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ABSTRACT. For numerable vector bundles a nonzero section determines

a unique trivial line subbundle containing the section and this subbundle is a di-

rect summand of the bundle.  The main result, a consequence of concordance-

isotopy theory, states that in the metastable range a nonzero section to a piece-

wise linear R" bundle determines a unique trivial line subbundle and that this is

the best possible result.  This fact is then compared with the known failure of

the summand property below the stable range.

1. Introduction. One knows that the theories of linear and piecewise linear

bundles are quite similar in the stable range [10] and that below this range various

types of anomalous behaviour occur [7], [23]. Morlet [21] and others have

thought that these pathologies might not occur in the metastable range. Recent

results of Hatcher [11] and Volodin [26], however, have shown that this need not

be the case, cf. [25].  Several consequences of this observation are discussed in

light of the main purpose of this paper, a study of the consequences of nonzero

sections in the metastable range. The main theorem states that, in this range, a

nonzero section determines a unique trivial line bundle containing the section. We

shall also show that this is the best possible result.

The main ingredients in the analysis of these questions are the results con-

tained in my paper on piecewise linear concordances and isotopies [18].  Indeed

the genesis of that research was the desire to study the unstable geometry of

piecewise linear R" bundles. The work of Kuiper and Lashof [17] provided the

impetus for this study and serves as a basic reference.

Before beginning I wish to thank T. Akiba, P. Henry, R. Lashof and R.

Stern for their comments and suggestions which were of great assistance during

the course of this research.

2. Definitions and basic results. All of the definitions and results concern

either the simplicial, block, or piecewise linear categories. For the definitions and

Received by the editors April 7, 1975.

AMS iMOS) subject classifications (1970). Primary 55F10, 5SF25, 55F60, 57C50,
55G40; Secondary 55C35, 58P10.

Key words and phrases. Nonzero sections, piecewise linear bundles, trivial subbundles,

space of piecewise linear embeddings, concordances, isotopies.

Copyright © 1976, American Mathematical Society

337



338 K. C. MILLETT

properties of the simplicial category see Curtis [9], for the block category see

Rourke and Sanderson [22], and for the piecewise linear category see either Zee-

man [27] or Hudson [14].

Objects in the simplicial and block categories are distinguished by a tilde

(~) appearing over the objects in the block category. Thus íl¡(X) and U¡(X) de-

note the ith homotopy groups of an object in the simplicial category and the z'th

block-homotopy groups of a related object in the block category. It will be im-

portant to compare these groups by including them in an exact sequence, cf.

Morlet[21],

— ntix) — n¿(z) -> \i}el(x) ->.

This is accomplished by defining U]ei(X) to be the group of (simplicial) arc com-

ponents of Cl'X which do not contain elements of Q'X, where the "loops" are

taken in the appropriate category.

Let M and N denote compact piecewise linear manifolds of dimensions m

and n and boundaries bM and bN, respectively. Let A* denote the standard s di-

mensional simplex,I = [0, l],rJ= [-r, r], (rJ)n = rD", and 2"_1 = bDn. A

subspace (K, K0) of a space (L, L0) is said to be proper if K\K0 C L\L0. A

piecewise linear map /: {K, K0) —> (L, L0) is proper if if{K), f(KQ)) is a proper

subcomplex of (L, L0).

Definition (2.1). Given a proper piecewise linear embedding of a proper

subcomplex of (M, bM) in (N, bN), f: (K, K0) -*• (N, bN), let E{M, N;f) de-

note the simplicial complex of locally unknotted proper piecewise linear embed-

dings of (M, bM) into (A/, bN) extending /. That is the simplicial complex whose

s simplices are proper piecewise linear embeddings

F: (M, bM) xA1-^ (N, bN) x As

4 >|
1: As ->•   A*

such that

(i) the diagram is commutative;

(ii) F~x(bN x As) = bM x As;

(iii)F\(K,K0)xAs=fx 1;

(iv) for any simplex A linearly embedded in As, (TV x A, F(M x A)) is a

locally unknotted manifold pair.

