YONEDA PRODUCTS IN THE CARTAN-EILENBERG CHANGE OF RINGS SPECTRAL SEQUENCE WITH APPLICATIONS TO $BP_{\star}(BO(n))$

BY

RONALD MING(1)

ABSTRACT. Yoneda product structure is defined on a Cartan-Eilenberg change of rings spectral sequence. Application is made to a factorization theorem for the E_2 -term of the Adams spectral sequence for Brown-Peterson homology of the classifying spaces BO(n).

This paper gives an algebraic decomposition of the E_2 -term of the Adams spectral sequence of the reduced mod 2 Brown-Peterson homology [3], [4] of the classifying space BO(n).

The first section gives algebraic preliminaries and the statement of the main result. In §2 Yoneda products are introduced in a Cartan-Eilenberg change of rings spectral sequence [5] used to compute the required Ext module. The proof of the main theorem is given in §3.

The main results of §§2 and 3 are contained in the author's doctoral dissertation at the University of Chicago under Arunas Liulevicius, to whom grateful acknowledgement is made for his time and helpful suggestions.

1. Preliminaries; statement of results. This section outlines the algebraic constructions needed to construct the spectral sequence of §2 and to introduce the main theorem.

Let F be a field. An algebra A will be a positively graded, augmented, associative F-algebra. Let \overline{A} denote the augmentation ideal of A. Let $B_s(A, A) = A \otimes \overline{A}^s \otimes A$, where \overline{A}^s is the s-fold tensor product of \overline{A} . Form the 2-sided bar construction [10] $B(A, A) = \sum_{s>0} B_s(A, A)$ and let ∂ denote the standard boundary map. In all that follows the *degree* of an element refers to its total degree.

Let $\overline{B}(A) = F \otimes_A B(A, A) \otimes_A F$ with induced boundary $\overline{\partial}$ and let $\overline{C}(A) = \overline{B}(A)^*$ with coboundary $\overline{\delta} = (\overline{\partial})^*$. Recall that $\overline{C}_s(A) = (\overline{A}^*)^s$ and that $\overline{C}(A)$ is a differential algebra under the cup-product

$$(1.1) \qquad [\alpha_1 | \cdots | \alpha_k] [\beta_1 \cdots \beta_l] = [\alpha_1 | \cdots | \alpha_k | \beta_1 | \cdots | \beta_l];$$

Received by the editors January 10, 1975.

AMS (MOS) subject classifications (1970). Primary 55H15; Secondary 18G40.

⁽¹⁾ The author was supported in his graduate study by a Traineeship of the National Science Foundation.

that is, for α , $\beta \in \overline{C}(A)$ we have

(1.2)
$$\overline{\delta}(\alpha\beta) = \overline{\delta}(\alpha)\beta + (-1)^{\deg \alpha}\alpha\overline{\delta}(\beta).$$

If M is a positively graded left A-module, let $B(F,M)=F\otimes_A B(A,A)\otimes_A M$ have induced boundary $\overline{\partial}_M$ and let $C(F,M)=B(F,M)^*$ have coboundary $\overline{\delta}_M=\overline{\partial}_M^*$. Then C(F,M) is a differential $\overline{C}(A)$ -module under the cup-product, that is

(1.3)
$$\overline{\delta}_{M}(\alpha \cdot \beta \otimes \lambda) = \overline{\delta}(\alpha) \cdot (\beta \otimes \lambda) + (-1)^{\deg \alpha} \alpha \cdot \overline{\delta}_{M}(\beta \otimes \lambda)$$
 where $\alpha, \beta \in \overline{C}(A), \lambda \in M^{*}$.

The cup-product on $\overline{C}(A)$ induces a product map on $H^{**}(A) = \operatorname{Ext}_A^{**}(F, F) = H_{**}(\overline{C}(A))$ and a structure map

$$H^{s,t}(A) \otimes \operatorname{Ext}_A^{s',t'}(M,F) \longrightarrow \operatorname{Ext}_A^{s+s',t+t'};$$

both structures are called Yoneda products.

Hereafter A denotes the mod 2 Steenrod algebra.

To compute $\widetilde{BP}_{*}(BO(n))$, we have the Adams spectral sequence

$$(1.4) \ E_2 = \operatorname{Ext}_A(H^*(BP; Z_2) \otimes \widetilde{H}^*(BO(n); Z_2), Z_2) \Rightarrow BP_*(BO(n)) \otimes I_2,$$

where I_2 denotes the 2-adic integers. We have [4]

(1.5)
$$H^*(BP; Z_2) = A/A(Q_0, Q_1, ...)$$

where the $Q_i \in A$ are defined by Milnor [11]; recall that $Q_0 = Sq^1$ and $Q_i = [Q_{i-1}, Sq^{2i}]$. Let $E = \bigwedge (Q_0, Q_1, \ldots)$, where \bigwedge denotes exterior algebra over Z_2 , then $H^*(BP; Z_2) = A \otimes_E Z_2$, so by a standard change of rings theorem [7]

$$(1.6) E_2 \cong \operatorname{Ext}_E(\widetilde{H}^*(BO(n); Z_2), Z_2) = \operatorname{Ext}_{E_*}(Z_2, \widetilde{H}_*(BO(n); Z_2)).$$

Here we write E_* for $\text{Hom}(E, Z_2)$ following Milnor's convention since E_* occurs in the context of homology. The second Ext of (1.6) is one of E_* -comodules; see Adams [3].

Since E is a Hopf algebra, so is E_* , which is an exterior algebra over Z_2 on generators β_1, β_2, \ldots which form a dual basis to Q_0, Q_1, \ldots respectively.

We have [8]

$$\widetilde{H}_{\star}(BO(n); Z_2) = \widetilde{H}_{\star}(MO(n); Z_2) \oplus \widetilde{H}_{\star}(BO(n-1); Z_2)$$

As A_* -comodules. The first summand may be described as follows: let MO denote the Thom spectrum for the orthogonal groups, then

$$H_{*}(MO; Z_{2}) = Z_{2}[b_{1}, b_{2}, \ldots]$$

where $b_i \in H_i(MO; \mathbb{Z}_2)$ is the image of $x_{i+1} \in H_{i+1}(\mathbb{RP}^{\infty}; \mathbb{Z}_2)$ under the composite

$$H_{i+1}(RP^{\infty}; Z_2) \cong H_{i+1}(MO(1); Z_2) \longrightarrow H_i(MO; Z_2).$$

The subgroup $\widetilde{H}_*(MO(n); Z_2)$ is the span of monomials in the b_i of degree $\leq n$. The coaction map [8]

is a ring homomorphism given on generators by

(1.8)
$$\mu_*(b_{2m}) = 1 \otimes b_{2m}, \quad \mu_*(b_{2m-1}) = \sum_{i \ge 0} \beta_i \otimes b_{2m-2}i.$$

The cohomology of E, $H^{**}(E)$, is the polynomial algebra $Z_2[q_0, q_1, \ldots]$ where $q_i \in H^{1,2^{i+1}-1}(E)$.

