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YONEDA PRODUCTS IN THE CARTAN-EILENBERG
CHANGE OF RINGS SPECTRAL SEQUENCE WITH
APPLICATIONS TO BP(BO(n))

BY

RONALD MING(})

ABSTRACT. Yoneda product structure is defined on a Cartan-Eilenberg
change of rings spectral sequence. Application is made to a factorization theo-
rem for the Ey-term of the Adams spectral sequence for Brown-Peterson homol-
ogy of the classifying spaces BO(n).

This paper gives an algebraic decomposition of the E,-term of the Adams
spectral sequence of the reduced mod 2 Brown-Peterson homology [3], [4] of
the classifying space BO(n).

The first section gives algebraic preliminaries and the statement of the main
result. In §2 Yoneda products are introduced in a Cartan-Eilenberg change of
rings spectral sequence [5] used to compute the required Ext module. The proof
of the main theorem is given in §3.

The main results of §§2 and 3 are contained in the author’s doctoral dis-
sertation at the University of Chicago under Arunas Liulevicius, to whom grateful
acknowledgement is made for his time and helpful suggestions.

1. Preliminaries; statement of results. This section outlines the algebraic
constructions needed to construct the spectral sequence of §2 and to introduce
the main theorem.

Let F be a field. An algebra A will be a positively graded, augmented, as-
sociative F-algebra. Let A denote the augmentation ideal of 4. Let B4, 4) =
A ® A° ® A, where 4° is the s-fold tensor product of 4. Form the 2-sided bar
construction [10] B(4, 4) = Z,, (B,(4, A) and let 3 denote the standard bound-
ary map. In all that follows the degree of an element refers to its total degree.

Let B(4) = F ®, B(A4, A) ®, F with induced boundary 3 and let C(4) =
B(A)* with coboundary & = (3)*. Recall that C(4) = (4*)" and that C(4) is a
differential algebra under the cup-product

(l*l) [a1| e Iak] [ﬁl e ﬂ]] = [a1| e laklﬁll e lﬁ[];
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236 RONALD MING
that is, for @, § € C(4) we have
(12) 5(af) = 5(@)B + (—1)%E *ad(p).

If M is a positively graded left A-module, let B(F, M)=F®, B(4,A)®, M
have induced boundary 3, and let C(F, M) = B(F, M)* have coboundary 5,, =
5;';,. Then C(F, M) is a differential C(4)-module under the cup-product, that is
1.3) Sy@ BON=5(0) B® N+ (1% 5,3 N

where a, g € C(4), \ € M*.
The cup-product on C(4) induces a product map on H**(4) = Ext%*(F, F)
= H,,(C(A)) and a structure map

H'(A) ® Ext$;"(M, F) — Ext§to 17
both structures are called Yoneda products.

Hereafter A denotes the mod 2 Steenrod algebra.
To compute ﬁ*(BO(n)), we have the Adams spectral sequence

(14) E, = Ext,(H*(BP; Z,) ® H*BO(®); Z,), Z,) = BP,(BO(n)) ® I,
where I, denotes the 2-adic integers. We have [4]
@1.5) H*(BP; Z,) = AJAQq» Q4> -++)

where the Q; € 4 are defined by Milnor [11]; recall that Q, = Sq* and Q, =
[0, Sq2']. Let E= A(Qy, 0y, ---), where A denotes exterior algebra over
Z,, then H*(BP; Z,) = A ®; Z,, so by a standard change of rings theorem [7]

(1.6)  E, = Ext(H*(BO(); Z,), Z,) = Extg (Z,, H,(BO(); Z,)).

Here we write E, for Hom(E, Z,) following Milnor’s convention since E,,
occurs in the context of homology. The second Ext of (1.6) is one of E,-comod-
ules; see Adams [3].

Since E is a Hopf algebra, so is E,,, which is an exterior algebra over Z, on
generators B, , B,, ... which form a dual basis to Q,, @, ... respectively.

We have [8]

B (BO®); 2,) = H(MO®); Z,) © H,(BO( = 1);2,)

As A -comodules. The first summand may be described as follows: let MO
denote the Thom spectrum for the orthogonal groups, then

H(M0;Z,) = Z,[by, by, ...]

where b; € H(MO; Z,) is the image of x,,, € H;,;(RP”; Z,) under the com-
posite
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H,,,(RP™; Z,) = H,, (MO(1); Z,) — H(MO; Z,).

