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TOTAL MEAN CURVATURE OF IMMERSED SURFACES IN Em

BY

BANG-YEN CHEN(')

ABSTRACT.  Total mean curvature and value-distribution of mean

curvature for certain pseudo-umbilical surfaces are studied.

1. Introduction.  In the classical theory of surfaces in a euclidean m-space

E™, the two most important curvatures are the so-called Gauss curvature G and

the mean curvature a. It is well known that the Gauss curvature is intrinsic. The

integral of Gauss curvature gives the beautiful Gauss-Bonnet formula, which holds

for orientable compact surfaces as well as nonorientable ones,

(M) fMGdV=2irx(M),

where ciTand \iM) denote the volume element and Euler-Poincaré characteristic

of M  For the mean curvature of a compact surface M in Em we have [2,1] (see

also [5]),

(1.2) 5M*2dv>*«-

The equality holds when and only when M is an ordinary 2-sphere in an affine

3-space. It is an interesting problem to improve inequality (1.2) for some special

surfaces in Em. In [2, III] the author obtains some results of this problem for

surfaces in E4. In this paper we shall study this problem for pseudo-umbilical

surfaces in Em (for the definition of pseudo-umbilicity see §2). In particular, we

shall prove the following:

Theorem 1. Let M be a compact pseudo-umbilical surface in Em with non-

negative Gauss curvature. If we have

(1.3) f cc2dV<(2 + iryn,
J M

then M is homeomorphic to a 2-sphere.

Theorem 2. Let M be a compact flat pseudo-umbilical surface in E"1.

Received by the editors February 7, 1975.

AMS (MOS) subject classifications (1970).  Primary 53A05, 53C40, 53C65; Secondary
53B25.

Key words and phrases.   Total mean curvature, pseudo-umbilical surfaces, Clifford

torus, real projective plane, normal connection, Laplace's equation.

(!) Research partially supported by NSF Grant GP-36684.
Copyright © 1976. American Mathematical Society

333



334 BANG-YEN CHEN

Then we have

(1.4) jMa2dV>2n2.

The equality sign holds if and only if M is a Clifford torus, i.e., M is the product

surface of two plane circles with the same radius.

2. Preliminaries.  Let x: M —► Em be an isometrical immersion of a surface

M in an m-dimensional euclidean space Em and let V and v' be the covariant dif-

ferentiations of M and E™ respectively. Let X and Y be two tangent vector fields

on M. Then the second fundamental form h is given by

(2.1) v'xY = VXY + h(X, Y).

It is well known that h(X, Y) is a normal vector field on M and is symmetric on

X and Y.  Let % be a normal vector field on M ; we write

(2.2) l'x%=-A%(X)+Dx%,

where -A^(X) and Dx% denote the tangential and normal components of y'x%.

Then we have

(2.3) <A¿X), Y) = {h(X, Y), ®

where < , > denotes the scalar product in Em.  A normal vector field % on M is

said to be parallel (in the normal bundle) if D% = 0.  The mean curvature vector

H is defined by

(2.4) H=lA trace h.

The length of H, denoted by a, is called the mean curvature of M. If the mean

curvature vector H is nowhere zero and the second fundamental form h satisfies

(2.5) (h(X, Y),H> = X(X, Y>,

for all tangent vectors X, Y on M, then M is said to be pseudo-umbilical

Let R and RN be the curvature tensors associated with connections V and

D, i.e., R and RN are given respectively by

R(X, Y) =[Vx,VY]-Vlx.Y]

and

RN(X,Y)=[Dx,Dy]-D[XiY].

For a surface M in Rm, if R vanishes identically, then M is said to be flat. If RN

vanishes identically, then M is said to have flat normal connection.  Let et and

e2 be orthonormal vector fields tangent to M. Then the Gauss curvature G of M

is a well-defined intrinsic function on M given by
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G = <R(ev e2)e2, e,>.

The Gauss and Ricci equations are given respectively by

(2.6) <R(X, Y)Z, W) = <h(X, W), h(Y, Z)> - <h(X, Z), h(Y, W)\

(2.7) <RN(X, YK, rj) = <h(AK(Y), X), r,> - <h(A((X), Y), tj>,

where X, Y, Z, W aie vector fields tangent to M and %, r\ are vector fields normal

to M. For the second fundamental form h, we define the covariant derivative,

denoted by Vy, to be

(2.8) (Vxh)(Y, Z) = Dx(h(Y, Z)) - h(VxY, Z) - h(Y, VXZ).

