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ABSTRACT.  The Bockstein spectral sequence is developed from a direct

limit construction.  This is shown to clarify its relation to certain associated struc-

tures, in particular the divided power operations.   Finally, the direct limit construc-

tion is used to study the problem of enumerating the Bockstein spectral sequences

over a given simple J?-module.

The Bockstein homomorphism can be defined as follows: Let (717, d) be a

free chain complex of abelian groups. Let (C*(717, Z ),d*) be the associated co-

chain complex with Zp-coefficients and let x G H"(M, Zp). Finally let c G

C"(M, Z) be a cochain whose mod p reduction represents x. One checks that

the above implies d*c — p • e for some cocycle e G C"+X(M, Z). Define ßxx =

[e] G Hn+X(M, Zp). Checking that ß] = 0 define E*(M) to be the homology of

the complex 77*(717, Zp) with respect to the differential |3,.

In general x G E*(M) can be represented by chains c G C"(M, Z) with d*c

= pre. Define a differential on E*(M) by ßrx = [e] and E*+X(M) to be homol-

ogy with respect to ßr. The sequence of graded complexes E*(M) is the Bockstein

spectral sequence with respect to p.

More efficiently [1] this spectral sequence can be derived from the coefficient

sequence 0—>Z—*Z—+Z—>0by considering the associated short exact

sequence of cochain complexes,

0 -* C*(M, Z) -* C*(M, Z) -* C*(M, Zp) -* 0

and forming the exact couple

H*(M,Z)-*H*(M,Z)

\ /
H*(M, Zp)

The spectral sequence of this exact couple is the Bockstein spectral sequence.
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This definition is the usual starting point of most investigations requiring this

spectral sequence. The point we shall try to make below is that for certain for-

mal constructions and structural questions this is not the best definition. Below we

offer an alternate formulation of the Bockstein spectral sequence and give applica-

tions of this formulation.

In § 1 of this paper we generate the Bockstein spectral sequence by a direct

limit construction in a suitable abelian category.  The definition above is shown to

be related to a dual inverse limit construction. As is often the case, the direct

limit construction behaves better. In the second section we offer evidence of this.

In particular, we show how the divided power operations [7] may be thought of

as operations on the "direct limit" Bockstein exact couple. This leads to certain

higher order operations on the Bockstein spectral sequence which appear implicitly

in Browder's work on //-spaces [1], [2], [3]. We show how some of Browder's

results appear in our setting.

We next study the classification of Bockstein spectral sequences over a given

A-module, for example, as short sequences of Z[Z2] -modules. 0-*Z->Z-»-Z2—*0
A     «       A

with trivial action, and 0 —> Z —* Z —* Z2 —>■ 0 (twisted integers) yield different

spectral sequences with isomorphic E\*-texms. One asks for a classification of all

Z[Z2]-Bockstein spectral sequences over Z2.

In §3 we present an obstruction theory which formally gives a classification

of the Bockstein spectral sequences over a given Ä-module. This obstruction theory

is applied to specific examples including those discussed above.

Finally, we would like to thank the referee for his helpful suggestions on the

organization of this paper.

1. The Bockstein spectral sequence in an abelian category. In this section

we present an alternative formulation of the Bockstein spectral sequence. We take

advantage of the fact that the Bocksteins can also be defined as follows: Let ô be

the connecting homomorphism associated with the coefficient sequence 0 —► Z2 —►

Z r+x —* Z, —* 0. Let zr: Z r —* Z2 be reduction. Then, also, ßr — Sn-1. Indeed,

though we develop the material in this section in the generality of abelian catego-

ries for later application, the reader may wish to think of abelian groups and short

exact sequences of abelian groups throughout this first section.

1.1. Assumptions, (a) We will assume that we are given an abelian cate-

gory A and we have a proper class P of short exact sequences in A [6]. The groups

Ext"04, C) below are w.r.t. the class P, though we will not mention this explicitly.

(b) We assume that A is a category of coefficients for some cohomology

theory //*(_). That is //*(—) is a graded sequence of functors on A (covariant!)

and given a s.e.s. in A we get the usual associated long exact sequence with con-

necting homomorphism of degree +1.
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At the referee's suggestion we make the following convention: If /: A —► A'

we will write /: H*(A) —* 77*04') instead of either the contrary notations /* or

/„,. Hopefully this will cause the reader less confusion than the alternatives would.

(c) We assume that 77* takes values in an abelian category where direct

limits exist and preserve exactness. (No such assumptions are needed for A.)

12. Definition. Let A be in A. A Bockstein tower w.r.t. .4 is an infinitely

high commutative diagram of the form

<*.• ßi
A ^-L-> A,    -Ll-*-» A

i-i

(1.3)
A ^-^-+A

73 h2
ß2       I
->-» A

72

A >- -A,
ßi

i

yx=ax

** A

with proper exact rows.

We will write (a,|j3,., y¡) as shorthand for such a diagram.

