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SLOWLY VARYING FUNCTIONS IN THE COMPLEX PLANE

BY

MONIQUE VUILLEUMIER

ABSTRACT.   Let /be analytic and have no zeros in lar« z\ < a < tr,

/is called slowly varying if, for every \ > 0,/(az)//(z) -» 1 uniformly in larg z|

< ß < a, when Iz I -* ».  One shows that / is slowly varying if and only if

z/'(z)//(z) ■+ 0 uniformly in larg z\ < ß < a, when Izl -* •».

1.  Introduction.  In 1930, Karamata [1] introduced a class of functions

called slowly varying, which have since been applied in various fields of mathe-

matics. Precisely, a real valued function /, positive and measurable on the posi-

tive real axis, is called slowly varying iif(Xx)lf(x) —► 1 (x —► °°) for all X > 0.

Typical elementary functions belonging to this class are the iterated log

functions, log t, log log t, ... . Clearly these functions are restriction to the

real axis of analytic functions, log z, log log z, ... , which have the asymptotic

property

(1.1) f(Xz)lf(z) -*> 1    when z -> °°,

for any complex X =£ 0. It seems therefore natural to investigate analytic func-

tions satisfying condition (1.1), or some similar condition.  Such an investigation

has not yet been done; although the concept of slow variation has been extended

to functions of several variables (see [2] ), an extension to analytic functions of

a complex variable is only suggested in [3].

In §2, we shall give a definition of analytic functions slowly varying as

z —*• °° in a sector larg z\ < a < n and establish some fundamental properties of

these functions. The most significant one is expressed by property (2.2) in Theo-

rem 1, or equivalently by Theorem 1". The definition given here is only one of

two possible equally natural definitions; however, it follows from Theorem 1 that

these two possible definitions are really equivalent (see paragraph following Theo-

rem l"). Also in §2, we shall define analytic regularly varying functions.

In §3, we present an application of the preceding results to a problem in

the theory of entire functions. In connection with the principle of Phragmén-

Lindelóf for entire functions of finite order, M. L. Cartwright [4] introduces some

comparison functions. It is easy to see that these comparison functions are parti-
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cular cases of analytic regularly varying functions. The remarks that constitute

§3 will show that the conditions that define the comparison functions are redun-

dant and can be simplified.

2.  Main results.  The functions considered in this section will be defined

on a sector SR(a) = {z: \zI > R, I arg z I < a} where R > 0 and 0 < a < 7r.

Hr(ol) = {z: Re z > log R, Urn z\< a} where R > 0 and 0 < a < n.

For the sake of simplicity, we shall say that f(z) —► A almost uniformly in

SR(a) when Izl —► °° (or in HR(a) when Re z —► °°) if the convergence is uni-

form in arg z for larg z\ < ß, for any ß E (0, a) (or uniform in Im z for IIm z\

< ß, for any ß G (0, a)).

Definition.   A function /is called slowly varying in SR(a) if/is analytic

and has no zeros in SR(a) and if for every X > 0,/(Xz)//(z) —► 1 almost uni-

formly in SR(a) when Izl —► °°.

The fundamental property of slowly varying functions is given by the fol-

lowing theorem.

Theorem 1.   Let f be analytic and have no zeros in the sector SR (a).

Then, the following two statements are equivalent:

(2.1) for any X > 0,/(Xz)//(z) —► 1 almost uniformly in SR(a) when

Izl —*•<»;

(2.2) zf'(z)lf(z) —► 0 almost uniformly in SR(a) when Izl —*■<*>.

Since the analytic function / has no zeros in the simply-connected domain

SR(a), there exists a function F, analytic in HR(a) and such that

(2.3) eF(u) = f(e")   for every uEHR (a).

From (2.3), it follows immediately that Theorem 1 is equivalent to the

following one.

