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SOBOLEV-GALPERN EQUATIONS
OF ORDER n  + 2 IN Rm  X R, m > 2

BY

V. R. GOPALA RAO

ABSTRACT.  Equations with mixed time and space derivatives play an im-

portant role in several branches of physics. Here we establish existence and unique-

ness results for such equations.   In addition, we also prove a regularity result

which employs a regularity result for nonhomogeneous elliptic equations whose

proof is also included.

1. Introduction. In this article we shall concern ourselves with linear partial

differential equations of the form

(1.1)
n Qn-i

T)AiTTZ7u(Pc'0=f(x,t),
i=o      ot"

where A0 is a second order elliptic partial differential operator and Av . . . , An

are linear partial differential operators of orders at most 2 for the unknown func-

tion w(x, t), (x, t)eRm x R, m > 2. The possibility that Av . . . , An_ t are

all zero operators is included. When n = 1, the equation takes the familiar form

(1.2) A0idu/dt)+Alu=f

which is known as a pseudo-parabolic equation.  It is known that solutions to ini-

tial-boundary value problems for (1.2) form approximations to similar problems

associated with the parabolic equation du/dt + Axu = f.   Results of this type

were proved by Showalter and Ting [17] and by Ting [20]. The Cauchy problem

in the whole space and the mixed boundary problem in the bounded domain for

the equation

(b2/dt2)Au + id2/dx2)u - 0

were studied by Sobolev [18]. Clearly this later equation is a special case of (1.1),

when n = 2. Galpern [6] studied the Cauchy problem for a system of equations

of the form

44)£+B(''è)"=0'
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where ü~ is a vector of functions and A and B are quadratic polynomial matrices

depending on t.   His method of proving the existence and regularity properties of

solutions depended on the theory of Fourier transforms. Very recently the so-

called pseudo-parabolic equations have been attacked systematically by several

authors.  For a partial listing of these see [16]. While Showalter [17] and subse-

quent works have more or less restricted his attention to problems in Hubert

spaces, Lagnese [8] and subsequent works have dealt with problems in V -spaces.

Rao [14] under the direction of Professor T. W. Ting of the University of Illinois,

and Rao and Ting [15], [16] have restricted their attention to proving existence,

uniqueness and regularity theorems for pure initial value problems for pseudo-

parabolic equations in Rm x R, m > 2.

Equations of type (1.1) with n = 1 arose in the study of second order fluids

by Ting [19] and in an article by Coleman and Noll [4].  For a brief history of

other physical origins see [17]. We believe that in the theory put forward by

Coleman and Noll [4], equations of type (1.1), n > 1, will arise if approximations

to the memory functionals of orders greater than 2 are considered.  Equations

similar to (1.1) mfhAn equal to a constant, called weighted elliptic equations,

were considered by Agmon and Nirenberg in [1].

Differential equations with operator coefficients of the type

(1.3) Lu = A(t) ̂  + Bit) g + Cit)u = hit)

were considered by M. I. Viäik [21].  The operators Ait), Bit), C(i) are operators

defined on a Hubert space H and «(f) and hit) are functions with values in H.

The Cauchy problem solved by ViSik for (1.3) is that of finding a solution «(r)

satisfying

I du I
(1.4) «|f=o="o.    di\t=o=ui      ("o'"ie/0-

In [9], H. A. Levine studied uniqueness and growth theorems for the solu-

tion to the Cauchy problem to (1.3) with h = 0 in the Hilbert space situation.

The method employed there was based on a study of certain partial differential

inequalities.

Physically, equations of type (1.1) with n = 2 arise in the theory of elastic-

ity.  In fact, in the study of external vibrations of thin rods (with lateral motion

due to inertia taken into account) the equation for the displacement wis) parallel

to the central line turns out to be

where p is the density of the material, a is Poisson's ratio, E is Young's modulus,
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K is the radius of gyration of a cross section about the central line and s is the

distance measured from a chosen point of the line.

Similar equations also appeared in the study of internal gravity waves [2, pp.