Let $E(m) = \bigwedge (Q_0, \ldots, Q_m)$. Let M = M(n) denote either $\widetilde{H}^*(BO(n); Z_2)$ or $\widetilde{H}^*(MO(n); Z_2)$. The main result states:

THEOREM 1.9. Under the Yoneda product, $\operatorname{Ext}_E(M, Z_2)$ is a free $Z_2[q_n, q_{n+1}, \ldots]$ -module on $\operatorname{Ext}_{E(n-1)}(M, Z_2)$. Hence the E_2 -term in the mod 2 Adams spectral sequence of $\widehat{BP}_{\pm}(BO(n))$ is given by:

$$E_2 \approx Z_2[q_n, q_{n+1}, \ldots] \otimes \operatorname{Ext}_{E(n-1)}(\widetilde{H}^*(BO(n); Z_2), Z_2).$$

2. A change of rings spectral sequence with products. The program for the proof of Theorem 1.9 is to show

(2.1)
$$\operatorname{Ext}_{E(r)}(M, Z_2) \cong Z_2[q_n, \dots, q_r] \otimes \operatorname{Ext}_{E(n-1)}(M, Z_2)$$

for $r \ge n$. For this purpose we use a spectral sequence of Cartan and Eilenberg [5] to which we have added the structure of Yoneda products.

Let $\varphi \colon S \longrightarrow A$ be a homomorphism of algebras in the sense of §1, that is φ has degree zero and commutes with the augmentations. The map φ is called (left) *normal* if $\varphi(\overline{S})A$ is a left ideal of A. If φ is normal, $A/\varphi(\overline{S})A \cong F \otimes_S A$ is an algebra.

THEOREM 2.2. Let $\varphi \colon S \longrightarrow A$ be a left normal homomorphism of algebras such that A is projective as a left S-module. Let $T = F \otimes_S A$. Let M be a left A-module and C a left T-module. Then there is a spectral sequence

(2.2)
$$\operatorname{Ext}_{T}^{p}(\operatorname{Tor}_{q}^{S}(F, M), C) \Rightarrow \operatorname{Ext}_{A}^{p+q}(M, C).$$

Here A and M are S-modules through φ , and C is an A-module through the projection $\pi: A \longrightarrow A/\varphi(\overline{S})A \cong T$. The left T-operations on $\operatorname{Tor}^S(F, M)$ are induced by left multiplication in T through the isomorphism

(2.3)
$$\operatorname{Tor}^{S}(F, M) \cong \operatorname{Tor}^{A}(F \otimes_{S} A, M) = \operatorname{Tor}^{A}(T, M).$$

The outer Ext may be computed as one of T^* -comodules, so that

(2.4)
$$E_2 \cong \operatorname{Ext}_{T*}^p(C^*, \operatorname{Ext}_S^q(M, F)).$$

Note that $E_2^{0,m}$ may be regarded as the subcomodule of T^* -primitives of $\operatorname{Ext}_S^m(M, F)$, and it will follow from the construction that the edge homomorphism

$$\operatorname{Ext}_{A}^{m}(M, F) \longrightarrow E_{\infty}^{0,m} \hookrightarrow E_{2}^{0,m} \hookrightarrow \operatorname{Ext}_{S}^{m}(M, F)$$

coincides with the induced map $\operatorname{Ext}_{\omega}(M, F)$.

To form the products, consider the case C = F. Note that $H^*(A)$ acts on $\operatorname{Ext}_S(M, F)$ through $H^*(\varphi)$, and so induces a structure map

$$H^s(A) \otimes E_2^{p,q} \xrightarrow{\mu_1} E_2^{p,q+s}$$
.

On the other hand, by (2.4) the Yoneda product gives a structure map

$$H^s(T) \otimes E_2^{p,q} \xrightarrow{\mu_2} E_2^{p+s,q}.$$

In the theorems below, let F^p denote the pth filtration of $\operatorname{Ext}_A(M, F)$ in the spectral sequence and let

$$\rho_p \colon F^p \longrightarrow F^p/F^{p+1} = E_\infty^p$$

be the projection.

THEOREM 2.5. The spectral sequence of Theorem 2.2 with C = F admits structure maps

$$H^{s}(A) \otimes E_{r}^{p,q} \xrightarrow{\lambda_{r}} E_{r}^{p,q+s}, \quad 1 \leq r \leq \infty,$$

such that:

- (1) $d_r: E_r^{p,q} \longrightarrow E_r^{p+r,q-r+1}$ is a left (graded) $H^*(A)$ -module homomorphism;
 - (2) λ_{r+1} is induced from λ_r by passing to subquotients;
 - (3) $\lambda_2 = \mu_1$;
- (4) the following diagram commutes, where Y denotes the restriction of the Yoneda product map to $H^s(A) \otimes F^p$:

(2.6)
$$H^{s}(A) \otimes F^{p} \xrightarrow{Y} F^{p}$$

$$1 \otimes \rho_{p} \downarrow \qquad \qquad \downarrow \rho_{p}$$

$$H^{s}(A) \otimes E^{p}_{\infty} \xrightarrow{\lambda_{\infty}} E^{p}_{\infty}$$

THEOREM 2.7. The spectral sequence of Theorem 2.2 with C = F admits structure maps

$$H^{s}(T) \otimes E^{p,q} \xrightarrow{\theta_{r}} E^{p+s,q}, \quad 1 \leq r \leq \infty,$$

such that:

(1) d_r is a left (graded) $H^*(T)$ -module homomorphism:

- (2) θ_{r+1} is induced from θ_r by passing to subquotients;
- (3) $\theta_2 = \mu_2$;
- (4) the following diagram commutes, where Y' denotes the restriction of the composite

$$H^*(T) \otimes \operatorname{Ext}_A(M, F) \xrightarrow{H^*(\pi) \otimes 1} H^*(A) \otimes \operatorname{Ext}_A(M, F) \longrightarrow \operatorname{Ext}_A(M, F)$$
 to $H^s(T) \otimes F^p$:

(2.8)
$$H^{s}(T) \otimes F^{p} \xrightarrow{Y'} F^{p+s}$$

$$1 \otimes \rho_{p} \downarrow \qquad \qquad \downarrow \rho_{p+s}$$

$$H^{s}(T) \otimes E_{\infty}^{p} \xrightarrow{\theta_{\infty}} E_{\infty}^{p+s}$$

Theorem 2.2 is the analog of Theorem 6.1 (1a) of Cartan and Eilenberg [5, p. 349] with Tor^T replaced by Ext_T . If products are not required, the construction in the proof of (2.5) carries over with trivial modifications for $Ext_A(M, C)$, so a separate proof will be omitted.