The subgroup 17*(M0(n); Z,) is the span of monomials in the b, of degree < n.
The coaction map [8]
1.7 k,: H(MO; Z,) — E, ® H(MO; Z,)
is a ring homomorphism given on generators by
(1.8) Peb2m) = 1@ bypyy  8ybypy—y) = g.; B ® by st

The cohomology of E, H**(E), is the polynomial algebra Z, [q,, q;, ...]
where g, € H12 -1,

Let E(m) = A(Qy» - .- » 0,,)- Let M = M(n) denote either H *BO(n); Z,)
or i *(MO(n); Z,). The main result states:

THEOREM 1.9. Under the Yoneda product, Extg(M, Z,) is a free
2,145 4p 41> -+ -1-module on Extg, _1\(M, Z,). Hence the E,-term in the
mod 2 Adams spectral sequence of éﬁ,(BO(n)) is given by:

Ey 2314y pyys -] ® Extg,_ o (H*BO(M); Z,), Z,).

2. A change of rings spectral sequence with products. The program for
the proof of Theorem 1.9 is to show

Q1) Exte(yM, 2,) = 2, [4,, ... ,q,] ® Extg,_,,(M, Z,)

for r > n. For this purpose we use a spectral sequence of Cartan and Eilenberg
[S] to which we have added the structure of Yoneda products.

Let ¢: § — A be a homomorphism of algebras in the sense of §1, that is
o has degree zero and commutes with the augmentations. The map g is called
(left) normal if p(S)A is a left ideal of A. If ¢ is normal, 4/p(S)4 = F ® A
is an algebra.

THEOREM 2.2. Let ¢: S — A be a left normal homomorphism of algebras
such that A is projective as a left S-module. Let T = F ®g A. Let M be a left
A-module and C a left T-module. Then there is a spectral sequence

(22) Ext}(Tor3(F, M), C) = Ext5 (M, C).

Here A and M are S-modules through ¢, and C is an 4-module through the
projection m: A — A/p(S)A = T. The left T-operations on Tor®(F, M) are in-
duced by left multiplication in T through the isomorphism

23) TorS(F, M) = Tor4(F ®; 4, M) = Tor4(T, M).

The outer Ext may be computed as one of T*-comodules, so that
4 E, = Ext;’. «(C*, Ext{(M, F)).
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Note that E2*™ may be regarded as the subcomodule of T"*-primitives of
Extg (M, F), and it will follow from the construction that the edge homomor-
phism

ExtT'(M, F) — E™C EJ™ C—s ExtT(M, F)
coincides with the induced map Ext (M, F).

To form the products, consider the case C = F. Note that H*(4) acts on

Extg(M, F) through H*(yp), and so induces a structure map

u
H'(4) ® ED9 — EDA*s,
On the other hand, by (2.4) the Yoneda product gives a structure map

H(T) ® Eg.q _Fiz_’ Egﬂ.q‘

In the theorems below, let FP denote the pth filtration of Ext, (M, F) in
the spectral sequence and let

pp: FP — FP[FP*+1 = EP
be the projection.

THEOREM 2.5. The spectral sequence of Theorem 2.2 with C = F admits
structure maps

A
H(A) ® EP9 —— EP*S,  1<r<ee,

such that:

(1) d,: EP:9 — EPtna=r*1 s g left (graded) H*(A)-module homomor-
phism;

(2) N, is induced from \, by passing to subquotients;

€)] >‘2 = M5

(4) the following diagram commutes, where Y denotes the restriction of
the Yoneda product map to H°(A) ® FP:

H(4) ® FP —s FP

(2‘6) 1 ® Pp pp
H%(4) ® E, —— EP,
THEOREM 2.7. The spectral sequence of Theorem 2.2 with C = F admits
structure maps ]
HYT) ® EP9 — > EP+s4, 1 <r<eo,
such that:
(1) d, is a left (graded) H*(T)-module homomorphism:
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(2) 6,,, is induced from 8, by passing to subquotients;

3) 0, =uy;

(4) the following diagram commutes, where Y' denotes the restriction of
the composite

HYT) ® Ext, (M, F) LD 2L, paay @ Ext, (M, F) — Ext, (M, F)

to H(T) ® FP:
’
H(T) ® FP _Z_, FPts
(2-8) l ® ppl lpp-,-s
HS(T) ® Eﬁ ..?.‘L; E£+s
Theorem 2.2 is the analog of Theorem 6.1 (1a) of Cartan and Eilenberg
[S, p. 349] with Tor” replaced by Extp. If products are not required, the con-
struction in the proof of (2.5) carries over with trivial modifications for Ext, (M, C),
s0 a separate proof will be omitted.
For the proof of (2.5), let X = B(4, M) = B(4, A) ®, M. Define ¢: X —
Mbye(@la, |+ +la]m)=0if s> 1and e@[ ]m)=am. Then X witheisa
free A-resolution of M. Let

d

0._.>F_n>Y°—)Yl—)o'o

be a resolution of F by bigraded, injective T-modules. In assigning degrees of
maps we follow the usual convention Y*! = Y_, _;- Form the sum Hom,(X, Y)
= 2,'1Hom L, (X, Y/) and define coboundaries

