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SIMPLICIAL TRIANGULATION OF NONCOMBINATORIAL
MANIFOLDS OF DIMENSION LESS THAN 9

BY

MARTIN SCHARLEMANN

ABSTRACT.  Necessary and sufficient conditions are given for the sim-

plicial triangulation of all noncombinatorial manifolds in the dimension range

5 < n < 7, for which the integral Bockstein of the combinatorial triangulation

obstruction is trivial.  A weaker theorem is proven in case n = 8.

The appendix contains a proof that a map between PL manifolds which

is a TOP fiber bundle can be made a PL fiber bundle.

0. Two of the oldest and most difficult problems arising in manifold

theory are the following:

(i) Is every manifold homeomorphic to a simplicial complex?

(ii) Is every simplicial triangulation of a manifold combinatorial (i.e. must

the link of every simplex be a sphere)?

Among the consequences of the fundamental breakthrough of Kirby-

Siebenmann [9] was that at least one of these questions must be answered nega-

tively, for there are topological manifolds without combinatorial (PL) triangulations.

The existence of a counterexample to the second question is equivalent to

the following conjecture:  There is some homology m-sphere K, not PL equivalent

to S™ such that the p-fold suspension SPAT is homeomorphic to Sm+P.

Siebenmann shows that if the answer to question (i) is affirmative for mani-

folds of dimension n > 5, then the following hypothesis is true for m = n - 3:

Hypothesis H(m). There is a PL homology 3-sphere K such that ~LmK **

5", and K bounds a PL manifold of index 8 (mod 16) (i.e. the Rochlin invariant

of K is nontrivial).

Furthermore, if hypothesis H(2) is true, then all orientable 5-manifolds are

simplicially triangulable [15].

The purpose of this paper is to prove

0.1. Theorem.  Let M" be a connected closed noncombinatorial manifold

of dimension 5 < n < 8, and let kN G H4(N; Z2) be the obstruction to the
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existence of a PL structure on N. Suppose the integral Bockstein homomorphism

ß:H*(N;Z2)^Hs(F;Z)

maps kN to zero.  Then

(i) For 5 < n < 7 hypothesis H(n -3) is a necessary and sufficient con-

dition for the existence of a Simplicia! triangulation ofN.

(ii) For n = 8, kN U kN = 0 and hypothesis H(2) together imply that N

is simplicially triangulable.

Remark 1.   We do not assume that N is orientable. However, the assump-

tion ß(kN) = 0 is an orientability assumption of sorts. See § 1. If Af is simply

connected, then ß(kN) — 0 implies that N has the homotopy type of a PL mani-

fold [4]. A pleasant corollary of the theorem is that for n = 5, if w1^/) • k(N)

= 0, hypothesis H(2) is sufficient for N to have a triangulation.

Added in proof (February 1976). R. Edwards has announced that for

m > 4, I.2Km ^sm+1. Using this result, Matumoto and Galewski-Stern have

announced necessary and sufficient conditions for the triangulation of all n-

manifolds, n> 5.

Operating under the assumptions of Theorem 0.1, the argument proceeds as

follows:

§ 1. It is possible to represent kN by a codimension 4 smoothable submani-

fold with smooth orientable normal bundle.

§2. Any such bundle has a simplicial triangulation which restricts to an

exotic PL structure on the sphere bundle boundary of the total space. The tri-

angulation is constructed by defining a space X, showing that X is homeomorphic

to the bundle space, and simplicially triangulating X in the required manner.

§3. The proof of Theorem 0.1.

I would like to thank the referee for suggestions leading to considerable

abbreviation of the original manuscript.

1. Representing triangulation obstructions by sub manifolds. The following

well-known observation is used throughout the proof.

Suppose a connected closed /«-manifold M is imbedded in a closed m + p

manifold AT with normal p-disk bundle v(M). Let i>(M) be the p - 1 sphere bundle

boundary of v(M), i:M-+N the inclusion, e: H*(JV, N-M)-+ H*(v(M), i(M))

the excision isomorphism and /: (N, 0)—*(N,N-M) the inclusion of pairs.

Let U G Hp(v(M), i>(M); Z2) be the Thorn class of v(M) and [M] G Hm(M; Z2)

the fundamental class of M.