For the proof of (2.5), let $X = B(A, M) = B(A, A) \otimes_A M$. Define $\epsilon: X \to M$ by $\epsilon(a[a_1 \mid \cdot \cdot \cdot \mid a_s]m) = 0$ if $s \ge 1$ and $\epsilon(a[m]m) = am$. Then X with ϵ is a free A-resolution of M. Let

$$0 \to F \xrightarrow{\eta} Y^0 \xrightarrow{\overline{d}} Y^1 \to \cdots$$

be a resolution of F by bigraded, injective T-modules. In assigning degrees of maps we follow the usual convention $Y^{s,t} = Y_{-s,-t}$. Form the sum $\operatorname{Hom}_A(X, Y) = \Sigma_{i,l} \operatorname{Hom}_A(X_i, Y^l)$ and define coboundaries

$$δ: \operatorname{Hom}_{A}(X_{i}, Y^{j}) \xrightarrow{\delta} \operatorname{Hom}_{A}(X_{i+1}, Y^{j})$$

$$d: \operatorname{Hom}_{A}(X_{i}, Y^{j}) \xrightarrow{\alpha} \operatorname{Hom}_{A}(X_{i}, Y^{j+1})$$

by

$$(\delta f)(x) = (-1)^{\deg f + 1} f(\partial_M x), \qquad (df)(x) = \overline{d}(f(x))$$

where $\partial_M = \partial \otimes_A 1$ and $\deg f = -(s + s' + t + t')$ if $f: X_{s,t} \longrightarrow Y^{s',t'}$.

With this definition the squares

anticommute, so that $\operatorname{Hom}_A(X, Y)$ is a bicomplex. The total differential $\Delta = \delta + d$ makes $\operatorname{Hom}_A(X, Y)$ into a cochain complex.

The bicomplex $Hom_A(X, Y)$ has row and column filtrations,

$$G^p \operatorname{Hom}_A(X, Y) = \sum_{i \geq p, j} \operatorname{Hom}_A(X_i, Y^j),$$

$$F^p \operatorname{Hom}_A(X, Y) = \sum_{j \geq p, i} \operatorname{Hom}_A(X_i, Y^j).$$

The row filtration gives a spectral sequence with

$$E_2^{p,q} = H_p(H_q(\text{Hom}_A(X, Y); d); \delta).$$

Since the X_i are A-free, the rows are acyclic, so that

$$H_q(\operatorname{Hom}_A(X, Y); d) = \begin{cases} \operatorname{Hom}_A(X, F), & q = 0, \\ 0, & q \neq 0, \end{cases}$$

and hence

$$E_2^{p,q} = \begin{cases} \operatorname{Ext}_A^p(M, F), & q = 0, \\ 0 & q \neq 0. \end{cases}$$

Thus the spectral sequence of the row filtration collapses with trivial extensions and identifies $H_{*}(\operatorname{Hom}_{A}(X, Y); \Delta)$ with $\operatorname{Ext}_{A}(M, F)$. We say $x \in F^{p}\operatorname{Ext}_{A}(M, F)$ if it has a representing cocycle in $F^{p}\operatorname{Hom}_{A}(X, Y)$.

The spectral sequence of Theorem 2.2. is the one corresponding to the column filtration F^p . Its E_2 term will be identified in the form (2.4). Define a map

$$\gamma \colon \operatorname{Hom}_A(X_q, Y^p) \longrightarrow \operatorname{Hom}_{T^*}(Y^{p^*}, \operatorname{Hom}_S(X_q, F))$$

by

$$\gamma(f)(y^*) = (-1)^{\deg f \deg y^*} y^* f.$$

We have

$$E_2^{p,q} = H_p(H_q(\operatorname{Hom}_A(X, Y); \delta); d).$$

Note that X with augmentation ϵ is a projective S-resolution of M, by the hypothesis of the S-action on A. Thus the homology of $\operatorname{Hom}_S(X, F)$ with the induced coboundary is $\operatorname{Ext}_S(M, F)$. Since Y^{p^*} is a projective T^* -comodule, it is easily verified that γ induces an isomorphism

$$H_q(\operatorname{Hom}_A(X, Y); \delta) \cong \operatorname{Hom}_{T^{\bullet}}(Y^{p^{\bullet}}, \operatorname{Ext}_S^q(M, F)).$$

Hence $E_2^{p,q} = \operatorname{Ext}_{T^*}^p(F, \operatorname{Ext}_S^q(M, F)).$

For the products, we use an equivalent formulation of the bicomplex. Let α be the composite

$$(\overline{A}^*)^i \otimes M^* \otimes Y^j \xrightarrow{\alpha'} \operatorname{Hom}(\overline{A}^i \otimes M, Y^j)$$

$$\cong \operatorname{Hom}_A(A \otimes \overline{A}^i \otimes M, Y^j) = \operatorname{Hom}_A(X_i, Y^j)$$

where

$$(\alpha'(a^* \otimes m^* \otimes y), a \otimes m) = (-1)^{\mu \operatorname{deg} y} (a^* \otimes m^*, a \otimes m) y,$$
$$\mu = \operatorname{deg}(a^* \otimes m^*),$$

and (,) is the dual pairing.

We have commutative diagrams

so that the bicomplex (Hom_A(X, Y), δ , d, Δ) may be replaced by (C(F, M) \otimes Y, δ' , d', Δ') where $\delta' = \overline{\delta}_M \otimes 1$, $d' = 1 \otimes \overline{d}$ and $\Delta' = \delta' + d'$ with the usual sign conventions.

Now $C(F, M) \otimes Y$ is a left differential $\overline{C}(A)$ -module with respect to the cup product and each of its differentials; that is, if $a \in \overline{C}(A)$, $b \in C(F, M) \otimes Y$ we have

$$\delta'(ab) = \overline{\delta}(a)b + (-1)^{\deg a}a\delta'(b), \qquad d'(ab) = (-1)^{\deg a}ad'(b)$$

where $\overline{\delta}$ is the coboundary in $\overline{C}(A)$.

In particular the identification of $\operatorname{Ext}_A(M, F)$ with $H_*(\operatorname{Hom}_A(X, Y); \Delta) \cong H_*(C(F, M) \otimes Y; \Delta')$ given by the row spectral sequence is an $H^*(A)$ -module homomorphism. Suppose $h \in C(F, M)$ is a cocycle identified with a cocycle $\Sigma \alpha_i$ of $C(F, M) \otimes Y$, then

$$\eta'(h) - \sum \alpha_i = \Delta'(w)$$
 for some $w \in C(F, M) \otimes Y$,

where η' : $C(F, M) \to C(F, M) \otimes Y^0$ corresponds to η_* under the isomorphism α . If $z \in \overline{C}(A)$ is a cocycle, then

$$\Delta'((-1)^{\deg z}zw)=z\Delta'(w)=\eta'(zh)-z\left(\sum\alpha_i\right)$$

so that zh is identified with $z(\Sigma \alpha_i)$.

If $z \in \overline{C}(A)$ is a cocycle, its action on $C(F, M) \otimes Y$ commutes in the graded sense with the coboundaries, and it clearly preserves filtration, so the cupproduct action induces the structure maps λ_r of Theorem 2.5. In particular the differentials are left graded $H^*(A)$ -module homomorphisms.

To identify the product on E_2 , suppose $f: A \otimes \overline{A}^q \otimes M \longrightarrow F$ represents

 $x \in \operatorname{Ext}_S^q(M, F)$ and $g: \overline{A^s} \to F$ represents $z \in H^s(A)$, then z acts on x through $H^*(\varphi)$, and zx is represented by $g \cdot f$, where

$$g \cdot f(a \otimes a' \otimes a'') = (-1)^{\deg f \deg(a' \otimes a'')} g(a \otimes a') f(a'')$$

for $a' \in \overline{A}^s$, $a'' \in \overline{A}^q$. We have for $z \in \overline{C}(A)$, $w \in C(F, M) \otimes Y$, $\gamma \alpha(zw) = z \cdot \gamma \alpha(w)$ from which it follows that $\lambda_2 = \mu_1$. This completes (2.5).