5: Hom,(X,, Y') > Hom (X, ,, Y')

d: Hom,(X,, Y') = Hom (X, Y/*1)
by

GNE) = CDH@Yx),  @NE) =d(fK)
where 8), =3 ®, land degf=—(s +s' + ¢t + ) if £ X, , — Y.
With this definition the squares
Hom, (X;.,, Y') ~2> Hom, (X,y.,, Y/*1)
8 L)
HomA(Xp Y’) ‘_i—’ HomA(Xi’ Yj+l)

anticommute, so that Hom (X, Y) is a bicomplex. The total differential A =
6 + d makes Hom (X, Y) into a cochain complex.
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The bicomplex Hom, (X, Y) has row and column filtrations,

GPHom,(X, Y)= Y Hom,(X, Y/,
i>p,j

FPHom, (X, Y)= 3 Hom,(X, Y).
i»p,i

The row filtration gives a spectral sequence with
ER? = H,(H (Hom, (X, Y); d); 5).
Since the X are A-free, the rows are acyclic, so that

) Hom, (X, F), q=0,
Hq(HomA & 1id)= 10, q¥0,
and hence

p =
B = g-w. M. a=o,

q#0.

Thus the spectral sequence of the row filtration collapses with trivial extensions
and identifies H,(Hom (X, Y); A) with Ext,(M, F). We say x € FPExt,(M, F)
if it has a representing cocycle in FP Hom , (X, Y).

The spectral sequence of Theorem 2.2.is the one corresponding to the col-
umn filtration FP. Its E, term will be identified in the form (2.4). Define a map

7: Hom (X, YP) — Homz..(Y?*, Homg(X,, F))
by
Y(F)(Y*) = (~1)BS dBY 2
We have

Eg»q = Hp(Hq(HomA(JY’ Y); 8); d)’

Note that X with augmentation € is a projective S-resolution of M, by the
hypothesis of the S-action on A. Thus the homology of Homg(X, F) with the
induced coboundary is Extg(M, F). Since Y?® is a projective T*-comodaule, it is
easily verified that 7y induces an isomorphism

H,(Hom, (X, Y); 8) = Hom.,(Y?", Ext{(M, F)).

Hence E§'? = Extf, (F, ExtI(M, F)).
For the products, we use an equivalent formulation of the bicomplex. Let
« be the composite

@* @ M*® Y %5 Hom(A* ® M, YY)
= Hom,(4 ® 4' ® M, Y/) = Hom,(X,, Y')
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where

@@*® m*® y),a @ m) = (-1 (@*® m*,a @ m)y,

p = deg(@a*® m*),

and ( , ) is the dual pairing.

We have commutative diagrams

@'Y+ @ M* ® ¥/ = Hom (X, ,, Y))
(2.9) 5y ® 1I 5
(@* ® M*® Y —> Hom,(X,, Y’)
@+ ® M* ® YI*! -2 Hom, (X, YI*?)
(2.10) 1®d d
(1*) ® M*® Y/ —=— Hom, (X, Y’)

so that the bicomplex (Hom , (X, Y), 8, d, A) may be replaced by (C(F, M) ®
Y,8',d', A)where §' =8, ® 1,d'=1® dand A' = §' + d’ with the usual
sign conventions.

Now C(F, M) ® Y is a left differential C(4)-module with respect to the
cup product and each of its differentials; that is, if a € C(4), b EC(F, M) ® Y
we have

8'(ab) = 8(a)b + (-1)9%82a8'(b),  d'(ab) = (~1)%%%ad'(b)

where & is the coboundary in C(A4).

In particular the identification of Ext, (M, F) with H,(Hom (X, Y); A) =
H(C(F, M) ® Y; A") given by the row spectral sequence is an H*(4)-module

homomorphism. Suppose # € C(F, M) is a cocycle identified with a cocycle
Za; of C(F, M) ® Y, then

n'(h) =2, = A'(w) for some w € C(F, M) ® Y,

where n': C(F, M) — C(F, M) ® Y° corresponds to n, under the isomorphism
a. If z € C(4) is a cocycle, then

A'((-1)%8 2 2w) = 2A'(w) = 1'(zh) - z(z a,.)

so that zh is identified with 2(Z«;).

If z € C(A) is a cocycle, its action on C(F, M) ® Y commutes in the
graded sense with the coboundaries, and it clearly preserves filtration, so the cup-
product action induces the structure maps A, of Theorem 2.5. In particular the
differentials are left graded H*(4)-module homomorphisms.

To identify the product on E,, suppose f: A ® A9 @ M — F represents
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x € Ext{(M, F) and g: A — F represents z € H(4), then z acts on x through
H*(p), and zx is represented by g * f, where

g2 f@®d ® a") = (-1)de8 fdee(@’®a") gz @ 2') f(a")

for a' € 45, a" € A9. We have for z € C(4), w € C(F, M) ® Y, va(zw) =
z * ya(w) from which it follows that A, = u,. This completes (2.5).