1.1. Lemma. The Poincarè dual of i# [M] in N is the image of U under the

composition

H*(v(M), v(M)\ Z2) -£-♦ H*(N, N-M; Z2) A H*(N; Z2).
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Notation.   For any space X let r: H*(X; Z) —► H*(X; Z2) be the mod 2

reduction homomorphism. Throughout the paper the notation e and / will always

refer to excision homomorphisms and inclusion maps of pairs, respectively.

The following theorem is the central result of this section.

1.2. Theorem. Let Nn be a connected closed n-manifold, 5 < « < 8, and

let kN G H*(N; Z2) be the obstruction to the existence of a PL structure on N.

Then the following conditions are equivalent:

(i) There is an imbedding of a connected smooth n-A manifold M —*N

such that M has an orthogonal oriented (i.e. 50(4)) normal bundle in N with

w4 = 0 and the image in Hm _4(iV; Z2) of the fundamental Z2 homology class

[M] of M is Poincaré dual to kN.

(ii) ß(kN) ■ 0. For n = 8,kNUkN = 0.

Proof of 12.  (i) => (ii). Let v(M) be the oriented orthogonal normal

bundle to M in N with sphere bundle boundary v(M), and let U be the Thorn class

in H\v(Af), v(Af)\ Z). By Lemma 1.1, i*[M) is Poincaré dual to j*e~ 1r(U) in N.

Hence kN = /*e-1r(r/)- Since the Bockstein is natural, ßkN = j*e~1ßr(U) = 0.

It remains to show that for n = 8, A:^ U kN = 0. Note first that if v(M) is

the total space of the normal bundle, v(M) is smooth. Hence kN pulled back to

v(M) is 0, or i*(kN) = 0. Let x be the Poincaré dual of kN. Since n = S,kN U

kN = 0 if and only if kN n jc = 0. But kN n je = kN n i0[M] = ifl*kN n [M])
= 0.

(ii) => (i). Since ß(kN) = 0 there is an a in H4(N; Z) such that r(a) = kN.

Since n < 8 it follows from [18] that there is a mapN—+MSO(4) which pulls

back the Thorn class of MSO(4) to a.

For n < 8 /can be made TOP transverse to 550(4) in MS0(4) [8] so that

f~1(BSO(4)) = M is an m-manifold with normal 50(4) bundle in N. M is smooth-

able and w4 of the normal bundle is trivial since m < 3, and by standard argu-

ments it[M] is Poincaré dual to kN.

In [13] a codimension 4 TOP transversality theory is developed which here

implies that when n = 8 we may take /-1 (550(4)) = M to be a homology mani-

fold equipped with an open neighborhood W such that the inclusion W - M —► W

has the homotopy type of a 3-spherical fibration over M and the Thorn class U in

HA(W, W-M) satisfies kN = j*r(U). Since kN U kN = 0 and /* is an isomor-

phism in dimension 8 it follows easily that kN\W = 0 and so W is smoothable.

Hence by smooth transversality, M can be a smooth manifold, W an 50(4) normal

bundle and again /„[M] is dual to kN.

To show w4 = 0 it suffices to show r(U) U r(U) = 0 [10]. Since j*e~l is

an isomorphism in dimension 8, this follows immediately from kN U kN = 0.

It is well known that in all dimensions M may be assumed connected, and

the proof is complete.



272 MARTIN SCHARLEMANN

2. Simplicial triangulation of oriented 4-disk bundles. Once the triangu-

lation obstruction is represented by a smooth manifold M with normal bundle %,

we hope to simplicially triangulate near M in such a way that the simplicial tri-

angulation extends to a PL triangulation away from M.

In case N is non-PL and n = 8, there is hope for this procedure only if

w4(|) = 0. For consider the following portion of the Thom-Gysin cohomology

sequence for % (Z2 coefficients)

0 -h. H\M) -£♦ H\%) -+ H\M) -*-* H\M) -> H\%).

The image of the fundamental class in H°(M) under 0 is w4(|) [10, Theorem 12].