COROLLARY 2.11. Let $A = S \otimes T$ and let $e: T \longrightarrow F$ be the augmentation. Then $H^*(S)$ acts on the spectral sequence by the structure maps $\lambda_r(1 \otimes e)^*$. For r = 2 this action is induced on Ext_{T^*} from the Yoneda product.

We note that the maps λ_r annihilate the image of $H^*(T) \otimes E_r$ in $H^*(A) \otimes E_r$ for $r \ge 2$ since $H^*(A)$ acts on $\operatorname{Ext}_S(M, F)$ through $H^*(\varphi)$. Thus the structure maps θ_r are needed to "detect" the action of $H^*(T)$.

For the proof of (2.7), it will be convenient to describe the Yoneda products in terms of anticommutative diagrams. Let N be a T-module and let Y be the injective resolution used in (2.5), then an element $x \in \operatorname{Ext}_T^p(N, F)$ is represented by a cocycle $f: N \longrightarrow Y^p$. Let $g: F \longrightarrow Y^q$ represent $z \in H^q(T)$. Form the anticommutative diagram:

Then zx is represented by $(-1)^{\deg f \deg g} g^p f$.

There is an analogous construction on the bicomplex $\operatorname{Hom}_A(X, Y)$.

LEMMA 2.13. Suppose $\sum_{i=0}^{p+q} f_i$, f_i : $X_i \to Y^{p+q-i}$ is a cocycle representing $x \in \operatorname{Ext}_A^{p+q}(M, F)$. Suppose $g: F \to Y^r$ represents $z \in H^r(T)$. Then we may construct the top squares in the following anticommutative diagram since $\sum f_i$ is a cocycle, and the bottom since the Y^j are injective:

$$0 \leftarrow M \leftarrow X_0 \leftarrow \cdots \leftarrow X_q \leftarrow X_{q+1} \leftarrow \cdots \leftarrow Y_{q+p}$$

$$f_0 \downarrow \qquad \qquad f_q \downarrow \qquad f_{q+1} \downarrow \qquad \qquad \downarrow f_{p+q} \qquad f$$

$$Y^{p+q} \leftarrow \cdots \leftarrow Y^p \leftarrow Y^{p-1} \leftarrow \cdots \leftarrow Y^0 \leftarrow \stackrel{\eta}{\longrightarrow} \tilde{F} \leftarrow 0$$

$$g^p + q \downarrow \qquad \qquad g^p \downarrow \qquad g^{p-1} \downarrow \qquad \qquad \downarrow g^0 / g$$

$$Y^{p+q+r} \leftarrow \cdots \leftarrow Y^{p+r} \leftarrow Y^{p+r-1} \leftarrow \cdots \leftarrow Y^r$$

Then zx is represented by $(-1)^{\deg z \deg x} \sum g^{p+q-i} f_i$.

PROOF. By the identification of $H_{\bullet}(\operatorname{Hom}_{A}(X, Y); \Delta)$ with $\operatorname{Ext}_{A}(M, F)$

using the row spectral sequence (equivalently, by a chain homotopy argument) there exist $f_j'\colon X_{j-1} \longrightarrow Y^{p+q-j}$ $(j=1,\ldots,p+q), f\colon X_{p+q} \longrightarrow F$ such that $\sum f_i - \eta f = \Delta(\sum f_i)$. Then

$$\Delta\left((-1)^{\deg g}\sum g^{p+q-i}f_i'\right) = \sum g^{p+q-i}f_i - gf_i$$

so $\sum g^{p+q-i}f_i$ represents the same class as gf.

Now extend (2.14) to the right as follows: Let $0 \leftarrow F \leftarrow Z_0 \leftarrow Z_1 \leftarrow \cdots$ be a *T*-projective resolution of F and construct A-maps $h_i : X_{p+q-i} \rightarrow Z_i$ to make the top squares of (2.15) below anticommute, and by a chain homotopy argument construct $g^{i'}$, g' so that $\Delta(\Sigma g^{i'}) = g\epsilon_0 - \eta g'$:

Then $\Delta(\Sigma g^{i'}h_{i-1}) = gf - g'h_r$, so gf represents the same class as $g'h_r$. The result follows.

To show that the differentials are left $H^*(T)$ -maps, consider the diagram:

$$(2.16) H_{p+q-1}(F^{p-r+1}/F^p) \xrightarrow{D_r^1} H_{p+q}(F^p/F^{p+1}) \xrightarrow{D_r^2} H_{p+q+1}(F^{p+1}/F^{p+r})$$

$$(2.16) H_{p+q+1}(F^{p+1}/F^{p+r+1})$$

$$i H_{n+q+1}(F^{p+r}/F^{p+r+1})$$

The maps are those of the exact sequences of the respective triples.

By a standard construction of the spectral sequence of a filtered chain complex [9], we have $E_r^{p,q} = \operatorname{Ker} D_r^2/\operatorname{Im} D_r^1$. If $x \in \operatorname{Ker} D_r^2$ represents $\overline{x} \in E_r^{p,q}$, then $d_r(\overline{x}) = \overline{y}$ where $i(y) = D_{r+1}(x)$. In turn x is represented by a map f_q : $X_q \to Y^p$ with $\delta f = 0$, and $D_{r+1}(x)$ is represented by $df_q \colon X_q \to Y^{p+1}$. By exactness $D_{r+1}(x) \in \operatorname{Im} i$, so there exist $f'_{q-j} \colon X_{q-j} \to Y^{p+j}$ $(j=0,\ldots,r)$, $f_{q-r+1} \colon X_{q-r+1} \to Y^{p+r}$ with $\Delta(\Sigma f'_{q-j}) = f_{q-r+1} - df_q$. Let $z \in H^s(T)$ be represented by g, g^0, \ldots, g^p as in (2.13), then zx is represented by

$$(-1)^{\deg z \deg x} g^p f_a.$$

But

$$\Delta \left(\sum g^{p+j} f'_{q-j} \right) = (-1)^{\deg z} g^{p+r} f_{q-r+1} - d(g^p f_q),$$

so $d_{x}(zx) = (-1)^{\deg z} z d_{x}(x)$.

This completes (1) of (2.7). Now (2) and (3) are clear, and (4) follows from (2.13) since $\rho_p([\Sigma f_i]) = [f_a]$.

The following result, needed for §3, may be established by a simple diagram.

PROPOSITION 2.17. Let μ denote the T^* -coaction on $\operatorname{Ext}_S(M, F)$ in the change of rings spectral sequence, and let Y denote Yoneda product and t the twist map. The following diagram commutes:

3. The factorization theorem. This section is devoted to the proof of Theorem 1.9. For purposes of induction we prove the more general form below.

For s, t nonnegative integers define $E(s, t) = \bigwedge (Q_s, \ldots, Q_t)$ if $t \ge s$ and $E(s, t) = Z_2$ for t < s. Let $E(s, \infty) = \bigcup_{t \ge s} E(s, t)$. Let M = M(n) be as in (1.9).