COROLLARY 2.11. Let A =S ® Tand let e: T — F be the augmentation.
Then H*(S) acts on the spectral sequence by the structure maps \,(1 ® e)*. For
r = 2 this action is induced on Ext., from the Yoneda product.

We note that the maps A, annihilate the image of H*(T) ® E, in H*(4) ®
E, for r > 2 since H*(A) acts on Extg(M, F) through H*(p). Thus the structure
maps 0, are needed to “detect” the action of H*(T).

For the proof of (2.7), it will be convenient to describe the Yoneda products
in terms of anticommutative diagrams. Let N be a T-module and let Y be the
injective resolution used in (2.5), then an element x € Ext;’.(N, F) is represented
by a cocycle f: N— YP, Letg: F— Y9 represent z € H4(T). Form the anti-
commutative diagram:

N

f

(2.12) 0—>F—>Y'—>yl— . e —YP

N

Y9 — Y9t .00 — yatp

Then zx is represented by (— 1)3¢8fdee g Py,
There is an analogous construction on the bicomplex Hom (X, Y).

LEMMA 2.13. Suppose ZP23f, f;: X, — YP+97! is a cocycle representing
x € Exti*"(M, F). Suppose g: F —> Y" represents z € H'(T). Then we may
construct the top squares in the following anticommutative diagram since Zf; is
a cocycle, and the bottom since the Y/ are injective:

04—M<—X0<——~--<-—Xq<-—xq+l<—---<—Yq+p

1| A lf,+,\f
YP e e—sre e YP — YP 1 e — YO L Fe—0

S

Yp+q+r(__.,,‘_yp+r‘_yp+r-l —cere—Y"

Then zx is represented by (— 1)3¢82 desxggp*a=if

ProOF. By the identification of H, (Hom, (X, Y); A) with Ext (M, F)
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using the row spectral sequence (equivalently, by a chain homotopy argument)
there exist f;* X,_; — YP*9~/ (j=1,...,p+q).f: X p+q — F such that
Zf;—nf = AZf}). Then

A((— l)desngp+q-t'f;) = Z gp+q-if; -gf

so ZgP*97If, represents the same class as gf.

Now extend (2.14) to the right as follows: Let 0 «— F«—Z; «— Z, «—+*
be a T-projective resolution of F and construct A-maps h;: X, . _; — Z; to
make the top squares of (2.15) below anticommute, and by a chain homotopy
argument construct g'', g’ so that A(Zg'") = ge, — ng":

Xp+q (—Xp+q+l (_Xp-t-q-r—l Xp+q+r
J
/ hO hl lhr—l hr
(2.15) 0 < Zy « Zy e, L,

/
=
_~
%
N‘
Tooy,
L
R~

Y Yl e— Y2 e = p0 Mg

Then A(Zg" h_))=gf- gh,, so gf represents the same class as g h,. The
result follows.

To show that the differentials are left H*(T")-maps, consider the diagram:
1 2

—r+1 /p D p/rp+1 D +1 +r
Hppqoi (P4 PPy —S H  (FP/FPYY)—Do g +q+l(p [FPTT)

D,,, j
Hp+q+l(F D+ l/Fp+r+ l)
1

i

(2.16)

Hp+q+l(Fp+7Fp+r+ l)

The maps are those of the exact sequences of the respective triples.

By a standard construction of the spectral sequence of a filtered chain com-
plex [9], we have EP*9 = Ker D’/Im Dj}. If x € Ker D? represents X € EP9,
then d,(¥) = y where i(y) = D, ,(x). In turn x is represented by a map f
X, — Y? with 8f =0, and D, ,(x) is represented by df,: X, — YP*1 By
exactness D, () € Im i, so there exist f,_: ;= Y""" Gi=0o0,...,n,
Fymreti Xq_pyq = YP*7 with A(zf'_,) f o—r+1 —dfy. Let z EHY(T) be
represented by & &°, ..., gP asin (2.13), then zx is represented by

(_ l)deg z deg xgpfq .



244 RONALD MING

But
A(Zg" *’.f{,_,) = (1) 2gPtrf Ly —d(ePr,),
s0 d,(zx) = (—1)%8%2zd,(x).
This completes (1) of (2.7). Now (2) and (3) are clear, and (4) follows

from (2.13) since p,([Zf;]) = [£,].
The following result, needed for §3, may be established by a simple diagram.

PROPOSITION 2.17. Let p denote the T*-coaction on Extg(M, F) in the
change of rings spectral sequence, and let Y denote Yoneda product and t the
twist map. The following diagram commutes:

“8/"' H*(S) ® T* ® Ext(M, F)
H*(S) ® Extg(M, F) lt ®1

Y T* ® H*(S) ® Extg(M, F)

H T* ® Extg(M, F)

3. The factorization theorem. This section is devoted to the proof of
Theorem 1.9. For purposes of induction we prove the more general form below.

