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YONEDA PRODUCTS IN THE CARTAN-EILENBERG

CHANGE OF RINGS SPECTRAL SEQUENCE WITH

APPLICATIONS TO BP¿BO(n))

BY

RONALD MING(X)

ABSTRACT.  Yoneda product structure is defined on a Cartan-Eilenberg

change of rings spectral sequence. Application is made to a factorization theo-

rem for the £2-term of the Adams spectral sequence for Brown-Peterson homol-

ogy of the classifying spaces BO(n).

This paper gives an algebraic decomposition of the F2-term of the Adams

spectral sequence of the reduced mod 2 Brown-Peterson homology [3], [4] of

the classifying space BOin).

The first section gives algebraic preliminaries and the statement of the main

result. In §2 Yoneda products are introduced in a Cartan-Eilenberg change of

rings spectral sequence [5] used to compute the required Ext module. The proof

of the main theorem is given in §3.

The main results of §§2 and 3 are contained in the author's doctoral dis-

sertation at the University of Chicago under Arunas Liulevicius, to whom grateful

acknowledgement is made for his time and helpful suggestions.

1. Preliminaries; statement of results. This section outlines the algebraic

constructions needed to construct the spectral sequence of §2 and to introduce

the main theorem.

Let F be a field. An algebra A will be a positively graded, augmented, as-

sociative F-algebra. Let A denote the augmentation ideal of A.  Let BS(A, A) =

A ® As ® A, where As is the s-fold tensor product of A.   Form the 2-sided bar

construction [10] BiA, A) = SJ>05i(i4, A) and let 3 denote the standard bound-

ary map. In all that follows the degree of an element refers to its total degree.

Let B~iA) = F®A BiA, A) ®A F with induced boundary 3 and let CCA) =

BiA)* with coboundary 8 = (3)*. Recall that C/A) = (J*/ and that CM) is a

differential algebra under the cup-product

(1.1) [a,| ••• \ak] 1/3, • • - ft] = [a,| • • • \ak\ßx\ • • • |ft];
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that is, for a, ß E C(A) we have

(1.2) 6(a0) = 6(a)0 + (- l)deg aaS(0).

If Ai is a positively graded left ¿-module, let B(F, M) = F®A B(A, A) ®A M

have induced boundary dM and let C(F, M) = B(F, M)* have coboundary 8M =

dfo. Then C(F, M) is a differential C(y4)-module under the cup-product, that is

(1.3) 8M(a • 0 ® X) = 6(a) • (0 ® X) + (- l)de* <*a • SM(0 ® X)

where a, 0 E C(A), X E M*.

The cup-product on C(A) induces a product map on H**(A) = Ext^*(F, F)

= H^(C(AJ) and a structure map

HS'\A) ® Ext^Af, F) -> ExtA+*'t+t';

both structures are called Yoneda products.

Hereafter A denotes the mod 2 Steenrod algebra.

To compute BPjßO(ri)), we have the Adams spectral sequence

(1.4) E2 = Ext A(H*(BP; Z2) ® H*(BO(ri); Z2), Z2)*>BPm(BO(n)) ® I2,

where I2 denotes the 2-adic integers. We have [4]

(1.5) H*(BP;Z2) = A/A(Q0, Qx,...)

where the Q( E A are defined by Milnor [11] ; recaU that Q0 = Sql and Qt =

[Qi-i< S<l2l\ • Let E = A(Q0, Qx, ...), where A denotes exterior algebra over

Z2, then H*(BP; Z2) = A ®E Z2, so by a standard change of rings theorem [7]

(1.6) E2 - ExtE(H*(BO(n); Z2), Z2) = ExtE%(Z2, H¿BO(n); Z2)).

Here we write E^ for Hom(£", Z2) foUowing Milnor's convention since Em

occurs in the context of homology. The second Ext of (1.6) is one of ¿i^-comod-

ules; see Adams [3].

Since E is a Hopf algebra, so is E^, which is an exterior algebra over Z2 on

generators 0,, 02,... which form a dual basis to Q0, Qx,... respectively.

We have [8]

HjBO(n);Z2) = HjMO(n); Z2) © HjBO(n - l);Z2)

As ¿,,,-comodules. The first summand may be described as foUows:  let AÍO

denote the Thom spectrum for the orthogonal groups, then

H¿MO,Z2) = Z2[bx,b2,...]

where b¡ E H¡(MO; Z2) is the image of x¡+1 EHi+1(RP°°; Z2) under the com-

posite
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Hl+xiRP~; Z2) s Hi+ ,(AíO(l); Z2) — HßlO; Z2).

The subgroup H^(MO(n); Z2) is the span of monomials in the b¡ of degree < n.

The coaction map [8]

(1.7) AV H¿MO\ Z2) -> F, ® H¿MO; Z2)

is a ring homomorphism given on generators by

(1.8) Hjp2m) = 1 ® ft2m,       /l,(*2m_,) = E  ft ® ¿2m-2¿

The cohomology of F, H**(E), is the polynomial algebra Z2 [<70, ii,...]

where 47,. EHi>2i+l-1iE).

