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COHOMOLOGY OF FINITE COVERS

BY

ALLAN CALDER

ABSTRACT.   For a finite dimensional CW-complex, X, and q > 1, it

is shown that the 4th Cech cohomology group based on finite open covers of

X, Hf(X), is naturally isomorphic to lfi(X), the qth Cech cohomology of X

(i.e. based on locally finite covers), and for reasonable X, H (X) can be ob-

tained algebraically from HAX).

The Cech cohomology functor HJ based on finite open covers [2], [5] is

not a cohomology theory. Dowker showed that Hj- of the real line is nontrivial

and so Hi does not satisfy the homotopy axiom [3].

In this paper I show that for finite dimensional CW-complexes, //?is natu-

rally isomorphic to the usual Cech cohomology functor FP, i.e. based on locally

finite covers, when q > 1 and for a nice space X, Hl(X) can be obtained algebra-

ically from HJ(X). This greatly extends previous results [1].

I wish to thank E. H. Brown for very useful conversations concerning as-

pects of this work.

Let ß be the Stone-Cech functor from the category of normal spaces and

maps (continuous functions) to the category of compact (=* Hausdorff) spaces

and maps. In other words, ßX is the Stone-Cech compactification of X and

ß(f.X-+Y):ßX-+ ßY is the unique "extension" of/. We shall also use ß to

denote the embedding of X into ßX.

For a space X and a topological group Y, [X, Y] denotes the set of homo-

topy classes of maps from X to Y together with the group structure induced by Y.

A precise definition of Cech cohomology based on finite open covers can

be found in [5, Chapter 9]. It is sufficient here to know that for a normal space

X, the embedding ß: X —* ßX induces a natural isomorphism from Hf(X) to

H*(ßX), [5, p. 282].

For paracompact spaces, &(—, tt) is naturally isomorphic to [-, K(n, q)],

where n is the coefficient group and K(it, q) is an Eilenberg-Mac Lane space of

type (it, q), [7, p. 423]. So for normal spaces, Hj(X; it) is naturally isomorphic

to \ßX,K(ir,q)].

Lemma 1. For X a finite dimensional CW-complex, it a finitely generated
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abelian group and q>0, the embedding ß: X —* ßX induces an epimorphism ß*:

\ßX,K(it,q)] -*[X,K(it,q)].

Proof.  Let (•> denote "equivalence class of, then ß*{f) = (fß).

Since it is finitely generated and q > 0, we can choose K(it, q) to be a

CW-complex of finite type, i.e. with compact skeleta. Let {f> G [X, K(it, q)].

By the cellular approximation theorem we can assume that / is cellular. Since X

is finite dimensional f(X) is contained in a compact subspace of K(it, q) and so

/ can be extended to a map F: ßX —► K(it, q). Now ß*(F) = <f>.

To prove the main theorem we must show that for finite dimensional CW-

complexes and q > 1, the kernel of ß* is trivial. The key to establishing that is

the following

Lemma 2. Let p: E •—* B be a principal G-bundle with G a CW-complex

of finite type and B compact. If X is a finite dimensional CW-complex and f:

X —* E is a map then there is a map g: X —*■ E such that pf = pg and g(X) is

compact.

Proof.   Let { V¡} be a finite atlas for the bundle, with coordinate func-

tions <pt: G x V¡—> p'1 V¡. Let { U¡} be a shrinking of { V¡}, i.e. { U¡} covers

B and Ûi C V¡.
Let ff/-: V¡ n V, —*■ G be the coordinate transformations and let Gk denote

the ^-skeleton of G. Since t¡](Ü¡ n Ü¡) is compact it is contained in Gm(i,/) for

some m(i, j). Put m = maxf/{ m(z, /)} and for each k, choose m(k) such that

GmGk = {gg': g G Gm and g' G Gk} C Gm(fc)

and m(k) > k.

Let Ek = \Jtf>fGk x D¡). Then Ek is compact and

£fcnp-1£//Cvj.(Gm(k) x Ut).

[For if y G Ek C\ p"1 U¡ then y E ip¡(Gk x Ü¡) for some / and py E U¡ n Ü¡.

So if vf1 v = (g, py) E Gk x Ü¡ then tfy = (tif(py)g, py) E GmGk x U, C
Gm(k) x i/,.]

