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TOTAL MEAN CURVATURE OF IMMERSED SURFACES IN E™
BY

BANG-YEN CHEN(')

ABSTRACT. Total mean curvature and value-distribution of mean
curvature for certain pseudo-umbilical surfaces are studied.

1. Introduction. In the classical theory of surfaces in a euclidean m-space
E™, the two most important curvatures are the so-called Gauss curvature G and
the mean curvature a. It is well known that the Gauss curvature is intrinsic. The
integral of Gauss curvature gives the beautiful Gauss-Bonnet formula, which holds
for orientable compact surfaces as well as nonorientable ones,

(1.1) chdV= 2mx(M),

where dV and x(M) denote the volume element and Euler-Poincaré characteristic
of M. For the mean curvature of a compact surface M in E™ we have [2, I] (see
also [5]),

2
12 f, ¢ av> .

The equality holds when and only when M is an ordinary 2-sphere in an affine
3-space. It is an interesting problem to improve inequality (1.2) for some special
surfaces in £™. In [2, III] the author obtains some results of this problem for
surfaces in E%. In this paper we shall study this problem for pseudo-umbilical
surfaces in E™ (for the definition of pseudo-umbilicity see §2). In particular, we
shall prove the following:

THEOREM1. Let M be a compact pseudo-umbilical surface in E™ with non-
negative Gauss curvature. If we have

(1.3) fM o? dV < (2 + mym,

then M is homeomorphic to a 2-sphere.

THEOREM 2. Let M be a compact flat pseudo-umbilical surface in E™.
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Then we have
(1.4) fMa2 dv > 212,

The equality sign holds if and only if M is a Clifford torus, i.e., M is the product
surface of two plane circles with the same radius.

2. Preliminaries. Let x: M — E™ be an isometrical immersion of a surface
M in an m-dimensional euclidean space £™ and let V and V' be the covariant dif-
ferentiations of M and E™ respectively. Let X and Y be two tangent vector fields
on M. Then the second fundamental form £ is given by

@2.1) VY = VyY + (X, Y).

It is well known that A(X, Y) is a normal vector field on M and is symmetric on
X and Y. Let £ be a normal vector field on M; we write

22) Vit = ~A,(0) + Dyt

where —Ae(X) and D% denote the tangential and normal components of V'y£.
Then we have

(23) (A(X), ) = (WX, 1),

where ( , ) denotes the scalar product in E™. A normal vector field £ on M is
said to be parallel (in the normal bundle) if D = 0. The mean curvature vector
H is defined by

24 H = % trace h.

The length of H, denoted by a, is called the mean curvature of M. If the mean
curvature vector H is nowhere zero and the second fundamental form A satisfies

(2.5) (WX, Y), ) = XX, 1),

for all tangent vectors X, Y on M, then M is said to be pseudo-umbilical.
Let R and RV be the curvature tensors associated with connections v and
D, ie., R and RV are given respectively by

R(X, Y)=[Vx, Vy] ~ Vix,v)
and

RY(X, Y) = [Dy, Dy] ~ Dy x,y;-
For a surface M in R™, if R vanishes identically, then M is said to be flat. If RV
vanishes identically, then M is said to have flat normal connection. Let e, and

e, be orthonormal vector fields tangent to M. Then the Gauss curvature G of M
is a well-defined intrinsic function on M given by
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G =(R(e,, ey)e,, €,
The Gauss and Ricci equations are given respectively by
(2.6) R(X, Y)Z, W) = <n(X, W), h(Y, Z) = (h(X, Z), (Y, W),
@7 RVX, Yk = B (1), X), 0~ A0, Y), ),

where X, Y, Z, W are vector fields tangent to M and £, n are vector fields normal
to M. For the second fundamental form 4, we define the covariant derivative,
denoted by V, to be

(2.8) (Vxh)(Y, Z) = Dy(h(Y, Z)) - (V Y, Z) = K(Y, V y2).
The Codazzi equation is given by
29) (T xh)Y, 2) = T yh)X, 2).