If w4(f) ¥= 0, then p* is an isomorphism and, since p* is induced by the

inclusion H3(M) — //3(|) —>H3(k),i* is an isomorphism. The classification of

PL structures is natural with respect to codimension 0 inclusions [9] so i must

induce an isomorphism between PL structures on % and on a collar neighborhood

of k- By the product structure theorem [6] i then induces an isomorphism be-

tween PL structures on % and on %. That is, any PL structure on % is the restric-

tion of some PL structure on \.

However, if w4(£) = 0 then the cokernel of /* is Z2, and there are

order(/73(Ai; Z2)) isotopy classes of PL structures on % which do not extend to f.

2.1. Theorem.   Let % be an oriented smooth closed 4-disk bundle over a

connected closed smooth manifold Mm of dimension m = 2, 3, 4, and let % be

the sphere bundle boundary of %. Assume w4(£) = 0 and there is a homology

3-sphere satisfying H(m + 1) for m = 2,3 or H(2) for m = 4.  Then at least one

of the order H3(M; Z2) PL structures on % which do not extend to PL triangu-

lations of £ does extend to a simplicial triangulation.

Remarks.   At the end of this section we consider how many of these PL

structures on % extend simplicially.

It is well to recall in the following that hypothesis H(m) for a homology

sphere K implies that cone(/v) x Rm ~* is a manifold [3].

A. Proof of 2.1.   Preliminary remarks and notation.  The primary obstruc-

tion to trivializing £ lies in H2(M; 7^(50(4))). There is an m - 2 manifold /

smoothly imbedded in M such that the inclusion of its fundamental Z2 homology

class [/] represents the Poincaré dual to this obstruction [18]. If the obstruc-

tion is trivial, let J be a trivially imbedded (m - 2)-sphere for m = 3,4 and a

point for m = 2. By a well-known argument, we may assume / is connected for

m = 3, 4. Since, for m = 2,H2(M - (point)) = 0, we may assume / is connected

in this dimension also.

Notation (see Figure 1).
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K = homology sphere satisfying H(i) for relevant /.

cK = cone on K with vertex *.

cK = cK - K = open cone on K.

iv(J) s normal open tubular neighborhood of 7 in M of radius i = 1, 2 for

some fixed Riemannian metric on M.

iv(J) = closure of iv(J) in M.

ii>(J) = iv(J) - iv(J).

iD = For some Riemannian metric on K x (0, 1), iD is a closed 4-disk PL

imbedded in K x (0, 1) C cK of radius / = 1, 2.

p = center of D.

iD = interior of iD.

ib = 0~ iD.
ir¡ = (M - v(f)) x ¡DC (M- v(J)) x cK, a trivial normal bundle to the

imbedding (M - v(J)) x {p} -* (M - v(J)) x cK.

it? = (M~ p(JJ) x iD, the closure of irj.

tí] = (M- v(J)) x ib = irj - IT?.

[M] = fundamental homology class of Hm(M; Z2).

(M - vg)) x cK

D'lI.QZIE?
*(/>

Mf)

Figure 1

B. Construction of spaces X and X'. By 1.1 the first obstruction to triv-

ializing | is in

image(//2(M, M - J; Z2) -¿-* H2(M; Z2)) = kernel(//2(M; Z2) -^> H2(M - J)),

so the first obstruction to trivializing % over M - v(J) vanishes. The higher

obstructions lie in H3(M - v(J); tt2(50(4))) and H4(M - v(f); tt3(50(4))). The
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first group vanishes because ir2(SO(4)) = 0 and the second because H*(M - u(J))

= 0. Hence %\(M - v(J)) is trivial.

fis obtained from \\(M - v(J)) by adjoining \ \v(J) along Ç\ù(J) by a

bundle equivalence. Since £ \(M - v(J)) and 2t? are bundle equivalent (they are

both trivial bundles over M - v(J)) we may attach a bundle, equivalent to \\v\J),

to 2tj along 2r¡\v(J) by a bundle equivalence \\i>(J) —* 2ñ\v(J) and thereby ex-

tend 2rj to a disk bundle over M equivalent to %. Denote this bundle 2f and

denote by X the space obtained from (M - v(J)) x cK after this attachment.