Theorem l'.   Let F be analytic in the half strip HR(oi). Then, the fol-

lowing two statements are equivalent:

(2.4) for every real t, F(z + t) - F(z) —♦ 0 almost uniformly in HR(a)

when Re z —*■ °°;

(2.5) F(z) —► 0 almost uniformly in HR(a) when Re z —»• «>.

Proof of Theorem 1'.  Implication (2.5) =* (2.4) is obvious since

F(z + t)- F(z) = S¡+t F'(u)du.

To prove that (2.4) implies (2.5), we first show that F(u + t) - F(u) is

uniformly bounded for t E [0, 1 ], Re u > x and I Im u I < y, whenever y E (0,

a).  To this end, let us define K(z) = {t: t E [0, 1], \F(z + t)- F(z)\ < 1},

for every z G HR(á). Let then Kn denote the intersection of all sets K(z) for

Re z > n and IIm zl < y. Since K(z) is closed, the sets Kn are also closed, and
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because of (2.4), U"=i Kn = ß> H- I{ follows from Baire's category theorem

that one of the sets Kn must contain a nondegenerate closed interval. In other

words, there exists a subinterval [a, b] of [0, 1] and a positive integer N0 such

that

\F(z + t) -F(z)\ < 1    whenever t E [a, b], Re z >N0, Urn z\ < y.

It follows that

\F\z + t)-F(z + a)\ <2   ifiG [a, b], Re z > N0, llmzK?,

which can be rewritten as

\F(z + t) - F(z)\ < 2   if t G [0, b - a], Re z > W,, Urn zl < 7-

This last inequality implies that

lfTz + 0-^(z)l<2*   iffG [0,k(b-a)],Rez>N1, llmzl<7.

In particular, there exist M and N such that

(2.6) \F(z + t)-F(z)\<M   iffG [0, l],Rez>A/, llmzl<7-

Now, let us write F(z) = G(z) + H(z), with

G(z) = Q [F(z) -F\z + t)] dt    and   H(z) = Q F(z + t)dt = f*+1F(u)du.

Clearly, by (2.4), H'(z) —► 0 almost uniformly in HR(a) when Re z —»• <».

We shall now show that (2.6) implies that G'(z) —* 0 almost uniformly in HR(a)

when Re z —► °°.  This will complete the proof of (2.5).

For every ß, 0 < ß < a, let 7 G (ß, a). Let x = Re z and let

*(x, 0 =      Max     \F(z) -F(z + t)\.
Urn z\<~i

Then, by (2.4), 4>(x, t) —»• 0 as x —> °°, for any real t, and by (2.6), *(x, t) <

M for all t E [0, 1] and x > N. So, from the definition of G(z) and from Le-

besgue's bounded convergence theorem, we obtain

Max     IG(z) I < Jo $(x, 0dt -> 0        (x -*• «»),
Urn z l<7

i.e.

(2.7) G(z) —► 0 uniformly in Im z,   for IIm zl < 7, when Re z —* «>.

It remains now to show that (2.7) implies that

(2.8) G'(z) —* 0 uniformly in Im z,    for I Im zl< ß, when Re z —> 0.

Let IIm zl < ß and let p = 7 - 0.  By Cauchy's integral formula, we have
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2m   J\u-z\=p (U-Z)

so that lG'(z)l < 1/p MaX|t/_2Np |G(«)|, which implies that

|G'(z)|<i sup G(u),
P llm ul<7,Re u>x-p

for ail z such that lim zl < ß, Re z > x. Now (2.8) follows from this last

inequality and (2.7).

The fundamental theorem for slowly varying functions of a real variable

is Karamata's representation theorem: /is slowly varying if and only if f(x) =

c(x) expif* ô(t)/tdt), where c(x) —► c as x —*■ + <», c > 0, and S(x) is a
■*o

continuous function tending to 0 as x —► °° (see [1]).

If /is a function analytic and with no zeros in SR(a), let e(z) =

zf'(z)lf(z), or equivalently f(z) = C exp(J* e(u)l udu), where C is a constant

different from 0. Then Theorem 1 can be reformulated as the analogue of

Karamata's representation theorem for analytic slowly varying functions. It

will read as follows.