Let F(m) = A(ô0> • • • » öm)- Let Af = A/(n) denote either H*iBOin); Z2)

or H*iMOin); Z2). The main result states:

Theorem 1.9. Under the Yoneda product, ExtEiM, Z2) is a free

Z2[qn, qn+x,...]-module on Ext^.,,,.^(Ai, Z2). Hence the E2-term in the

mod 2 Adams spectral sequence of BPjßOin)) is given by:

E2*Z2[qn, qn+x, ...] ® ExtErn_x)iH*iBOin);Z2),Z2).

2. A change of rings spectral sequence with products. The program for

the proof of Theorem 1.9 is to show

(2.1) ExtE(r)iM, Z2)^Z2[qn,...,qr]® Ext£(„ _ 1}(A/, Z2)

for r > n. For this purpose we use a spectral sequence of Cartan and Eilenberg

[5] to which we have added the structure of Yoneda products.

Let y: S —* A be a homomorphism of algebras in the sense of §1, that is

<p has degree zero and commutes with the augmentations. The map ip is called

(left) normal if <p(S)A is a left ideal of A.  If y is normal, A/tfßM ^F®SA

is an algebra.

Theorem 2.2. Let </>: 5 —► A be a left normal homomorphism of algebras

such that A is projective as a left S-module. Let T= F®SA. Let M be a left

A-module and C a left T-module.  Then there is a spectral sequence

(2.2) ExtP(Tor£(F, Af), C) ■» Ext'+^Af, C).

Here A and M are 5-modules through <p, and C is an .¿-module through the

projection it: A—* A/tfS)A a T. The left T-operations on Tor5(F, M) are in-

duced by left multiplication in T through the isomorphism

(2.3) Tor^F, Af) s lotA (F ®s A, M) = Tor^ (T, A/).

The outer Ext may be computed as one of r*-comodules, so that

(2.4) E2 s ExtP ,(C*, Ext£(Af, F)).
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Note that E2'm may be regarded as the subcomodule of 2^-primitives of

Ext™ (Ai, F), and it wül foUow from the construction that the edge homomor-

phism

Ext^iAi, F) -» Ei^C-^E^ C_> Ext^(Ai, F)

coincides with the induced map Ext^íAí, F).

To form the products, consider the case C = F. Note that H*(A) acts on

Exty(Ai, F) through H*(y), and so induces a structure map

Hs(A)®E^q-^E^s.

On the other hand, by (2.4) the Yoneda product gives a structure map

HS(T) ® E%q -^ E^-q.

In the theorems below, let Fp denote the pth filtration of Ext^iAi, F) in

the spectral sequence and let

pp: FP -> FP/FP+1 = El

be the projection.

Theorem 2.5. 77ie spectral sequence of Theorem 2.2 with C = F admits

structure maps

HS(A) ® E™ —'-*■ E™ +s,      1 < r < o»,

such that:

(1) dr: E™ -* EP+r-*-r+1 is a left (graded) H*(A)-module homomor-

phism;

(2) Xr+1 is induced from Xr by passing to subquotients;

(3) X2=/i,;
(4) the following diagram commutes, where Y denotes the restriction of

the Yoneda product map to HS(A) ® Fp:

H°(A) ® FP —£» Fp

(2.6) 1 ® Pp Pp

X„
HS(A)®EP  -► £*

Theorem 2.7. The spectral sequence of Theorem 2.2 with C = F admits

structure maps
a

HS(T) ® EP'q-JL*EP+s'q,      Kr<<*>,

such that:

(1) dr is a left (graded) H*(T)-module homomorphism:
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(2) 0r+ j is induced from 8r by passing to subquotients;

(3) e2=p2;

(4) the following diagram commutes, where Y' denotes the restriction of

the composite

H*(T) ® ExtA(M, F) ^fr)®1, H*(A) ® Ext^Af, F) -* ExtA(M, F)

to H*(T) ® Fp:

(2.8)

H\T) ® Fp

l®pE

r > Fp

8.
HS(T) ® El —=-> EP,

+s

Pp+s

+s

Theorem 2.2 is the analog of Theorem 6.1 (la) of Cartan and EUenberg

[5, p. 349] with Torr replaced by Extr. If products are not required, the con-

struction in the proof of (2.5) carries over with trivial modifications for Ext^iAi, C),

so a separate proof will be omitted.

For the proof of (2.5), let X = B(A, M) = B(A, A) ®A M.  Define e:X—>

Mbye(a[ax \'•• \as]m) = 0if s> land e(a[]m) = am. Then X with e is a

free ¿-resolution of M.  Let

O-i./r-iL». y0 -^-> Y1 —*■ •••

be a resolution of F by bigraded, injective T-modules. In assigning degrees of

maps we foUow the usual convention Ys,t = Y_s _t. Form the sum Hom^A", Y)

= 2f .Hom^A",., Y1) and define coboundaries

5: Hom¿(Xt, Y>) -$-* EomA(Xi+l, Y>)

d: UomA(Xi, Y¡) -*+ Hom^iT,, Y'+1)

by

(«/)(*) = (- Ddeg /+ lf(ZMx),     W)(x) = d(f(x))

where dM - 3 ®A 1 and deg/= - (s + s' + t + t') iff: Xst -+ Y*''*'.