1.4. Definition. Given a cohomology theory 77* (as in 1.1) and a Bock-

stein tower (0,1/3,., y.) we define the Bockstein exact couple of (a,-1/3,-, y¿) with re-

spect to 77*(_) to be the graded exact couple

B
lim H*(A¡) -^ lim 77*04,-)

(1.5)

77*(4)

Implicit, among other things, is the observation that the two limits are with

respect to the same maps y¡. We write 77*04,) for lim 77*04,.).

It is the case that the spectral sequence defined by this exact couple does

not depend on the maps y¡ only on the sequences a^¡. Below we will give a

proof of this, but first we give some examples.

1.6. Examples. In all examples below A = A0 = Z2.

(a) Let A be the category of abelian groups Ar = Z r+l, ar = 2'', yr = 2,

ßr = irr: Z r —* Z2; then (2r\nr, 2) is a tower and, as we shall see, the resulting

spectral sequence is isomorphic to the usual one associated with 0 —■> Z -^> Z —►

Z2-^0.

(b) If A is the category of Z[Z2] -modules, ar and ßr as above, and^lr =

Z r+1 ; then the resulting spectral sequence is isomorphic to the one associated
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0. Here the "hat " refers in each instance to thewith 0 —> Z -*» Z -*■ Z^

twisting Z2-action (x —> -x).

(c) If A is the category of Z[Z4] -modules.

yi/\        íj2,     ^* 1 2   ^^      2 ' 2 2 ^ ^4'

^2r+\ = ¿2r+i © ^2r+l'    ^2r = ^c ® ^-r+I"

For suitable maps and actions of Z4 on .4r we get the tower associated with 0 —*■

Z[i] -—► Z[i] -* Z2 —» 0. This example was studied in [4].

We first study the nature of the E,rs-term in terms of the tower. We set j30

- 1 and F - ßl... ß,_ tßr.

1.7.  Lemma. yr is mono and ßr is epi and yr\ßr.

Proof. ßr is a composition of epimorphisms and hence an epimorphism;

7i = ax is mono and yx\(ßx — ß1)- Now consider

(1.8)

0 >->  coker(7r+1) =   A

"r+t

*   Ar+\
ßr+l

A >■ ■* A.

yr+l

ßr

ßr

r

lr-l

which gives the induction step. yr+ x is a mono by the categorical five lemma,

cokerfy) = A by the 3 x 3 lemma [6]. Finally, ßr+1 = ßrßr+,.

1.9. Lemma. Let y¡+s = yr+s ... ^+1: As -* Ar+S and ßrs+s = ß, ..

ßr+s: Ar+S —* As_x. Then we have the following commutative diagram with

exact rows-.

yr+s+l
.       's_      .

~í ' *"   Ar+s+l

ßS = ß\

or+i+1
Pr+2

A  >-► Ar+X -»Ar
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Proof. This lemma also follows from (1.8) by an appropriate alteration of

the bottom two squares.

1.10. Lemma. Let 8rH*(Ar) —>-H* + x(A) be the boundary homomorphism

associated with the sequence A >—> Ar+l —»->■ Ar.   Then

(a) S'7,»«'-1,

(b) Im 8r C Im ßs forr>0,s> 1.

Proof, (a)  Follows from the bottom two lines of (1.8).

(b) Follows from 1.9.

1.11. Lemma. ßr(8r)-x(8r-xH*(Ar_x)) = ßr+1(H*(Ar+x)).

Proof.

p-'((ô'r1(5'--177*04r_1))) = ßr((8r)-i(aryrH*(Ar^1)))   by 1.10(a)

= ^((kerô'- + T,77*(^_1)))

= J3r(ker 8r)   since ßryr = 0 by 1.7.

1.12.Theorem. IntheB.S.S. Im ßr/lm 8r~x ^ E^r+1-), the map given by

inclusion.

Proof. Remembering that the (r + l)st differential 5(,.+ i) is induced by

8(ß)~ra [5] we prove the theorem by induction, setting ß° = 1 and S_1 =0.

By induction

ker 8(r+x) = n8rrl(àr-x(H*(Ar_x)))

= Imß''+1    by 1.11,

and

Im 8(r+x) = lm[8(ß)-ra] = lm(8r((ßr)-x))

= lm(8r).

1.12 gives a description of E^r+ ,j independent of the maps y¡. A suitable exten-

sion of 1.12 shows the E,^ is also independent; however this will follow from a

simpler argument under mild additional assumptions. First, though, we must relate

the usual construction of the Bockstein spectral sequence to the one presented

above.

1.13. Definition. A short presentation of an object A is an exact sequence

of the form R >^+R -^** A where R is some object of A.

1.14. Construction. Given a short presentation R >2-* R -£*-> A we can

associate a Bockstein tower as follows:

Consider the diagram:
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A =        A

R

where Ax = coker a2 and where a2 = a ° a.