If/is not specified this complex is denoted by E(M, N).

The block complexes, E(M, N; f) and E(M, N), are defined as above except

that condition (i) is replaced by

(T) for all faces A' of As, F\(M, bM) x A' is an embedding of (M, bM) x

A' into (N, bN) x A'.
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Definition (2.2). Let (K, K0) be a piecewise linear space. The complexes

of proper piecewise linear homeomorphisms of (K, K0) onto itself which are

fixed on K0 ate denoted H(K, K0) and H(K, K0). If K is a manifold the subcom-

plex of H(K, K0) of homeomorphisms which are fixed on bK U K0 is denoted

by Hd(K, K0). lfK0 is empty these spaces are denoted by H(K) and Hd(K), re-

spectively.

Remark (2.3). Inasmuch as all the definitions have analogues in the block

category which are apparent, given those in the simplicial category, only the sim-

plicial definitions will be given.

Definition (2.4). The complexes of germs of proper embeddings of

(M, bM) into (N, bN) extending / and of germs of homeomorphisms of K which

extend fate denoted by GE(M, N;f) and GH(K;K0), respectively. The first, for

example, consists of the simplices of the complexes of proper embeddings of

neighborhoods (U, U0) of (K, K0) into (N, bN) which extend f\K0.

Definition (2.5). The complex of proper piecewise linear maps of (L, L0)

into (L', L'0) extending /: (K, K0) —*■ (L', L'0) is denoted by

M((¿, L0), (L', L'0);f). If (L, L0) = (L', L'Q) this complex is denoted by

M(L,L0;f).
Definition (2.6). Let /: (L0, L0) —*■ (L, L0) denote the inclusion. The

subcomplex of U(L, L0 ; i) consisting of homotopy equivalences is denoted by

N(L, L0), that is to say if F is an s-simplex of hl(L, L0) there is another s-simplex

G of N(L, L0) such that FG and GF ate homotopic to the identity through homoto-

pies which are fixed on L0, leave L\L0 setwise invariant, and respect the projec-

tion to A* x /. If L is a manifold and L0 = bL then U(L, L0) is denoted by

Ud(L). The subcomplex of those equivalences keeping a subcomplex K fixed is

denoted by Ub(L)K.

Remark (2.7). It is easy to see that Hj(H(L, L0)) is isomorphic to

\lj(lh(L, L0; /)), via the inclusion, for j> I.

Definition (2.8). The complex of proper concordances of (germs of) prop-

er embeddings extending a proper embedding /: (K, K0) —> (N, bN) of a proper

subcomplex of (M, bM) is denoted by C(M, N;f) (GC(M, N;f)). It is the sub-

complex of E(I x M,I x N;l x f) (GE(I x M, I x N; 1 x /)) whose s-simplices

F satisfy

(i) F-H{0} x N) = {0} x M, and

(ii)F-1({l}xN)= {l}xM.

Definition (2.9). The complex of (germs of) proper isotopies of proper

embeddings extending a proper embedding /: (K, K0) —> (N, bN) of a proper

subcomplex of (M, bM) is denoted by 1(M, N;f) (G1(M, N;f)). It is the com-

plex of paths in E(M, N;f) (GE(M, N;f)) or, equivalently, the subcomplex of

E(IxM,I x N;l x f) (GE(I xM,IxN;l x /)) such that, for any s-simplex
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F, the diagram

F:IxMx A"

"ï

1: Z x As

is commutative.

Definition (2.10). Let/: (M, bM) —*■ (N, bN) be a proper piecewise line-

ar embedding. Cb{M,N;f\K)(C5o{M,N; f\K)) andJa(M,N;f\K)(íSo(M,N;f\K))
are the subcomplexes of C{M, N; f\ bM U K) and 1(M, N;f\bML> K), respec-

tively, whose simplices F satisfy the property that F\ ({0, 1} x M x As) = 1 x

/ x 1  (F\({0} x M x A*) = 1 x / x 1). The analogous definitions for concor-

dances and isotopies of germs of embeddings are also assumed.