(Recall that 2t? C (M - v(J)) x cK.) The extension of 2îj to the bundle 2%' in-

cludes in its interior an extension of r¡ C 2rj to a disk bundle over M equivalent

to %. We denote this bundle \ C 2? C X (see Figure 2).

'\TTTTtlxffffW <■
Figure 2

Away from (M - v(J)) x * C (M - v(f)) x cK, X is always a manifold,

and points in (M - v(J)) x * have neighborhoods homeomorphic to Rm x cK.

Therefore, under hypothesis H(m + 1), X is a manifold except possibly near

v(J) x * C v(J) x cK.

Under hypothesis H(m), A" is a manifold with boundary, for points in

£(/) x * have neighborhoods which are homeomorphic to Rm~l x cK. In this

case 9A- = [(M - 2v(J)) x K] U Y, where

Y s [(2v(J) - v(J)) xK]U [(¡if) xcK)- 2^\v(J)] U 2%'\v(J).

We will denote [(M - 2u(J)) xK]UY by 9AT, whether or not AT is a manifold.

Let U be the interior of an open collar neighborhood of Y in X. That is,

if K x (-1, 1] parameterizes the collar, let i/be the image of Y x (-1, 1). It

is clear from the construction that such a collar exists. Note that under hypoth-

esis H(m + 1), Y contains all the points of bX near which 9Af may fail to be

Euclidean. We intend, assuming H(m + 1), to split i/by a genuine manifold

and discard the piece lying between the split and Y.  The result will be a mani-

fold X' which can be substituted for X in much of the later argument.

Since K is a homology sphere, (X, bX) is a homology manifold pah-

regardless of any suspension assumptions made about K.  In particular, (X, bX) is

always a Poincaré pair.
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The following observation of H. King allows us to split U.   Let CAT be a

manifold category (DIFF, TOP or PL):

22. Lemma.   Let (C, dC) be a compact pair of topological spaces such

that dC is a CAT manifold. If C x R is a CAT manifold of dimension > 6 and

d(C x R) =* 30 x R then there is a CAT manifold N and a CAT homeomorphism

N xR=*C x R.

Proof of 22.   See [5] for proof. Here King observes that the portion P

of C x R lying between C x {0} and an n - 3 neighborhood of an end of C x

R, when crossed with 7, is a compact manifold. Therefore P has the homotopy

type of a finite complex, and so the obstruction in K^fltflTf) to splitting C x R

vanishes.  See [16].

Uis homeomorphic to Kx(-l,l) and dY = 2v(f) x K is a manifold, so

under assumption H(m + 1) there is a manifold N such that U is homeomorphic
o

\oN x (-1, 1). Let N denote N with a small closed collar of dN removed.

Modify X by removing N x (0, 1). Call the resulting manifold with boundary X .

The portion of dX lying "over" 2v(J) has been changed from the nonmanifold Y

to the manifold obtained from N by attaching to 3^ the cobordism between dN

and dY given by removing dN x (-1, 0) from dN x (-1, 1) =* dY x (-1,1) c_»

3Y x (-1, 1]. Revert to Was notation for this manifold. Note that:

(i) dN^dY^2i>(J) xK,

(ii) X' is a manifold with boundary.

The following lemma explains our interest in X.

2.3. Lemma. X -%' is a homotopy product.^)

2.4. Corollary.  Under assumption H(m) [resp. H(m + 1)] the manifold

X-Ç [resp. X' - {•'] is an h-cobordism.

Proof of 23.

X - £' = [(M - v(J)) x (cK - D)] Up [2f V(7) - £'!*./)],

where p is an 53 x 7 fiber bundle equivalence

u(J) x (2D -D)-^ 2k'\KJ) - ÏW)-

Now 2%'\v(J) - $'|m(/) is homeomorphic to the actual product i'\v(J) x 7, so in

order to verify 2.3 it suffices to show that W = (M - v(J)) x (cK-D) is a

homotopy product from Wl =(M- v(J)) x D to W2 = [(M - v(J)) x K\ U

[v(J) x (cK - 2D)]  rel v(J) x (2D - D) ~ ù(J) x D x I.  That is, we must show

0)  A Poincaré triple (C; Y^, Y2) is a homotopy product if the inclusions Y¡<-+C are

homotopy equivalences.
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that the inclusions W¡ —* W are homotopy equivalences. This will follow from

two facts (see [19])

(a) H0(W, Wi;Z[n1(W)d = 0.