THEOREM 3.1. With the notation as above, there is an isomorphism

$$\operatorname{Ext}_{E(s,\infty)}(M, Z_2) \cong Z_2[q_{n+s}, q_{n+s+1}, \ldots] \otimes \operatorname{Ext}_{E(s,n+s-1)}(M, Z_2)$$

of $Z_2[q_{n+s}, q_{n+s+1} \cdot \cdot \cdot]$ -modules, where the action on $\operatorname{Ext}_{E(s, n+s-1)}$ is trivial.

The proof of (3.1) relies on the spectral sequence of §2, taking as φ the inclusion $E(s, t) \subset E(s, t + 1)$. Thus

(3.2)
$$E_2^{p,q} = \operatorname{Ext}_{\bigwedge(\beta_{t+2})}^p(Z_2, \operatorname{Ext}_{E(s,t)}^q(M, Z_2)).$$

The argument will show that the coaction

$$(3.3) \qquad \operatorname{Ext}_{E(s,t)}(M, Z_2) \to \bigwedge (\beta_{t+2}) \otimes \operatorname{Ext}_{E(s,t)}(M, Z_2)$$

is trivial for $t \ge n + s - 1$; it follows that

$$\begin{split} E_2 &\cong H^*(\bigwedge(Q_{t+1})) \otimes \operatorname{Ext}_{E(s,t)}(M, Z_2) \\ &= Z_2[q_{t+1}] \otimes \operatorname{Ext}_{E(s,t)}(M, Z_2) \quad \text{for } t \geq n+s-1. \end{split}$$

It will follow from the succeeding arguments that the spectral sequence collapses. The abelian group extensions are trivial since the Ext groups are vector

spaces, and the action of q_{t+1} corresponds on both sides, so the theorem follows. The required triviality of (3.3) will be established in two steps.

LEMMA 3.4. The restriction of the coaction (3.3) to $\operatorname{Ext}^0_{E(s,t)}(M, Z_2)$ is trivial for $t \ge n + s - 1$.

LEMMA 3.5. $\operatorname{Ext}_{E(s,t)}(M, Z_2)$ is decomposable as an $H^*(E(s,t))$ -module in terms of $\operatorname{Ext}_{E(s,t)}^0(M, Z_2)$.

The triviality of (3.3) follows by (2.17).

In what follows, all coefficients in the homology or cohomology of a space are in \mathbb{Z}_2 .

We prove (3.4) and (3.5) for $M(n) = \widetilde{H}^*(BO(n))$; the results for $\widetilde{H}^*(MO(n))$ follow since the latter is a direct summand of $\widetilde{H}^*(BO(n))$ as E(s, t)-modules.

Turning to the proof of (3.4), consider the identifications

(3.6)
$$H^*(MO(n)) \subset H^*(BO(n)) \subset H^*(BD(n)),$$

where D(n) is the set of diagonal matrices in O(n). The first inclusion is the Thom isomorphism which identifies $H^*(MO(n))$ with the ideal generated by w_n in $H^*(BO(n)) = Z_2[w_1, \ldots, w_n]$. The second is induced by the inclusion i: $D(n) \subset O(n)$. Recall that $(Bi)^*$ is a monomorphism whose image is the algebra of symmetric polynomials in $H^*(BD(n)) = Z_2[V_1, \ldots, V_n]$, and $(Bi)^*(w_j) = \sigma_j(V_1, \ldots, V_n)$. Define the "exterior degree" of a monomial in the V_i to be the number of V_i which occur to an odd power. Similarly define the exterior degree of a polynomial if all of its monomial terms have a common exterior degree.

Dually, $H_*(BO(n))$ has a basis $x_{i_1} \cdots x_{i_n}$ for $i_j \ge 0$ (where $x_0 = 1$ in the multiplication on $H_*(BO)$) or equivalently $x_{i_1} \cdots x_{i_k}$, $1 \le k \le n$, $i_j \ge 1$, where $0 \ne x_j \in H_j(RP^\infty)$. Define the exterior degree of $x_{i_1} \cdots x_{i_k}$ as the number of i_j which are odd. Also note that the image of $H_*(BO(n-1))$ in $H_*(BO(n))$ is the span of monomials $x_{i_1} \cdots x_{i_k}$ for $k \le n-1$.

Write M_* for $\operatorname{Hom}(M, Z_2)$ and define $D_i: M_* \longrightarrow M_*$ to be the coefficient of β_i in the coaction over E_* . Note D_i is a derivation with respect to the multiplication on $H_*(BO)$.

The triviality of the coaction (3.3) for $t \ge n + s - 1$ may now be restated: if $x \in M(n)_*$ and $D_{s+1}(x) = 0, \ldots, D_{t+1}(x) = 0$, then $D_{t+2}(x) = 0$. Since $M(n)_* \subset M(n+1)_*$ it will be sufficient to show

LEMMA 3.7. If $x \in M(n)_*$ and $D_{s+1}(x) = 0, \ldots, D_{s+n}(x) = 0$, then $D_{s+n+1}(x) = 0$.

For use in (3.5) we state a more general version.

LEMMA 3.8. Suppose $x \in M(n)_{\pm}$ is in the span of monomials of exterior

degree $\leq k-1$, and suppose $D_{s+1}(x) = 0, \ldots, D_{s+k}(x) = 0$. Then $D_{s+k+1}(x) = 0$.

Note that (3.8) implies (3.7) by taking k = n, since monomials of exterior degree n in $M(n)_{\pm}$ are in fact primitive.

Lemma 3.8 will be proved by dualizing to take advantage of the ring structure of $H^*(BD(n))$. We have

LEMMA 3.9. If $y \in \widetilde{H}^*(BO(n)) \subset H^*(BD(n))$ is spanned by monomials of exterior degree $\leq k$, then $Q_{s+k}y = \sum_{i=s}^{s+k-1} Q_i y_i$, where $y_i \in \widetilde{H}^*(BO(n))$.

Next recall that the Q_i are primitive in the Steenrod algebra [11] and hence act as (mod 2) derivations, so they commute with squared elements. Now $H^*(BD(n))$ is a free module over its subring $Z_2[V_1^2,\ldots,V_n^2]$ by multiplication, and the indecomposables of the form $V_{i_1} \cdot \cdot \cdot V_{i_p}$ may be identified, after renumbering, with the Thom class $u_p \in H^p(MO(p))$. We have

PROPOSITION 3.10. To establish (3.9) it suffices to consider the case where $y = u_k \in \widetilde{H}^k(MO(k))$ and $y_s, \ldots, y_{s+k-1} \in \widetilde{H}^*(MO(k))$ have exterior degree k.

To prove (3.10), let $\epsilon_m : S^1 \wedge MO(m) \longrightarrow MO(m+1)$ denote the *m*th structure map of the Thom spectrum MO, and let Σ be the cohomology suspension. Then the composite

$$\widetilde{H}^{q+1}(MO(m+1)) \xrightarrow{m^*} \widetilde{H}^{q+1}(S^1 \wedge MO(m)) \xleftarrow{\Sigma} \widetilde{H}^q(MO(m))$$

is an E-homomorphism, maps u_{m+1} to u_m , and reduces the exterior degree of each monomial by 1. Thus (3.9) for k implies its analog for each p < k.