For s, t nonnegative integers define E(s, £) = A(Qy, ... , Q) if ¢ > s and
E(s, t) = Z, for t <s. Let E(s, ) = U54E(s, 1). Let M = M(n) be as in (1.9).

THEOREM 3.1. With the notation as above, there is an isomorphism
Extp(s, )M Z5) 2 2y (4100 dnasirs -] © Extg(gnis_1) M Z,)
0f Z,[4p 4 Anss+1° ° * 1 modules, where the action on Extg sy i trivial.

The proof of (3.1) relies on the spectral sequence of §2, taking as ¢ the
inclusion E(s, ) C E(s, t + 1). Thus

(3.2) E'g'q = EtiA(ﬂt.'.z)(Zz’ Extg(s' t)(M’ Zz)).
The argument will show that the coaction
(33) Extge,nM, Z;) = A (Bre2) ® Extp(, M, Z,)

is trivial for t = n + s — 1; it follows that
Ej = H*(A\(Qy+1)) ® Extg(, (M, Z;)
= Zz [qt-“] ® EXtE(,',)(M Zz) fort=2n+s-1.

It will follow from the succeeding arguments that the spectral sequence
collapses. The abelian group extensions are trivial since the Ext groups are vector
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spaces, and the action of ¢, , corresponds on both sides, so the theorem follows.
The required triviality of (3.3) will be established in two steps.

LEMMA 3.4. The restriction of the coaction (3.3) to Exty(, (M, Z,) is
trivisl fort=2n+s-—1.

LemMA 3.5. Extg, oM, Z,) is decomposable as an H*(E(s, t))-module
in terms of Extg . (M, Z,).

The triviality of (3.3) follows by (2.17).

In what follows, all coefficients in the homology or cohomology of a space
are in Z,.

We prove (3.4) and (3.5) for M(n) = H*(BO(n)); the results for H*(MO(n))
follow since the latter is a direct summand of & *(BO(n)) as E(s, t)-modules.

Turning to the proof of (3.4), consider the identifications

(36) H*(MO(n)) C H*(BO(n)) @ H*(BD()),

where D(n) is the set of diagonal matrices in O(n). The first inclusion is the
Thom isomorphism which identifies H*(MO(n)) with the ideal generated by w),
in H*(BO(n)) = Z, [w,, ... ,w,]. The second is induced by the inclusion i:
D(n) C O(n). Recall that (Bi)* is a monomorphism whose image is the algebra
of symmetric polynomials in H*BD(n)) =Z, [V, ..., V,], and (Bi)*(w)) =
0j(Vy;...,V,). Define the “exterior degree” of a monomial in the ¥ to be the
number of ¥; which occur to an odd power. Similarly define the exterior degree
of a polynomial if all of its monomial terms have a common exterior degree.

Dually, H,(BO(n)) has a basis Xp X fori; >0 (where x, =1 in the
multiplication on H,(B0O)) or equivalently Xp *0t Xy 1<k<n i>1,where
0#x; € H,-(RP“). Define the exterior degree of Xp  *0c Xy as the number of
i; which are odd. Also note that the image of H,(BO(n — 1)) in H,(BO(n)) is the
span of monomials Xt Xy, fork<n-1.

Write M,, for Hom(M, Z,) and define D;: M, — M,, to be the coefficient
of B, in the coaction over E,. Note D, is a derivation with respect to the multi-
plication on H(BO).

The triviality of the coaction (3.3) for # > n + s — 1 may now be restated:
if x €M(n), and Dy, ,(x) =0, ..., D, ,(x) = 0, then D, ,(x) = 0. Since
M(n), C M(n + 1), it will be sufficient to show

LemMA 3.7. If x € M(n), and Dy, ,(x) =0, ..., D, ,(x) = 0, then
Dyyps1(*)=0.

For use in (3.5) we state a more general version.

LEMMA 3.8. Suppose x € M(n), is in the span of monomials of exterior
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degree <k — 1, and suppose D, ,(x) = 0, ..., Dy ;(x) = 0. Then Dy, ,(x)=0.

Note that (3.8) implies (3.7) by taking k = n, since monomials of exterior
degree n in M(n), are in fact primitive.

Lemma 3.8 will be proved by dualizing to take advantage of the ring struc-
ture of H*(BD(n)). We have

LEMMA 39. If y € H*(BO(n)) C H*(BD(n)) is spanned by monomials of
exterior degree < k, then Qg )y = stk IQ, Y, where y, € 7 *(BO(n)).