65, 68].  It must be pointed out that in these last two examples the condition

that guarantees the uniqueness of the solution to the Cauchy problem is not sat-

isfied.

For other examples of physical situations see Levine [9].

2.  Notations, statement of the problem and some preliminary results. We

shall, from now onwards, write x = ixx, . . . ,xm), dx = dx1 ••• dxm, and for

a = (or,, . . . ,am), |a| = Xa^D« = (d/dx^1 ••• ib/bxm)am, where a,, ... ,

am are nonnegative integers.  For 1 <p < °°, Wk'piRm) is the Banach space of

elements in LpiRm) which together with their distribution derivatives up to order

k are also in LpiRm).  If u G Wk-piRm), then

n«ii*,„=r e fiD°xuFdx]i/p.

We let W"'k'P denote the «-fold Cartesian product Wk-p(Rm) x ••• x Wk'piRm)

which becomes a Banach space under the norm

ll^l„,fc,P=[ril«/ll2fc,p]1/2

for all U =(«,,..., un) G W"-k'p.  It is clear that W"'k'p = Wk-piRm) when

n = 1 and W0,piRm) = LpiRm).  For functions which depend on a space variable,

say x, and a time variable t, all norms which we come across in this article refer

only to the space variable and never to the time variable.  Therefore, for such

functions, say <p(x, t), the norms may be written W^x, t)\\, ||t¿>(', t)\\, IMI(/) or

IMI  depending on the situation, with suitable subscripts to indicate the space to

which they belong.  Such a function ^(x, f) is sometimes simply denoted by ¡p(t)

or even <¿>.

For 0 < / < n, let A, be n + 1 differential operators defined by

(2.1)        Axu = Z    «,,//(*> 0¿|- + Z «/.,(*• 0 g" + *,.oC*. 0«.
i,;=l oxtaXj      /=1 ax i

For the sake of convenience we write aoij- = a^, a0 ¡ = a¡ and a00 = a0. The

following is a list of assumptions on the coefficients of the operators A¡, 0 < /

< n, which will be referred to throughout this article.

(Aj) The coefficients of the operator A0 are uniformly continuous and

bounded in Rm x R.   For some constant X, 0 < X < 1, the coefficients of A0 are

Holder continuous in x, the space variable, uniformly in Rm x R with exponent

X.  For some constant g > 0, the coefficient a0 <-g2 for all (x, t) in Rm x R.
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(A2) The operator AQ is uniformly strongly elliptic, i.e., 3 positive con-

stants p and 77 such that for all real vectors | » ßJt..., |m), £ =£ 0, and all

(JC, t) G Rm x Ä,

(2.2) MlSI2<£aiy(*,0H-<î?l£l2,

where |£|2 = Z$.

(A3) The coefficients of the operators A¡, 1 < / < n, are bounded measur-

able functions on Rm x /? which are continuous in t uniformly in x G Rm except

possibly on a subset, of Rm, of measure zero.

Under the above three assumptions we wish to solve the following initial

value problem in Rm x R.

Let u0 G W2'piRm) andf.R—* LpiRm) be two given functions with 1 <

p <°°.  Consider the problem of finding a function uix, t) which, as a function

ofx, belongs to W2'p(Rm), 1 < p <<*>, for all t G R and which satisfies

3"w 3«
(2.3) Lu=A0— + -. +An_l - + Anu =/

in Lp{Rm)for each t G.R together with the initial conditions

(2.4) lim — uix, t) = uk+1ix),     0<k<n-l,

in W2'piRm). Here du/dt is the limit as t —* 0 of the difference quotient

h~1 [«( •, t + h) - u( •, t)] in W2'piRm), and similar meaning is attached to all

other higher order derivatives with respect to t.

The existence and uniqueness of solutions to this problem will be established

in §3.  In §4, a result on the smoothness of such solutions is proved with the aid

of a result on the regularity of solutions of nonhomogeneous elliptic equations in

Rm. A proof of this later result is included in §4.  The method adopted for prov-

ing existence is constructive in nature and hence useful in applications.  Our meth-

od relies heavily on the existence of the inverse of the operator A0, which has

been dealt with in our previous works quoted in the references.  For the sake of

reference and completeness we quote two results on the inverse of A0.