We now proceed by induction. Define

-^i-i  =   Ai-i

j+i
P(+i

/t-► R ——► A¡

a-i

R-*■ R-*■ A

In order to complete the construction we define y¡ by

We must only check that

•V+i
-*A ft+i

a.

i+i

T,+ i

-4

*4 ft
T<

-M
i-l

commutes, but this follows since everything in sight is induced by powers of o.

As an example of this construction one can check that Z -*► Z —* Z2 induces

(2''Irr'', 2).

1.15. Definition. Given a short presentation R &■ R —*-*■ A we associate

an exact couple

a*(R)—2-m*(R)

\   A
H*(A)
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We now show that the spectral sequence associated with this exact couple is

isomorphic with the one associated with the associated tower. First we need a

definition.

1.16. Definition, (a) Let I be the category whose objects are nonnegative

integers {0,1,...} and

I(n, m) =

!{—►},       ZZ<ZJJ,
0, m<n,

(i.e., a single arrow zz < zzz).  A is included in A1, the functor category, by ,4(zz)

= A,A(n<m) = ld.
A A .

(b) Let R and A G A  be defined as follows:

R(n) = R,     R(n <m) = a"1'" = a» a °

Â\n) = AH,     Â(n<m) = ym°ym_x o ..

In A7 we have the short exact sequence

T„+ i

(1.17)
o    Ä   p

R->R-*A

where ô(zz): R(ri) = R-   D-£
n+l

R = R(n) and ß(n) = pn.

) in A1.

H*(R)~      -*H*(R)

(c) Writing H*(B) for lim H*(B(n)), B in A/,-we have the exact triangle

A\ / p

H*(A)

associated with (1.17).

1.18. Theorem. Gzvezz a short presentation R -^ R-^* A, let (a^ß^yl) be

the associated Bockstein tower.   The spectral sequence associated with o\p is iso-

morphic with the spectral sequence associated with (a^¡,y¡). In particular the

following diagram commutes:

ß
H*(A)->H*(A)

(1.19)

/

H*(A)

d     p\

H*(R) H*(R)

(Note: H*(Af)=H*(A))
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Proof. The proof consists of proliferating the notation and writing down the

appropriate commutative diagram in A1.

Let A' be defined by Â'(n) - An_x (Â'(0) = 0), À'(n < m) =

À(n - 1 < m - 1). Let ß: À -*■ À' be defined by ß(n) = ßn. Of course

(a) (ß) = ß,

(b) H*(Â) = H*(À').
Let ö': R -* R be defined by d'(ri) = o". Let ß': R -* A' be defined by
j3'(") = P„-i- Again

(c) (&') = (Ô),

(d) (p') = (p).

We have the following commutative diagram in A' with exact rows:

(1.20)

Using the top two rows we have Aa = 9. Using the middle two rows and (a)

above we have oA = ßA. Using the bottom two rows we have pA = 8.

1.21. Example. Consider 0->-Z-^>Z-!!+Z2->-0. Taking limits in the

category of abelian groups we have lim Z = Z\}h], rationals of form p/2.

lim Z r,     (   I7IP|
k integersi

in the limit (1.20) is

■+Z

exp
Z\}h]->C2

c

Z[¥¿\
exp"

- „2+ C2    where c(a) = a

-C,
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This example suggests a final observation which is used in §2.

1.22. Theorem. Let A admit exactness preserving direct limits; then there

is a map of exact couples

ß
H*(A)- H*(A)

\a

H*(A\

H*(lhnA)

L
■+H*QunA)

Proof. 9 is induced by the standard maps of the factors of a diagram into

the direct limit.

The last question we consider in this section is when can we say a Bockstein

tower arises out of a short presentation.  The answer is, modulo an assumption,

that this is always the case.

1.23. Assumption. A admits inverse limits. Moreover, suppose we are

given a contravariant functor A : I —> A with A(n < zzz) an epimorphism. Then

lim A —* A(n) is an epimorphism for all zz.  (Note this holds in categories where

epimorphisms coincide with onto set maps.)

1.24. Lemma. Consider the diagram

Tí-t-i
í+i

4" -^/+i

ft
¿i-i *- 7/

ft+l

*A, ß'

Under the assumptions in 1.23, lim A¡ >—»• lim Ax3+*A is exact.

-++A

■++A

Proof. That 5 is onto is 123, the rest is categorical.

The proofs of the following two theorems are straightforward, as are their

obvious corollaries about the B.S.S.

1.25. Theorem. Gz'vezz a Bockstein tower (a,. 1/3,., 7,.), by 1.24 we have the

presentation lim A¡ >*-*■ lim A¡ -^*-*

presentation is isomorphic to (a,.|/?,., 7,).

short presentation lim A¡ >*-*■ lim A¡ -^-* A.   Then the tower associated with this

1.26. Theorem. Given a short presentation R >^> R -A-* A, let (a,.|/3,-, 7,)

Ae rAe associated tower.   Then the map p = lim p,. gives the commutative diagram
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O                 p

R >->R-^ A

A . k  |
A >->A —2—«>i4

1.27. Theorem. leí (a,|/3,-, y¡) and (a,-l/3f, 7,') ôe two towers (same sequence

of extensions). Then 8 = È'. Hence there is a morphism r making the following

diagram commute.