=8

Next recall that the Q, are primitive in the Steenrod algebra [11] and hence
act as (mod 2) derivations, so they commute with squared elements. Now
H*(BD(n)) is a free module over its subring Z, [V2, ..., V3] by multiplication,
and the indecomposables of the form ¥; <+« V; may be identified, after re-
numbering, with the Thom class u, € HP(MO(pﬁ. We have

PROPOSITION 3.10. To establish (3.9) it suffices to consider the case where
y=u, € H*MO(K)) and Vs oo s Vsrk—1 € H*(MO(K)) have exterior degree k.

To prove (3.10), let €,,,: S! A MO(m) — MO(m + 1) denote the mth
structure map of the Thom spectrum MO, and let T be the cohomology suspen-
sion. Then the composite

Hat (o (m + 1)) _m*, ga+1(st A MO(m)) «-_E_—ﬁQ(MO(m))

is an E-homomorphism, maps u,, , ; to u,,, and reduces the exterior degree of
each monomial by 1. Thus (3.9) for k implies its analog for each p <k.

Next note that Q; reduces the exterior degree of each monomial by 1, so
0, + kU has exterior degree k — 1, and the y; may be assumed to have exterior
degree k.

Since y is symmetric and spanned by monomials of exterior degree <k it
may be written

K
y=x Y SedVeay Ve
p=1 o(1)<***<0a(p)
where 0 €S, and fi, = f;(V2(1)s - - - » Va(ny)- By the first part of the proof, we
may write

stk-1
QuiVi o Vo= 3 QAW n V)

=1
let yf, =y?(Vy(1ys - - - » Vo(p))- BY the above remarks,
s+k—1 K

p=1 a(1)<+*+<0(p)
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It remains to show the polynomials in parentheses are symmetric so that they
represent elements y,; € H*BO(n)).

By the symmetry of y each sum Eofpo a(1) * Vo) for ﬁxedp is sym-
metric and so consists of the sum of the terms in the orbit of fpeVy* * V, where
e €S, is the identity. Now y? € H *(MO(p)) has exterior degree p so may be
written y2 = gP(x2, ..., xg)V, *** V, where g is symmetric in its p indeter-
minates. Thus if o fixes f, ¥y *  * V, it also fixes f,, ¥, so (writing C for
stabilizer) Cfpe ViV, C Cfpe vE, hence

n
el <18, Cp iy | = (p)

On the other hand Jpe yP, has at least the (;) elements in its orbit corre-
sponding to the combinations of indeterminates. Thus Z fpo yFP is symmetric,
completing (3.10).

To prove the condition of (3.10) it will be convenient to use the notation
of §1, where H,(MO(k)) is the span of monomials b% = 551552 « +  of degree
<k IfE=(e,e,,...)let |E| = Ze; and grade bF = Zie;, that is bF is assigned
its “stable grade.” Note that 1 € Hy(MO) is the unique element dual to each
Thom class u,. If we form a minimal resolution

IS, : C

n fpe

0— H MOK) —> E(s, s + k), ® V—>+++

then the existence of the relation of (3.10) is equivalent to the statement f .,
® 1, & Im ¢, where (1) = 1 ® 1,,. In particular it is not necessary to exhibit
the elements y,.

Denote by H C V the span of images of monomials in b,, b,, ..., b,r, ...
and identify elements of H by their polynomial pre-images. Let h: V — H be
the projection induced through € from the one in H «MO(k)) which preserves
monomials in the b,7 and annihilates all others. Let €' = (1 ® h)e, then by the
coaction formula (1.8) it will suffice to show B, ., ® 1 & Im €'l,,, where
wcH +(MO(K)) (with stable grading) is the span of monomials containing only
one factor b; of odd degree.

PROPOSITION 3.11. Let y = by, 16" € W,y 11, then €() is either
zero or the sum of precisely two “monomials,” i.e. terms of the form Bi ®z
where z is @ monomial of H.

For the proof, suppose €'(y) # 0, then b% € H. Let M denote the term
in €() containing the §; of highest grade; it has the form g; ® b% or g, ® b,rb~.
If M =B, ® bE, then D(b,,,_,) =1,502m -1 =2/ - 1. Since
D(b,,,_1) € H, 2m — 29 must be zero or a positive power of 2;ie.q =i or
q=i-1. Thusfori=2s+2,s+1<i-1,i<s+k+ 1 and (3.11) holds.
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Suppose i = s + 1, then |E| = (25t*¥+1 - 1) — (25+! - 1) 50 a(IE]) > Kk, where
a denotes the number of 1’s in the dyadic expansion. Thus deg b >k, degy >
k + 1, a contradiction since y € )24 LMO(K)).

If M =p,®b b then r 1, otherwise the term f;, , ® 5° would also
appear, since i # s + k + 1 by the grade of y. Now r <s + k + 1 by the grade
of y,50 € () =4 ® bzr bE+6,® bzi bF and (3.11) holds, provided r >s + 1.