Theorem 2.1. Let the operator A0 satisfy (A2) and (A,) if Gix, y\ t)

denotes the principal fundamental solution of the equation AQu = 0; then for

vGLpiRm),Kp<°°, the function u, defined by

u(x> ') = Lm G(x> y'' 0viy)dy,
JR

as a function ofx, belongs to W2'piRm) for all t in R, and satisfies the equation

A0u=-vin LpiRm ) for all t G R.  Moreover, for v G LpiRm ),
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(2.5) \\fRm G(.,y, t)viy)dy\\2tp < const||u||0>p

where the constant can be chosen independent of t.

The proof of this theorem for t restricted to compact subsets of R (see [16])

was based on the theory of singular integral operators and on the existence of

unique principal fundamental solutions that decay exponentially at infinity togeth-

er with their first derivatives.  Existence of such solutions was demonstrated by

Giraud [7].  This theorem may also be proved as in [16].

Theorem 2.2. Let the operator A0 satisfy (Aj) and (A2). Iff:R—+

LpiRm), 1 <p <°°, is continuous and bounded, then

(2.6) u(.,t) = fGi.,y;t)f(y, t)dy

is a continuous function from R —► W2'piRm) satisfying A0u = -/ Iff-R —►

W2'piRm), 1 <p <°°, is continuous and bounded, then

(2.7) ÍG(.,y;t)(4of) 0>> 0 dy=f{-, t).

In other words A0 has a right inverse on LpiRm) and a left inverse on

W2'piRm) for all t G R and they coincide on W2'piRm). That the right inverse

defines a continuous function from R —► W2'piRm) has been proved [16].  It

was pointed out to us that the existence of left inverse and the proof of (2.7) had

to be made clear.  This fact was used in the proof of the existence of right in-

verse [16]. The following is a

Proof of (2.7).  By Miranda [11, Theorem 20, III, p. 71] (2.7) is true for

all tGR, for functions /:/?—»■ C¿"(/?m).  Since for each t G R such functions

are dense in W2'piRm), by use of (2.5) one can easily prove the validity of (2.7)

by a standard argument for each tGR.

Thus the right inverse exists on LpiRm), while the inverse exists on the sub-

space W2'piRm), VtGR and they coincide on W2'piRm).  Hence we shall write

Aô'nx, t) =jRm Gix, y; t)f(y, t)dy.

3.  Existence and uniqueness.  The problem posed in §2 by means of (2.3)

and (2.4) will now be transformed into a first order equation in the variable t with

coefficients which are matrices of operators, and then this later equation will be

solved via an equivalent integro-differential equation for functions in Wn,2,piRm).

The transformation u1 = u, du ¿at = u2, ..., dun_1/bt = un allows us to

formulate the problem given by (2.3) and (2.4) as

(3.1) AUt +BU = F,      lim Uix, t) = UJx),
t-*o
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where

U(x, r) = (",(*. t),...,un(x, 0)

Fix, t) = (0, 0

1    0

and

A =

B

0   0

0   0

0      -1

0      0

U0ix, t) = (wx(x), . . . , unix))f,

.,f(x,f))f,

0 0

1 0

0   A01

0

A.

0

A.

0
-1

0

A.

0

0

1

x/i-l     "n-2 n\ -J

with t as superscript indicating transpose and as a subscript indicating differentia-

tion with respect to t.   The problem given by (3.1) is clearly equivalent to the

original problem.  Both A and B are square matrices of order n whose elements

are operators.  If A^i exists then A has an obvious inverse, A~*, which is essen-

tially the same as A, but with the element A0 replaced by Aq 1 in the sense that

A~1AU = U for any vector U.R-+ W"-2'p and that AA~lF = F, F:R —►

W",0'p.  Our objective is to establish

Theorem 3.1. Let the differential operator A0 satisfy (Aj) and (A2) and

the differential operators A t through An satisfy (A3). // the function f.R —►

LpiRm), 1 <p <°°, is continuous and bounded, then the problem described by

(3.1) has a unique solution and so does the problem given by (2.3) and (2.4).