~    7 s
A >-►*—► >!-^,4

7

i4 >—i—► ! —s—*-*-A

Proof. Since A is defined only in terms of j3,-, the diagram makes sense.

But 5 = ô' = lim ß'; hence 7 and 7' are both kernels of the same map.

1.28. Corollary. The spectral sequence of a tower is independent of the

maps y¡.

2. An application.  In this section we extend the divided power operations

[7] to operations in the direct limit Bockstein exact couple. We use these opera-

tions to define secondary cohomology operations on the Bockstein exact couple.

Finally, we use the secondary operation to define a pairing in the Bockstein spec-

tral sequence. The properties of this pairing lead immediately to Browder's 1-im-

plication lemmas for 77-spaces [1].

We next consider the construction of the dual pairing.  In the case of homot-

opy-commutative 77-spaces it is possible, but in the case of homology-commutative

77-spaces it is only possible for E^, r > 1. The difference between these two

cases is reflected in [2] and [3]. We work with Z2 and the Pontrjagin square for

simplicity.

2.1. The Pontrjagin square [7]. There is a cohomology operation

7^2: 772m(Z, Z2) -^ 774m0Y, Z4)

such that

(a) 7^(x + y) = P2(x) + P2(y) + 2Jjx • y), where x • y is ordinary cup

product.

(b) If n: Z4^Z2 and x G 772m(Z, Z2); then ir(P2(x)) = x2.

(c) If x' G H2m(X, Z4); then P2(tt(x')) = (x')2.

Recall from 1.22 that we have the short exact sequence 0 —> Z2 -^ C2 ^ C2 -*■ 0.

2.2. Lemma. TTze spectral sequence associated with exact couple
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D* = H*(X, C2)-£-*H*(X, C2)

\   /
H*(X,Z2) = E*

is isomorphic to the spectral sequence associated with the s. e. s. 0 —* Z —► Z —*■

Z2 -»0.

Proof (1.22). The map 9(X) of 1.22 is, of course, just the limit of

9k(X): H*(X, Z k) -* H*(X, C2) induced by the inclusion. We will write x for

9k(X)(x), x G H*(X, Z k) and leave the appropriate "k" implicit.

2.3. Definition. We define a cohomology operation P2: H2m(X, Z2) —*■

H*m(X, C2) by P2(x) =Xf2(x)). Note this can be thought of as an operation
pi.   p2m _+ r)4m
rt'  £(1) U(l)'

2.4. Theorem. P2 induces operations P2: E2rm —* D*™ such that

(a) Pr2(x +y) = Pr2(x) + Pr2(y) + $TyJ,

(b) cPr2(x) =1^

Proof. First recall from 1.12 that if x GE? is .3. 8,r)(x) = 0 then there

exists z' G H"(X, Z r+x) 3. zrz' = z, where x = [z] and zr: Z r+í—* Z2.

The theorem now follows by induction on r; for r = 1 the theorem is just

the definitions 2.3 and 2.1.

Now assume the theorem for r. By the above 5^ryx = 0 implies that there

exists a z G Hn(X, Zjr+ 0 with x = [n(r+ l)z']. But by 2.1(c)

P2(z) = (ttY)2 so Pr2x = (zrV)2 = (c)r^ G D??x.

A A

In order to finish the proof we must show P2(x + &tr\y) — P2(x) when

ö(r)x = 0.

By induction

Pr2(x + bry) = P'2(x) + Pr2(5(r)y) + x • 8(r)(y)

but

x ' S(r)Cv) = 5w(x • y) = iS(r)(x • v) = 0

(this last equality by decomposing 5,r) in the rth derived couple).

We will be done when we show P2(S/r\ v) = 0.  But since S/^ is induced by

S(cr~1)~1i it clearly suffices to show
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Lemma. P2(8y') = 0 for y' G H2m(X, C2).

Proof. Consider the coefficient diagram

i' c2

TT c

o —► z2 -^ c2 -£-* c2 = o

Let 5 ' be the boundary homomorphism with respect to the top row.

p2(ßy') = ^(fS'i/î) = ï(V'y')2) = i's'((*y') • /) = o

where A is as in 1.16 and products are taken with respect to the pairing Z ® C2

-* c2.
Finally, we observe that the formulas (a) and (b) are induced by the corre-

sponding formulas on P2.

We now define a "secondary" operation that appears implicitly in the work

of Browder [1].

2.5. Definition. Let q2m: E2rm -*D*rm be defined by q2m(x) = i(x2)

=/x% We define %: ker qr -+E?rm/lm(8?m-x) by $r(x) = [rxP2(x)]. Note:

ô4m_1 is the boundary homomorphism in the rth derived couple not §4,!?-1.

