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ABSTRACT. In this paper we give conditions when the existence of an "es-

sential" map of an annulus or Mobius band into a 3-manifold implies the exis-

tence of an "essential" embedding of an annulus or Mobius band into that 3-man-

ifold.

Let Xj and X2 be disjoint simple "orientation reversing" loops in the bound-

ary of a 3-manifold M and A an annulus.   Let /: (.4, dA) —► (Ai, aM) be a map

such that /»: irx(A) —► nx(M) is monic and f(ôA) = Xj U X2.  Then we show

that there is an embedding g: (A, dA) —► (M, oM) such that g(oA) = Xj U X2.

Introduction. In 1968 F. Waldhausen reported in [8] that the existence of

an "essential map" of an annulus into an orientable 3-manifold guarantees the ex-

istence of an essential embedding of an annulus in that 3-manifold. To our know-

ledge, a proof of this result has not yet appeared.  As the result seems to be of

considerable interest, we give here a proof of it and a number of related embed-

ding theorems. We also prove that disjoint, simple, freely homotopic, "orienta-

tion reversing" loops embedded in the boundary of a 3-manifold must bound an

annulus embedded in that 3-manifold if either loop represents a fundamental

group element of infinite order.

Notation and conventions. Throughout this paper all spaces are simplicial

complexes and all maps are piecewise linear.  We also follow the "general practice"

of Waldhausen on page 57 in [9]: in order to obtain a regular neighborhood,

choose a triangulation in which all subspaces, previously mentioned in the argu-

ment, are subcomplexes; construct its second derived and take the closed star of

the object in question. We denote the boundary of a manifold by dM and M -

3Af by int(M).  A manifold N is properly embedded in a manifold M if N D

dM = óN. A simple loop embedded in a 3-manifold M is orientation-preserving if

it has a regular neighborhood in M which is a solid torus; otherwise it is orienta-

tion-reversing. A two-sided surface F properly embedded in M is incompressible

(in M) if for each disk D embedded in M such that D C\ F = 3D, öD is homotop-

ic to a point in F.
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Throughout the remainder of this paper M denotes a 3-manifold and A is an

annulus. The components of dA are denoted by c, and c2.

Definition of essentiality. Let F be either an annulus or Mobius band.

The arc o: is a spanning arc of F if it is properly embedded in F and F - a is sim-

ply connected. Let M he a compact 3-manifold and a a spanning arc of F. A

map /: (F, 9F) —► (M, dM) is essential if

(1)/*: I1,(F) —> II,(M) is monic; and

(2) /la is not homotopic rel its boundary to an arc in dM.

The singular set Sy of a map /: M —► N is the closure of {x G M: f~xf(x) i1

{x}}. The complexity C(f) of/is the smallest total number of Simplexes neces-

sary to triangulate S¡. We choose this notion of complexity to avoid the problems

presented by branch points. It is well known that if M has dimension 2 and N

has dimension 3, we may suppose that a triangulation of S¡ contains no Simplexes

of dimension greater than 1.

Results. We state and prove below Theorem 1 which we believe to be the

most difficult result in this paper.

Theorem 1. Let M be a compact, orientable 3-manifold and f: (A, dA) —►

(M, dM) an essential map such that f\ dA is a homeomorphism.  Then there is an

essential embeddingg: (A, dA) —► (M, dM) such that g(dA) = f(dA).

Revision of Theorem 1. The proof of Theorem 1 involves a rather com-

plex mixture of the tower building technique of Papakyriakopoulos (à la Shapiro-

Whitehead-Stallings [3], [4], [6]) with other covering space and cut-out-paste tech-

niques. In order to avoid a morass of notation, it is important to fracture the

proof into well-defined steps, each independent of the others. The principle diffi-

culty in so fracturing the proof is the difficulty in measuring the essentiality of a

map, for essentiality can be destroyed in tower building processes. This difficulty

is overcome by a refinement of the notion of essentiality.

Refined definition of essentiality for Theorem 1. The notions of

groupoid and fundamental subgroupoid are defined in the appendix. If (X, Y) is

a topological pair, then P(X, Y) denotes the fundamental subgroupoid of X with

base points Y, so that P(X) = P(X, X) is the fundamental groupoid of X and

T1X(X, x) = P(X, {x}) is the fundamental group of X with base point x.

Definition. A triple (M, f, G) consists of a 3-manifold M, a map /:

(A, dA) —> (M, dM) and a subgroupoid G ofP(MJ(dA)) containing f#(P(dA)).

A triple is

(1) essential if f#\Tix(A) is monic and if, for each spanning arc a of A,

f#([a]) E P(M,f(dA)) - G (the requirement that G contain f#(P(dA)) is included

to make this notion of essentiality independent of which spanning arc a of A one

uses in checking the condition);



ESSENTIAL EMBEDDINGS AND MOBIUS BANDS 221

(2) Dehn if SfndA = 0;

(3) nonsingular if/is an embedding.

If, in (1), G = i#(dM, f(dA)) G P(M, f(dA)), where i: (dM, f(dA)) -+

(M,f(dA)), then this definition of essentiality reduces to the original one.

Theorem l'. Suppose that M is an orientable 3-manifold. If there is an es-

sential Dehn triple (M, f,G) then there is an essential nonsingular triple (M, g,G)

such that g(dA) = f(M).

Proof. The proof of Theorem l' is rather long. Although it could be ar-

ranged so as to be essentially constructive, an indirect proof seems to save most

on notation. Hence we make the following (false) assumption:

Basic assumption . There is a counterexample (M, f, G) to Theorem l';

i.e., M is orientable, (M, f, G) is an essential Dehn triple, and there is no essential

nonsingular triple (M, g, G) such that g(dA) = f(dA).

We show by means of two claims to be established that the basic assump-

tion leads to a contradiction. The first of these claims (Claim 1) consists in show-

ing, under the basic assumption, that there is a very nice counterexample (M, f, G)

to Theorem 1 '. Claim 2 states that M, whose existence was established by Claim

1, admits a very nice collection of properly embedded annuli. The existence of

these annuli demonstrates very simply that the triple (M, f, G) could not have

been essential and Theorem 1 ' follows.

Claim 1. Under the basic assumption, there exist a counterexample (M, f, G)

fo Theorem l' and a properly embedded, two-sided surface F in M satisfying the

following three conditions:

(1) for both i = l and / = 2, the intersection number \sc(F,f(c¡))\ of F

with f(c¡) is equal to the cardinality of F n f(c¡).

(2)f~x(F) is the disjuint union of finitely many spanning arcs of A, each

embedded by /, and f~x(F) divides A into complementary domains Dx.Dk,

each embedded by /; and for each pair i and / of distinct indices, (f\Df)~xf(Df)

is the disjoint union of finitely many simple closed curves and of finitely many

open arcs having disjoint arc closures, each such arc separating bD¡ in D¡,

(3) F is connected; dM is incompressible in M and has total genus 1;

there exist finitely many disjoint disks Ex, .. ., Em in (intF) -f(A) such that

F - Uint(ZJ\) deformation retracts onto F n f(A); and F is incompressible.