Lete,, e,, &3, - . . , £, be orthonormal vector fields, defined along M,
such that e,, e, are tangent to M and &, . . ., &, are normal to M. For each
r=3,...,m, we simply denote Agr by 4,. Let

A4,= (h;i)ij=1.2~

With respect to the basis e, e,, we have A}, = h},. From (2.4) and (2.6) we
find

1
(2.10) H = 35H,, + Ko,

@11 G =T (1 15, = HypHy).

3. Mean curvature of pseudo-umbilical surfaces with R = RN = 0. In this
section we shall prove the following results for later use.

THEOREM 3. Let M be a flat pseudo-umbilical surface in E™ with flat nor-
mal connection. Then the mean curvature « satisfies the following Laplace’s
equation,

Alna=0,
where A denotes the Laplacian on M.

ProoF. Since the normal connection of M is flat, the equation of Ricci
implies that

@3.D [4,4,]=0, rs=3,...,m

Now, let &5, . . ., £, be chosen in the way that H = af,. Then by the pseudo-
umbilicity of M in E™, we have
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a 0 )4 H,
32) A3=( ) A,=<:' :’) r=4,....m.
0 «a 12 - ~h

By (3.1), we may choose orthonormal tangent vectors e,, e, which diagonalize
A, simultaneously. With respect to such frame e,, e,, {3, . . . , £,,, we have

a0 a0 ° 4
= , = , r=4,...,m
G oo T N0 -w,

Now, by the flatness of M and (2.11), we have
2 m
(34) o =3 ().
r=4

For each p € M, let N, be the vector space consisting of all normal vectors of M
in E™ atp which are perpendicular to the mean curvature vector H. On N, we
define a linear mapping into the set of all symmetric matrices of order 2 by
p(¥) = A;. Let O, denote the kemnel of p. Then by (3.3) and (3 4) we see that
dim 0, =m - 4. Hence we may choose a frame field e,, e,, £5, &, . . ., &,
such that, with respect to this frame, we have

a 0 a O 0 s
Ay = , Ag = A, =0,s=5,...,m.
3.5) 3 0 a 4 0 -a y

Since the normal connection is flat, there exist, at least locally, orthonormal nor-
mal vector fields &, . . ., £, such that &5, ..., £, are parallel (see [1, p. 99]),
ie., -

(3.6) Dy =:--=DE, =
We put
- m ~
=X a., r=3,....,m
s=3

Then (a,,) is an orthogonal matrix of order m — 2.

Since M is two dimensional and local study of M is sufficient, we may
assume that M is covered by an isothermal coordinate (x, ) such that the metric
on M has the form ds? = E(dx?® + dy?). In the following, we shall denote the
coordinate vector fields 3/dx and 3/dy by X, and X, respectively. We put

L=hX,, X,), M=hX,,X,), N=h(X,X,)

and

2
Vx X = :?;x TiX,, ij=1,2
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Then we have

P}l = P%z = 'P;2 = XlE/zE’ F%z = Fiz = '—P%l = XzE/E~

Therefore the Codazzi equation reduces to

Dy,L =Dy M= (X,E),

Since X, and X, are orthonormal, we may define a function 6 = 6(x, y) by
X, =9/0x = cos fe, + sin fe,,

(3.7
X, = 0/dy = —sin fe, + cos fe,.

Then with respect to the frame field X,, X,, &, . . . , £,,, the second funda-
mental tensors are givén by

4 (oz(a,l + a,, cos 20) —oa,, sin 20
§ —oa,, sin 20 a(a,, —a,, cos 20)>‘

Since M is flat, we may assume that £ = 1. Hence by (3.6) equations of
Codazzi reduce to

9 9 .
(3.8) 5[0:@,1 + a,, cos 20)] = ™ [oa,, sin 20],

) . 9
(39) -g[olar2 sin 20] = =~ [a(a,; —a,, cos 26)].

Multiplying a,, to (3.8) and summing over , then, by the fact that (z,,) €
O(m - 2), we find

dlna & 0a,, oa, .
(3.10) ay = ;33(6—;>a,2 cos 20 + (ﬁ a,, sin 20} .