With this definition the squares

HomA(Xi+x, Y')-£+HomA(Xi+x, K>+1)

EcaaA{Xp Y<) -*-> Hom^A",, Y¡+1)

anticommute, so that Hom^ (AT, Y) is a bicomplex. The total differential A =

8 + d makes Hom^ (AT, Y) into a cochain complex.
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The bicomplex Hom^ (X, Y) has row and column nitrations,

GPUomA(X, 10=  Z  Horn^, Y¡),
t>p.i

FPHomA(X, Y)=  Z  Horn^jr,., Y>).
i>P,t

The row filtration gives a spectral sequence with

EC« = Hp(Hq(UomA(X, Y);d);8).

Since the X¡ are .4-free, the rows are acyclic, so that

JHom.Cr, F),     q = 0,
WtmtQt.n*i-\fK <#0_

and hence

EM =J2

_ JExtP(Af,F),     c7 = 0,

|0 q*0.

Thus the spectral sequence of the row filtration collapses with trivial extensions

and identifies H„(HomA(X, Y); A) with Ext^(M, F). We say x EFpExtA(M, F)

if it has a representing cocycle in Fp Hom^ (X, Y).

The spectral sequence of Theorem 2.2. is the one corresponding to the col-

umn filtration Fp. Its E2 term will be identified in the form (2.4). Define a map

y: Horn^, Yp) -* Homr.(r**, Hom^, F))

by
yif)(y*) = (-Ddeefdeey*y*f

We have

E™ = HpiHqiHomAiX, Y);Ô);d).

Note that X with augmentation e is a projective 5-resolution of Af, by the

hypothesis of the 5-action on A.  Thus the homology of HomsiX, F) with the

induced coboundary is Exts(Af, F). Since Yp* is a projective r*-comodule, it is

easily verified that y induces an isomorphism

Hq(YlomAiX, Y); 5) a YLomT.iYp*', Ext«(M, F)).

Hence EP-" = Ext£.(F, Ext«(Ai, F)).

For the products, we use an equivalent formulation of the bicomplex.  Let

a be the composite

(J*)' ® Af* ® Y} -2-»- Hom(J'' ® Ai, F')

Sí Horn^/á ® I"'' ® Af, Y>) = Hom^fX,., Y¡)
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where

(a'(a*® m*® y), a®m) = (-iydesy(a*® m*, a ® m)y,

p = deg(a*® m*),

and ( , ) is the dual pairing.

We have commutative diagrams

(J*)'+1 ® Ai* ® Y> ■£* HomA(X¡+x, Yi)

(2.9) }M

(2.10)

(I*)* ® Ai* ® Y> -|-* mmA(Xt, Y>)

(I*)i+1 ® Ai* ® Y'+1 -~+ Homvl(A,/, Y'+1)

l®d

(A*) ®M*® Y> -|—» Hom^iA,., Y')

so that the bicomplex (UomA(X, Y), 8, d, A) may be replaced by (C(F, M) ®

Y, 8', d', A') where 8' = 8M ® 1, d' = 1 ® d and A' = 5' + d' with the usual

sign conventions.

Now C(F, M)® Y isa left differential C(¿)-module with respect to the

cup product and each of its differentials; that is, if a E C(A), b E C(F, M)® Y

we have

8'(ab) = 8(a)b + (- l)deg aa8'(b),     d'(ab) = (- l)deeaad'(b)

where 5 is the coboundary in C(A).

In particular the identification of ExtA(M, F) with H^(HomA(X, Y); A) ^

H^(C(F, M) ® Y; A') given by the row spectral sequence is an H*(A)-mod\x\e

homomorphism. Suppose h E C(F, M) is a cocycle identified with a cocycle

2a,. of C(F, M) ® Y, then

r¡'(h) -][>, = a'(w)   for some w E C(F, M) ® Y,

where n': C(F, M) —+ C(F, M) ® Y° corresponds to rj# under the isomorphism

a. If z E C(A) is a cocycle, then

A'((- l)deg zzw) = zA'(w) = n'(zh) - z(V a)

so that zh is identified with z(La¡).

If z E C(A) is a cocycle, its action on C(F, M)® Y commutes in the

graded sense with the coboundaries, and it clearly preserves filtration, so the cup-

product action induces the structure maps Xr of Theorem 2.5. In particular the

differentials are left graded H*(A)-module homomorphisms.

To identify the product on E2, suppose /: A ® A° ® M —■*• F represents
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x G Exts(M, F) and g: As —*■ F represents z G HS(A), then z acts on x through

H*ip), and zx is represented by g • /, where

g • fia ® a' ® a") = (-i)d««/deg(a'»<«")^fl ® fl')/(a")

for a E J*, a" eJ«. We have for z E C(A), w E CiF, M) ® Y, yaizw) =

z • ya(w) from which it follows that X2 = px. This completes (2.5).