The Codazzi equation is given by

(2.9) (Vxh)(Y, Z) = (Vy/i)a Z).

Let t?,, e2> |3, . . . , £OT be orthonormal vector fields, defined along M,

such that t?j, e2 are tangent to M and Ç3, . . . , %m are normal to M. For each

r = 3.m, we simply denote A^ by Ar. Let

Ar = (hrij\j=l,2-

With respect to the basis ey e2, we have h\2 = h21. From (2.4) and (2.6) we

find

(2.10) H = ±£](h\l+hr22)ïr,

(2.11) G=Z(AÍ^22-Ai2A'¡2)-

3. Mean curvature of pseudo-umbilical surfaces with R = R? — 0. In this

section we shall prove the following results for later use.

Theorem 3. Let M be a flat pseudo-umbilical surface in Em with flat nor-

mal connection.  Then the mean curvature a satisfies the following Laplace's

equation,

A In a = 0,

where A denotes the Laplacian on M.

Proof.  Since the normal connection of M is flat, the equation of Ricci

implies that

(3.1) [Ar, As] = 0,      r, s = 3, ...,m.

Now, let £3, . . . , %m be chosen in the way that H = a%3. Then by the pseudo-

umbilicity of M in Em, we have
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¡a   0\ /hrll      h\2\
(3.2) A3 = l ,   Ar = ( l2),     r = 4,...,m.

By (3.1), we may choose orthonormal tangent vectors ev e2 which diagonaUze

Ar simultaneously. With respect to such frame ev e2, £3,..., £m, we have

W>     A,~\o ./ "'"^0   -*!,)"    '    ."

Now, by the flatness of M and (2.11), we have

(3.4) «2 = f(Aîi)2.
r=4

For each p EM, let A^ be the vector space consisting of all normal vectors of M

in E™ afp which are perpendicular to the mean curvature vector H. On N. we

define a linear mapping into the set of all symmetric matrices of order 2 by

p(£) = Aç. Let Op denote the kernel of p. Then by (3.3) and (3.4) we see that

dim Op = m - 4. Hence, we may choose a frame field ev e2, £3, £4, . . . , £m

such that, with respect to this frame, we have

(a   0\ /a    0\

(3.5) *»'[„   „)   ^o   .„)     ^-°'s=-5."■•

Since the normal connection is flat, there exist, at least locally, orthonormal nor-

mal vector fields f3, .. ., %m such that f3, • • • , fm are parallel (see [1, p. 99]),

i.e.,

(3.6) £>r3 = --=Z)fm=0.

We put

£r = £ arsZ>      r « 3,.... m.
i=3

Then (a,,) is an orthogonal matrix of order m - 2.

Since M is two dimensional and local study of M is sufficient, we may

assume that M is covered by an isothermal coordinate (x, v) such that the metric

on M has the form ds2 = E(dx2 + dy2). In the following, we shall denote the

coordinate vector fields 3/3x and à/dy by A"j and X2 respectively. We put

L = h(Xlt X,),     M = h(Xv X2),     N = h(X2, X2)

and

Vr,= £riixk>    U-1.2.
7      ¡t=i
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Then we have

ri i = r22 = -r22 = xxe\2e,    r222 = r}2 = -r2. = x2e/2e.

Therefore the Codazzi equation reduces to

DX2L-DXM = (X2E)H,

DxM-DxN=-(Xim.

Since Xx and X2 are orthonormal, we may define a function 0 = B(x, y) by

X. = 9/9* = cos de. + sin 0e\,,

(3.7)
X2 = d/dy = -sin 8ex + cos 8e2.

Then with respect to the frame field Xx, X2, f3, . . . , fm, the second funda-

mental tensors are given by

t   = (a(arl + "r.

\   -aar2 si

'r2 cos 29)        -cwr2 sin 20     \

sin 20 a(arl -ar2 cos 28),

Since M is flat, we may assume that E — 1. Hence by (3.6) equations of

Codazzi reduce to

(3.8) ^[a(aM + ar2 cos 20)] = -¿[wr2 sin 20],

(3.9) _A Kz sin 20] = ¿ [a(arl - ar2 cos 20)].