Several simplicial fibrations and quasi-fibrations will be required in the next

section. These are recognized via standard methods, cf. [17], [21], by employing

Hudson's s covering isotopy theorem.

Definition (2.11). Let p: E —*■ B be a simplicial map and G a simplicial

group acting on E. Then p: E —► B is a (weak) fiber bundle, with group G, if

(i) p is onto (the arc components of B which contain the image),

(ii) G acts freely and transitively on p~x(b) for all b E B (b in the arc com-

ponents of B which contain the image).

Definition (2.12). Let p: E —» B be a simplicial map and F = p~x(b0).

Then p: E —> B is a (weak) quasi-fibration if p*: US(E, F) —> ns(Z?, Z>0) is an

isomorphism for all s (for all s > 0 and 1-1 for s = 0).

(2.13) Note that Kuiper and Lashof define PL(n, k) = GH{R", Rk) while

here PL(n, k) = H(Rn,Rk). As noted below these two groups have the same ho-

motopy type.  Let PL(n, k) = Hd(D",Dk).

To study these, and related spaces, it is necessary to consider several fibra-

tions whose definitions are related. To begin, let ys: Hd(Dm x Rn,Dm x Rk) —*

GHd{Dm x R", Dm x Rk) he the projection of a homeomorphism to its germ.

Next define

7j : Hd{Dm x D",Dm x £>*) -* Hd(Dm x Rn,Dm x Rk),

following Kuiper and Lashof [17, II] by taking a piecewise linear homeomorphism,

1  x px, of Dm   x Rn to Dm  x intÇâD"), followed by the element of

Hd(Dm xDn,Dm x Dk), followed by inclusion into Dm xRn, and followed by

an extension of the piecewise linear version of Kister's theorem to push the image

onto Dm x R". Let 73 = Ts °7,.

Similarly one can define

T2: r\0{Dm x 2",£>m x 2*) -> Hd(Dm x Zí",^ x Rk)

I x N x A"

»I
Zx A1
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by taking a piecewise linear homeomorphism, 1 x p2, of Dm x R" to Dm x

int(2"), followed by, etc. Let y4 = 75 ° y2.

If ev denotes the appropriate evaluation and N(K) denotes a variable neigh-

borhood of K one has the following useful proposition.

Proposition (2.14).

Hd(Dm x D",N(Dm x {0}) U (Dm x Dk))

(2.15) -> rld(Dm xD",Dm x Dk)

-^-» GHd(Dm x R",Dm x Rk)

is a (weak) fiber bundle if m > 0 (m>0);

r\b(Dm x 2,",N(Dm x (1, 0, . . . , 0)) U (Dm x 2fc))

(2.16) -► Hd(Dm x X",Dm x 2*)

-+GHd(Dm xR",Dm xRk)

is a (weak) fiber bundle ifk>0 and m > 0 (m > 0);

r¡d(Dm x Rn,N(Dm x {0}) U (Dm x Rk))

(2.17) -> Hd(Dm x R",Dm x Rk)

-^-> GHd(Dm xR",Dm x Rk)

is a fiber bundle;

(2.18) Hd(Dm xD",Dm x {0}) -+ Hd(Dm x D") -^U E(Dm,Dm x D";j)

is a (weak) fiber bundle if n > 3 (n> 0).

Hd(Dm x 2",Dm x(l,0,...,0))

(2'19) m ev
-»• Hd(Dm x 2") -^U E(Dm,Dm x 2";/).

(2.20) Proof of Proposition (2.14). The proofs of each of the cases fol-

lows the same format. First in each case it is clear that the indicated fiber is a

group which acts transitively and freely on each fiber. Thus it need only be

shown that the projection is onto (or onto the arc components of the base which

meet the image in the case of a weak fibration). The first three cases follow from

the techniques of Microbundles and bundles. I [17] and Hudson's s-isotopy exten-

sion theorem [13] as indicated in the proof of Lemma 1.1 in Kuiper and Lashof.