We are now in a position to define the pairing in which we shall be interested.

Let (Enr\ dr) be the homology B.S.S. Let ( , > denote the usual pairing

Ep®Efo-+Z2 [l],
2.6. Definition. Let x G Im d$ G E\m and y G ker q2m. Define

Úx, y) = (x, $r(y)).

2.7. Theorem, ip: Im d4^1 x ker q2m -*■ Z2 is a well-defined pairing 3.

(a) ip(xx +x2,y) = <p(xx, y) + ip(x2, y).

(b) fix, yx + y2) = ip(x, yx) + <p(x, y2) + (x, yxy2).

(c) Iff: X-* X' then v>(/*(jc), y') = <fi(x, /*(>')).

Proof. Since y G ker q2m, <p(x, y) is defined and is unique up to elements

of the form <x, ô4m"xy) but x = tf%x' so

(x, S4"1" V> = &$x\ 54m- V> = Of', S4^(ô4m-V')>

= Of', 54mi*ô4m" V> = Cï', S4m(0)> = 0.

Again, the formulas follow from the corresponding formulas on ( , > and
A
Pr

We now give some applications of the pairing. We assume X is an 77-space

with p: X x X —*■ X the multiplication and (7r2, 7t2), (i"j , i2) the projections and

inclusions along the factors.
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2.8. Theorem. Let X be an H-space, let 0 # x G ker q2m be primitive.

Let x be its dual. Assume x G Im dfâ; then <p(x2,x) # 0, Aezzce x2 =£ 0.

Proof.

ip(x2, x) = >p(p*(x ® x), x) = <p(x ® x, p*x)

= <p(x ® X, 1 ® X + X ® 1)

= >p(x ® x, 1 ® Jc) + <p(x ® X, X ® 1) + (x ® X, x ® Jc>

but

<¿>(x ® *, 1 ® x) = <p(x ® x, rrf(x)) = ^(rr^x ® x), x) = i¿>(0, jc) = 0.

Similarly «¿>(jc ® jc, x ® 1) = 0 so </?Cjc2, jc) = <jc ® x, jc ® jc> = 1 # 0.

Actually, 2.8 follows from a stronger 1-implication lemma and some obser-

vations about Hopf algebras. We prove this stronger result modulo lemma which

describes the behavior of tp with respect to certain products.

Note that no assumption is made about X being an //-space.

2.9. Lemma. Let xGlm d2% be primitive. Let y = 2 y'¡ ®y'j,yG

ker q2m, in the B.S.S. of X x X be .3. 0 < dim;/. < 2zzz. 77zezz ¡p(x ®x,y) = 0.

Proof. We do not give full details. One expands <p(x ® x, y) and uses

formulas [7] describing the behavior of P2 under products to conclude that all the

terms vanish because of dimensional reasons or because one is pairing a primitive

homology and a decomposable cohomology class.

2.10. Theorem. Let x be an H-space. Let 0 # x G Im 82m Ae primitive.

Let x be the dual of x and let x G ker q2m. Then tp(x2, x) ¥= 0; Aezzce x2 # 0.

Proof.

ip(x2, x) = <p(p*(x ® x, x)) = <p(x ® x, p*x)

= <p(x ® x, 1 ® x + x ® 1 + v),   v as in 2.9,

= y(x ® x, 1 ® x + x ® 1) + <p(x ® x, y)

+ <x®x,y.'(l®x+x® 1)>,

but <p(x ® x,y) = 0 by 2.9, and (x ® x, y • (1 ® x + x ® 1)> = 0 for dimensional

reasons and y(x2, x) = ip(x ® x, 1 ® jc + x ® 1) = 1 as in 2.8.

The following theorem is an application of the additional strength of 2.10.

2.11. Theorem. Let X be an H-space.  Let 0 i= x G Im dfô be primitive.

Suppose H*(X, Z) has no free subgroup in dimensions 2km, and suppose

(H*(X, Z))2 (2-torsion subgroup) consists of only elements of order 2 in dimen-

sions (2km) + 1.  77zezz x" ¥= 0 for all n.
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Proof. Since, x G Im d?¡V and primitive and x2 # 0 imply x   G Im 9^

and primitive, it suffices to show q2m(x) = i(x2) = 0 at each stage of the induc-

tion.

We show i(y2) = 0,y G H2 m(X, Z2). Consider the following extended

version of 1.18.

H*(x,zm)

H*(X, C2) ■

\i

■+H*(X,C2)

4
H*(X, Z2)

4' \
H*(X,Z) -> 77* (X, Z)

H*(X,Z2)

By 1.20-1.21 the right vertical column is exact. But 772 m(X, Z) has no

free subgroups so (H2km(X, Z[lA]))2 = 0. On the other hand (Hlkm(X, C2))2 =

H2km(X, C2) so p = 0: H2"m(X, Z[%]) -* H2k">(X, C2). Hence A is a mono-

morphism in dimension 2km and thus^ker i = ker ô'.