Similarly, multiplying a,, to (3.9) and summing over r, we have

al z ) (9 , da
3.11) ar;a = 23 g(—g.;l)a,z sin 29 - (a—;l>a,2 cos 202 .
r=

Multiplying a,, to (3.8) and summing over , we find

04, dlna) . dlna
20,2( ay>+< ax sin 20 + oy cos 20

= 2%sin 20 —2§g-cos 20.
ay ox
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Hence, by substituting (3.10) and (3.11) into this equation, we find

0a,y 39 30
(3.12) Y, 3y = Sin 205 - cos 265

Similarly, by multiplying a,, to (3.9), summing over r, and by using (3.10) and
(3.11), we get

da, 3 . .00
(3.13) 24,y — = —cos 25~ sin205" .

Substituting (3.12) and (3.13) into (3.10) and (3.11), we may find

dlna _ 90 dlna _ 239
G.149) o Sy oy

From this we get (32/0x%)In a + (3%/0y2)In a = 0. Since E = 1, this implies
that Alna=0. Q.E.D.

It shall be remarked that for a pseudo-umbilical surface in £4, the normal
connection is always flat.

As an application of Theorem 3, we have the following result concerning
about the value-distribution of mean curvature c.

THEOREM 4. Let M be a complete flat pseudo-umbilical surface in E™ with
flat normal connection. Then we have either

(1) the mean curvature a of M takes every value in (0, ), or

(2) the mean curvature o of M takes only one value in (0, ).

If case (2) holds, M is the product of two curves C, and C, where Ci isa
curve in E™ for some ni1 <n < m; and C, is a curve in E™~" so that the first
curvatures of C, and C, are equal.

Proor. Since M is flat and complete, M is parabolic in the sense that there
exists no nonconstant negative subharmonic function on M. Thus every subhar-
monic function on M which is bounded from above on M must be a constant
function. By Theorem 3, In a is a continuous harmonic function and so a sub-
harmonic and also a superharmonic function on M. Hence, if o does not take
every value in (0, o), then & must be constant. This proves the first part of the
theorem.

Now, suppose that case (2) holds. Then a is a nonzero constant. From
(3.5) we see that with respect to the frame field e, e,, &3, £, &5, - . - , &> WE
have

V2o 0 0 0
(3.15) A3=<0 0) (0 ﬁa)’ A= =A,
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where £} = cos 6%, + sin 08, £, = sin 0%, — cos 68,, 5 = &5, ..., &, = £,
From (3.15) and the equations of structure we may easily find that both the
distributions T; = {ae;: a € R}, i = 1, 2 are parallel. By the de Rham decom-
position theorem we see that M = C; x C, where C, (respectively, C,) is the
maximal integral manifold of T, (resp. T,). Moreover, (3.15) implies that
h(ey, e;) = 0. Hence, M is the product of C; and C, such that C, is a curve in
an affine n-space E” and C, is a curve in an affine (m — n)-space E™~" in E™.
Let k' be the second fundamental form of C, i = 1, 2. Then, (3.15) implies
H(e;, €)) = \/20&;, 5, i = 1, 2. Hence the first curvatures of C, and C, are equal.
Q.E.D.

4. Proofs of Theorems 1 and 2. Let M be a compact pseudo-umbilical sur-
face in E™. Lete,, e,,&;,..., &, be alocal field of orthonormal frame de-
fined along M such that e, e, are tangent to M and &,, . . ., £, normal to M.
For a unit normal vector ¢ at p € M, the Lipschitz-Killing curvature K(p, £) is
defined by K(p, £) = det A,. Let § = Z[L;cos 0,f, and 4, = (n;)- Then we

have 5
K@, o= (Zcos e,h'“)(z cos Bsh*;z) - <Zcos o,hqz) .