The final two cases are handled in much the same fashion in that Zeeman's un-
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knotting theorem [27] is employed in (2.18) with the s-isotopy extension theo-

rem, while in (2.19) no statement concerning the image is given so that the s-iso-

topy extension theorem is sufficient.

Proposition (2.21). The following are contractible:

Hd(Dm x D",Dm x Dk),  Hb(Dm x 2",Dm x (Z» U 2fc)),

Hd(Dm x I,n,N(Dm x (1, 0, . . . , 0)) U (Dm x 2*)),

and Hd(Dm x Rn,N(Dm x {0}) U (Dm x Rk)).

(2.22) The proof of Proposition (2.21) is a straightforward generalization

of various forms of the Alexander isotopy [3] adapted to the piecewise linear ca-

tegory.  For proofs, in a slightly less general case, the reader is referred again to

Kuiper and Lashof. Their techniques are easily extended to prove (2.21).

Corollary (2.23). (i) Q,GH5(Dm x R",Dm x Rk) is homotopy equiva-

lent to Hd{Dm x Dn, N(Dm x {0}) U (Dm x Dk)), via X,

(ii) Hd(Dm   x  2", Dm   x  2fc) is homotopy equivalent to

GHd(Dm x Rk, D" x Rk), via 74 modulo arc components,

(iii) f/a(Z)m   x R", Dm   x Rk) is homotopy equivalent to

GH^D™ xRn,Dm x Rk), via ts,

(iv) E{Dm,Dm x Dn;j) is contractible ifn>3.

This corollary follows easily from Propositions (2.14) and (2.21), and stand-

ard facts for simplicial fibrations.

Corollary (2.24). Iff: (Dm, 27"-1) —► (Dm+n, 2m+"-1) is a proper

piecewise linear embedding and n > 3, then E{Dm, Dm+";f) is contractible.

(2.25) Proof of (2.24). Zeeman's unknotting theorem [27] implies that

there is a proper piecewise linear homeomorphism F: Dm+n —> Dm+" extending

f,i.e.,F\Dm x {0}=/. F induces a homeomorphism F': E{Dm,Dm xDn;j)—*

E{Dm,Dm+n;f\ 2m_1) and thereby proves the corollary.

An extension of the proof of Lemma (1.7) of Kuiper and Lashof [17] gives

the following proposition which is required for the description of several useful

quasi-fibrations.

Proposition (2.26). The following inclusions are homotopy equivalences:

rid(Dm + x x x"-x,Dm + x x 2*-1)

<^-i->- Hd(Dm x Dn,N(Dm x {0}) U (Dm x Dk)),
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Hb(Dm x 2",Z)m x (2" u 2*))

00
r'2 » Hh(Dm x 2", N(Dm x (1, 0.0)) U (Dm x 2fc)),

where ix takes Dm + X x 2"-1 to Dm x (D"\int HD") and extends by the iden-

tity and i2 is the usual inclusion.

Proposition (2.27). The following are quasi-fibrations:

Hd(Dm + l x zn-i,Dm + l x 2fc_1)-*Hb(Dm xD",Dm x Dk)

(2.28)
7i

^0* Hd(Dm xRn,Dm xRk),

Hd(Dm x X",Dm x (S«. U 2fc))-► Hd(Dm x 2",Dm x 2fe)

(2.29)

2     " 'nm „ T>n   nm „ z>k\-+Hd(Dm xRn,Dm xRk)

where j: Dm —► £>m x 2" is defined by j(x) = {x, (1, 0,. .. , 0)) and yx and

y2 are defined below.