Before we proceed to prove the theorem we first observe that part of the

hypothesis on A0 of Theorem 3.1 is the same as that of Theorems 2.1 and 2.2.

Since F = (0, 0, ... ,/)f and A~XF - (0,0,..., A^fif, we now know that

under the hypothesis of Theorem 3.1, A~1F:R —► W"-2>P js continuous. Note

that ||>l_1F||n 2 = ll^o"1/!^,»- "The following proposition concerns an integro-

differential equation equivalent to the problem given by (2.3). The equivalence

will be proved shortly.

Proposition 3.2.  Under the hypothesis of Theorem 3.1, the integral equa-

tion,

(3.2) Ui•, t) = U0 -J' iA-ißU) (a)do +fQ <A~lF) (a)da,
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for the function U:R

(3.3)

Wn,2'p(Rm) has a solution given by

U(t) = £  (- 1?<K,V) it)
/=o

where

(3.4)

(3.5)

Vit) = U0 +ffo iA~lF) io)io)do = (K0V)(t),

(K,V)(t) =fo iA-lBKt_,V)ia)da,      l>\,

and where the time integral is understood to be the limit in W"'2'piRm) of the

Riemannian sums.

The proof we adopt for this proposition is very much similar to that of

Lemma 4.2 in [16]. While in [16] the spaces involved are Sobolev spaces, the

spaces here are «-fold products of those Sobolev spaces.  A look at the proof of

Lemma 4.2 in [16] indicates that certain W2 'p -estimates used there should be

extended to the Wn,2'p spaces. Thus we shall show that in the present situation

Kt Vit) is well defined and continuous and obtain an estimate on \\Kt Vit)\\n 2 p.

The rest of the proposition can be proved exactly as in [16].

Partial proof of Proposition 3.2. By the discussion immediately fol-

lowing the statement of Theorem 3.1 it is clear that |M_1F||„ 2 p is a continu-

ous function of t.   Consequently Vit), defined by (3.4), is well defined and con-

tinuous.  If C[R, W",k'piRm)] denotes the space of continuous functions

U:R —* W"'k'piRm), then by Theorem 2.1 the right inverse

A-1 :C[R, W"'°'piRm)] ~^C[R, W"'2'piRm)]

is a bounded linear map.  Hence if Cj and'0 are constants such that for all t G R,

(3.6) M-'lKCi,      ll/ll„,o>p<0>

then we have the estimate

Iin0ll„,2,p <H^olln,2>P +JÓ" \\A-lF\\n>2tPio)da

<WuoK,2,p + CJ\*\    for allí G tf.

The hypothesis on the coefficients of the operators A j through An implies that

BV-.R —* w"'°'piRm) is continuous. This in turn implies that A~lBV:R —*

W"'2'piRm) is continuous. Now

112
\\A-lBV(t)\\2ni2tP=t   IMl2\p+   un+^oiAZlf){o)do 2,P

¿ô'gM.-i+i+^iV/Xa)*»
2

2,p'
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If C2 denotes the maximum of all the norms of the operators A j, . . . , An as

operators from C[R, W2'p] —► C[R, Lp], then the above inequality implies

WA-'BViml^ ^iClC2 + l)\\V\\„i2tp.

This means that A~iB as an operator from C[R, Wn,2'p] is a bounded linear

map.  Hence, if C = {C\C\ + 1)1/2, then

(3.7) \\A-lB\\nt2j,<C   forallfE*.

From (3.5)-(3.7) it follows that

UKiv(0\\n,2j,<C J*1 \Wia)\\ da <Ci\\U0\\„,2,p\t\ + C^\t\2¡21).