Satisfying condition (1) of Claim 1. Let (M',f', G') be a counterexam-

ple having the smallest possible complexity. Let M be a regular neighborhood of

f'(A) in M'. Let f = f':A~+M. Let i: (M, f(U)) -» (M\ f'(dA)) be the in-
clusion map. Let G = i#x(G') C P(M,f(dA)). Then (M,f, G) is a counterexam-

ple such that M deformation retracts to f(A). The following three lemmas imply
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that there is a properly embedded, two-sided surface/in M satisfying condition

(1) of Claim 1.

Lemma 1. Suppose that (M, f, G) is a counterexample such that M deforma-

tion retracts onto f(A), and suppose that M has a two-sheeted connected covering

(M, p) to which f lifts. Letf: (A, dA) —> (M, dM) denote a lift off, and let

p#: P(M,f(dA)) —> P(M,f(dA)) denote the groupoid morphism induced by p.

Then the triple (M,f,p~#(G)) is a counterexample with smaller complexity than

(M, f, G).

Proof. We observe that C(f) > C(f) since Sf and Sy are both 1-complexes,

Sf D Sf and 9<Sy and 95^ are empty since Sf and Sy axe unions of collections of

closed loops. Lemma 1 is now a consequence of Lemma 4.3 in [2].

Lemma 2. Suppose that (Af, /, G) is a counterexample such that fiA) is a

deformation retract of M and M has no connected, two-sheeted cover to which f

lifts.  Then dM is incompressible in M and has total genus 1, / maps dA into the

single torus boundary component of M, and /*(//, (4)) is an infinite cyclic sub-

group of HxiM).

Proof. Except for the fact that 9M is incompressible, this is a simple modi-

fication of an argument in the proof of Lemma 4.1 in [4].  Suppose V is a disk

properly embedded in M and dV is essential in dM. It can be seen that /(9i4) n

dV is not empty and that f~xiV) contains a spanning arc a of A. Let F be the

component of dM on which dV lies. Let Ax and A2 be the closures of the com-

ponents of T -f(dA). If we suppose that 9(9 meets /(9.4) in a minimal number

of points, then /(a) is homotopic in V to a sequence of simple arcs in dV and

each of these arcs is a spanning arc of either Ax ox A2. It follows that either A,

or A2 contradicts the assumption that the triple (M, /, G) is a counterexample of

Theorem l' since (M, /, G) is essential. This completes the proof of Lemma 2.

Lemma 3. Suppose that (M, /, G) isa triple such that M is compact and

/*(//, 04)) is an infinite cyclic subgroup of xY,(M). Then there is a properly em-

bedded, two-sided surface F in M such that condition il) of Claim 1 is satisfied.

Proof. The proof of this is a modification of the third paragraph of the

proof of Theorem 3.1 in [2].

Satisfying condition (2) of Claim 1. Let (xW, /', G) be a counterexam-

ple and F' a properly embedded, two-sided surface in M satisfying condition (1)

of Claim 1. We shall show that, by changing int(F') and /'(int A) so as to obtain

a new surface F and new map /, we can obtain a counterexample (Af, f, G) and

surface F satisfying both conditions (1) and (2). In particular, we note for future

use in satisfying condition (3) that since we do not change /' near dA and do not
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change F' near dF' the new intersection number k = lsc(F,/(c,))l agrees with the

oldonefc' = lsc(F',/'(c,))l.

By standard techniques, we may change F' to an incompressible surface F

with compatible orientation and the same boundary.  Let (M, p) be the fc-sheeted

cyclic covering of M associated with F (i.e., cut M along F, take k copies of the

resulting space, and sew them together cyclically along the various copies of F;

note that the construction uses only the two-sidedness of F but depends, for non-

connected F, on the choice of those two sides; in particular the construction

makes sense even in nonorientable manifolds; note, further, that p~x(F) is the dis-

joint union Fx U . . . U Fk of k homeomorphic copies of F, determined by the

construction and carried by p homeomorphically onto F; there is also a natural

covering translation, cyclic of order k, which cyclically permutes the k copies of

M; this covering translation need not generate all covering translations for general

M and F but will do so if M is connected; a loop in M lifts to M if and only if its

intersection number with F is some multiple of k). Since \sc(F,f'(cx))\ = k,

there is a lift g: (A, dA) -* (M,dM) of /'.    Let p#: P(M, g'(dA)) -*■

P(M, f'(dA)) be the groupoid morphism induced by p. Note that the triple

(M,g , pff(G)) is an essential Dehn triple. Note also that g'(cf) [and g'(cf)] in-

tersects each copy F¡ of F tranversely in a single point. It follows in particular

that gJßx(A)) is an infinite cyclic direct summand of HX(M). Hence we may ap-

ply the following lemma from [2] to conclude that there is an essential, nonsingu-

lar triple (M, g, p#x(G)) such that £(3,4) = g'(dA).

Lemma 4 [2, Theorem 3.1] (see the appendix for further discussion). Let

(M, f, G) be an essential Dehn triple such that M is orientable and f*(Hx(A)) is

an infinite cyclic direct summand of HX(M). Then there is an essential nonsingu-

lar triple (M, g, G) such that g(dA) = f(dA).

Since p~x(F) is incompressible in M, we may assume that g~xp~x(F) is the

disjoint union of finitely many spanning arcs of A which divide A into comple-

mentary domainsDx, . . . ,Dk. After slight adjustment for general position, we

may assume that g(A), all of its images under the cyclic covering translations of

(M, p) mentioned above, and all of the surfaces Fx, . . . , Fk are in mutual gen-

eral position. If we let / = pg, then the only part of condition (2) possibly not

satisfied by / is the requirement that each of the open arc components of

(f\Dffxf(Df) separate dD¡ in D¡. We now show how to modify /so as to satisfy

this final condition.

It can be seen that g~xp~x(F) is the union of exactly k spanning arcs which

we denote by ax, . . . , ak. It follows from general position that

(1) /(a,.) n f(af) is finite for !</</<*;
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(2) /(a,) crosses /(a) at each point in f(a¡) n /(ex.) for 1 < i </ < k',

(3) /(a,.) n /(a;.) n /(eg is empty for 1< i <] < s <k.

Let X0= Déifiai) nfia¡)).

We assume that / has been chosen to minimize the cardinality o0 of X0.

Suppose j3, C fiar) and ß2 C fias) are subarcs such that 0, U j32 bounds a disk

P embedded in F and 90, = dß2 = ßxOß2 where 1 < r <s <k. Suppose fur-

ther that for each arc ß contained in f(a¡) and properly embedded in V, ß n ßj is

a single point for / = 1,2 and 1 < i < k. Then a0 could be reduced by pushing

ßx to |32 across V and then pushing /(a,) off of ß2. Since the reduction above

could be accomplished with a homotopy of /in M covered by an isotopy of g in

M, the existence of /?,, ß2, and ¡9 contradicts the minimality of o0.

