if F = R or C

and S(z°) = l/pfc' with p equal to the characteristic of the residue field if F is non-

euclidean.

Proof.  We denote by \x | the norm of x G Fr. Let x =£ 0 G Fr, then

\x\ ¥= 0. Let d be a real number such that 0<d<\x\. The set E = {x+y\yGFr,

\y | < d} is obviously an open neighborhood of x.  Now for any x + y G E, we

have

0<\x\-d<\x\- \y\ < \x +y\ < \x\ + \y\ < \x\ + d.
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Let /Cj be the smallest natural number such that

\x\+d<pkl(\x\-d)

where p is the characteristic of the residue field if F is noneuclidean and p > 1

is any natural number if F = R or C.

For i > 2, we define k¡ to be the smallest natural number such that

pki-l(\x\+d)<pki(\x\-d).

Thus the §(/)F's are pair wise disjoint since

sup ISC» — l)*l ■ 150'- 1)1 sup |z| <pki~1(\x\ + d)
z&E z(EE

<pki(\x\-d) < |5(/)l inf |z| = inf |o(i>|.
z6£ zGE

3.5.   Proposition.  Let G be a connected F-group and N be its unipotent

radical.   Then there exists a layering G = X0 D Xx D ••• 3 Xm = ZG(N) of

closed normal subgroups of G such that for each x G X¡ - X/+l, there exists a

relative neighborhood V of x in X- such that V has countably many disjoint con-

jugates.

Proof. Let N=N° D N1 D ••• D A"1 = {1} be the central descending se-

quence of N.   Then for each /, N' is a closed normal subgroup of G and N'/N'+ '

is topological isomorphic to Fr for some natural number r. For each / = 0, ..., m,

define

Xj = {xGG\[N,x] CN'}.

Then we have that G = XQ D Xi D ••• 3 Xm = ZG(N) and that X¡ ON>,j =

0, . . . , m.   As each Xj/N' is the centralizer of N/N' in G/N', so each Xj/N' is a

closed normal subgroup of G/N1 and hence each X, is a closed normal subgroup

ofG.

We show that the subgroups X¡ provide the desired layering of G.   For

j = 0, . . . , m - 1, let x G X: - X +1 ; since [N, x] is contained in Af' but not in

Ni+ ', there is an element uGN such that [u, x] G N' - N'+ '.  As the map-

ping y t-> [u, y] from X, to NJ is continuous, it follows that there exists a com-

pact relative neighborhood V of x in X- such that [u, y] G N' - N'+1 for all

v G V; since X¡+ j is closed, we may suppose further that V C X¡- Xj+ j.

Let ~:G—> G/Ni+1 be the natural projection and t?: X~ —* (N')~

be the continuous mapping defined by t?(v~) — \u~, v~], V G X¡. Since (N')~

is topological isomorphic to Fr for some natural number r and t?(x~) =£ 1~, we

have, by 3.4, an open set E containing t?(ji:~) in (N'y and a sequence of natural

numbers kl < k2 < ••• such that E8^ are pairwise disjoint, where 6(0 = p ' if



BOUNDED ELEMENTS 195

F = R or C and 8(i) = 1/p ' otherwise. Shrink V if necessary, so that r¡(V~)C E.

UtW = (N'Y n v~V~~1 and WVz = {wVl \w G W} (note here that W

is a symmetric neighborhood of 1~ in (N')~). Then we have

(1) for large i (i > i0 say), r)(V~)s^ - WVl pairwise disjoint.

Indeed, since 11/(25(z'))| —»-0 as z —*■<*>, W is compact and r\(V~) is a compact set

contained in the open set E, there exists an i0 such that for all i > z0,

7](V~) • W1 /("(')) C E.   Hence for all i > i0,

V(v~)sw. w* = (t?(F~) . H/»/(2«(oy(0 cf«(o

are pairwise disjoint.

We claim that for z > z0, m6^Fz/-6^ are pairwise disjoint. We observe

first that every element in N has a unique z'th root since exp^ is a bijection. Now

for any y G V, since [u, y] ^ N'+ *, it is obvious that for any natural number i,

both [u, y\ and [u, y]l" are not in A/+ ' ; in other words, both r¡(y~)' and

v(y~)1^' are distinct from 1~.

Next we prove that for all y G V, i = 1, 2, . . . , we have

(2) u~lliy~u—lli = n(y~)lliy~,

(2') u-ty-u—^rity-yy"-

Consider any uv u2 CNzxidy G V, [«,, y] GN' implies that [u2, [«,,.)>]] G

N'+1. Hence [u^,y~]u2=u2 [u^, y~]. Therefore for any y G V and i, k =

1,2, .. . , we have

[u~k'i,y~] [u~ll\y~] =u~1'i(u~k'iy~u—k/iy—1)(y~u~-1'iy~-1)

= [u^k+1^,y~]-

Applying (3) z - 1 times to the product [u~xl\ y~]1, we have [h~1/i, y~]' =

W~,y~] = r?(>~), or equivalently, [u"1'', ,y~] = T7(>~)1/'. Hence (2) follows.

Similarly applying (3) i - 1 times to the product [u~, y~]1, we obtain (2').

Now suppose that there were k > i > z0 such that us^Vu~s^ O

M««r/u-8(k) ^ 0    Then there would be yit y2 in y such that „5(0^^-6(0 _

uHk)y2u-S(k). Hence by (2) and (2'), we would have

or

î?or)S(/WîT6(ft)=jw1 e c^r n r-r*-1 = w.

Thus there would be wvw2G WVl such that

T?or)5(/)w, = T?o2~)6(fc)w2.
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This contradicts (1).  Hence the claim is proved and the proof of 3.5 is complete.