Corollary 2.11. Let A = 5 ® T and let e: T—*- F be the augmentation.

Then H*(S) acts on the spectral sequence by the structure maps \(l ® e)*. For

r = 2 this action is induced on Extr, from the Yoneda product.

We note that the maps \ annihilate the image of H*(T) ® Er in H*(A) ®

Er for r > 2 since H*(A) acts on Ext5(Aí, F) through H*(<p). Thus the structure

maps 0r are needed to "detect" the action of H*iT).

For the proof of (2.7), it will be convenient to describe the Yoneda products

in terms of anticommutative diagrams. Let N be a T-module and let Y be the

injective resolution used in (2.5), then an element x G Ext£(/V, F) is represented

by a cocycle f: N-+Yp. Let g: F —► Y* represent z E H"(T). Form the anti-

commutative diagram:

N

\
(2.12) 0-+F—► r°—► r1—►-► Y"

y<7 _+ j*7 + l _>..._>. y</+P

Then zx is represented by (- if^f^ggPf

There is an analogous construction on the bicomplex Hom^IX Y).

Lemma 2.13. Suppose £f=0% f{- X¡ —*■ Yp+q~i is a cocycle representing

x E ExtpA+qiM, F). Suppose g: F-+Yr represents z E Hr(T). Then we may

construct the top squares in the following anticommutative diagram since Zf¡ is

a cocycle, and the bottom since the Y' are injective:

0«—M*—Y «—•••■<—y «—y      «—••••«—yM       A0 Aq       Aq+1 " q+p

/o I fq\      •4+lj I fp+q\ f
yP+l «_...<_ yp •*— y?-1 «—....*— Y° +-Q-F+— 0

yP+i+r «_...«_ yp+r <_ yp+r-1 %

77ie/i zx is represented by (- l)deg* degxS^+"-///.

Proof.  By the identification of HJHomA(X, Y); A) with ExtA(M, F)

(2.14)

1  H l*/¿



YONEDA PRODUCTS 243

using the row spectral sequence (equivalently, by a chain homotopy argument)

there exist //: Xf_x -+ YP+q-f (j = I, ... ,p + q),f: Xp+q -*■ F such that

2f¡-nf=A($fp.   Then

A((-i)de"Zc?p+<?-'/;) = 2:. gp+q-if _'ft-gf,

so HgP+q~ifi represents the same class as gf.

Now extend (2.14) to the right as foUows:  Let 0 *— F *— Zt

be a r-projective resolution of F and construct ¿-maps h¡: Xp+q_¡

make the top squares of (2.15) below anticommute, and by a chain homotopy

argument construct gi\ g' so that AÇLg*') = ge0 - r¡g:

Ztto

(2.15) 0 «

Yr <—Yr~l <-Yr~2 +-•••«— Y°*-^-F*— 0

Then AÇSgf'h^J = gf-g'hr, so gf represents the same class as g'hr. The

result foUows.

To show that the differentials are left H*(T)-mzos, consider the diagram:

H,
Dl

(2.16)

p+q-i(fp-r+í/FP)-^fíp+q(Fp/FP+i)—^Hp+q+1(FP+1/FP+r)

l<
Hp+q+i(Fp+1/FP+'")

f
Hp+q+1(Fp+r/FP+r+1)

The maps are those of the exact sequences of the respective triples.

By a standard construction of the spectral sequence of a filtered chain com-

plex [9], we have E™ = Ker D2/lm Dxr. If x E Ker D2 represents 3c E EP-q,

then drÇc) = y where i(y) = Dr+1(x). In turn x is represented by a map fq:

Xq -» YP with 8f= 0, and Dr+X(x) is represented by dfq: Xq -*> Yp+1. By

exactness Dr+1(x) E Im i, so there exist fq_¡: Xq_¡ —*■ Yp+i (/ = 0.r),

/,_,+ ! = Xq_r+X — Y*+r with A(£fq_¡) = fq_r+1 -dfq. Let z EH*(T) be
represented by g, g°.gp as in (2.13), then zx is represented by

(_1)degrdegW
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But

*(£gP+ífq-D =(-l)degV+7,_r+l -d(g%),

sodrizx) = i-l)de*zzdrix).

This completes (1) of (2.7). Now (2) and (3) are clear, and (4) follows

from (2.13) since pp([2//])=[/i].

The following result, needed for §3, may be established by a simple diagram.

Proposition 2.17. Let p denote the T*-coaction on Exts(AÍ, F) in the

change of rings spectral sequence, and let Y denote Yoneda product and t the

twist map.  The following diagram commutes:

1 ®u^-*#*(5) • T* ® Exts(M> F)

H*iS) ® ExtsiM, F) -^^ 11 ® 1

Y T* ® H*iS) ® ExtsiM, F)

ExtsiM, F) -^^____^ J1 ® Y
M >r* ® ExtsiM, F)

3. The factorization theorem. This section is devoted to the proof of

Theorem 1.9. For purposes of induction we prove the more general form below.