We claim that if one of the open arcs infWj~x(f(V,)) fails to separate dV¡,

arcs ßx and /32 and a disk V as in the preceding paragraph exist. Suppose that S

is the closure of such an open arc. Then we may suppose that 9S lies on the

spanning arc a¡ where 1 < i < k. Let 5, be the subarc of orf bounded by 9S.

Now 5, U 5 bounds a disk F, on V¡ and we may suppose that the closure of

F, r\f~xf(Vi) contains no properly embedded arcs that have their boundary on

S,. Let 5* be an arc in D. such that f(8*) = f(8). We may suppose that 95*

lies on the spanning arc a- (96* must lie on some spanning arc since f(8*) is ho-

motopic to an arc in F) where 1 </ < k and / *£ i, 96* cuts off an arc S2 on ay,

and 82 U S* bounds a disk F2 on Dt. Now /(S, U S2) is a simple loop on F

that bounds the singular disk f(Ex U F2). Since F is incompressible, /(5, U 52)

bounds a disk F embedded in F. If ß is an arc properly embedded in E such that

dß lies on f(8,) then ß together with an arc on f(8,) bounds a subdisk of E. It

follows from a standard argument that there exist arcs /?, and j32 in E and a sub-

disk (9 of F satisfying the claim above.

This establishes condition (2) of Claim 1.

Satisfying condition (3) of Claim 1. Among all counterexamples to

Theorem l' and surfaces satisfying condition (1), choose a counterexample (M0,

f0, G0) and surface F0 such that F0 is incompressible and k = lsc(F0,/0(c,))l is

minimal. As noted in the discussion of condition (2), we may assume that (M0,

/o> Go) and F0 also satisfy condition (2). Among all such counterexamples, we

may also assume that f0(Sf0) n F0 has the smallest cardinality, and, among such,

that /0 has the smallest complexity. After slight modification, as we shall see,

(M0,f0, G0) and F0 will also satisfy condition (3).

Let M be a regular neighborhood of f0(A) in M0. Let / = /„: (A, dA) —►

(M, dM). Let i: (M, f(dA)) —► (M0,f0(dA)) be the inclusion map. Let G =

i#x(G0). Let Fx = F0 C\ M. Since k was minimal, at most one component of

F, intersects f(dA), and that component contains /o/o"1^)- Hence we may as*

sume F, is connected and that (M, f, G) and F, still satisfy conditions (1) and (2).
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By Lemma 1, M has no connected two-sheeted cover to which / lifts. By

Lemma 2, dM is incompressible in M and has total genus 1, and /maps dA into

the single torus boundary component T of M. Hence only the last two parts of

condition (3) remain to be satisfied. Note that it is a consequence of Lemma 4

that k # 1 and of Lemma 1 that k¥=2. Thus k>3. Note that if dx,.. ., dk

denote the components of 9Fj intersecting f(cf) U f(cf), then Y = dM -

(f(cf) U f(cf) Ud,U...U dk) is simply connected. Let ex.em denote

the boundary components of Fx in Y. It is possible to fill these in with disks

Ex,..., Em in Y and to push these slightly into int M so as to form a new prop-

erly embedded two-sided surface F with boundary dx U .. . U dk. We claim

that (M, f, G) and F satisfy all of conditions (1), (2) and (3). It obviously re-

mains only to check the fact that F is incompressible in M.

Let 5 C F0 be a regular neighborhood in F of f(A) OF. Let I be a simple

loop properly embedded in 5 that bounds a disk V in M such that pflF =

dV = I. It is sufficient to show that / bounds a disk in F or that / is nullhomo-

topic in F.

Let (M, p) be the fc-sheeted cover of M associated with Fx and g an embedding

such that pg = f. Let V be a disk embedded in M so that pV = V- Let f = dV.

Clearly F lifts to M. Let F be the component of p~x (F) on which I lies, and

S = p~x(S)nF.

It can be seen that V meets exactly one component of M - p~x(F). We de-

note the closure of this component by B and observe that B ¥=M since k > 3.

For i* = 1,..., k, we observe that the closure of (p~x(V¡) n B) is a disk proper-

ly embedded in B and denote this disk by V¡.  We suppose that / and V have been

so chosen that the number of points in / n Vx is minimal (finite), that / is not

nullhomotopic in F, and that V is in general position with respect to U/=i V¡-

Suppose that I (~\VX is not empty. After the usual argument, we may suppose

that V n Pj contains no simple loops. Note that this can be done by adding

disks that lie in a regular neighborhood of Vx to a punctured subdisk of V. Thus

there is an arc ß C V O Vx properly embedded in Vx that cuts off a disk F on i)j

such that int (E) does not meet V and dE - ß lies on F. Now j3 separates V into

two disks Ê' and F". Let Fj = F U F' and F2 = Z? U Ê". Both Z?i and F2 are

disks embedded in B and either ôFj or 9F2 is essential in F. Suppose dÊx is es-

sential in F. Deform F, slightly pushing dF n 3Fj off of dVx to obtain a disk

V*. Now 3P* n Vx contains fewer points than 3P n Px and this contradicts our

choice of V and /.

We proceed under the added assumption that lOVx is empty and assume

that / and V have been chosen so that

(l)/nP2 contains a minimal number of points;

(2) V is in general position with respect to Vx, V2, . . . , Vk;
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(3) V n V2 contains no simple loops (note that V n ¡9,   may not be emp-

ty).

Suppose that / n V2 is not empty. As above we can find an arc ß C V2 and disk

ÊCV2 such that È n V = J3 and dÊ - ß C Ê. Let Ê' and F" be the closures of

the components of V - ß. Let F, = Ê' U F and F2 = F" U F and observe that

F, and F2 are disks embedded in M. We may suppose that 9F, is essential in F.

We deform F, slightly to obtain a disk V* such that df)* n f)2 contains fewer

points than df) n p2. If 9P* does not meet P,, the existence of V* contradicts

our choice of V and /. Thus if ßx = dE - ß cannot meet Vx, we will conclude

that V and / have been chosen so that / misses not only Vx and V2 but also

%.vk.
Consider the loop pdV* as a subset of F0. This loop is nullhomotopic in

M0 and thus also in F0. Thus pdV bounds a disk F' embedded in F0. If 0, n

9P, is not empty, there are arcs S, and 52 embedded in F' such that

(1)5, n»2 = 95, =952;

(2) 5, C /(tt/) and 52 C /(a,.) where 1</ </ < k;

(3) 5, U 5 2 is the boundary of a disk F embedded in F0

since pßx C ff~x(F) and 9{9, does not meet dV* - ßx C Î. Note that the exis-

tence of 5,, 52, and F has been shown to contradict the minimality of the cardi-

nality of/„(Sy ) (^F0. It follows that ßx could not meet V2 and by induction

that / does not meet U?=i(Â/ n F) or that / n f(A) is empty.  But then / lies

either in an annular neighborhood of a component of 95 or in a disk on S. In ei-

ther case / is nullhomotopic on F which contradicts our hypothesis that / was es-

sential on F. Thus F is incompressible and condition (3) in Claim 1 is established.