(2.30) Quasi-fibrations (2.28) and (2.29). Let 1 denote the germ of the

identity homeomorphism as well as the identity homeomorphism. Since the fi-

ber 75 is contractible

75,: ns(Hd(D"> xR",Dm x Rk), {1}) -> Us(GHd(Dm xR",Dm x Rk), {I})

is an isomorphism. Consider the diagrams:

Hb(Dm + 1 x x"~\Dm + i x 2*"1) dL,   HziLY" xfl»,^ x {0}) U (FT x D*))

1
(2.31) Hd(LV" xD",Dm xDk)

Ha(£>m x.R",Dm x Rk)---► Gff3(Z>m xRn,Dm x Rk)

Hd(Dm x Xn,Dm x (S; U 2*)) cJL, rfa(Z)m x 2", NiEñx (1,0.0)) U {Dm x 2*))

(2.32) ^Hi(LY" x Z",ry" x 2*)

i

r/aíD™ x i?", ZT x R") - —* GH^LY" x R",Dm x Rk)
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Clearly,

y-i(i) = iï(Hd(Dm + x x 2"~1,Z)m + 1 x 2*-1))   and

y2x{l) = i2{ri-0{Dm + x x 2"-1,Dm + 1 x 2fc-!)).

Therefore

Tls(Hd{Dm xDn,Dm xDk),ix{Hd{Dm + x x 2"-1,ZJm + 1 x S*"1)))

V,

ns{Hd{Dm xR",Dm xRk), {1})

and

fls(Ha{Dm x 2n,Dm x Xk),i2(Hd(Dm x zT,Dm x (2^ U 2*))))

fls(Hd(Dm xR",Dm xRk), {1})

are isomorphisms since 73 = 7S ° 7, and 74 = 7S ° 72- Thus (2.28) and (2.29)

are quasi-fibrations if m > 0. If m = 0 then 73 and 74 fail to be onto, they miss

the orientation reversing component, and therefore give only a weak quasi-fibra-

tion.

Proposition (2.33). As far as homotopy groups are concerned, there is an

exact sequence for a "fibration"

Hd(Dm x X",Dm x (1, 0, ... , 0)) -+ nHd(Dm-x x Rn+1,Dm-x x {0})

(2.34)
-»■ E(Dm,Dm x 2";/).

(2.35) Proof. Let k = 0. By Corollary (2.20) and Proposition (2.26)

there is a homotopy equivalence "(if1)" ° X ° (Slys) = a from

nHd(Dm-x x Rn+\Dm-x x {0}) to Hd(Dm x 2"). Also there is a germ map,

analogous to y4, giving the fibration

Hd{Dm xVn,N(Dm x(l,0, ...,0)))

I
(2.36) Hb{Dm x 2", Dm x (1, 0, . . . , 0))

I-
GHd{Dm xR",Dm x {0})

which is a homotopy equivalence since its fiber is contractible, by (2.21). Thus

"(761)" ° 7s'= ß is a homotopy equivalence from Hd{Dm x R",Dm x {0}) to
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rld{Dm x 2", Dm x (1, 0, ... , 0)). Since (2.19) is a fiber bundle, «2 > 0, and

a and ß ate homotopy equivalences there is an exact sequence for

Hh(Dm xR",Dm x {0}) "fo    >" ° ß > Í2fia(£>m~1 xJR"+1,£)m-1 x {0})

(ev)°a > E(Dm,Dm x2";/).

A fundamental result of the study of concordances and isotopies [18] is the

following theorem which provides the key to the metastable theory of nonzero

sections.

Theorem (2.37). Let f: (Dm, 2m_1) —* (N, bN) be a proper piecewise

linear embedding.    If Tlj(N) = 0, / < k and n - m > 3, then

ns(Cd(Dm,N), ld(Dm,N)) = 0fors<n+k-m-3.

3. The metastable theory of nonzero sections. In employing the methods de-

veloped in the previous section to the study of nonzero sections to piecewise lin-

ear bundles a key piece of information is supplied by the following theorem.  Let

Gn+X denote «(2") and Fn denote «(2", (1,0,..., 0)). Note that suspension

gives an inclusion of Gn as a subcomplex of Fn.