For s, t nonnegative integers define F(s, f) = A 024, • • • » 6r) if t> s and

Eis, t) = Z2 for t < s. Let Eis, °°) = \Jt>sEis, t). Let M = Af(n) be as in (1.9).

Theorem 3.1. With the notation as above, there is an isomorphism

ExtEfsx)iM, Z2) a Z2[qn+S, qn+s+x,...] ® ZxtE(s,n+s-i)(.M> Zl)

ofZ2[qn+s, qn+s+l" '\-modules, where the action on ExXE{sn+s_x) is trivial

The proof of (3.1) relies on the spectral sequence of §2, taking as ̂  the

inclusion Eis, t) C Eis, t + 1). Thus

(3.2) Ff.<? = ExtAx/Jí+2)(Z2, Ext|(îf)(AÎ, Z2)).

The argument will show that the coaction

(3.3) ExtE(if)(A/, Z2) -+A(ßt+2) ® Ext^fAf, Z2)

is trivial for t > n + s - 1 ; it follows that

E2 *H*iMQt+x)) ® Ext£(S(f)(Af, Z2)

= Z2 [qt+1] ® ExtE(st)iM, Z2)   for t > n + s - 1.

It will follow from the succeeding arguments that the spectral sequence

collapses. The abelian group extensions are trivial since the Ext groups are vector
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spaces, and the action of qt+ x corresponds on both sides, so the theorem foUows.

The required triviaUty of (3.3) wül be estabUshed in two steps.

Lemma 3.4. The restriction of the coaction (3.3) to ExtE,st^(M, Z2) is

trivial for t > n + s - 1.

Lemma 3.5. Ext^^iAi, Z2) is decomposable as an H*(E(s, t))-module

in terms of ExtE^s^(M, Z2).

The triviaUty of (3.3) foUows by (2.17).

In what foUows, aU coefficients in the homology or cohomology of a space

are in Z2.

We prove (3.4) and (3.5) for AÍÍ» = H*(BO(n)); the results for H*(MO(n))

foUow since the latter is a direct summand of H*(BO(n)) as E(s, r)-modules.

Turning to the proof of (3.4), consider the identifications

(3.6) H*(MO(n)) C H*(BO(n))   C   H*(BD(n)),

where D(h) is the set of diagonal matrices in 0(n). The first inclusion is the

Thom isomorphism which identifies H*(MO(h)) with the ideal generated by wn

in H*(BO(n)) = Z2[wx.wn]. The second is induced by the inclusion i:

D(n) C 0(ri). Recall that (Bi)* is a monomorphism whose image is the algebra

of symmetric polynomials in H*(BD(n)) = Z2[VX.Vn], and (Bi)*(wj) =

o,(Vx,..., Vn). Define the "exterior degree" of a monomial in the Vi to be the

number of V¡ which occur to an odd power. Similarly define the exterior degree

of a polynomial if aU of its monomial terms have a common exterior degree.

DuaUy, HJBOfa)) has a basis jc,   • • • x¡  for i¡ > 0 (where x0 = 1 in the

multipUcation on Hj(BO)) or equivalently xt   • • • xt , 1 < k < n, i¡ > 1, where

0 # Xj E Hj(RP°°). Define the exterior degree of x¡   • • • x¡   as the number of

iy which are odd. Also note that the image of HjßO(n - 1)) in HJBO(n)) is the

span of monomials x¡   • • • x¡   for k < n - 1.

Write Ai# for Hom(Ai, Z2) and define D¡: M# —*■ Ai, to be the coefficient

of 0, in the coaction over Em. Note D¡ is a derivation with respect to the multi-

pUcation on HjßÖ).

The triviaUty of the coaction (3.3) for / > n + s - 1 may now be restated:

if x EM(n\ and Ds+ x(x) = 0,..., Dt+ x(x) = 0, then Dt+2(x) = 0. Since

M(n\ C Ai(n + 1), it wiU be sufficient to show

Lemma 3.7. Ifx E M(n\ and Ds+X(x) = 0,..., Ds+n(x) = 0, then

For use in (3.5) we state a more general version.

Lemma 3.8. Suppose x EM(n\ is in the span of monomials of exterior
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degree <k-\,and supposeDs+lix) = 0,...,Ds+k(x) = 0. ThenD^k+l(pc) = 0.

Note that (3.8) implies (3.7) by taking k = n, since monomials of exterior

degree n in Ai(/i)„ are in fact primitive.

Lemma 3.8 will be proved by dualizing to take advantage of the ring struc-

ture of H*iBDiri)). We have

Lemma 3.9. If y E H*iBO{n)) C H*iBLXn)) is spanned by monomials of

exterior degree < k, then Qs+ky = 2^" ' Q¡y¡, where y, G H*iBOin)).