Proof of Theorem 3.1.  First, we shall show that (3.1) is equivalent to

the integral equation (3.2) for functions U:R—* W2'k'piRm). Multiplying both

sides of AUt + BU = F by G(x, y; t) and integrating both sides of the equation

with respect to t, we get

(3.8) U = U0 +f* iA~1F)ia) da -f (A~XBU) (a) da,

where the initial condition of (3.1) was also used.  Conversely by differentiating

with respect to t both sides of (3.2) in Wn,2'piRm) and then applying the opera-

tor A we get back the differential equation.  Letting t —> 0 in (3.2) we also get

the initial condition.

The solution Uit) obtained in Proposition 3.2 may be shown, as in [16], to

satisfy

M) - UoK,2,p < (eCW - Onq»B«,a# + Cxß(ecw - \)IC

for all tGR, where C, Cx, |3 are as in the proof of Proposition 3.2.  By letting

t —> 0 we observe that U(i) satisfies the initial condition of the Cauchy problem.

To prove uniqueness we observe that as Ut and U2 are two solutions of

(3.1), then V= tf, - U2 satisfies Vit) = -¡t0iA-1BV)ia)da. Therefore

^A,2,P<C f^\Wia)\\nr2<pda,

where Cis as in Proposition 3.2.  By Gronwall's inequality (see for example [17,

Lemma 9.1] ), this means Vit) = 0.

Since U=iu, du/bt, ... , B""1«^/""1)' and Ut :R -* W"-2'p(Rm) are

continuous, it follows that u and its first « derivatives exist and are continuous

from R —► W2'piRm). Therefore UGC"iR, W2'piRm)) and is a unique solution

to the problem given by (2.3) and (2.4) under (Aj)-(A3).  This completes the

proof of Theorem 3.1.

4. Regularity of solutions.  We now wish to give a set of conditions on the

coefficients of the operators A¡, i = 0, 1, .. ., n, and the initial data U0, so that
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the solution u lies in the Sobolev space Wk+2'piRm) for each tGR.   The condi-

tion on u0 is that it belongs to the same Sobolev space.  The simple example

A(dußt) - Au = 0, uix, 0) = u0ix) shows that the condition is necessary.  In the

following the generic constant a (and j3) need not necessarily be the same in any

two different occurrences.

Theorem 4.1. Suppose that (A,)-(A3) hold for the operators AQ, Av

. . . , An and that the coefficients of these operators, together with their first k

derivatives with respect to the coordinates of x are continuous and bounded in

Rm x R.  Letf.R —> WklPiRm) be continuous and bounded and u0 G

Wk+2,piRm), where k>0is an integer and 1 <p<°°.   Then u(-, t) also be-

longs to Wk+2'piRm), 1 <p <°°, for each t G R, where uix, t) is the solution

to the problem of §2.

A proof of this theorem may be formulated along the lines of the proof

given for a similar regularity result in [16].  The proof given here is based on a

regularity result for solutions of nonhomogeneous elliptic equations in Rm.

Lemma 4.2. If the hypothesis of Theorem 4.1 pertaining to the operator A0

and the function f holds good, then the solution to the equation A0u = - f, given

by

(4.1) ui-,t)=jGi-,y;t)fiy,t)dy

belongs to Wk+2<piRm) for all t, and

(4.2) H"(-, 0H/+2.P < <*IH-+i,p + ßll/H/,p>      i=l,...,k,

where a and ß are constants independent of u, f and t.

Proof.  For any function v(x, t) defined in Rm x R let vhix, t) denote

«-1[u(x + h, t) - vix, t)], where x + h = (pc1 + h, x2, . . . , xm) and

Aq denote the operator A0 with its coefficients replaced by the corresponding dif-

ference quotients.  Then, since A0u =/, we have

A0uhix, t) = fix, t) - A*uix + h, t).

The hypothesis on the coefficients of A0 implies that

uhix, t) =fGix, y; t) \fh(y, t) - Ah0u(y + h, t)] dy.