Multiplying an to (3.8) and summing over r, then, by the fact that (ars) E

0(m - 2), we find

(3.10) -^r = Z j ^-ä^^2 cos 20 + (^-j*,2 «m 20

Similarly, multiplying arl to (3.9) and summing over r, we have

Multiplying «,.2 to (3.8) and summing over r, we find

^ilüTJ + [ir)sm 2Ö + [IT) cos 2ö

= 2^ sin 20-2^ cos 20.
9.y 9*
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Hence, by substituting (3.10) and (3.11) into this equation, we find

(3.12) 2>r2 -^ = sm 20 - - cos 20 - .

Similarly, by multiplying ar2 to (3.9), summing over r, and by using (3.10) and

(3.11), we get

^      3a't ™90     •   -,„90
(3.13) Lar2 — = -cos 20 ̂  - sm 20 - .

Substituting (3.12) and (3.13) into (3.10) and (3.11), we may find

3 In a     30        3 In a       30
(3.14)

3x     by '      ay       3*

From this we get (32/3x2)ln a + (32/3^2)ln a = 0. Since E = 1, this implies

that A In a = 0.   Q.E.D.

It shall be remarked that for a pseudo-umbilical surface in ¿T4, the normal

connection is always flat.

As an application of Theorem 3, we have the following result concerning

about the value-distribution of mean curvature a.

Theorem 4. Let M be a complete flat pseudo-umbilical surface in Em with

flat normal connection.   Then we have either

(1) the mean curvature a of M takes every value in (0, °°), or

(2) the mean curvature a of M takes only one value in (0, °°).

If case (2) holds, M is the product of two curves C1 and C2 where Cl is a

curve in E" for some «;' 1 < n < m; and C2 is a curve in Em~n so that the first

curvatures of Cl and C2 are equal

Proof.  Since M is flat and complete, M is parabolic in the sense that there

exists no nonconstant negative subharmonic function on M. Thus every subhar-

monic function on M which is bounded from above on M must be a constant

function. By Theorem 3, In a is a continuous harmonic function and so a sub-

harmonic and also a superharmonic function on M. Hence, if a does not take

every value in (0, °°), then a must be constant. This proves the first part of the

theorem.

Now, suppose that case (2) holds. Then a is a nonzero constant. From

(3.5) we see that with respect to the frame field e,, e2, £'3, i-4, |'s, . . . , %'m, we

have

/V2a   0\    /0      0 \
(3.15) ,43= ,      As = ---=Am,

\  0     0/,   \0   ^/2al
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where |'3 = cos 0f3 + sin 0|¡, %\ = sin 0Î3 - cos 0?¡, $'s = fs.%'m = fm.

From (3.15) and the equations of structure we may easily find that both the

distributions Tt = [ae¡: a ER}, i = 1,2 are parallel.  By the de Rham decom-

position theorem we see that M = Cj xC2 where Cx (respectively, C2) is the

maximal integral manifold of Tx (resp. 72).   Moreover, (3.15) implies that

h(ev e2) = 0. Hence, M is the product of Cx and C2 such that Cx is a curve in

an affine «-space En and C2 is a curve in an affine (m - n)-space Em~n inE"1.

Let h' be the second fundamental form of C¡, i = 1,2. Then, (3.15) implies

/z'(ef, e¡) = y/2a%'¡+2, i = 1,2. Hence the first curvatures of Cx and C2 are equal.

Q.E.D.

4. Proofs of Theorems 1 and 2. Let M be a compact pseudo-umbilical sur-

face in Em. Let ev e2, £3,. . . , %m be a local field of orthonormal frame de-

fined along M such that ex, e2 are tangent to M and £3, . . . , %m normal to M.

For a unit normal vector £ at p G M, the Lipschitz-Killing curvature K(p, £) is

defined by K(p, |) = det Av Let £ = 2£L3 cos 0r£, and /lr = (A£). Then we

have

^(P. 9 = (Z cos 0^! i ) (Z cos 0^22) - (Z cos 8^i\2 ) .

The right-hand side of this equation is a quadratic form of cos 03, . . . , cos 8m.

Hence, by choosing a suitable local frame field f3,. . . , %m, we may write

(4.1) K(p,Ç) = jyr_2(p)cos28„

where X,, . . . , Xm_2 are continuous functions defined on M and satisfy the

following relations: Xx > X2 > • • • > Xm_2. From (2.11) we find

(4.2) f? = X,+--- + Xm_2-

Since M is pseudo-umbilical, if we choose ?3 in the direction of the mean curva-

ture vector, then (3.2) holds. From this we may easily see that K(p, %) takes its

maximal value at £3. Hence we have

(4.3) X,=a2,      X2<0, ...,Xm_2 <0.