Next recall that the Q¡ are primitive in the Steenrod algebra [11] and hence

act as (mod 2) derivations, so they commute with squared elements. Now

H*iBDin)) is a free module over its subring Z2 [V\,..., Kjj] by multiplication,

and the indécomposables of the form Vtl • • • Vt may be identified, after re-

numbering, with the Thom class up E HPiMOip)). We have

Proposition 3.10. To establish (3.9) it suffices to consider the case where

y~ukE HkiMOik)) andys,..., ys+k_ j G H*iMOik)) have exterior degree k.

To prove (3.10), let em: 51 A AiO(m) -* MOQn + 1) denote the with

structure map of the Thom spectrum MO, and let 2 be the cohomology suspen-

sion. Then the composite

H*+\MOim + l^-^S9*1^1 A MOim))*~-HqiMOim))

is an F-homomorphism, maps um+x to um, and reduces the exterior degree of

each monomial by 1. Thus (3.9) for k implies its analog for each p < k.

Next note that Q¡ reduces the exterior degree of each monomial by 1, so

Qs+kuk has exterior degree k-\, and the y¡ may be assumed to have exterior

degree k.

Since y is symmetric and spanned by monomials of exterior degree < k it

may be written

y-t       Z      fpoKd)" ' va(p)
p=l o(l)<»"<o(p)

where o G 5„ and fja = ffV^y .... V2a,n)). By the first part of the proof, we

may write

Qs+kVi --y,- 'if1 etf^i. • • •. yPy>
i-\

let yfa =yfiVa,xy.... VQ{J>)). By the above remarks,

î+fc-i    / * \

Qs+*y= £ ô,(E       I    JpoyfoY
1=1        \p=l  a(l)<"'<a(p) I
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It remains to show the polynomials in parentheses are symmetric so that they

represent elements y¡ E H*(BO(n)).

By the symmetry of y each sum 2,/paKo(1j • • • Ko(p) for fixed p is sym-

metric and so consists of the sum of the terms in the orbit offVx • • • V where

eESn is the identity. Now ype E H*(MO(p)) has exterior degree p so may be

written y P. = gf(x\,..., xp)Vx • • • Vp where gf is symmetric in its p indeter-

minates. Thus if a fixes fpeVx • • • Vp it also fixes fpeyfe, so (writing C for

stabilizer)Cf   v ...v  CCV   vp hence
Jpev1       rp       JpeyJe

On the other hand fpeyfe has at least the (") elements in its orbit corre-

sponding to the combinations of indeterminates. Thus ^0fpayfa is symmetric,

completing (3.10).

To prove the condition of (3.10) it wiU be convenient to use the notation

of §1, where HjMO(k)) is the span of monomials bE = bexlb22 • • • of degree

< k.  If E = (ex, e2,...) let \E\ = Sef and grade bE = 2/e,., that is b? is assigned

its "stable grade." Note that 1 E H0(MO) is the unique element dual to each

Thorn class uk. If we form a minimal resolution

0 -* HJMO(k)) —> E(s, s + k)* ® V ->• • • •

then the existence of the relation of (3.10) is equivalent to the statement 0i+fc+1

® I v £ Im e, where e(l) = 1 ® lv. In particular it is not necessary to exhibit

the elements y¡.

Denote by H C F the span of images of monomials inb2, b4,..., b2r,...

and identify elements of H by their polynomial pre-images. Let A: V —* H be

the projection induced through e from the one in H^(MO(k)) which preserves

monomials in the b2r and annihilates aU others. Let e' = (1 ® h)e, then by the

coaction formula (1.8) it wiU suffice to show ßi+k+x ® 1 £ Im e'\w, where

W C Hj]tfO(k)) (with stable grading) is the span of monomials containing only

one factor b¡ of odd degree.

Proposition 3.11. Let y = b2m_xbE E Wv+k+l    , then e'(y) is either

zero or the sum of precisely two "monomials," i.e. terms of the form 0.- ® z

where z isa monomial of H.

For the proof, suppose e'(y) =£ 0, then bE EH. Let M denote the term

in e'(^) containing the 0y of highest grade; it has the form 0,- ® bE or 0,- ® b^rb5.

If Ai = ßt ® b5, then £>i(Ä2w_1) = 1, so 2m - 1 = 2' - 1. Since

/),(i2m_,) EH, 2m- 2q must be zero or a positive power of 2; i.e. q = i or

? = i-l. Thusfori>s + 2,s + Ki-1,/<s + ¿fc + 1 and (3.11) holds.
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Suppose i = s + 1, then |F| = (2s+*+1 - 1) - (2i+1 - 1) so a(|F|) > k, where

a denotes the number of l's in the dyadic expansion. Thus deg bE > k, deg y >

k + 1, a contradiction since y G HjMO(k)).

lfM = ßi® b   bE, then r # i, otherwise the term ßi+ x ® bE would also

appear, since i ¥= s + k + 1 by the grade of y.  Now r<s + fc+lbythe grade

of y, so e'(y) - ßt®b rbE+ ßr®b ¡bE and (3.11) holds, provided r>s+l.