(b) The inclusions induce isomorphisms 7rx(Wf) —* irt(W) with base points

in i>(J) x (2D-D).

Proof of (a).  By general position itx(cK -D)** ir^cK - {point}) *•

tt^cK) - 0. Therefore -nx(W) <* jrx(Af - v(J)).

Since the inclusion D —► cK is a homotopy equivalence, H+(cK - D, bD\ Z)

- 0 by excision. Hence H*(W, W1 ; Z\itx(M - v(J)]) ■• //-*(&/, Wt ; Z[7r,(R0]) =

0. By Poincaré duality H*(W, W2 ; Z^W)]) = 0, so H*(W, W2 ; Z^WOD = 0.

This proves (a).

Proof of (b).  Let x, qx and q2 be points in v(J)t bD and K respectively.

Since ffjic^T - £)) = 0, the inclusion induces an isomorphism itföD, qx) —*■

ir^cK-D, qx). Hence the inclusion induces an isomorphism irl(Wl, (x, qx)) ^*

*i(.W, Or, qt)).
A path in {x} x (cK - D) from (x, qt) to (x, q2) provides a natural iso-

morphism 7Tj(W, (jc, qx)) "" 7r,(W, (x, q2)). It therefore suffices to show that

ir1(W2, (x, q2)) —> itx(W, (x, q2)) is an isomorphism.

By Van Kampen's theorem rrl(W2, (x, q2)) is the push-out of the following

diagram.

n^ùÇT) x K, (x, q2))-► nx((M - v(f)) x K, (x, q2))

I i
*MS) x (cK - D), (x, q2))-► tjx(W2, (x, q2))

A copy of M - v(J) is imbedded in (M - v(J)) x K as (M ~ v(J)) x {q2}.

A standard argument now shows

7rj((M - v(J)) x {q2}, (x, q2)) —*■ jt,(W2> (x, q2)) is an isomorphism.

Since Tt^cK-D, q2) = 0, the inclusion also induces an isomorphism

«¿(M - K-0) x fa2}, (x, q2)) -+ n^W, (x, q2)).

This proves (b) and hence 2.3.

25. Proposition, (i) Assuming H(2) then Xisa manifold with boundary

and there is a PL triangulation of bX which extends to a simplicial triangulation

ofX but does not extend to a PL triangulation of X.

(ii) Assuming H(m + 1) and m = 2, 3 then X' is a manifold with bound-

ary and there is a PL triangulation of bX' which extends to a simplicial triangula-

tion ofX' but does not extend to a PL triangulation ofX'.

We delay the proof of 2.5 briefly.

Proof of Theorem 2.1 assuming Proposition 25. PL adjoin to the PL



NONCOMBINATORIAL MANIFOLDS 277

triangulated dX (resp. bX') a PL triangulated ft-cobordism H with Whitehead tor-

sion the negative of the torsion of the A-cobordism from dX (resp. dX') to £' (see

[11]). By 2.4 the resultant manifold will be £' with a topological s-cobordism

adjointed to |\ By the TOP s-cobordism theorem, this manifold will be homeo-

morphic to %. We so identify it. % is then simplicially triangulated by a triangula-

tion which is PL near |.

Since H is an A-cobordism between dX (resp. dX') and | there are 1-1 corre-

spondences between PL structures on dX (resp. dX'), %■> and H. Thus a PL exten-

sion of the triangulation near £ to all of % would induce a PL extension of the PL

triangulation of dX (resp. dX') to all of X. This would contradict 2.5, and so

verifies 2.1 assuming 2.5.

C. Triangulating X and X': A proof of 2.5. It was observed in §2.B that

H(m) (respectively H(m +1)) implies that X (resp. X') is a manifold with bound-

ary. Clearly 7/(2) implies H(m) for m greater than 2. This proves the first asser-

tion of both parts of 2.5. The second assertion is the heart of this paper.