We are done if we show 8'(y2) = 0. Now i\8'(y2) = S(1)(j>2) = 0 since

S(j) is a derivation. But under our hypothesis it is a monomorphism on

(H2k+x(X, Z2))2 and 8'(y2) is surely in this subgroup.

We now discuss the possibility of carrying out a similar construction with

regard to the homology product. We first consider the case where the homology

ring is commutative:

2.12. Definition. Let X be an 77-space with a commutative homology ring.

Let ir: Z4 ^ Z2. We define 7>2(Im it) C H2m(X, Z2) -♦ H4m(X, Z4) by P'2(x) =

(Tt-'fx))2.

The following lemmas and theorems proceed exactly as before.

2.13. Lemma. P'2 is well defined and

(a) P'2(x 4- y) = P'2(x) + P'2(y) + 2*x • y,

(b) 7tP20c) = ;c2.

2.14. Theorem. Z,er P2: (Im 7r) -> H4m(X, C2) be defined by P'2(x) =

P'2(x). Then P'2 induces operations, P2r: E2m —*D\m, r> I, and

(a) ^'(jc + y) = P'2r(x) + P2'(y) + 2¿x • y),

(b) cP'2r(x) = x~*.
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2.15. Theorem. 77zere is a well-defined pairing <p': ker q'2m x Im ôfô   x

->Z2,r> 1.3.

(a) <p'(x, y, + y2) = y'(x, y) + <p'(x, y2),

(b) <¿>'(x +x2,y) = <p'(x, y) + <p'(x2,y) + (xx • x2,y),

(c) if f: X -* X' then /(/*(*), /) = <p'(x, f*(y')).

2.16. Theorem, r > 1. Let X be an H-space with commutative homology

ring. Let 0 =£ Je G Im ö2r)- ' Ae primitive. Let x be its dual and X G ker q'2m.

Then <p'(x, x2) * 0; hence x2 ¥= 0.

2.17. Remarks. Finally, in the homotopy commutative case one may

actually construct operations that behave as do the divided power operations and
A,

induce P2. Hence in this case one may drop the restriction r > 1.

3. On the construction of Bockstein towers.  In this section we discuss the

problem of enumerating the Bockstein towers with respect to a given R-module A-

In particular, we ask when a tower can be constructed over a given sequence 0 —*
ÍL A —*■ 0 representing an element a G Ext¿(A, A). The approach

taken is to attempt to extend the tower one row at a time. At each stage a pri-

mary obstruction appears which must vanish in order to extend further. However,

even if the primary obstruction does not vanish, there is presented a secondary

obstruction which still may vanish. The vanishing of the secondary obstruction

allows one to modify the top row of the tower (leaving the rest fixed) so as to be

sure the new primary obstruction vanishes.

While in general higher obstructions still may be required for the examples

considered below, these two levels of obstruction are shown to be sufficient to

enumerate the towers over the given A.

3.1. Setting. We restrict attention to the category of R-modules. At one

point below it is necessary to assume A is a simple R-module of finite cardinality.

We will make this assumption only at the place it is needed. Of course, in the

usual applications of the Bockstein spectral sequence this condition is present.

The basic diagram for this section is

(3.2)

*/+!
T/+i

+ A

A-'■—>A¡

bi

ft+1
i+i

Tf+l

ft

7.

■*A,

yi

■+A
f-i

Ji-\

a,i-i
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where a¡ G Ext¿ (A¡, A), b¡ G Ext¿(A, A¡), j = i - I, and i represents the

appropriate row or column. We will let 8b.: Ext¿04.-, A) —* Ext|04, A) stand

for the boundary homomorphism in the long exact sequence associated with the

appropriate column. Finally, it is assumed that this is the top row of a partial

tower over a given sequence A
.a2v 0L

A.

The following is the basic observation.

3.3. Theorem. Suppose 8b.(a¿) = 0 then we may extend the tower one

more row.   That is, find

ßi+2 -»A
A

xi+2
a,j+i

7,+ i

■+¿1+1 *A; ai

Proof. 8b ,(a¡) = 0 implies that there exists ai+, G Ext¿ (A¡+ x, A) with

y*+i(ai+i) = ai-

The following observations require hypotheses that are too strong to be use-

ful in general.

3.4. Corollary. Suppose Exf| (A, A) = 0; then there exists a tower over

each element in ExtR(A, A).

3.5. Theorem. Suppose 8b.(a¡) = 0 and 7,* is a monomorphism; then ai+l

is unique.

Proof. Studying the long sequences associated with the rows

Ext¿ 04, A) ̂ ^ Ext¿ (Ai+ x, A) <^- Ext¿ (A¡, A) <-

TÄ-i
ß*

7*

Horn 04, ,4)

Horn 04, .4)<— Ext¿ (A, A) <—^— ExtxR (A¡, A) *-^— Ext¿ 04,._,, A) <-

the result follows from the five lemma.