Proposition (3.1). If « > 3 there is a homomorphism

Us(E(Dm,Dm x 2";/)) — rii+m(2") © Us+m(Fn, Gn),

where j: Dm —* Dm x 2" is given by j(x) = (x, (1, 0, . . . , 0)), which is an iso-

morphism if s < 2« - 3 and an epimorphism if s = 2« - 3.

(3.2) Proof of Proposition (3.1). The proof is by induction on s. The

case s = 0 is precisely Corollary 2.18, page 454, of Rourke and Sanderson [22]

which states, in effect, that U0(E(Dm,Dm x 2";/)) is isomorphic to

UmiGn + i> Gn) for « > 2- » * easily noted that flm(Gn + x,Gn) s nm(2") ©

flm(Fn, Gn) and that the homomorphism from II0(E(Dm, Dm;/)) onto the

nm(2") summand is defined by taking the homotopy class of the projection of

the embedding, relative to its boundary, in 2".

Assume, inductively, that the proposition has been verified for s = 0,

1, ...,*- 1. First Tlk(E(Dm,Dm x 2";/)) a Wk_x(ÜE(Dm,Dm x 2";/)).

Since nE(Dm,Dm x 2";/) = lh(Dm,Dm x 2"), Ylk_x(aE(Dm,Dm x 2";/))=*

Uk_x(îd(Dm,Dm x 2")). By Theorem (2.37), if « > 3 and k < 2« - 3 (k =

2« - 3), the inclusion of îd(Dm,Dm x 2") in Cd(Dm,Dm x 2") induces an iso-

morphism (epimorphism) on Uk_x.   Furthermore Cd(Dm,Dm  x 2") is

E(Dm + 1,Dm + 1 x 2";/) so that by induction Uk_x(Cb(Dm,Dm x 2")) is iso-

morphic to nfc+m(2") © nfc+m(Fn, Gn). The composition of these isomorphisms

gives the isomorphism
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\lk(E(Dm,Dm x S";;)) ~ Uk+mCL") © Uk+m(Fn, Gn).

One also notes that the projection of Uk( E(Dm, U" x 2";/)) onto the nfc+m(2")

summand is defined by taking the homotopy class of the projection of the k sim-

plex F of embeddings, relative to the total boundary, p(2) ° F: Dm x A* —► 2".

Let \PL(n) = H(R", {0, (1, 0, ... , 0)}) and PL(n, k) = H(R",Rk) denote

the simplicial groups of piecewise linear R" bundles with nowhere zero sections

and trivial sub-Z?fc-bundles, respectively.

Proposition (3.3). If n > 4 there is a homomorphism

\ls(lPL(ri), PL(n, 1)) -* \ls(Fn_x, Gn_x),

which is an isomorphism if s < 2« - 4 and an epimorphism i/s = 2n - 4.

Corollary (3.4). A nowhere zero section to a PL(n) bundle, n>4, over

a complex K lies in a (unique) subline bundle if dim(K) < 2n - 3 (dim(Ä') <

2n - 4).

Above this range this need not be the case as Hs{Fn_x, Gn_x) may be non-

zero. The following corollary of (3.3) contradicts a result of T. Akiba [1], [2].

Corollary (3.5). There is a PL(n) bundle, n>4, over a sphere having a

nowhere zero section which does not lie in a unique subline bundle.

Another result of these fibrations and Proposition (3.2) takes a somewhat

different, but equivalent, form. Let the quotient space PL(n + k)/PL(n + k, k)

denote the piecewise linear Stiefel manifold V%+k k of [32].

Corollary (3.6). For n>4 there is a homomorphism

which is an isomorphism if s < 2« < 4 and an epimorphism if s = 2« - 4.

(3.7) Proof of Proposition (3.3) and Corollaries (3.4), (3.5) and

(3.6). Taking m = 0 and k = 0, 1 in (2.28) there are homotopy equivalences of

SlPLin) = SlHiR", {0}) and iïPL{n, 1) = ÏIH(R",RX) with Hd{Dx x 2"-1)

and H3(D1 x 2"_1,Z>1 x 2°), respectively. By (2.36) "(Të1)" • T4 gives a ho-

motopy equivalence of Hd(Dl   x   2""1, Dl   x  2°) to

Hd{DX xÇ.D1 x {(1,0,..., 0)},

thereby giving the sequence

(3.8) ÇlPL(n, 1) -* QPL(ri) -> C(D\Dl x 2""1 ;/).