C7a/m 2. Suppose (M, /,. G) and F satisfy Claim 1 and the basic assumption.

Then there is a collection A,,..., An of annuli properly embedded in M such

that

(1)9^,. =/(9y4)fori = 1,... ,«;

(2) F C\A¡ is a collection of arcs properly embedded in F for / = 1,. . . , «;

(3) A¡ n Aj = dA¡ for 1< i </ < «;

(4) F - U/Li A¡ is simply connected.

Step 1. Let (M, p) be the ft-sheeted cover of M associated with F. Let F

be a component of P~X(F) and ß an arc properly embedded in F such that dß

meets both p~xf(cx) and P~xf(c2). Then we claim there is an annulus Â proper-

ly embedded in M such that Â OF = ß and i n 9xif C p~xf(dA).

Let g be an embedding such that pg = / and p a generator of the group of

covering translations of (M, p). It is a consequence of condition (3) of Claim 1

that we may suppose that ß lies on p~xf(A) n F and thus that ß is homotopic

rel its boundary to the product of a sequence of simple arcs ßx * ß2 * . . . * ßw

such that ßi C pi^g(A) n F where 1 < i < w and 0 < j(i) < k. We may assume
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that ß( n j3/+ j is a single point in dßt n dßi+ x and that point determines a loop

X¡ in pmg(A) n pK,+ l)g(A) for 1 < i < w - 1 since p,V)g(A) O p'(í+ » V(4) is

the union of a collection of simple loops such that each component of the inter-

section that meets F meets F in a single point (by condition (2) of Claim 1). We

may assume that ßx has one endpoint on a loop X0 C p~xf(cf) and ßw has one

endpoint on Xw C p~xf(cf). Let I =■ [0,1]. We define a map <¡> on the bound-

ary of I x I by requiring that

(1) 0 carry the interior of I x {0} homeomorphically into X0;

(2) 0 carry the interior of I x {1} homeomorphically into Xw;

(3) 0 carry each component of {0, 1} x [i/w, (i + l)/w] homeomorphically

onto ßi+x for / — 0,_, w - 1;

(4) the intersection number of the loop 0(Z x {/}) and F is one for / = 0,1.

The reader should observe that if we can show that the loop <p(d(I x I)) is

nullhomotopic, the existence of the desired annulus follows from Dehn's lemma

[3]. The proof of the above statement is especially easy, since one will be able to

see that <p could be constructed so that <¡TX(F) = {0, 1} x /.

We extend <¡> to carry the interior of I x {i/w) homeomorphically into X¡

for i = 1,. . ., w - 1 so that the loop (¡¡(I x i/w) has intersection number one

with F for / = 1, . . . , w - 1. We observe that <p carries the loop I x

{i/w, (i + l)/w) U {0, 1} x [i/w, (i + l)/w] into the annulus determined by

ßi+ x and that the image loop is nullhomotopic, by construction, on that annulus

for / = 0,... , w - 1. Thus <¡> can be extended to I x I. This shows the exis-

tence of the annulus required in Step 1 of Claim 2.

Step 2. We show the existence of the annuli required in Claim 2.

First we prove a lemma useful in establishing the existence of desired collec-

tion of annuli.

Lemma 5. Let M be a compact, orientable 3-manifold such that dM is in-

compressible in M and has total genus 1, and let F be an incompressible, two-

sided, nonseparating surface properly embedded in M. Let (M, p) be a k-sheeted

cyclic covering space of M associated with F. Let g: (A, dA) —* (M, dM) be an

embedding such that

(1) g#: 7Tj(4) —♦ irx(M) is monk;

(2) g(A) meets each component ofp~x(F) in a simple spanning arc ofg(A);

(3) there is a component Fx ofp~x(F) which g(A) does not separate;

(4) g(cx) crosses p~x(F) at each point in g(cx) n p~x(F).

Then if pgldA is embedding, there is an embedding h: (A, dA) —► (M, dM) such

that

(5) h(dA) = pg(dA);

(6) h~x(F) is a collection of spanning arcs ax, .. . , ak;
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(7) «(a,-) is not homotopic rel its boundary to an arc in dMfor / = 1.k.

Proof. Let N(F) be a collar neighborhood on F in M. Since F is incom-

pressible in M, it is possible to kill tt2(M) by attaching 3-cells to M - A(F). Let

M+ he the resulting space (which is locally a 3-manifold near F). Let (M+,p+)

be the fc-sheeted cyclic covering of M+ associated with F, and note that we may

think of M as p+~x(M) and of p as p+ \M.

Let F be the boundary component of M having genus 1. Let T+ be a solid

torus with boundary T such that the curves f(c¡) (i = 1 and 2) are nullhomotopic

in T+. Let M* = M+ UT T+. Since the curves/(c) lift homeomorphically to

the regular covering space Af  , it is an easy matter to extend the covering (Af  ,

p+) to a covering iM*,p*) of M*.

Form a 2-sphere S2 from A by attaching disjoint 2-cells Dx and Z>2 to ó\4

along c, and c2. Extend / = pg: A —*■ M to a map /*: S2 —* Af * which takes

Dx and £>2 homeomorphically onto disjoint meridional disks F, and F2 in F+.

Let g*: S2 —*■ Af* be the lift of/* to Af * which extends the embedding g. We

see that g* (hence also /*) is essential as follows: Recall that F, is a component

of p~xF which giA) does not separate. There is therefore a simple closed curve

/ in int F, which crosses g*(S2) transversely at a single point. Since Af* is local-

ly a 3-manifold near F,, the existence of/ implies that g* is essential in Af *.

Hence /* is essential in M*.

By the proof of the sphere theorem in [3, 9], there is an embedding h*:

S2 —*■ MU T+, essential in M*, which meets the solid torus T+ only in some

subset of the two meridional disks F, and F2. Since it2(M+) = 0, h*(S2) con-

tains at least one of the two disks. If h*(S2) contained only one of the two disks,

F would be compressible in Af. Thus h*(S2) n T+ = F, U F2, and h*(S2) n M

is a properly embedded annulus in Af with the same boundary as pg(A).

Let h: A —*• h*(S2) D M be a homeomorphism. It is clear that h~x(F) is

the union of a collection of spanning arcs a,,... , ak and simple closed curves

/,,..., Jm. If, for any i, «(a,) were homotopic rel its boundary to an arc in

M, then, since T is incompressible in M and both it2(M+) and tt2(T+) are 0, it

would follow that h*(S2) is inessential in Ai*, a contradiction. The simple closed

curves/,, .. . ,Jm can be removed since F is incompressible. Hence the proof

of the lemma is complete.

We continue with the proof of Step 2 after making the following fundamen-

tal observation:

Observation 1. Suppose (Af, /, G) is an essential Dehn triple and for

i = 1,. . . , n, g¡: A —► M is a collection of proper embeddings such that f(dA) =

g¡(dA) for í = 1.«. Then if there is a spanning arc a of A such that f(a)

is homotopic rel its boundary to a sequence of spanning arcs on the g¡(4) at
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least one of the triples (M,g¡, G) is essential and thus (M,f, G) does not satisfy

the basic assumption.