Theorem 2.1 implies that for some constant C2 independent of t,

|m*(. , t)\\2>p < C.Wfi-, Olio, + qCaMV*. Olio,

< ejh t) + e2ih, i)l|a(., /)ll2, + W*. 0Hlrf, + (&*('• ^

where e1 and e2 —> 0 as h —» 0 for all t GR.   Thus, for all t G R, there exists a
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constant h0 such that for \h\ < h0, the set of difference quotients {uh, \h\ < h0}

is bounded in W2'piRm). The fact that W2'piRm) is reflexive (and hence weakly

compact) implies that there exists a subsequence {hß}, so that {uht1} converges

in W2,piRm).  It is also clear that the limit function is the distribution of deriva-

tive of u and hence a strong derivative of u, i.e. au/axl.  In a similar manner it

can be shown that other first derivatives of u exist and belong to W2,p(Rm).

From this discussion it is clear that

||3«/3x,.||2jP <o||«||2iP + 0ll/llliP,     f « 1.m,

which in turn implies

(4.3) ||ii(. , Oils* <CC\K-, t)\\2,P + 0ll/(-. 0Hi)P,

for some constants a and j3 independent of u, f and f.   This completes the proof

of (4.2) when k — 1. We prove the general case by induction on k.   Thus, let us

assume that (4.2) is true for k - 1.  If we now differentiate A0u = / (fc - 1)

times with respect to the coordinates ofx and rearrange the terms, we get

AQDyxu = gix, t),      \y\ = k - 1,

where gix, t) is the sum of £>J/ and products of derivatives of orders up to k - 2

of u with derivatives of coefficients of u up to order k - 1.  By the hypothesis

of this lemma Dyxu and gix, t) are each differentiable one more time.  It is also

clear that g(x, t) G W1,piRm). Thus, applying (4.3) to the solution D\u of the

elliptic equation above and the induction hypothesis we get the required inequal-

ity.  The lemma is now proved.

Proof of Theorem 4.1.  Because of the special nature of the matrix A

of operators it is easy to extend (4.2) to the solution of Ay = \p, in the form

(4-4) Mn.i+2,p ««JWm+I* +#»««,/,„.        f- 1.. . . .-*,

where a and ß are constants independent of <p, \p and t.   We now apply this result

to the solution of (3.1) given by (3.3)—(3.5).  More precisely, we will use (4.4) to

estimate the || • ||n fc+2>p-norms of the terms of the solution given by (3.3)—(3.5).

First, we estimate IIHI„(k+2,p-  Since ^(0 = ^o + ¡t0A~1Fia)da and UQ and

A'1 F G Wn-k+2'p , it is clear that

(4-5) \W\\n,k+2,p < lligin,*+2,P + WC, Sup ||/||„jfcip,

and

(4-6) \\m\n,kiP < C2||C/0||„)t+2iP + \t\CxC2 Sup ||/||„ifc_p.

By definition of Ä", V, we have
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\\KiV\^k+2fi<r\\A-lBÎ\k+2tp.

— 1
Since A    BV satisfies A$ = BV, we also have

r\t\
ll^i^lln.fc+2,<J0   ^U-lBV\\nik+Up+mV\\niktP]io)da.

By applying (4.4) recursively to the term A~lBV we get

U*l*TL,*+a# <Jofl ta^~l5FIU2,p + /?U5HI„,fc,p](o)da

(4.7) <j?' W0IU + 2,p+M^

<C[||í/0|Lfc+2.Dk|+7|í|2/2],

where y = sup||/||nk    over t G R, and C = max{a, /?}. We now remark that it

can be shown that

(4.8) II^K||„)fc+2>p <C'[||C/0||„>fc+2iPlilV/! + y\t\l+l/H + 1)!]

for integers / > 2 by induction.  Since (4.7) and (4.5) are special cases of (4.8)

for / = 1 and / = 0 respectively, it is clear that for a suitable constant C indepen-

dent of U0 and t, we have

mn, k + 2,p £ KtV < \\U0\\n fc+2 pec'" + il/C2)iec^ - i).
;=0 n,fc + 2,p

This proves that Í/G wn<k+2>P f0r all t G R and gives an estimate on its norm.

Since u is the first component of the vector U, our theorem is completely proved.

Acknowledgement.   The author would like to thank the referee for his
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