Assume r < s- Note i < s + k by the grade of y.  Then

2s+k+i _!>!£! = (2i+fc+i - !) _ (2m - i)

_ 2$+fc+1 — o' — 2r > 2i+*:+* — 2i+*: — 2r

:=2i+'t-2r>2s+fc-2s,

so a(|F|) > a(2i+Ar - 2s) = k.  Thus deg ôE > k, so deg ;> > k + 1, a contradic-

tion.

Corollary 3.12. Every element o/Im e'l^ is the sum of an even number

of "monomials." In particular ßs+k+l ® 1 Í Im e'.

This completes (3.11), (3.9) and (3.4).

The proof of (3.5) is by induction on t. For t < s we have E(s, t) = Z2 so

the result holds trivially.

Assume (3.5) for t and all s > 0; this requires only finitely many steps.

Apply the spectral sequence (3.2). By (2.5) and (2.12) it has a module structure

over H*(E(s, t)) = Z2[qs,... ,qt] which is induced from the Yoneda product

on Ext£.(i f)(Af, Z2) in F2. It also has the structure {0r} over Z2 [<7r+1] • By

naturality these structures commute and induce a structure over H*(E(s, t + 1))

= Z2 [qs, ... , qt+x] which restricts to the given ones. We show E2 is decom-

posable over H*(E(s, t + 1)).

Let T = A (ßf+2). By the cobar construction, ExtT*(Z2,N)is decomposable

over H*(T) in terms of Extj,« for any r*-comodule N. Thus F2 is decomposable

over H*(T) in terms of

Ext°r.(Z2, ExtEM(M, Z2)) C ExtE(Sit)(M, Z2).

By the inductive hypothesis, any x E Extg.(j f) is decomposable over H*(E(s, t))

in terms of x¡ E ExtE,st^. The x¡, however, may not lie in

Ext° ,(Z2, Ext|(S(f)(Ai, Z2)) = F2°'°.

Lemma 3.13. Let z E ExtE,s t^iM, Z2). Then z may be written z — zx +

z2 where zx G Ext^.(í t), z2 G Ext£(í fí+1) C Ext^(îf) and q5zx =0,...,qtzx

= 0.

Using (3.13) we can replace the x¡ by x'¡ G Ext°j(s f+1j since the terms cor-
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responding to zx are annihilated by H*(E(s, t)). Note that the x¡ are permanent

cycles. The differentials commute (in the graded sense) with the composite action

of H*(E(s, t + 1)) on Er so the spectral sequence collapses. The abelian group

extensions are trivial and the spectral sequence preserves products in the sense of

(2.5) and (2.7), so ExtE^st+xy is decomposable over H*(E(s, t + 1)) by induc-

tion over the filtration.

To prove (3.13), write z EM(n)^ = H^(BO(n)) in terms of the basis

{x¡   • • • x¡ }, 1 < p < n, i„> 1, and let z2 denote the sum of terms of exterior

degree < t - s.  By (3.8) (with k - t - s + 1) we have Dt+2(z2) = 0, so z2 E

E34(i,r+i)- Uizi =z-z2-

Lemma 3.14. Suppose x E Ext0^ t^(M(n), Z2) is spanned by monomials

x¡   • • • x¡  of exterior degree > t - s + 1.  Then q¿x = 0,..., qtx = 0 in

E^E(s,t)(M(n)' Z2).

The proof will be by induction on n.

Remark 3.15. Let s < i < t and let N be an E(s, r)-module. Examination

of a resolution shows that q¡x = 0 in ExtEtSit\(N, Z2) if and only if there exists

yEN^ with Dj+Xiy) = x, D¡(y) = 0 for; = s + 1,..., t + 1,/ * i + 1.

As in (3.8) the proof will exploit ring structure, in this case the multiplica-

tion of H*(BO(n)) = Z2 [vvj,... , wn]. Let U = Z2 [w2,]. The Q¡ commute

with the multiplicative action of U, so H*(BO(nj) and M(ri) = H*(BO(n)) are

E(s, t) ® i/-modules. The following description of Ext^(M(n), Z2) will be used

in a spectral sequence argument.

Proposition 3.16. There is an isomorphism

f: Ext°,(M(/i), Z2) -+ M(n - 1)„ © H¿MO(n - 1))

of E(s, t)*-comodules.

For the proof, consider E(s, f)„,-maps px : M(n)^ —► M(n - 1)^, p2: M(n)#

-*• H¿MO(n)) defined by px (xtl • • • x/fc) = x^ • • • x/fc for k<n,px(xtl>~ x¡n)

■ °> Pi(xix ' ' ' xin) = xix '" */„. P2(xix ' ' ' xik) = 0foik<n (if > 1

throughout). Let An: M(n)^ —*■ M(n)^ be the map dual to multiplication by wn.

Then Ker A„ = Af(« - 1)* and Ker A* = Ext^A/ín), Z2). Thus if x E Ext^,

A2„p2(x) = 0,soAnp2(x)EM(n-l)it¡. SinceA„(x,   . . . jt, ) = *,-_i • • • x¡ _x
i       ^   n 1 n

(x0 = 1), p2(x) has the form xxh + u where h E HjMOin-1)),   u E

Ker An. By definition of p2, u is a sum of terms x,   • • • x, , i¡ > 1, so u E
*Nrf 1 ft '

HJiMO(n)). But also u G Af(« - 1)„,, so u = 0, p2ix) = xxh. Multiplication by

xx is an Eis, l^-monomorphism, so define f(x) = (px(x), h). The inverse map

is given by (y, z) \-*y + xxz.