Assume r < 5. Note i <s + k by the grade of y. Then

2s+k+l -1> 'El = (2s+k+l - 1) _(2m - l)

= 2s+k+l __21 - > 2s+k+1 _2s+k -7

—_ 2s+k - > 2s+k - 23’
5o a(|E[) = (25t — 2%) = k. Thus deg bF >k, so deg y >k + 1, a contradic-
tion.

COROLLARY 3.12. Every element of Im €' IW is the sum of an even number
of “monomials.” In particular By, ., ® 1 ¢ Im¢€'.

This completes (3.11), (3.9) and (3.4).

The proof of (3.5) is by induction on ¢. For ¢t <s we have E(s, ) = Z, so
the result holds trivially.

Assume (3.5) for ¢ and all s = 0; this requires only finitely many steps.
Apply the spectral sequence (3.2). By (2.5) and (2.12) it has a module structure
over H*(E(s, t)) = Z,[q,, ... » q,] which is induced from the Yoneda product
on Extg, (M, Z,) in E,. It also has the structure {0,} over Z,[q,4,]. By
naturality these structures commute and induce a structure over H*(E(s, ¢ + 1))
=2Z,[45 ... »q,4,] which restricts to the given ones. We show E), is decom-
posable over H*(E(s, t + 1)).

Let T = A (8,4 ,)- By the cobar construction, Ext,..(Z,, N) is decomposable
over H*(T) in terms of Ext., for any T*-comodule N. Thus E, is decomposable
over H*(T) in terms of

By the inductive hypothesis, any x € Extg,, ,) is decomposable over H*(E(s, 1))
in terms of x; € Extg ,. The x;, however, may not lie in

Ext3..(Z;, Ext}(, n(M, Z,)) = EXO.

LEMMA 3.13. Let z € ExtR, (M, Z,). Then z may be written z =z, +
z, where z, € Ext} o, 2, € Bxtgo 11y CExt}( yand qz, =0,...,q.z,
=0.

Using (3.13) we can replace the X; by x; € Ext}, .., since the terms cor-
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responding to z, are annihilated by H*(E(s, ). Note that the x] are permanent
cycles. The differentials commute (in the graded sense) with the composite action
of H*(E(s, t + 1)) on E, so the spectral sequence collapses. The abelian group
extensions are trivial and the spectral sequence preserves products in the sense of
(2.5) and (2.7), so Extg (s, ¢+ 1) is decomposable over H*(E(s, ¢ + 1)) by induc-
tion over the filtration.

To prove (3.13), write z € M(n),, = 7 «(BO(n)) in terms of the basis
{x,l R xip}, 1<p<n, i = 1, and let z, denote the sum of terms of exterior
degree <t —s. By (3.8) (w1th k=t-s+1)wehaveD,, ,(z,)=0,502, €
ExtE(s,H_l) Letz;, =z —-z,.

LEMMA 3.14. Suppose x € Ext,(, (M(n), Z,) is spanned by monomials
Xpp ot Xy, of exterior degree >t —s+ 1. Thenqx =0, ...,q,x=0in
Extgy,, ,)(M(n), Z,).

The proof will be by induction on n.

REMARK 3.15. Let s <i<tand let N be an E(s, t)-module. Examination
of a resolution shows that ¢;x = 0 in Extg, (N, Z,) if and only if there exists
YEN, withD, ,(y)=x,Di(y)=0forj=s+1,...,t+1,j#i+1.

As in (3.8) the proof will exploit ring structure, in this case the multiplica-
tion of H*(BO(n)) = Z,[w,, ... ,w,]. Let U=Z,[w2]. The Q, commute
with the multiplicative action of U, so H*(BO(n)) and M(n) = H *(BO(n)) are
E(s, £) ® U-modules. The following description of Ext? yM(n), Z,) will be used
in a spectral sequence argument.

ProOPOSITION 3.16. There is an isomorphism
f: Ext? M), Z,) — Mn-1), @ H‘(Mo(n -1)

of E(s, t)y-comodules.