We suppose again that (M, /, G) and F are an essential Dehn triple and sur-

face that satisfy the fundamental assumption and the conditions of Claim 1 and

that (M, p) is a ¿-sheeted covering space of M associated with F  Let F be a com-

ponent of p~x(F). Since F is not a disk there is an arc ßx properly embedded in

F that does not separate F such that 3(3, meets both p~xf(cf) and p~xf(cf). It

is a consequence of Step 1 that there is an annulus A x properly embedded in M

such that Ax n F = ßx and 3.4, C p~xf(dA). After the usual argument we sup-

pose Ax meets each component of p~x(F) in a spanning arc. Thus by Lemma 5

there is an essential embeddinggx : (A, dA) —► (M, f(dA)) such that gx(A) (1 F

is a collection of disjoint simple arcs and none of these arcs is homotopic rel its

boundary to an arc in 3F. We observe that / is homotopic to a map / such that

(l)f~lgi(A) is the union of a collection of disjoint essential simple loops

Xx, . . . ,Xm;

(2)¿(UT=i\)Gf(sA)=gl(dA);
(3) f~x(F) is a collection of k spanning arcs;

(4) / \X¡: X¡ —► f(dA) is a homeomorphism.

Note that the restriction of/ to the closure of each component of A - U/=i \

determines a map of an annulus A into M. Denote these maps by f¡ where 1 <

i < m - 1 and observe that since (M, /, G) is an essential triple, (M, f-, G) must

be an essential triple for some / where 1 < / < m - 1. Thus we may suppose

that (M, fx, G) is an essential triple and fx(A) D gx(A) = dgx(A).

Suppose F -gx(A) is not simply connected. Then there is an arc ß2 prop-

erly embedded in F such that ß2 n (F n p~xgx(A)) = dß2 and ß2 U

(p~xgx(A) n F) does not separate F. As above there is an annulus A2 properly

embedded in M such that A2C\F = ß2 and dA2 G p~xf(dA). Since A2 n

(p~xgx(A)) n F = dß2, we may suppose after the usual argument  that A2 fï

p~lgx(A) = dA2 and that A2 meets each component of p~x(F) in a single span-

ning arc oîA2.

We would like to apply Lemma 5 to the manifolds M, and Mx obtained by

splitting M along gx (A) and M along P~xgx (A). This can be done if 3M, is in-

compressible and of total genus 1. Let P: Mx —► M be the natural identification

map and fx: A —*■ Mx the map induced by/,.

Suppose there is a disk V properly embedded in Mx such that 3£> is essen-

tial in 3Mj. We may assume that dV is in general position with respect to

P~xf(dA) and that the cardinality of the set dV H P~xf(dA) is minimal.  Since

/,•: ttx(A) —* nx(Mx) is monic,/j(ô\4) must meet 3P.  Thus there is a spanning

arc a. inffx(V). But fx(a) is homotopic rel its boundary to a sequence of span-
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ning arcs of the annuli which are the closures of the components of 9x1/, -

P~xf(dA). Thus it can be seen that /,(o:) is homotopic rel its boundary to a

product of spanning arcs in the annuli which are the closures of components of

9AÍ - f(dA) and the annulus gx (A). Thus (Af, /,, G) and (Af, /, G) do not satisfy

the basic assumption because of Observation 1.  It follows that dMx is incompres-

sible.

If 9Af, has two components F, and F2 of genus 1 and Mx is connected,

we can assume that ß2 above runs from Pll(Tx) to p~[x(T2) where p, is the cov-

ering map associated with Af,. It follows that pxA2 is a singular annulus and by

the theorem in [4] there is a proper embedding g2: A —*-Mx such that g'2(dA) =

px (dA2). Let g2 = Pg'2 : A—* M. It is easily seen that g2x(F) may be taken to

be the union of a nonempty collection of spanning arcs and that at least one of

these, say a, has the property that g'2(a) is not homotopic in P~X(F) to an arc in

dP~x(F).

It should now be clear that we can use an inductive procedure to construct

the annuli required in Step 2 and Claim 1 since F (or any compact 2-manifold)

becomes simply connected after a finite number of nontrivial cuts.

Thus Theorem l' follows from Observation 1 and Theorem 1 follows from

Theorem l'.

Theorem 2. Let M be a compact, orientable 3-manifold. Let f: (A, dA) —*■

(M, dM) be an essential map such that f(cx) does not meet f(c2). Then there is

an essential embedding g: (A, 9.4) —*■ (M, dM) such that g(cj) lies in any prespeci-

fied neighborhood off(c) for j =1,2.

Proof. The proof of this theorem is a simplification of the proof of Theo-

rem 3 and we omit it. We state and prove below Waldhausen's "annulus theorem".

Theorem 3. Let M be a compact orientable 3-manifold. Let f: (A, dA) —+

(M, dM) be an essential map. Then there is an essential embedding g: (A, dA) —*■

(M, dM).

Proof. We will show that there is an essential map/,: (A, dA) —*■ (M, dM)

such that /, 19.4 is an embedding. Theorem 3 will then follow immediately from

Theorem 1.

Since the inverse image under / of any disk properly embedded in Af cannot

contain a spanning arc of A, we may assume that dM is incompressible. We may

assume that / carries dA to a single component F of dM since otherwise Theorem

3 follows from the Satz in [7]   Let (M, p) be the covering space of Af associated

with it, (F, f(x)) C it, (M, f(x)) where x is some point in 9^.  Since 7r,(F, f(x)) C

7T, (F, f(x)), there is an embedding F of F in M such that p IF is a homeomor-

phism onto F.  It can be seen that there is a map/: (A, dA) —► (Af, dM) such
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that pf' = f and f(cx) C F.  Since / is essential, f(c2) does not meet F. Thus

f(c\) ^f(cf) is empty and it follows from the Satz in [7] that we may suppose

that / is an embedding. We may now suppose that /I c, is an embedding since

p IF is a homeomorphism.

It can be seen that there is a map/,: (A, dA) —> (M. dM) such that pfx =

fand f,(cf) lies on F.  Since /is essential, fx(cf) does not lie on F.  It follows

from the Satz in [7] that there is an embedding h. : (A, dA) —*■ (M, dM) such

that hx(cf) lies in an annular neighborhood of fx(cf) in dM and hx(cf) lies on F.

It can be seen that we may assume fx(cf) — hx(cf). Since hx(cf) and hx(cf) lie

on distinct components of 371?, phx is an essential map.  Since pi F is an embed-

ding, we may suppose that /I Cj is a homeomorphism for / = 1,2. After a general

position argument, we may suppose that f(cx) n f(cf) is a finite set. We also as-

sume that/has been chosen so that/(c,) n/(c2) has minimal cardinality.