Now, let Sp be the unit (m - 3)-sphere of all unit normal vectors at p EM and

it

given by

do the volume element of Sp. Then the total absolute curvature K*(p) at p is

K*(p) = f   \K(p, Ç)| do
Js„

and the total absolute curvature TA(M) of M in Em (in the sense of Chern-Lashof

[3] ) is given by TA(M) = Smk*(p) dV. Let H¡(M; F) be the ith homology group
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of M over a field F and ßfM; F) the dimension of HfM; F). Then we have [3]

(4.4) TA(M)> cm_xß(M),

where ß(M) = rtax{Ii]=0ßfM; F): F fields} and cm_l the area of unit (m - 1)-

sphere.

From (4.2) and (4.3) we find

\K(p, öl = G COS2 03 + £   \-2(CO!}2 ör ~ COS203)
r=4

(4.5)

< |G|cos2 03 - £ Ar_2|cos2 0, - cos2 03|.
r=4

This implies that
C       , m p

K*(p) < -T-1 ICI - £ Xr_2      Icos2 0, - cos2 03| da.
27r ^4 J5p

On the other hand, since

f   Icos2 0r - cos2 031 da - 2cm _ ,¡it2,

(4.2), (4.3) and (4.5) imply

(4.6) a2 > (t:2/2cm _ ! )K*0) + G(P) - (ir/4)|G<p)|.

Case (1). C = 0. In this case, (4.4) and (4.6) imply

(4.7) fa2dV>(it2l2)ß(M)-

On the other hand, the flatness of M implies that M is either homeomorphic to a

torus or a Klein bottle; in both cases, ß(M) = 4. Hence (4.7) implies inequality

(1.4). Now, if the equality of (1.4) holds, then we have

(4.8) 7HCM) = 4cM_1.

Moreover, the inequality in (4.5) is actually an equality for all (03,. . . , 6m)

satisfying cos2 03 + cos2 04 + • • • + cos2 0m = 1. Hence we have

\n-2=-«2.      X2=-'(4.9) K-3 = 0-

From this we see that [Ar, As] = 0 for all r, s = 3, . .., m. By using equation

(2.7) of Ricci, we see that the normal connection of M in Em is flat. Thus, Theo-

rem 4 implies that M = Ct x C2, where Ct and C2 are two closed curves in E"

and Em~n, respectively, with the same first curvature for some n, 1 < n < m.

On the other hand by a result of Kuiper [4], we have
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TA(M)/cm-i = ^(C1)7v4(C2)/c„_1cm_„_1,

where TA(C¡) is the total absolute curvature of Ct, i =1,2. Since TA(CX) >

2cn_l and TA(C2) > 2cm_n_l, (4.8) impUes TA(Ct) = 2cn_1 and TA(C2) =

2cm_n_1. From these we know that both Cl and C2 are two plane circles with

the same radius [3]. Thus M is a Clifford torus. This proves Theorem 2.

Case (2). G > 0 and G ^ 0. In this case, M is either homeomorphic to a

sphere or a real projective plane. Now, suppose that M is homeomorphic to a

real projective plane. Then we have x(M) = 1 and ß(M) = 3. Hence inequality

(4.4) implies

í a2dV>^¡it2 +(\-^)JGdV.

This, combining with Gauss-Bonnet's formula, gives

(4.10) fM<x2dV>(2 + it)it.

In the equality of (4.10) holds, then the inequality in (4.5) is actually an equality

for all (03, .. . , 0m) satisfying cos2 03 + • • • + cos2 0m = 1. Hence, we have

either X2 = • • • = Xm_2 = 0 or G = X3 = • • ■ = Xm_2 = 0 pointwise. Now,

let U = {pEM: G(p) + 0}. Then U is a nonempty open subset of M. By the

assumption of pseudo-umbilicity, U is totally umbilical in Em. Hence the Gauss

curvature G is positive constant on every component of U (see [1, p. 49] ).  From

this we know that U is also a closed subset of M. Thus U = M and M is an ord-

inary 2-sphere in Em. This is a contradiction. This proves Theorem 1.   Q.E.D.

Remark 1.     The real projective plane can be immersed in Es as a pseudo-

umbilical surface with positive constant Gauss curvature and total mean curvature

6ff.
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