On the other hand one has the standard fibration

(3.9) IPLin) -* PL(n) -> E((l, 0.0),R"\{0})

where the base space is homotopically S"-1, cf. Kuiper and Lashof. The loop of

this fibration can be then compared with (3.8) by
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niPL(n) -+ ÜPL(rí) -> Í22""1

Î    I   >\v
QPL(n, l)^QPL(n) -* E(Dl,Dï x 2B_1;/)

where p is the projection given by p(f) = p(2) ° fand i is the inclusion. The

homotopy lattice of this diagram [19] gives an isomorphism

U^iEiDKD1 x S""1;/), /(S22"-1)) s n^mPLfr), SlPL(n, 1)).

The exact sequence of this pair of base complexes and Proposition (3.1) implies

that there is a homomorphism

IV^EP1,^1 x 2"-1;/),/(i22"-1))^ns(F„_1,G„_1)

which is an isomorphism if s < 2« - 4 and an epimorphism if s = 2« - 4 proving

the proposition.

A result of James [15] implies that Us(Fn_x, Gn_x) = 0 if s < 2« - 4 so

that Corollary (3.4) follows from Proposition (3.3) by the usual obstruction theory

for fiber bundles.  Since U2n_4(Fn_x, Gn_x) can be nonzero, Corollary (3.5) is

proved in the same manner.

Corollary (3.6) follows directly from the homotopy sequence of the fibra-

tion (3.8) recalling that

n4(0 = ns(PL(n)/PL(n, 1)) = Tls(PL(n), PL(n, 1))

a IViífiPZÍ«), OPL(n, 1)) a IViiEp1,/)1 x 2""1;/))

and that n/S«"1) © Us(Fn_x, G„_x) ~ n,(fJ„, G„.x).

4. Anomalous behavior near the stable range. The study of piecewise linear

bundles is facilitated by a modification of an exact sequence of Kuiper and La-

shof [17].

Proposition (4.1). There is an exact homotopy sequence

(4.2)        -► n/CVj) -> l\¿PL(n - I)) -+ Ut{lPL(n)) -+ • ■ • .

(4.3) Construction of the exact sequence. In the same manner that the quasi-

fibration (2.28) was constructed via Proposition (2.14) in the proof of (2.27) one

may construct a quasi-fibration

(4.4) Hs^D1 x 2"-1,Z>1 x 2*"1) -* H(D",Dk) -* GH(R",Rk)

which, by taking k = 0, becomes

(4.5) HdQ(Dl x 2"-1) -* H(D", {0}) -1+ GH(R", {0}).

A consequence of the Alexander Proposition (2.21) and the fibration

r!d(D", {0}) -+ H(Dn, {0}) -^ r/(2"-1)
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is that 9 is a homotopy equivalence while Corollary (2.23)(iii) shows that

GH(R", {0}) is homotopy equivalent to H(Rn, {0}). Up to homotopy y in (4.5)

is equivalent to the inclusion H(2"_1) C* H(R", {0}) given by taking the open

cone.  Evaluation then gives a commutative diagram of fibrations:

HÍ2"-1, {(1,0,..., 0)}) -> H(R", {0, (1, 0,... , 0)})

I i
(4.6) H(2"-»)-> H(R", {0})

1 I
E((l, 0, , . . , 0), 2"-1)-> E((l, 0, . . . , 0),Rn\{0})

where the base spaces are homotopically equivalent (to 2"-1). One can identify

H(2"-1, {(1,0,..., 0)}) as PL(n - 1) by noticing that the base space of the fi-

bration

tf(2"-i, 2°)-> H(2"-i, {(1, 0, . . . , 0)})

-^E((-1,0,...,0),2"-1\{(1,0,...,0)})

is contractible and applying (2.23), parts (ii) and (iii) with m = 0. The inclusion

of the fibers in (4.6) is just a disguised form of the inclusion of PL(n - 1) in

lPL{n). The homotopy lattice of (4.6) then shows that n¡{lPL{n), PL{n - I)) is

isomorphic to H¡(H{Rn, {0}), H(2rt_1)). This is isomorphic to II,. (mapping cyl-

inder 7, ft(Z>\ {0})) which, from (4.5), is isomorphic to Tl^iH^iD1 x 2"-1)).