Next note that Q_i reduces the exterior degree of each monomial by 1, so $Q_{s+k}u_k$ has exterior degree k-1, and the y_i may be assumed to have exterior degree k.

Since y is symmetric and spanned by monomials of exterior degree $\leq k$ it may be written

$$y = \sum_{p=1}^{k} \sum_{\sigma(1) < \cdots < \sigma(p)} f_{p\sigma} V_{\sigma(1)} \cdots V_{\sigma(p)}$$

where $\sigma \in S_n$ and $f_{j\sigma} = f_j(V_{\sigma(1)}^2, \dots, V_{\sigma(n)}^2)$. By the first part of the proof, we may write

$$Q_{s+k}V_1 \cdots V_p = \sum_{i=1}^{s+k-1} Q_i y_i^p(V_1, \dots, V_p);$$

let $y_{i\sigma}^p = y_i^p(V_{\sigma(1)}, \dots, V_{\sigma(p)})$. By the above remarks,

$$Q_{s+k}y = \sum_{i=1}^{s+k-1} Q_i \left(\sum_{p=1}^k \sum_{\sigma(1) < \cdots < \sigma(p)} f_{p\sigma} y_{i\sigma}^p \right).$$

It remains to show the polynomials in parentheses are symmetric so that they represent elements $y_i \in \widetilde{H}^*(BO(n))$.

By the symmetry of p each sum $\sum_{\sigma}f_{p\sigma}V_{\sigma(1)}\cdots V_{\sigma(p)}$ for fixed p is symmetric and so consists of the sum of the terms in the orbit of $f_{pe}V_1\cdots V_p$ where $e\in S_n$ is the identity. Now $y_{ie}^p\in \widetilde{H}^*(MO(p))$ has exterior degree p so may be written $y_{ie}^p=g_i^p(x_1^2,\ldots,x_p^2)V_1\cdots V_p$ where g_i^p is symmetric in its p indeterminates. Thus if σ fixes $f_{pe}V_1\cdots V_p$ it also fixes $f_{pe}y_{ie}^p$, so (writing C for stabilizer) $C_{f_{pe}V_1\cdots V_p}\subset C_{f_{pe}v_{ie}^p}$ hence

$$|S_n:C_{f_{pe}y_{le}^p}| \leq |S_n:C_{f_{pe}V_1\cdots V_p}| = \binom{n}{p}.$$

On the other hand $f_{pe}y_{ie}^{p}$ has at least the $\binom{n}{p}$ elements in its orbit corresponding to the combinations of indeterminates. Thus $\Sigma_{\sigma}f_{p\sigma}y_{i\sigma}^{p}$ is symmetric, completing (3.10).

To prove the condition of (3.10) it will be convenient to use the notation of §1, where $\widetilde{H}_*(MO(k))$ is the span of monomials $b^E = b_1^{e_1} b_2^{e_2} \cdot \cdot \cdot$ of degree $\leq k$. If $E = (e_1, e_2, \ldots)$ let $|E| = \sum e_i$ and grade $b^E = \sum ie_i$, that is b^E is assigned its "stable grade." Note that $1 \in H_0(MO)$ is the unique element dual to each Thom class u_k . If we form a minimal resolution

$$0 \longrightarrow H_{\star}(MO(k)) \longrightarrow E(s, s+k)_{\star} \otimes V \longrightarrow \cdots$$

then the existence of the relation of (3.10) is equivalent to the statement $\beta_{s+k+1} \otimes 1_V \notin \text{Im } \epsilon$, where $\epsilon(1) = 1 \otimes 1_V$. In particular it is not necessary to exhibit the elements y_i .

Denote by $H \subset V$ the span of images of monomials in $b_2, b_4, \ldots, b_2r, \ldots$ and identify elements of H by their polynomial pre-images. Let $h: V \to H$ be the projection induced through ϵ from the one in $\widetilde{H}_*(MO(k))$ which preserves monomials in the b_2r and annihilates all others. Let $\epsilon' = (1 \otimes h)\epsilon$, then by the coaction formula (1.8) it will suffice to show $\beta_{s+k+1} \otimes 1 \notin \operatorname{Im} \epsilon'|_W$, where $W \subset \widetilde{H}_*(MO(k))$ (with stable grading) is the span of monomials containing only one factor b_i of odd degree.

PROPOSITION 3.11. Let $y = b_{2m-1}b^E \in W_{2s+k+1-1}$, then $\epsilon'(y)$ is either zero or the sum of precisely two "monomials," i.e. terms of the form $\beta_j \otimes z$ where z is a monomial of H.

For the proof, suppose $\epsilon'(y) \neq 0$, then $b^E \in H$. Let M denote the term in $\epsilon'(y)$ containing the β_j of highest grade; it has the form $\beta_i \otimes b^E$ or $\beta_i \otimes b_2 r b^E$.

If $M = \beta_i \otimes b^E$, then $D_i(b_{2m-1}) = 1$, so $2m - 1 = 2^i - 1$. Since $D_i(b_{2m-1}) \in H$, $2m - 2^q$ must be zero or a positive power of 2; i.e. q = i or q = i - 1. Thus for $i \ge s + 2$, $s + 1 \le i - 1$, $i \le s + k + 1$ and (3.11) holds.

Suppose i = s + 1, then $|E| = (2^{s+k+1} - 1) - (2^{s+1} - 1)$ so $\alpha(|E|) \ge k$, where α denotes the number of 1's in the dyadic expansion. Thus deg $b^E \ge k$, deg $y \ge k + 1$, a contradiction since $y \in \widetilde{H}_{\pm}(MO(k))$.

If $M = \beta_i \otimes b_{2r} b^E$, then $r \neq i$, otherwise the term $\beta_{i+1} \otimes b^E$ would also appear, since $i \neq s+k+1$ by the grade of y. Now $r \leq s+k+1$ by the grade of y, so $\epsilon'(y) = \beta_i \otimes b_{2r} b^E + \beta_r \otimes b_{2i} b^E$ and (3.11) holds, provided $r \geq s+1$.

Assume $r \le s$. Note $i \le s + k$ by the grade of y. Then

$$2^{s+k+1} - 1 > |E| = (2^{s+k+1} - 1) - (2m - 1)$$

$$= 2^{s+k+1} - 2^{i} - 2^{r} \ge 2^{s+k+1} - 2^{s+k} - 2^{r}$$

$$= 2^{s+k} - 2^{r} \ge 2^{s+k} - 2^{s}.$$

so $\alpha(|E|) \ge \alpha(2^{s+k} - 2^s) = k$. Thus deg $b^E \ge k$, so deg $y \ge k + 1$, a contradiction.

COROLLARY 3.12. Every element of $\operatorname{Im} \epsilon'|_W$ is the sum of an even number of "monomials." In particular $\beta_{s+k+1} \otimes 1 \notin \operatorname{Im} \epsilon'$.

This completes (3.11), (3.9) and (3.4).

The proof of (3.5) is by induction on t. For t < s we have $E(s, t) = Z_2$ so the result holds trivially.