3.6. Corollary. Suppose ExtR (A, A) = 0 and a* = 7* is a monomor-

phism, then there is a unique tower over each element of Ext¿ (A, A).

Proof. By induction, 7* a monomorphism implies 7,*+, is a monomorphism.

This fact and 3.4 give 3.6.

Before developing the obstruction theory of Bockstein towers further we

give a series of examples which exhibit the various phenomena to be delineated.

In all cases the "A" in question will be taken to be Z2. We do not give details of

the various computations since in all cases they are straightforward.
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3.7. Examples, (a) Z-modules.  Here Ext Z(Z2,Z2) = Z2, Ext|(Z2, Z2)

= 0. Moreover, af is a monomorphism. Thus 3.6 applies.

(b) Z[Z]-zzzo£?zz/es.   Extlz[z](Z2,Z2) = Z2 © Z2, Ext|[z)(Z2, Z2) = Z2.

By direct computation one can show §ö.a,- = 0 for diagrams of type (3.2). Of

course uniqueness is lost.

(c) Z[Z2]-modules.  Extz[Zl](Z2, Z2) = Z2 © Z2, Ext2 ,Z2,(Z2, Z2) =

Z2 © Z2 (generated by, say, ux and u2).

Using example (b) and the fact that the change of rings homomorphism

Ext|[z ,(Z2,Z2) —> Ext|[zj(Z2,Z2) is the "folding map", one sees that 5b.(a¡)

= 0 or ux +u2. On the other hand, one may choose generators z^ and v2 of

ExtzrZ2](Z2,Z2),

(0,       / = /,

i \u¡,      t¥>f.

The following example shows that 5ft.(a,) is not always zero.

II     I2     I2

where Z8 is Z8 with the Z2-action ip(x) = 5*. Note that Z16 does not admit aZ2-

action which lifts <p. Note also that one can modify the action <p so that there is a

lifting (replace ¡p by the trivial action).

(d) Z6-modules. ExtZg(Z2,Z2) = Z2, Ext|g(Z2,Z2) = Z2.

^Z.

f
■*zA

8

-»z.

does not "lift" as Z8-modules nor can one modify the top row so that it does lift.

We now need a technical lemma which is, in fact, about the bilinear pairing in

Ext [6].
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3.8. Lemma. Let bx,b2 G KxtR(A,D).  Then 8bl+b2(a) = 8bi(a) +

8 b2(a) in Ext£+X (CD).

Consider the diagram defining addition in Ext¿ (C, A) [6] :

A® A >->B®B'-*+C®C

A >■ -»77 -++ C® C

A » -»77+77' ■++ C

Now 8b+b,(a) = A*(5Ö © 8b,)S7*(a) and S7*(x) = x ® x and A*(x © j/) = * + y.

The following lemmas show the relation between the elements a¡ and b¡ in

(3.2). The lemmas are stated in terms of the following "Ext" diagram with exact

rows and columns.

a,* ...    ßj*
Extjj 04, A) —^ Extjj 04, A{) -^-* Ext¿ 04, A¡_x)

[Sf [«& |5,r,-i
(3.9)   Ext ¿04,., .4) -^-* Ext¿ 04,, Ai) ■&£-> Ext¿04,, At_x)

ExtJjOl,.,,, A) ̂ =^ Extj^.M,.) ^=^ Ext^OV.M,.,,)

3.10. Lemma. S,*,.(ö,.) = a,.^,).

Proof. In the following diagram we are given all but the map f.

i+i
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where the second and third rows represent 5?,.(A,.) and a¡¡t(a¡).

We now define the map f : C -* C. First remember that C is the push out

of

A,-+C
T
I

*/+l ■*A
i+i

and C is the pull back of

C-► A¡
i
l

Ai+X-*±A

Define f(x,-,xi+i) by C(x¡, 0) = (7í+i*/> 0), f(0,x/+i) = (*/+i»ft+i*í+l)'

We first check that this map is well defined, in particular, that

t(a¡x, (- ai+xx)) = (ai+xa¡x - ai+xx, - ßi+xai+xx) = (0, 0).

Similarly one shows k/+1 = Çiïi+X, ri+x$ = Ti+1; hence f is an isomorphism by

the five lemma. We note pÇo = ident. This can be seen by direct computation.

We now prove a partial converse under the assumption^ is a simple R-module

of finite cardinality.

We begin by noting that the modules appearing in any nontrivial tower are

all essential extensions of A.

3.11. Lemma. Let A be simple and A
"i.

++A nontrivial.   Then

A¡ is essential.

Proof. Consider the diagram

Defining 7} and a0 to be the identity we may assume a,-_i: A —*■ A¡_x is

essential. Now if a¡A -* A¡ is not essential let M G A¡, M n a¡(A) = 0, M =£ 0.