If we let C„_! = C3 (2"_1, 2"-1; 1) = Hd {D1 x 2"-1) and insert the isomor-

phism between YlJ(lPL{n), PL(n - 1)) and nHX(C„-X) into the exact sequence

of the pair (lPL(n), PLin - 1)) we have the sequence (4.2).

Corollary (4.7). Ifn>4, then t*: XlAjLty - 1)) —► n^lZ^Z-i«)) is an

isomorphism ifi<n and an epimorphism for i = n + 1.

Corollary (4.8). The evaluation homomorphism

ev*: n,.(PZ:(«), PL(n - 1)) -+ n/(2"-1)

is an isomorphism for i < « + 1 and an epimorphism for i = n + 2.

(4.9) Proof of Corollaries (4.7) and (4.8). In Theorem (5.3) of [20] it

is shown that ni(C3o(2""1, 2"_1; 1)) is trivial for i < n. Thus Corollary (4.7)

follows immediately from (4.2).

Recalling that in the proof of (4.1) it was shown that U¡{lPLn,PLn_x) =

flj-X{C„-X) Corollary (4.8) follows from the exact sequence of the triple

(PL(n), lPL(n),PL(n-l)),
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I
nt(lPLin), PL(n - 1)) = Il^CV,)

1
n,{PL{n), PL(n - 1)) *— n,.(0(w), 0(n - 1))

njPLin), iä(«)) -¿7* n^s»-1)

I
and Theorem (5.3) of [20].

(4.10) Remark. Of course ev* always gives a splitting of the exact sequence

of the square (PL(n); 0(ri),PL(n - 1); 0(n - 1)) = D so that TlJ(PL(n)/PL(n - 1)) s

U¡(0(n)/0(n - 1)) © n¿(D). In a personal communication R. Stern reminded me

that Morlet [21] and Kirby and Siebenmann [16] have shown that for n > 5

n,.+n+1(D) a n.-ic?^^"-1, ö"-1 ; 11 s"-2))

where the superscript DIFF denotes the extension of the definitions given in §2

to the differentiable category with the usual modifications near boundaries, cf.

[4], [21]. Cerf [SlhasshownthatnoíC^^"-1,/)"-1; ll2"-2)) = 0if«>

5 while Hatcher [11] and Volodin [26] have shown that

TJtCDJFF^-i^-i. , |<g )) s z2 + wh3(o)

if n > 9.  As a consequence one notes that ni(C„_1) — n<+ ,(D), which is non-

trivial for / = « + 1.

Proposition (4.11). For n>9, Un+2(PL(n, 1), PL(n - 1)) ¥= 0.

(4.12) Proof of (4.11). Proposition (3.3) states that Tls(lPL(n),PL(n, 1)) s

fts(F„-x, Gn_l) if s < 2« - 4.  As observed before, this latter group is trivial in

this range so that (4.2) implies that Un + 2(PL(n, l),PL(n - 1)) a« n„ + 1(C„_,).

However, the previous remark shows that this group is nonzero.

(4.13) In summary we have shown in §3 that in the metastable range a non-

zero section gives rise to a unique trivial sub-i?1-bundle, but that this fails just be-

low the metastable range. The previous proposition shows that in the stable

range a trivial sub-/?1 -bundle splits the bundle but that this fails to hold just be-

low the stable range.    This failure of the splitting also shows that

Un + 2(PL(n), PL(ri)) ¥=0iîn>9, cf. [25].
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