Assume (3.5) for t and all $s \ge 0$; this requires only finitely many steps. Apply the spectral sequence (3.2). By (2.5) and (2.12) it has a module structure over $H^*(E(s, t)) = Z_2[q_s, \ldots, q_t]$ which is induced from the Yoneda product on $\operatorname{Ext}_{E(s,t)}(M, Z_2)$ in E_2 . It also has the structure $\{\theta_r\}$ over $Z_2[q_{t+1}]$. By naturality these structures commute and induce a structure over $H^*(E(s, t+1)) = Z_2[q_s, \ldots, q_{t+1}]$ which restricts to the given ones. We show E_2 is decomposable over $H^*(E(s, t+1))$.

Let $T = \bigwedge (\beta_{t+2})$. By the cobar construction, $\operatorname{Ext}_{T^*}(Z_2, N)$ is decomposable over $H^*(T)$ in terms of $\operatorname{Ext}_{T^*}^0$ for any T^* -comodule N. Thus E_2 is decomposable over $H^*(T)$ in terms of

$$\operatorname{Ext}_{T^*}^0(Z_2, \operatorname{Ext}_{E(s,t)}(M, Z_2)) \subset \operatorname{Ext}_{E(s,t)}(M, Z_2).$$

By the inductive hypothesis, any $x \in \operatorname{Ext}_{E(s,t)}$ is decomposable over $H^*(E(s,t))$ in terms of $x_i \in \operatorname{Ext}_{E(s,t)}^0$. The x_i , however, may not lie in

$$\operatorname{Ext}_{T*}^{0}(Z_{2}, \operatorname{Ext}_{E(s,t)}^{0}(M, Z_{2})) = E_{2}^{0,0}.$$

LEMMA 3.13. Let $z \in \operatorname{Ext}_{E(s,t)}^{0}(M, Z_{2})$. Then z may be written $z = z_{1} + z_{2}$ where $z_{1} \in \operatorname{Ext}_{E(s,t)}^{0}$, $z_{2} \in \operatorname{Ext}_{E(s,t+1)}^{0} \subset \operatorname{Ext}_{E(s,t)}^{0}$ and $q_{s}z_{1} = 0, \ldots, q_{t}z_{1} = 0$.

Using (3.13) we can replace the x_i by $x_i' \in \operatorname{Ext}_{E(s,t+1)}^0$ since the terms cor-

responding to z_1 are annihilated by $\overline{H^*(E(s,t))}$. Note that the x_i' are permanent cycles. The differentials commute (in the graded sense) with the composite action of $H^*(E(s,t+1))$ on E_r so the spectral sequence collapses. The abelian group extensions are trivial and the spectral sequence preserves products in the sense of (2.5) and (2.7), so $\operatorname{Ext}_{E(s,t+1)}$ is decomposable over $H^*(E(s,t+1))$ by induction over the filtration.

To prove (3.13), write $z \in M(n)_* = \widetilde{H}_*(BO(n))$ in terms of the basis $\{x_{i_1} \cdot \cdot \cdot x_{i_p}\}$, $1 \le p \le n$, $i_p \ge 1$, and let z_2 denote the sum of terms of exterior degree $\le t - s$. By (3.8) (with k = t - s + 1) we have $D_{t+2}(z_2) = 0$, so $z_2 \in \operatorname{Ext}^0_{E(s,t+1)}$. Let $z_1 = z - z_2$.

LEMMA 3.14. Suppose $x \in \operatorname{Ext}_{E(s,t)}^0(M(n), Z_2)$ is spanned by monomials $x_{i_1} \cdots x_{i_p}$ of exterior degree $\geq t - s + 1$. Then $q_s x = 0, \ldots, q_t x = 0$ in $\operatorname{Ext}_{E(s,t)}(M(n), Z_2)$.

The proof will be by induction on n.

REMARK 3.15. Let $s \le i \le t$ and let N be an E(s, t)-module. Examination of a resolution shows that $q_i x = 0$ in $\operatorname{Ext}_{E(s,t)}(N, Z_2)$ if and only if there exists $y \in N_*$ with $D_{i+1}(y) = x$, $D_i(y) = 0$ for $j = s + 1, \ldots, t + 1, j \ne i + 1$.

As in (3.8) the proof will exploit ring structure, in this case the multiplication of $H^*(BO(n)) = Z_2[w_1, \ldots, w_n]$. Let $U = Z_2[w_n^2]$. The Q_i commute with the multiplicative action of U, so $H^*(BO(n))$ and $M(n) = \widetilde{H}^*(BO(n))$ are $E(s, t) \otimes U$ -modules. The following description of $\operatorname{Ext}_U^0(M(n), Z_2)$ will be used in a spectral sequence argument.

Proposition 3.16. There is an isomorphism

$$f: \operatorname{Ext}^0_U(M(n), \mathbb{Z}_2) \longrightarrow M(n-1)_{\star} \oplus \widetilde{H}_{\star}(MO(n-1))$$

of $E(s, t)_*$ -comodules.

For the proof, consider $E(s, t)_*$ -maps $p_1 \colon M(n)_* \to M(n-1)_*$, $p_2 \colon M(n)_* \to \widetilde{H}_*(MO(n))$ defined by $p_1(x_{i_1} \cdots x_{i_k}) = x_{i_1} \cdots x_{i_k}$ for k < n, $p_1(x_{i_1} \cdots x_{i_n}) = 0$; $p_2(x_{i_1} \cdots x_{i_n}) = x_{i_1} \cdots x_{i_n}$, $p_2(x_{i_1} \cdots x_{i_k}) = 0$ for k < n ($i_j \ge 1$ throughout). Let $\Delta_n \colon M(n)_* \to M(n)_*$ be the map dual to multiplication by w_n . Then Ker $\Delta_n = M(n-1)_*$ and Ker $\Delta_n^2 = \operatorname{Ext}_U^0(M(n), Z_2)$. Thus if $x \in \operatorname{Ext}_U^0$, $\Delta_n^2 p_2(x) = 0$, so $\Delta_n p_2(x) \in M(n-1)_*$. Since $\Delta_n(x_{i_1} \cdots x_{i_n}) = x_{i_1-1} \cdots x_{i_n-1}$ ($x_0 = 1$), $p_2(x)$ has the form $x_1h + u$ where $h \in \widetilde{H}_*(MO(n-1))$, $u \in \operatorname{Ker} \Delta_n$. By definition of p_2 , u is a sum of terms $x_{i_1} \cdots x_{i_n}$, $i_j \ge 1$, so $u \in \widetilde{H}_*(MO(n))$. But also $u \in M(n-1)_*$, so u = 0, $p_2(x) = x_1h$. Multiplication by x_1 is an $E(s, t)_*$ -monomorphism, so define $f(x) = (p_1(x), h)$. The inverse map is given by $(y, z) \mapsto y + x_1 z$.

For the proof of (3.14), note that D_i reduces the exterior degree of each

term $x_{i_1} \cdot \cdot \cdot x_{i_k}$ by 1 so we may assume x of (3.14) has homogeneous exterior degree $q \ge t - s + 1$. For n = 1 the highest exterior degree that can occur is 1, so t = 0. For s > 0, $E(s, 0) = Z_2$ so the result is trivial. For s = 0, if $D_1(x) = 0$, $x \in \widetilde{H}_*(BO(1)) = \widetilde{H}_*(RP^{\infty})$ has exterior degree 1, so $x = x_{2r-1}$ for some r, and $x = D_1(x_{2r})$. Thus $q_0 x = 0$ by (3.15).