For the proof, consider E(s, ¢),-maps p,: M(n), — M(n — 1),, p,: M(n),,
— 17*(M0(n)) defined by pl(x,-l oo xl,k)=x1l e Xy for k <n, Px("i, oo °x,-n)
= O;pz(x,.l ER xin) =Xyttt X pz(xil s x,k) =0fork<n (i, =1
throughout). Let A,: M(n), — M(n),, be the map dual to multiplication by w,
Then Ker A, = M(n - 1), and Ker A2 = Ext%(M(n), Z,). Thus if x € Ext?,,
pz(x) 0 $0A,p,(x) EM(n - 1),. SmceA (xi oo X; ) Xp-1" "%
(xo = 1), py(x) has the form x,h + u where h € H (MO(n 1)), u€
Ker A,. By definition of p,, u is a sum of terms Xy o0 Xy j21,s0u€
*(Mo(n)) But also u € M(n — 1),,s0 u = 0, p,(x) = xlh Multiplication by
x, is an E(s, £),-monomorphism, so define f(x) = (p,(x), h). The inverse map
is given by (», 2) >y + x,2.
For the proof of (3.14), note that D, reduces the exterior degree of each
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termx, *cc X, by 1 so we may assume x of (3.14) has homogeneous exterior
degree ¢ =t —s + 1. For n =1 the highest exterior degree that can occur is 1,
sot =0. Fors>0, E(s, 0) = Z, so the result is trivial. For s =0, if D,(x) =
0,x€ fi‘(BO(l)) = I?'*(RP”) has exterior degree 1, so x = x,,_, for some 7,
and x = D,(x,,). Thus gq4x = 0 by (3.15).

Assume (3.14) for M(n — 1) and suppose x € Ext, ,,(M(n), Z,) has ex-
terior degree ¢ >t —s + 1 and qx # 0 for some i, s <i <t Let m be the
largest integer 7 such that A2(g,x) # 0, then

u = AM™(q,x) € Ext,,(Z,, ExtL(, n(M(n), Z,)),

which is £9'! in the change of rings spectral sequence converging to Extg, ey
No differentials can hit u, and the only possible differential on E*! is

d,: EQ! — E2 = Ext?(Tor5 ¢)(Z,, M),Z;)

and E3'® = O since Uis a PID. Let 0 # u' € Extg(; @y represent the class of
uinE,.

CLamm. Extg(, @u(M(n), Z,)) is decomposable by Yoneda products over
H*(E(s, 1) (acting by the homomorphism induced from the projection EXs, £) ®
U— E(s, 1)) in terms of Ext}_ ;) g y- We have the spectral sequence

Extg o), @a» Exty(M(n), 2,)) = il g y(M(n), Z;)

with the product structure {6,}. Since U acts freely on M(n), E5'®> = 0 for

b # 0 and the spectral sequence collapses with trivial extensions. By the induc-
tive hypothesis, (3.14) holds for H*(BO(n - 1)) and thus for H*(MO(n - 1)), so
by (3.16) E, = E, is decomposable, and the claim follows.

Thus u’ = Z!_.q,2,, 2z, €Ext}, g y» and by the coaction formula (1.8)
we may assume each 2, has exterior degree q. Let j: E(s, £) — E(s, ) ® Ube
the inclusion, then 0 # u = j*(u') = Z!_ q,i*(z,), so for some z,, q,j*(z,) # 0
in Extg ;) (M, Z,), where w = j*(z,) has exterior degree q and A2(w) = 0.
This will be shown to be impossible if g = ¢ —s + 1.

Let y = p,(w), z = p,(w) where p,, p, are as in (3.16). Then y €
M(n - 1), has exterior degree g, so by induction g,y =0, ...,q,y =0 in
ExtE(,',)(M(n —1),Z,). By naturality the images of the q;y are zero in
Extgs, ,)(M(n), Z,). -

As in (3.16), z = x, h, where h € H ,(MO(n — 1)) has exterior degree ¢ — 1
=2(t-s+1)-1=¢t-(s+1)+ 1. By induction on n, we have q,, ,h =0,

«»qh=0in
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where the inclusion is induced by the projection of M(n — 1) onto the direct
summand H*(MO(n - 1)). Thus by (3.15) there exist z;., y, ..., 2, El?;(MO(n -1)
with D, ,(z)=h,Dfz)=0forj=s+2,...,t+1,j#i+1. Let

z;+l =x23+lh GM(n)‘:
z, =x,z;, + X s+10541@) EM(n),, k=s+2,...,t+1

Recall that the D; are derivations satisfying D,D; = D;D;, D} = 0. By an easy
calculation,
D) =2 i=s,...,1,

Diz) =0, j=s+l,...,t+1j#i+]l.

Thus qw =q;y + q;z=01in ExtE(s',)(M(n), Z,), contradicting q,w # 0. This
completes (3.14), (3.5) and (3.1).

Note. The last calculation relies on the fact that D(x .. ;) = 0 for i >
s + 1, which requires the inductive step to treat the lowest cﬁmensional generator,
q,. This is the reason for the generality of (3.1).

We note in closing that Theorem 3.1 is the best possible result of its type,
ie.n + s —1 cannot be replaced by n + s — 2. Let

X=Dgy Dgyp e Ds+n—1("23+1’ * x23+n)‘
Then x € Ext3; , 4o (H*BOM); Z,), Z,), but D, , ,(x) = x7 # 0,50 x ¢
E"tg‘(s,n +s-1)°
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