The right-hand side of this equation is a quadratic form of cos 85, ..., cos 8,,.
Hence, by choosing a suitable local frame field £, . . . , £,,, we may write

@4.1) K@, £) =2\, _, () cos?4,,

where A, . .., A, _, are continuous functions defined on M and satisfy the
following relations: \; =N, >--- 2=\, _,. From (2.11) we find

“42) G=X\ 4+, s

Since M is pseudo-umbilical, if we choose £, in the direction of the mean curva-
ture vector, then (3.2) holds. From this we may easily see that K(p, £) takes its
maximal value at £;. Hence we have

(4.3) A =a?, A, <0,...,7,_,<O0.
Now, let S, be the unit (m — 3)-sphere of all unit normal vectors at p € M and

do the volume element of Sp- Then the total absolute curvature K*(p) at p is
given by

K@) = [ KG. Hldo

and the total absolute curvature TA(M) of M in E™ (in the sense of Chern-Lashof
[3]) is given by TA(M) = [p, K*(p) dV. Let H(M; F) be the ith homology group
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of M over a field F and ,(M; F) the dimension of H(M; F). Then we have [3]
44 TAM) > c,,_BM),

where f(M) = max{ZZ ,B,(M; F): F fields} and c,,_, the area of unit (m — 1)-
sphere.
From (4.2) and (4.3) we find

m
K@, &)l = |G cos® 04 + 24 A,_,(cos? 8, — cos?4)
r=
@5) m
< [Gleos? 84 — 24 A,_lcos? 0, — cos? 65|
r=
This implies that

C,, _ m
K*p) < -5"2;—1- IGI- X X "2fs [cos? 8, — cos? 8] do.
r=4 14
On the other hand, since

fsplcosz 8, - cos® 0,51 do = 2¢,,, _,/n*,

(4.2), (4.3) and (4.5) imply
4.6) o? > (@ [2¢,,_)K*P) + G@) - (@/4)IGRE)!.
Case (1). G =0. In this case, (4.4) and (4.6) imply

@7 o av = @2 12)00).

On the other hand, the flatness of M implies that M is either homeomorphic to a
torus or a Klein bottle; in both cases, f(M) = 4. Hence (4.7) implies inequality
(1.4). Now, if the equality of (1.4) holds, then we have

4.8) TAM) = 4c,, -

Moreover, the inequality in (4.5) is actually an equality for all (85,...,0,,)
satisfying cos? ; + cos?, + -+ + cos®6,, = 1. Hence we have

4.9) Ay =-0 MAy=---=%\,_5=0.

m-2

From this we see that [4,, A;]]=0forallr,s=3,...,m. By using equation
(2.7) of Ricci, we see that the normal connection of M in E™ is flat. Thus, Theo-
rem 4 implies that M = C,; x C,, where C, and C, are two closed curves in E"
and E™~", respectively, with the same first curvature for some n, 1 <n <m.

On the other hand by a result of Kuiper [4], we have
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TAM)/c,, _, = TA(C)TA(C,)) ey _1Cm_n—1>

where TA(C,) is the total absolute curvature of C;, i = 1, 2. Since TA(C,) >
2¢,_, and TA(C,) = 2¢,,, _,,_ 1, (4.8) implies TA(C,) = 2¢,,_, and TA(C,) =
2¢,, _,_y- From these we know that both C; and C, are two plane circles with
the same radius [3]. Thus M is a Clifford torus. This proves Theorem 2.

Case (2). G=0and G #0. In this case, M is either homeomorphic to a
sphere or a real projective plane. Now, suppose that M is homeomorphic to a
real projective plane. Then we have x(M) = 1 and (M) = 3. Hence inequality
(4.4) implies

2 3.2 _r
f? ave3a +(1-5)[, G ar
This, combining with Gauss-Bonnet’s formula, gives
(4.10) fMaz dv=(Q2 + mn.

In the equality of (4.10) holds, then the inequality in (4.5) is actually an equality
for all (85, ..., 0,,) satisfying cos? 0+ -+ cos? 0,, = 1. Hence, we have
either\y =+++=%, _,=00rG=7A3=---=),_, =0 pointwise. Now,
let U= {p € M: G(p) + 0}. Then U is a nonempty open subset of M. By the
assumption of pseudo-umbilicity, U is totally umbilical in E™. Hence the Gauss
curvature G is positive constant on every component of U (see [1, p. 49]). From
this we know that U is also a closed subset of M. Thus U =M and M is an ord-
inary 2-sphere in E™. This is a contradiction. This proves Theorem 1. Q.E.D.

REMARK 1.  The real projective plane can be immersed in ES as a pseudo-
umbilical surface with positive constant Gauss curvature and total mean curvature
6.
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