M H a¡(A) = 0 implies ßjM is a monomorphism. a¡_x essential implies a(_x(A)

G ßt(M); hence there is a map r: a,._iG4) —* A¡ .3. ß{t = ident. But ßf1ai_i(A)

= y[(Ax) so t is a splitting of the bottom row contradicting the hypothesis.

We are now in a position to prove a partial converse to 3.10.
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3.12. Theorem. Let A be simple and of finite cardinality. Let a G

ExtxR(A¡,A), bGExtxR(_A,A¡)beB;(a) y*(ä)=ai_i; (b) ßi,(b) = bi_x;

and (c) a¡ ¡t(ä) = 8*¡(b).  Then there exists a diagram

a¡+1     '

A   -^^Ai+l
ft+i**A,

A-*- ■+A
I>.        1ft

7,-

~¿,-i
H-l

'i-l

with 8b = Sg'/* where f: A¡ -*■ A¡ is an automorphism.

Proof. Consider the following diagram associated with the above data.

¿i-i "
7/ -».4

ft

-H.4

Ai- ■+A -**A

A¡ »---► C

4  _   1°
-.^

/i »
A >-

a

ai

-+AT      0 ~yL â

K  1
-».4, ft

-«/I

7/

i-i

We wish to show po is an isomorphism. To do this we first observe card04)

= card (Ä) since they are both extensions of modules that are pairwise of the

same cardinality. Therefore, to show po is an isomorphism it is sufficient to show

it is 1-1.

Suppose pa(x) = 0. Then 8po(x) = 0; hence by commutativity 8j3(x) = 0.

Hence ß(x) G ker(5,) = image y¡. This implies that there exists y G A¡ such that

f(y) = x. On the other hand a,-04) D ker 5of = ker 7a,. = 0 but, by 3.10, a, is

essential so ker poÇ = 0 = >y = 0 = >x = 0.
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We claim that the following diagram satisfies the requirements of our theorem.

A     =      A

b

To see this one consider?

7       ~     o _
A¡ >-*■ A-**■ A      A

1/ IBJpc
?        -    S,/3A¡^->A—lJ-+*A      A

By commutativity poÇ factors through y which, of necessity, must be an automor-

phism of A¡.

Applications of 3.12 unfortunately require knowledge of the automorphism

/. We will see that in the case we study this is available. Moreover, we will men-

tion an alternate version of 3.12 which identifies a situation where we are sure /

is the identity.

3.13. Continuation of Example 3.7(c). We study the towers over Z2 as a

Z[Z2]-module. Firstly, there are three nonzero elements of Extz¡z,(Z2,Z2),ux

representing Z2 —*■ Z4 -» Z2, u2 representing Z2 —>Z4—*Z2 and ux +u2 repre-

senting Z2 —* Z2 ® Z2 -+ Z2 with the nontrivial action. As indicated in 3.7(c)

5    i/j = 5    zz2 = 0 but Su,+„2(«i + u2) = vx + v2 hence all towers over Z2

axe over ux or u2.

It is a simple observation that any tower over either considered as a tower

of Z-modules is just (Z2i, 2) (1.6(a)); hence A¡ = Z ,+ 1 with some Z2 action.

Again it is easy to verify that for any such module and automorphism /: A¡ —*■

A¡, /* = ident: Extzrz ]C4,-,Z2) —► ExtZrZ *(A¡,Z2). Also one sees

ExtZ[Z 2](A¡, Z2) = Z2® Z2 and a,-,., 5?,-» of (3.9) are both monomorphisms.

Suppose, we have constructed a tower as in (3.2) and §ft.a,- # 0, by 3.7(b)

and (c), we have 8b.a¡ = vx + v2. Suppose afa¡ = u¡ = 8¡*b¡, / = 1 or 2 (say

/ = 1).  Consider the pair öf u2 + a¡, a¡»u2 + b¡ by 3.12 and the fact /* =

ident. We may modify the tower so that the obstruction to lifting is
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5(a,.,U2+6,.)(SfU2+fl/)

-««^«te + ««í.«2«f+V*"2 +V'

= 8„2(0|*«f«2) + 8„2ÛM- + 56*,7>,."2 + 56/«<

= 0 + 5t,2"l       +6u,"2        + 5¿>ffl<

= 0 + v2 +vx + vx + v2

= 0.

Moreover, again one may quickly check that this pair is the only pair over

<*,_!> b¡_x that lifts.  Hence there is a unique tower over «, namely (Z2i, 2).

Similarly there is a unique tower over «2 namely (Z2i, 2). Hence these generate

the only Bockstein spectral sequences over Z2 as a Z[Z2] -module.

We 'finish by making one further observation suggested by the above which

we leave unproved.

3.14. Theorem. 7ii the setting of (3.2) and (3.9) let a' G Ext¿ (A, A).

Then there is a diagram of type (3.2) with middle row and column ai •+ 8 fa', b¡ +

0£,*fl'.

The proof consists of merely checking that the map /of 3.12 is in this case

actually the identity.
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