Let /•: (/I, 3/1) —+ (M, dM) be maps such that /(c) C F and p/ = / for

j — 1,2. We may suppose that /, is an embedding. We assume that pfx =

p/2 = / is in general position with respect to itself.  It can be seen that S¡ con-

tains double curves and triple points but no branch points since /, is an embed-

ding and p is a local homeomorphism. We claim that we may assume that both

/j and f2 are embeddings. Let h: (A, dA) —* (M, dM) be an embedding such

that h carries exactly one component of dA to F. Then ph is an essential map.

If f2 is not an embedding, we can apply the argument of [4] to find an embed-

ding h: (A, dA) —*■ (M, dM) such that h(dA) = f2(dA) and Sph ÇlSf. We observe

that the complexity (see pp. 14—15 in [3]) of 5 h is less than that of S* since

/ = p/2.  Our claim follows since the complexity of S¡ is finite.

We assume that/, and/2 are embeddings and tnatfx(A) C\f2(A) has been

minimized by a homotopy constant on dM. Of course if one moves /,, one also

moves f2 ; but general position involves only local movement.  It follows that we

may suppose that fx(A) n f2(A) is a collection of disjoint simple arcs and loops

properly embedded in fx(A) and f2(A). If fx(cx) C\f2(cf) is empty we are fin-

ished.

Claim 1. We may suppose that no arc in/,(A) Df2(A) has both its end-

points on F and thus each arc in fx(A) D /2(i4) is a spanning arc of both fx(A)

and f2(A).

If some arc ß in fx(A) n f2(A) has both its endpoints on F, there is a disk

Vf embedded in fXA) such that 3P- is the union of ß and a simple arc /?• on F

for/ =1,2. It can be shown that we may suppose that dVx n 31?2 = ß. Since

F is incompressible and ßx U ß2 bounds the singular disk P, U V2, ßx U ß2

bounds a disk embedded in F.  It can now be seen that this contradicts our

choice of/and Claim 1 is established.
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Claim 2. If f(cx) n f(c2) is not empty, there are spanning arcs a, and a2

of A such that/, (a,) = ß = f2(a2)Jx(a2) = ß* =/2(a,), and 0 n 0* is empty.

Let ß C fx(A) n /204) be an arc properly embedded in fx(A). (If such an

arc does not exist, /I dA is a homeomorphism and we are finished.)  Let a- he the

arc on A such that /}(oy) = ß for j = 1,2.  Suppose a, = a2.  Then /^V, : a, —►

a, is a map of a, onto itself.  It follows that there is a point x G a, such that

/aTiOO = to- Since/,(x) =/2(x) andp/, =p/2,/, =/2: ,4 ->-M. Thus

a, =£ a2.  Let x;-, y, be the endpoints of ay for / = 1, 2. We may suppose that

x;- G c, and y¡ Ec2 for / = 1,2.  Now x, =£ x2 since a point in dA is an end-

point of at most one double arc in Sf. We observe that /,(x2) = f2(yx) since

pIF is a homeomorphism.  Thus there is an arc 0   embedded in M such that

p0* = pß and /,(x2) = /ji^,) is an endpoint of ß*. Note that /,(a2) = 0* and

/2(a,) = 0 .  Since fx(A) D f2(A) is composed of disjoint simple arcs and loops,

0 D 0   is empty.  Since /, is an embedding and 0 O 0   is empty, a, n a2 is emp-

ty. This establishes Claim 2.

Suppose a, and a2 are arcs properly embedded in A such that f.-(otx) and

f¡(a2) are contained in /,04) C\f2(A) but/(a,) =É/(a2). We claim a, D a2 is

empty. Let 0;- and 0* be disjoint arcs in fx(A) n /204) such that /(ay) = p0;- =

P0* for/ = 1, 2. If a, n a2 is not empty, then/,(a,) n/j(a2) is not empty.

But this is impossible since 0,, 02, 0,, and 0* are pairwise disjoint. Our claim fol-

lows.

In the following paragraph, we use the facts about fx(A) n f2(A) esta-

blished above to construct a simpler singular map « of an annulus.  The arcs a,

and a2 defined below are used to insure that «lc, and h\c2 are homeomor-

phisms.

Suppose/(c,) nf(c2) is nonempty. Then we can find arcs a, and a2 con-

tained in c, and c2 respectively such that/,(a,) C)f2(c2) = 9/,(a,) and/,(a,) n

f2(a2) = 9/2(a2).  Let 0, and 02 be the arc components of/,04) C\f2iA) which

meet/, (a,). Let Vx be the closure of the component of A - fx x(ßx U 02) which

meets a,.   Let V2 be the closure of the component of A ~ f2~x(ßx U 02) which

does not meet a,. Now A, = /, (f?, ) U /2(i92) is a singular annulus in M. Let

h: (A, dA) —*■ (Á7, dM) he an embedding such that h(dA) = fx(Vx n 9,4) U

/2(P2 n 9^1) and h(A) lies in a regular neighborhood of A,.  Let « = pÂ.  If í92

is the closure of A - Vx, it can be seen that h(cx) n «(c2) = /(c,) n /(c2) but

that one can reduce the cardinality of h(cx) C\ h(c2) by pulling h(cx) and h(c2)

apart at /(9a,).  If i92 is properly contained in A ~VX, h(cx) n h(c2) is properly

contained in/(e,) C\f(c2). Note that V2 does not meet the interior of ¡9, since

/204) does not meet the interior of/,(a,).

It remains to be shown that « is essential. Clearly we need only show that

«*: 7r,C4) —* ttx(M) is monic.  Note that f(ax) U f(a2) is a simple loop /.  If «*
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is not monic, / is nullhomotopic on F. Since F is incompressible, / would bound

a disk on F. But then it is easily seen that /was not chosen so that /(c,) n

f(cf) would have minimal cardinality.

This completes the proof of Theorem 3.

We remark that the example in [ 1 ] shows that the existence of an essential

map of an annulus may not imply the existence of an essential embedding of an

annulus so that the conclusion of Theorem 4 is the best that we can expect.

Theorem 4. Let M be a compact (possibly nonorientable) 3-manifold and

f: (A, dA) —* (M, dM) an essential map.   Tlien there is an essential embedding

g: (F, 3F) —> (M, dM) where F is either an annulus or a Móbius band.   Further-

more, if f\dA is an embedding and f(cx) is an orientable loop, we may assume

that g(dF) C f(dA).

Proof. As in the proof of Theorem 3 we may suppose that dM is incom-

pressible.  Let (M, p) be the orientable double cover of M. If f*nx(A) is not con-

tained in p*itx(M), we can find a two-sheeted cover (A, px) oí A and (fp x)*irX(A)

is contained in p*irx(M). Thus we may assume that there is a map /: (A, dA) —+
/*>S "V .-, 'S,/

(M, dM) such that pf = f for if f*nx(A) is not contained in p*Ttx(M), we can let

/ be fpx. Now / is an essential map so it follows either from Theorem 1 or Theo-

rem 3 that we may suppose that / is an embedding.  Let p be the nontrivial cov-

ering translation of M. We may suppose that pf(A) and/(>4) are in general posi-

tion with respect to one another.  Thus J = pf(A) C\ f(A) may be taken to be a

collection of disjoint simple arcs and loops.  If some arc in / has both endpoints

in a single component of f(dA), one can simplify / by a standard cutting argu-

ment.  If/~ (/) contains a spanning arc of A, we can follow the proof of Lemma

4.4 in [2] to produce an essential annulus or Möbius band embedded in M. Thus

we may suppose that J contains no simple arcs properly embedded in M. If /

contains distinct loops X, and X2 such that pXx = X2 one can use a cutting argu-

ment as in the proof of Lemma 4.2 in [2] to simplify /.