3.6. Lemma. Let T be an F-split torus and i//j ^ \p2 be two characters of

T.   Then there exists a r0 G T such that the norm \^l(t0)i/2(t0)~1 ' * *■

Proof.  As mentioned in §2, we may assume that T = GL(l)r, T =

GL(1, F)r for some natural number r and \p((t) = UdP&ft where t = (av ..., ar)

G T, i = 1,2, and m(i, j) are some suitable integers.  Since i//j ¥= $2, there exists

a /, 1 </ < r, such that m(l, j) =£ m(2,j).

Let f0 = (1, . . . , 1, a/( 1, . . . , 1) with af G Fx such that \af\ ¥= 1.  Then

obviously ^1(f0)\£'2('lo)_1 = a?l(1,7)_m(2'/) has norm different from 1.

3.7. Proposition.   Let T be an F-split torus ofG.  Then for any x G

G-ZG(T), there exists a compact neighborhood V ofx such that V C G - ZG(T)

and V has countably many disjoint conjugates.

Proof.  Since T is a torus defined and split over F, there exists a basis

Uj.v„ of F" such that t(v¡) = ty¡(i)v¡, r G T, f = 1, . . . , n, where each \¡/¡

is a character of T. For each x G G, we have x(v¡) = 2'41x/-üí, i = 1,. . . , «,

where each x« is a function defined over F and x¡^G is continuous. Now

xeZc(7)=ZG(I)^ (*f)</ = (»O,/.      tGT,Ki,j<n,

^ Xij4>i(t) = $¡<f)xu

<=> x« = 0   or xf/. ̂  0 and \p¡ = t//y.

Therefore xGG- ZG(T) «=> 3/, / such that jc/y. ¥= 0 and ^ =£ i//;-.  So if we set

J = (O'. /) 11 < U J < ». ^/ ^ ^/) and £7^ = {x G G |xf/ ¥= 0}, then it is obvious

that each U¡¡ is an open set in G and that

G-ZG(T)=\J{Uij\(i,j)GJ}.

Now let x G G - ZG(T), then there exists (/, /) G / such that x G Uif.  For

this fixed (i, /), let V be a compact neighborhood of x in G such that F C Uif.

Let c, c' be such that

0 < c = min \x¡¡\ < max \x¡¡\ = c'.
JcGK       ' x<=V       '

Since i//(. =£ \¡jj, it follows from 3.5 that there exists a r0 G T such that

I#/(ff>)#/(*<>)"! I = ff ̂  I- Also for any r G T and any integer fc, we have

(/*r% = Wfx^ity-* = (Ut)^(t)-l)kxti

and in particular, we have lO^ô*)//! = <*klx//l- So if we pick an integer k such

that akc > c', then the sequence of conjugates Vm = tmkVtñmk are pairwise dis-

joint since
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min      |x,, I = ¿m + l)kc > amkC =   max  \xtt\.
xevm + l xevm     '

3.8. Proposition.   Let G be a connected F-group.  Then G D C\ZG(T)

(T G T) is a l-layering of G.

Proof.  We recall that f)ZG(T) (T G T) is a closed normal subgroup of G.

Now for any x G G - Ci ZG(T), there exists a T G T such that x G G - ZG(T).

Hence it is easy to see that the proposition follows from 3.7.

It is now clear that 3.2 follows from 3.3, 3.5 and 3.8.

Remark.   In the proof of 3.5, if we define

X¡ = {x G GI [N, a(x)] CN',aGß}

where 8 denotes the group of all F-rational a.b.d. of G, then it can be shown

that G = XQD "' D Xm = ZG(N) is a layering of G with the additional property

that the X/s are B-invariant. Also the l-layering G D C\ZG(T) (T G T) is 8-in-

variant. Hence we can obtain a 8-invariant layering of G terminating at B(G).

4. Applications. We use the notations of the previous sections.

First let us recall some facts in measure theory.  Let G be a connected F-

group and G its F-rational points. Since F is a countable union of compacts, it

follows that G and the conjugacy class rx of x G G have the same property.  Let

Cx be the centralizer of x in G.   As G/Cx and Tx are standard Borel spaces, the

canonical bijection 77 : G/Cx —► Fx is a continuous Borel isomorphism.  Further-

more, r¡ is equivariant with respect to the left translation of G on G/Cx and the

action of 1(G) on Tx. Thus (finite) left invariant measure on G/Cx can be trans-

ferred to (finite) I(G)-invariant measure on r   and vice versa. The latter measure

can be regarded as central measure on G supported on Tx.

Proof of 4.4.  Since G/Cx admits a finite invariant measure p, we may

regard p as a finite central measure on G supported on Tx. Therefore by 3.1,

we have xeT^C B(G). As observed in the remark after the proof of 2.1, we

have T^ compact. Now by standard Baire category arguments it is easy to see

that G/Cx is compact if and only if Fx is compact (see for example [5, Lemma 1]).

Proof of 4.1. Let x G ZG(H). Then H C Cx and the continuous surjec-

tion <p : G/H —*■ G/Cx induces a finite invariant measure p' : u'(E) = p(qY~1 (E)) on

G/Cx. Hence as in the proof of 4.4 we have x GTX C B(G) and so the proof of

4.1 is complete.

Since B(G) is an [FD]~ group (Corollary 2.7) and since every closed sub-

group of an [FD] ~ group is again an [FD] ~ group, 4.2 follows immediately from

4.1. Also it is clear that 4.3 is an immediate consequence of 4.1, since Z(G) C

ZG(H)CB(G) = Z(G).
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