Theorem l".   A function f, analytic and with no zeros in SR(a), is slowly

varying in SR(a) if and only if f can be represented in the form

where C is a constant different from 0, and e(z) is a function analytic in SR(ci)

and tending to 0 almost uniformly in SR(a) when Izl—> °°.

In defining analytic slowly varying functions we have required that

/(Xz)//(z) tends to 1 only for real positive values of X. Another definition

seems also natural.  It would require that the same condition be fulfilled for X

complex, suitably restricted so that Xz remain in the domain of definition of the

function /.  However, the two definitions are equivalent.  Indeed, it is easy to

deduce from Theorem 1" the following corollary, which shows that the limit

property /(Xz)//(z) —* 1 is true for X complex in SR(a), and moreover, uni-

formly in X in a compact subset of SR(a).

Corollary. Suppose fis slowly varying in SR(a), i.e. fis analytic, has

no zeros in SR(a) and satisfies condition (2.1). Let S = {z: Rx < Izl < R2,

larg zl < ß} C SR(oi), and let y E (0, a - ß).  Then /(Xz)//(z) -+ 1 (Izl —> °°)

uniformly inXESand IargzI <7.

Real slowly varying functions L(t) are often used in expressions of the form

/(f) = taL(t). Clearly, such a function has the property that /(Xf)//(f) —* Xa
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(t —*■ °°). In fact, these functions, called regularly varying, are characterized by

a simpler limit property, namely that limf_»00/(Xf)//(f) exists and is different

from 0 (see [1]).

In a similar way, a complex valued regularly varying function will be de-

fined as a function /, analytic and without zeros in SR (a), which satisfies

lim|z|_>0O/(Xz)//(z) = /i(X) ¥= 0, almost uniformly in SR(a) for all X real and

positive.

Clearly, h satisfies the functional equation A(Xp) = hÇKyhQï). Consequently,

h(X) must be of the form /i(X) = Xa, where a is complex. Putting/(z) = zaL(z)

(za means its principal value), it follows that limiz \_^coL(hz)/L(z) = 1 almost

uniformly in SR(a), i.e. that L(z) is slowly varying.

3. Application. In the study of complex functions which are analytic in

a sector a < arg z < ft z > R, and which are of finite order p', an important

role is played by a function h(6) which is defined by

logl/(re,9)l
h(6) = lim sup-

where 0 < p < p'. In [4, p. 41], M. L. Cartwright defines a more general func-

tion h(B), by replacing the comparison function r" by a function V which has

the following properties:

(i)   V(z) is analytic in the sector considered,

(ii)  V(x) > 0 and V(x) is increasing for x > x0,

(iii) lim sup^» log V(r)/log r = p,

(iv) lim^«, V(rei8)/V(r) — eipd uniformly in 0 in the sector considered,

(v) lim^ V(kr)lV(r) = kp for every k > 1.

We shall show that condition (iii) is redundant and that conditions (iv)

and (v) are equivalent to the condition

(3.1)    V(z) = zpL(z), L slowly varying as z —* °° in { z:  Izl >R,

a < arg z < ß}.

From the definition of slowly varying functions, respectively from the

corollary in §2, we obtain that (3.1) implies (v), resp. (iv). On the other hand,

since condition (v) is obviously satisfied for all real positive k, writing

K(Xz) =   V(Xz)   V(k\z\) V(\z\)

V(z)    ~ K(Xlzl)  V(\z\)   V(z) '

we deduce from (iv) and (v) that

V(Kz)lV(z) —* Xp uniformly in arg z G (a, ft) as Izl —* »,

for any X positive. By Theorem 1", it follows then from (3.1) that
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where e(t) —► 0 (r —* <»). As a resuit

(iii)' lim^,» log V(r)/log r = p.

Thus, not only (iii), but even (iii)' is a consequence of (iv) and (v).
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