Thus we may suppose that for each loop XG J, pX = X. If X C J is a sim-

pie loop and X is nullhomotopic in M, X bounds a disk V on f(A). We may sup-

pose that V fl / = X. Then V U pV is a 2-sphere 5   embedded in M and we can

modify f(A) inside a regular neighborhood of 52 so that J is simplified. Thus we

may suppose that each simple loop X in J is not nullhomotopic on f(A).

We suppose that / has been chosen so that / will contain a minimal number

of simple loops.

Suppose there is a simple loop X C /.  Let A, be the subannulus of A

bounded by f~x(X) and cx. We may assume that f(Ax)C\J = X. Let a be a

spanning arc of A which meets/   (X) in a single point xx.  Let tv, = Ax O a.
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Let A2 be the closure A - A x and a2 = ,42 Da.  Let x2 = (pf) xf(xx) and 0,

a spanning arc of A,   with one end at x2.  Since /(a) is not homotopic rel its

boundary to an arc in dM, either the arc /(a,) U p/(0,) or the arc p/(0,) U /(a2)

has the same property since the arc /(a,) * p/(0,) * p/(0,)-1 * /(a2) is homoto-

pic rel its boundary to /(a) where * denotes the natural product of arcs and a,,

0, and a2 are given the appropriate parametrizations. If/(a,) U p/(0,) is not

homotopic rel its boundary to an arc in dM, p projects the annulus /(/I,) U

pfiAx) to an essential Mobius band in M. Otherwise one deforms the annulus

fiAx) U pf(A2) to obtain an annulus whose projection is an essential map of an

annulus into M. Denote this essential map by «. Now Sn contains fewer double

curves than Sp This contradicts our hypothesis and the proof of Theorem 4 is

complete.

We prove below two lemmas which are necessary in the proof of Theorem 5.

Lemma 6. Let K be a Klein bottle and Xx and X2 disjoint, orientation re-

versing loops embedded in K.  Let px be a simple loop embedded in K.   Then

there is a simple loop p2 isotopic to px in K such that p2 n \. contains at most

a single point for / = 1,2.

Proof. Let F, and F2 be regular neighborhoods of X, and X2. Then F,

and F2 are Möbius bands and we may suppose that the closure of K - (F, U F2)

is an annulus A. After an isotopy, we may assume that p, meets 9F, U 9F2 in

a finite collection of points. We suppose that p, O 9F;- is isotopically minimal

for j — 1,2. Then each arc in A n px,Fx n p,, and F2 n p, must be a span-

ning arc.  If p, fails to meet F, or F2 the lemma follows immediately.  It can be

seen that the endpoints of each of the spanning arcs in F;- D p, may be taken to

be antipodal points on the 1-sphere which is the boundary of F;- for/ =1,2. We

let x¡ and x\ be the endpoints of the ith spanning arc in F, n p, and y¡ and y'¡

be the endpoints of the ith spanning arc in F2 ft px. Clearly the number n of

spanning arcs in F, C\ px is the same as that in F2 <~\ px. Thus we may place

these points on dA as is shown in Figure 1.

We may suppose that there is a spanning arc a, in A from x, to v,. If there is

a spanning arc a2 in A from x2 to y¡ or y. where i =£ 2 or 1 </ < n, ax U a2

cuts off a disk in A containing yz but none of the x¡ or xj for í = 3,. . . , n and

/ = 1,. . . , «. This is impossible since no arc in p, n A could have both its end-

points on a single component of 9.4 and p, is simple.  It follows that if a is a

spanning arc with one endpoint x;-  (x^), its other endpoint is y¡ (y;-). This com-

pletes the proof of Lemma 6.

Lemma 7. Let M be a compact nonorientable 3-manifold.  Let f: 04, dA) —*■

(M, dM) be a map such that
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(1) /I dA is a homeomorphism;

(2) f(cf) is an orientation reversing loop.

Let (M, p) be a 2-sheeted cover of M and f: (A, dA) —* (M, dM) an embedding

such that pf = f. Then there is an embedding g: (A, dA) —*■ (M, dM) such that

g(dA)=f(dA).

Figure 1

Proof. Let p be the nontrivial covering translation of (M, p). Then we

may insist that f(A) O pf(A) = J is a collection of disjoint simple loops. We as-

sume that / has been chosen so that the number of loops in / is minimal.  Sup-

pose X, and X2 are disjoint loops in / such that pXx =X2. Then the usual cut-

ting argument shows that / was not chosen so that the number of loops in / is

minimal.  Let X be a loop in /. Then pX = X. Suppose X is nullhomotopic in M.

Then X bounds a disk V on f(A). We may insist that V n / = X. Let f, be a

regular neighborhood of f~ (V) in A. Then we may suppose that f(Vf) C\J = X.

Thus we can apply Dehn's lemma [3] so that f\Vx is an embedding and it can be

seen that/was not chosen so that the number of loops in / would be minimized.

It follows that if X is a loop in /, pX = X and p = /-1(X) is a generator of

ttx(A), and thus (p,f\p) is a double cover of/(p.). We note that a loop represent-

ing the square of any element in nx(M) can be lifted to the orientable double cov-

er of M. It would follow that f(cf) can be lifted to the orientable double cover

of AT, but this is impossible. This completes the proof of Lemma 7.

Theorem 5.1er M be a compact nonorientable 3-manifold and f:

(A, dA) —> (M, dM) a map such that

(1) f\ dA is a homeomorphism;

(2)/*: ttx(A) —* nx(M) is monic;

(3) f(cx ) is an orientation reversing loop.

Then there is an embeddingg: (A, dA) —* (M, dM) such that gi$A) - f(dA).
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Proof. We suppose that Sf is the union of a collection of 1-simplexes, and

that /has been chosen so that C(f) is minimal. Let M0 be a regular neighborhood

of f(A). It is a consequence of Lemma 7 that we may suppose that Af0 does not

admit a two-sheeted cover to which / can be lifted. We assume also that M0 =

M. Since f(cx) is an orientation reversing loop in dM and /*: 7r,04) —► irx(M) is

monic, there is at least one nonorientable component of dM.  By Lemma 4.5 in

[2],/*(//,04)) is of finite index in HX(M). Since 9AÍ contains a component of

Euler characteristic less than or equal to zero, it can be shown that the rank of

//, (M) is at least one.  If the Euler characteristic of any component of 9Af is ne-

gative, the rank of HX(M) is at least two. It follows that the Euler characteristic

of the component K of dM on which f(dA) lies is zero and K must be a Klein

bottle.  As in the proof of Theorem 1, we construct an incompressible, two-sided,

connected surface F properly embedded in Af such that the intersection number

of f(Cj) and F is positive and equal to the cardinality k of /(c) n 9F for/ =1,2.