For the proof of (3.14), note that D¡ reduces the exterior degree of each
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term x¡   • • • jcf   by 1 so we may assume x of (3.14) has homogeneous exterior

degree q> t -s + 1. For n = 1 the highest exterior degree that can occur is 1,

so t = 0. For s > 0, E(s, 0) = Z2 so the result is trivial. For s = 0, if Dx(x) =

0, x E ÎÎJB0(1)) = Ht(RP°°) has exterior degree 1, so jc = x2r_x for some r,

and x = Dx(x2r). Thus qQx = 0 by (3.15).

Assume (3.14) for M(n - 1) and suppose x E Ext^ f)(M(w), Z2) has ex-

terior degree q> t - s + 1 and qpc ¥= 0 for some i, s < / < t.  Let m be the

largest integer r such that A2r(q¡x) =£ 0, then

u = A2nm(qiX) E Extl.(Z2, Ext¿(s>f)(AÍ(«), Z2)),

which is E2'1 in the change of rings spectral sequence converging to ExtE,s^9U'

No differentials can hit u, and the only possible differential on E2 ,l is

d2: E»'1 -*£|>° = Ext2(/(Tor0?(i'f)(Z2, M),Z2)

and E\,0 = 0 since {/ is a PID. Let 0 =£ m' E Ext^^r/  represent the class of

uinE„.

Claim. Ext^>f)®i/(Ai(«), Z2)) is decomposable by Yoneda products over

H*(E(s, t)) (acting by the homomorphism induced from the projection E(s, t) ®

U —* E(s, t)) in terms of Ext£(f t)&u-  We have the spectral sequence

ErfltoO.CZa. Ext^(Ai(«), Z2)) => Ext|+»0 9 v(M(n), Z2)

with the product structure {6r}. Since U acts freely on Ai(n), E2,b = 0 for

b ¥= 0 and the spectral sequence coUapses with trivial extensions. By the induc-

tive hypothesis, (3.14) holds for H*(BO(n - 1)) and thus for H*(MO(n - 1)), so

by (3.16) E2 = E,. is decomposable, and the claim foUows.

Thus u = Sj=Jf7rzr, zr E ExtEtít) 9 v, and by the coaction formula (1.8)

we may assume each zr has exterior degree q. Let /: E(s, t) —*■ E(s, t) ® U be

the inclusion, then 0¥:u = /*(«') = 2j_J'7/,/*(zr), so for some z„, qvj*(zv) # 0

in Ext¿(í(f) (M, Z2), where w =j*(zv) has exterior degree <? and A2(w) « 0.

This wiU be shown to be impossible if«7>f-s + 1.

Let v = Pi(w), z = p2(w) where Pj, p2 are as in (3.16).   Then y S

Aí(« - 1), has exterior degree q, so by induction qsy = 0, ... , qty — 0 in

Extg.,-^ f)(Ai(n - 1), Z2). By naturaUty the images of the q¡y are zero in

ExtEUt)(M(n), Z2).

As in (3.16), z = xxh, where A E H^(MO(n - 1)) has exterior degree q - 1

> (f - s + 1) - 1 = t - (s + 1) + 1. By induction on «, we have qs+ xh = 0,

... ,qth = 0 in
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where the inclusion is induced by the projection of Ai(n - 1) onto the direct

summand H*(MO(n - 1)). Thus by (3.15) there existzi+1,...,zf EHjMO(n-1))

mthDi+x(zi) = h,Dj(zi) = 0foij = s + 2,...,t+ l,j±i+ 1. Let

z'x+i=x2S+xhEM(n)„

z'k =xlzk+x2S+xDs+x(zk)EM(n\,     k = s + 2,..., t + I.

RecaU that the D¡ are derivations satisfying Dp¡ = Dp¡, D2 =0. By an easy

calculation,

Di+i(z'i)=z>     '-*. — .'.

Dj(z'¿ = 0,        j = s+l.t+lj + t+l.

Thus q¡w = q,y + q¡z = 0 in Ext^^iAfi«), Z2), contradicting qvw ï 0. This

completes (3.14), (3.5) and (3.1).

Note.  The last calculation reUes on the fact that D¡(x í+1) = 0 for i >

s + 1, which requires the inductive step to treat the lowest dimensional generator,

qs. This is the reason for the generaUty of (3.1).

We note in closing that Theorem 3.1 is the best possible result of its type,

i.e. n + s - 1 cannot be replaced by n + s - 2. Let

x=Ds+lDs+2 ' • ' ^s+n-Áx2s+l'  '  ' x2s+n)-

Then x E ExtE,sn+s_2)(H*(BO(n); Z2), Z2), butDi+n(x) « *? * 0, so x $

ExtE(s.n+s-iy
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