Assume (3.14) for M(n-1) and suppose $x \in \operatorname{Ext}_{E(s,t)}^0(M(n), Z_2)$ has exterior degree $q \ge t - s + 1$ and $q_i x \ne 0$ for some $i, s \le i \le t$. Let m be the largest integer r such that $\Delta_n^{2r}(q_i x) \ne 0$, then

$$u = \Delta_n^{2m}(q_i x) \in \operatorname{Ext}_{U^*}^0(Z_2, \operatorname{Ext}_{E(s,t)}^1(M(n), Z_2)),$$

which is $E_2^{0,1}$ in the change of rings spectral sequence converging to $\operatorname{Ext}_{E(s,t)\otimes U}$. No differentials can hit u, and the only possible differential on $E_2^{0,1}$ is

$$d_2: E_2^{0,1} \longrightarrow E_2^{2,0} = \operatorname{Ext}_U^2(\operatorname{Tor}_0^{E(s,t)}(Z_2, M), Z_2)$$

and $E_2^{2,0}=0$ since U is a PID. Let $0\neq u'\in \operatorname{Ext}^1_{E(s,t)\otimes U}$ represent the class of u in E_m .

CLAIM. $\operatorname{Ext}_{E(s,t)\otimes U}(M(n),Z_2)$) is decomposable by Yoneda products over $H^*(E(s,t))$ (acting by the homomorphism induced from the projection $E(s,t)\otimes U \to E(s,t)$) in terms of $\operatorname{Ext}_{E(s,t)\otimes U}^0$. We have the spectral sequence

$$\operatorname{Ext}^a_{E(s,t)_*}(Z_2,\ \operatorname{Ext}^b_U(M(n),Z_2)) \Rightarrow \operatorname{Ext}^{a+b}_{E(s,t) \otimes U}(M(n),\ Z_2)$$

with the product structure $\{\theta_r\}$. Since U acts freely on M(n), $E_2^{a,b}=0$ for $b\neq 0$ and the spectral sequence collapses with trivial extensions. By the inductive hypothesis, (3.14) holds for $\widetilde{H}^*(BO(n-1))$ and thus for $\widetilde{H}^*(MO(n-1))$, so by (3.16) $E_2=E_\infty$ is decomposable, and the claim follows.

Thus $u' = \sum_{r=s}^t q_r z_r$, $z_r \in \operatorname{Ext}^0_{E(s,t) \otimes U}$, and by the coaction formula (1.8) we may assume each z_r has exterior degree q. Let $j: E(s, t) \to E(s, t) \otimes U$ be the inclusion, then $0 \neq u = j^*(u') = \sum_{r=s}^t q_r j^*(z_r)$, so for some z_v , $q_v j^*(z_v) \neq 0$ in $\operatorname{Ext}^1_{E(s,t)}(M, Z_2)$, where $w = j^*(z_v)$ has exterior degree q and $\Delta_n^2(w) = 0$. This will be shown to be impossible if $q \geq t - s + 1$.

Let $y=p_1(w)$, $z=p_2(w)$ where p_1 , p_2 are as in (3.16). Then $y\in M(n-1)_*$ has exterior degree q, so by induction $q_sy=0,\ldots,q_ty=0$ in $\operatorname{Ext}_{E(s,t)}(M(n-1),Z_2)$. By naturality the images of the q_jy are zero in $\operatorname{Ext}_{E(s,t)}(M(n),Z_2)$.

As in (3.16), $z = x_1 h$, where $h \in \widetilde{H}_*(MO(n-1))$ has exterior degree $q-1 \ge (t-s+1)-1=t-(s+1)+1$. By induction on n, we have $q_{s+1}h=0$, ..., $q_th=0$ in

where the inclusion is induced by the projection of M(n-1) onto the direct summand $\widetilde{H}^*(MO(n-1))$. Thus by (3.15) there exist $z_{s+1}, \ldots, z_t \in \widetilde{H}_*(MO(n-1))$ with $D_{i+1}(z_i) = h$, $D_i(z_i) = 0$ for $i = s+2, \ldots, t+1, j \neq i+1$. Let

$$z'_{x+1} = x_{2s+1}h \in M(n)_*,$$

$$z'_k = x_1 z_k + x_{2^{s+1}} D_{s+1}(z_k) \in M(n)_*, \quad k = s+2, \ldots, t+1.$$

Recall that the D_i are derivations satisfying $D_i D_j = D_j D_i$, $D_i^2 = 0$. By an easy calculation,

$$D_{i+1}(z_i') = z,$$
 $i = s, ..., t,$
 $D_i(z_i') = 0,$ $j = s+1, ..., t+1, j \neq i+1.$

Thus $q_i w = q_i y + q_i z = 0$ in $\operatorname{Ext}_{E(s,t)}(M(n), Z_2)$, contradicting $q_v w \neq 0$. This completes (3.14), (3.5) and (3.1).

Note. The last calculation relies on the fact that $D_i(x_{2^{s+1}}) = 0$ for i > s+1, which requires the inductive step to treat the lowest dimensional generator, q_s . This is the reason for the generality of (3.1).

We note in closing that Theorem 3.1 is the best possible result of its type, i.e. n + s - 1 cannot be replaced by n + s - 2. Let

$$x = D_{s+1}D_{s+2} \cdot \cdot \cdot D_{s+n-1}(x_{2^{s+1}} \cdot \cdot \cdot x_{2^{s+n}}).$$

Then $x \in \text{Ext}^0_{E(s,n+s-2)}(\widetilde{H}^*(BO(n); Z_2), Z_2)$, but $D_{s+n}(x) = x_1^n \neq 0$, so $x \notin \text{Ext}^0_{E(s,n+s-1)}$.

REFERENCES

- 1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104. MR 25 #4530.
- 2. ———, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180-214. MR 20 #2711.
- 3. _____, Stable homotopy and generalised homology, Univ. of Chicago Press, Chicago, Ill., 1974.
- 4. E. H. Brown and F. P. Peterson, A spectrum whose Z_p -cohomology is the algebra of reduced pth powers, Topology 5 (1966), 149-154. MR 33 #719.
- 5. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040.
- A. Liulevicius, A proof of Thom's theorem, Comment. Math. Helv. 37 (1962/63), 121-131. MR 26 #3058.
- 7.——, A theorem in homological algebra and stable homotopy of projective spaces, Trans. Amer. Math. Soc. 109 (1963), 540-552. MR 27 #6270.
- 8. ——, Homology comodules, Trans. Amer. Math. Soc. 134 (1968), 375-382. MR 40 #4947.
- 9. S. MacLane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
- J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123-146. MR 33 #1347.

- 11. J. Milnor, On the cobordism ring Ω^* and a complex analogue. I, Amer. J. Math. 82 (1960), 505-521. MR 22 #9975.
- 12. J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264. MR 30 #4259.
- 13. S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60. MR 42 #346.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201

Current address: Department of Mathematics, Union College, Schenectady, New York 12308