Suppose that F is simply connected. Then F is a disk and 9F has exactly

one component.  It is a consequence of Lemma 6 that we may suppose 9F n

f(Cj) is a single point for/ =1,2.  After a standard argument, we may assume

that f~x(F) is a simple arc a and that /la is a homeomorphism. One then applies

Dehn's lemma to obtain an embedding g: (A, dA) —► (M, dM) such that g\dA =

f\dA. This would complete the proof of Theorem 5.

Suppose K is compressible.  Then there is a disk V properly embedded in

AÍ such that V n k = dV and dV is not nullhomotopic on K.  If there is an isoto-

py moving dV off f(dA), [f(cx)] is of order two in irx(M).  It follows that if F

is compressible, F can be chosen to be a disk and Theorem 5 follows.

Suppose /: 04, 9,4) —> (M, dM) is not essential. Then after a homotopy,

we may assume that / carries a spanning arc a to dM. Now / induces a map /:

(V, 3/9) -* (M, dM) where V is a disk and 7(3/9) = f(dA U a). If 7(3P) is ines-

sential in 3Af,/(cj) is homotopic to f(c2) in dM which is impossible since/(c,) is

nonorientable and /I dA is a homeomorphism. Thus by the loop theorem in [6]

K would be compressible and Theorem 5 would follow.

Assume that /: 04, dA) —* (M, dM) is essential.  Let f: (A, dA) —*

(M, dM) he a map such that f'(A) = /04) and /¿7r,04) is of index two in

/*(7r,04)) C irx(M). We deform /' slightly so that /'19^4 is a homeomorphism.

Clearly /' is essential.  By Theorem 4 there is an essential embedding «, : (F,, 3F, )

—* (Af, 3Af) where F, is either an annulus or a Mobius band and «,(9F,)C

f&A)-
Suppose F, is a Möbius band. After a general position argument, we may

take the intersection of «,(F,) with the properly embedded incompressible sur-

face F to be a collection of disjoint simple arcs. We put /(/I) in general position

with respect to hx(Fx). Since /(9,4) does not meet «,(3F,), we may assume that
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f~xhx(Fx) is a collection of disjoint simple loops.  Since hx(Ff) is incompressible

in M, we may insist that none of these loops are nullhomotopic on A. Let X be

a central circle on the Mobius band hx(Fx). We may require that/04) O

hx(Fx) C X.  Now the intersection number k of X and F can be seen to be the

same as that of/(c,) and F. Thus if p is any loop in f~x(hx(Fx)), the intersec-

tion number of f(p) and F is k. Thus we can require that /I p. is a homeomor-

phism onto X. After a cutting argument, we may suppose that f~x(hx(Ff)) is at

most a single simple loop. It is not difficult to see that if the restriction of/to

each component of the complement of A ~f~x(hx(Fx)) is a homeomorphism,

one can find an embedding #: (A, dA) —* (M, dM) such that g (dA) = f(dA).

This would establish Theorem 5. Thus we need only consider the restriction of

/to each component of A -f~x(hx(Fx)) and the manifold obtained by splitting

M across/_1 A j(Fj). Note that this manifold will have two boundary components

homeomorphic to Klein bottles and that the arcs in hx(Ff) n F are not homoto-

pic in F rel their boundaries to arcs in 3F.

Suppose that Fx is an annulus. After a general position argument, we may

require that f~x(hx(Ff)) is a collection of disjoint simple loops. Since /*:

nx(A) --*■ nx(M) is monk and f(cf) is not homotopic to any loop on hx(Fx),

each loop in f~x(hx(F,)) is inessential on A. It follows that we may suppose

that f~x(hx(Fx)) is empty. We observe that we may assume that hx(Fx) n F is

a nonempty collection of disjoint simple arcs and that these arcs are not homoto-

pic in F rel their boundaries to arcs in 3F.

It can now be seen that one can cut the manifold M along the surface

Aj(Fj) and that this cutting simplifies F if Fx is either a Möbius band or an an-

nulus. Since F is compact, it admits only finitely many simplifications. If the

surface resulting from F is ever simply connected or the resulting map of an an-

nulus is not essential, it can be seen from the argument above that Theorem 5 fol-

lows.  Since one of the above eventually must happen, this completes the proof

of Theorem 5.

Theorem 6. Let M be a compact 3-manifold, F a Mobius band, and f:

(F, 3F) —> (M, dM) an essential map.  Then there exists an essential embedding

g: (Fx, 3F, ) —► (M, dM) where Fx is either an annulus or a Mobius band.

Proof. Let (A, p) be a two-sheeted cover of F. Then fp: (A, dA) —►

(M, dM) is an essential map. Theorem 6 can now be seen to be a consequence

of Theorem 4.

Appendix.

Groupoids. A groupoid is a small category in which each morphism is in-

vertible. A subgroupoid is a subcategory which is also a groupoid. A groupoid
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morphism is a covariant functor between groupoids.  (See for example [Spanier,

Chapter 1].)

If X is a topological space and Y is a subspace, then there is a groupoid

which has as its objects the points of Y and has as its morphisms the homotopy

classes of paths in X with endpoints in Y. This groupoid, denoted P(X, Y), is

called the fundamental subgroupoid of X with base points Y.

If g: (X, Y) —► (X', Y') is a map of pairs, then g induces a groupoid mor-

phism g#: P(X, Y) -* P(X', Y').  If G is a subgroupoid of P(X', Y'), then

g#x G isa subgroupoid of P(X, Y).  If g is injective on base points and if H is a

subgroupoid of P(X, Y), then g#H is a subgroupoid of P(X', Y').

Modified Loop Theorem. Lemma 4, as stated in this paper, is not exactly

[2, Theorem 3.1]. However, the proof as given in [2] applies without change.

The only critical point to check, perhaps, is the point at which one applies the

proof of Stallings1 Loop Theorem. It is perhaps appropriate to give a precise

statement of the requisite theorem.

Loop Theorem. Suppose

(1) /: B —*-M is a PL, general position map from a disk B into a 3-manifold

M such thatr\dM) = dB;

(2) Y is an open subinterval of dB, X = (dB) - Y, f(Y) n f(X) = 0,and

SfndY= 0;and
(3) G is a subgroupoid ofP(M; f(dY)) such that, if a is a path in Cl Y with

interior equal to Y, then f#([a]) Ê G.

Then there is a PL embedding g: B —*M, containing f(d Y), g(B) obtained

from f(B) by cut-and-paste, such that, if a is the subset of d(gB) obtained from

f(a) by cut-and-paste, a =£ 0 and a represents an element of P(M, f(dY)) - G.
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