Subdivide X so that for each cell uinX there is an / such that pfû C Uv

Let A!1" denote the «-skeleton of X in this subdivision and let Tli" = (X x {0})

U (A"" x 7), where 7= [0, 1]. Let q¡ = dyj1 : p'1 Vt -* G, where 9: C x K,

—»• G is the projection. For v G A"0, let \v: I —*■ G be a path from 9,/b to a

0-cell of G, where p/u G Ut.

Define a map F°: M° —* E by

F°(x, 0) = fx,      xEX,

F°(v,t) = <pluÇKvt,pfv),     vEX°,      tEI mdpfvCU,v.
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Then pF°(x, t) = pfx and F°(X° x {1}) C E°.

Assume that there exists a map Fn~l : Mn~l -+ E such that pFn~1(x, t) =

pfx and F"~1(X"~l x {1}) C F* for some k>n. For each «-cell u in X,

choose iu such that pfü C U¡u. Then

and

F""1^ l})c£*np"1 Uiu cv>iu(Gm<fc> x oy.

[ii denotes the boundary of m in X.]   Let

K^QiuF^KuxiOVU&xr).

Then nu(« x {1}) C Gm(fc). Since m(it) > «, 7r„(G, Gm(fc)) = 0 and therefore

hu can be extended to a map Hu: u x I -+ G such that //"„(u x {1}) C Gm(fc).

Define F": Mn -* E by F" \Mn~l = F""1 and F"(x, í) = >P¡u(Hu(x, t), pfx),

for ïGa. Then F" is a map such that pF"(x, f) = p/jc, F"lM"_1 = Fn_1 and

F"(X" x { 1}) is contained in Em^. So by induction such a map exists for

all«.

_Define g: X —* E by gx = F"(jc, 1) for all x G AT". Then pf = pg and

g(X") is compact for each «. Thus if AT is finite dimensional g(X) is compact.

Theorem 1. For X a finite dimensional CW-complex, it a finitely generated

abelian group and q > 1,

ß*: Hp(; it) -> H«(X; it)

is an isomorphism.

Proof.   Assume K(n, q) is of finite type and let p: E —*■ K(n, q) be the

universal bundle.  Let <f) E ker ß*. Then fß can be lifted to a map /': X —*■ E.

Now /j3(^) C f($X) which is compact and so contained in the ¿-skeleton Kk of

K(ir, q), for some k. Let F' —* Kk be the >v(7r, q - l)-bundle over Kk obtained

by restricting p: E —* K(it, q). We can now apply Lemma 2 to /' restricted to

E' to obtain a map g: X—+E such that g(X) is compact and pg = fß. Now g

can be extended to a map g': ßX—*E and pg' = f. So /is null homotopic and

hence ker/J* = 0. The result now follows by Lemma 1.

We now consider the case q = 1, and X a normal space.

Let /: X —► CX be the embedding of X as the base of the cone CX on X.

Then a = ßj: ßX —■* ßCX is also an embedding. Consider the sequence

IßCX.S1] ̂ [ßX.S1] ^[X.S1],

where a* is induced by a and S1 is the circle. If (/> G imj3*a*, then /can be

extended to ßCX and thus to CX and so is null homotopic. So im a* C ker/3*.
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If (g) G kerß*, then gß is null homotopic, so can be extended to CX and

hence to ßCX. Thus kerß* = im a*.

Because CX is contractible it follows from [4], or see [8, p. 225], that

[ßCX, S1 ] is isomorphic to the quotient of the additive group of real valued

maps on CX by the subgroup of bounded maps. That is a divisible group [6,

p. 163] and so im a* is a divisible group.  Hence the short exact sequence

ß*
0 -► ker ß* -+ \ßX, S1 ] -* [X, S1 ] -»• 0

splits. Íj3* is onto since S1 is compact.)

Thus if HX(X) = [A", S1] is reduced, i.e. has no divisible subgroups, kerß*

is the unique maximal divisible subgroup, [6, p. 164], of HJ(X) = \ßX, S1]. In

particular this will be the case if X has the homotopy type of a CW-complex

with a finite 1-skeleton. Hence we have proved the following result.

Theorem 2. 7/A" is a normal space and H1(X) is a reduced group then

Hl(X) s Hj.(X)/G, where G is the maximal divisible subgroup ofHJ(X).

Theorems 1 and 2 can easily be extended to a relative CW-complex (X, A)

since ß(X/A) is homeomorphic to ßX/ßA.
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