The following lemma shows that if dX (resp. dX') is a manifold, dX (resp.

bX') is a PL manifold. First note that the manifold dU =* dY x (-1, 1) =

2t>(7) x AT x (-1, 1) has a natural PL-structure-the product of the Whitehead

structure on v(J) and the unique structures on K and (-1, 1) [20].

2.6. Lemma. If U is a manifold (e.g. under hypothesis H(m + 1)) then the

natural ?L-structure near dU extends to all of U.

Proof of 2.6.  By construction the natural structure extends to all of U,

except possibly across that portion of U which is mapped by the collar projection

U—*■ Y to i>(J) x * C Y.  By an argument similar to that in 1.1 it follows that

the dual in ̂ (U; Z2) of the obstruction in H*(U, dU; Z2) to extending the

natural structure on 3 U to all of U is represented by P_1(i(7) x *) and so is

carried by p to the element a in Hm_l(Y; Z2) represented by the manifold

i>(J) x * C i>(J) x (cK-D). In order to verify 2.6, it suffices therefore to show

that a is null-homologous in Y.  Let L be a Une in cK - 2D connecting * to some

{q} in 2D. Then v(f) x L is a homotopy in Y between v\J) x * and the cross-

section v(J) x {q} of the bundle 2£'|£'(7). Thus j>(7) x {q} also represents a.

From obstruction theory we know that any two cross-sections of 2%'\i>(J)

can be homotoped together except possibly over a 3-cell of i>(J), where the differ-

ence in cross-sections defines an element of 7r3(fiber of 2%' =* 53) =* Z. If this

obstruction is trivial mod 2 the cross-sections represent the same homology class

in Hrn_l(2%\i>(J); Z2). Thus a is represented by any cross-section of 2%'\v(J) for

which the obstruction in H3(i>(f); Z) to the existence of a homotopy of this

cross-section to i>(J) x {q} is trivial mod 2.

Recall we are assuming w4(|') = 0. w4(|') is the Z2 reduction of the ob-
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struction in H4 (M; Z) to constructing a cross-section to %' [10].  But there is a

cross-section of 2|' (viz. (M - v(J)) x {q}) over M - v(J) which restricts to i>(J)

x {q}. Therefore the obstruction to extending this cross-section over v(J), re-

duced mod 2, lies in the pre-image of w4(£) under the homomorphism

H\v(J), v(J); Z2) -£-+ H\M, M - v(J); Z2) -^+ HA(M; Z2).

Since M and / are connected, and m < 4, this is an isomorphism, and the Z2

reduction of this obstruction is therefore trivial. Some cross-section of |'|£(/)

therefore does extend over v(J), a cross-section for which the obstruction in

H3(i>(f); Z) to homotoping to v(J) x {q} has trivial Z2 reduction and therefore

still represents a. The extension of the cross-section over v(J) then provides a

null-homology in y of the class a. This completes the proof of 2.6.

Remark.   By the product structure theorem, 2.6 is true for N. If y is a

manifold, it is true for Y also.

Now we construct the triangulation of X. Choose a Whitehead triangulation

of M, which we denote |fli|, so that M - 2v(f) is a PL subcomplex \M - 2v(J)\,

and choose a Whitehead triangulation \K\ of K.  \M ~ 2v(J)\ x c\K\ is a cell com-

plex. Let \M - 2v(J)\ x c\K\ here denote a simplicial complex obtained from this

cell-complex by subdivision in which no new vertices are introduced (see [12,

Chapter 2] ).

The following series of assertions show that under assumption H(2) some

subdivision of this triangulation may be extended to all of X. Later the assertions

are modified to apply to X' under assumption H(m + 1), m = 2, 3.

Let pv, p^< represent the bundle projections in 2v(J) and 2?' respectively.

Denote X-((M- 2v(J)) x cK) by X\2v(J) and X-((M- 2v(J)) x cK) by

X\2v(J).

Assertion 1. The natural fibering

2v(f)xcK-?1+2v(J)-!L>J

of 2v(J) x cK over J extends to a fibering X\2v(J) *+ / with contractible fiber F.

Proof of Assertion 1. X\2v\J) = (2v\J) - v(J)) xcKUp f\v(J) for

some bundle equivalence p: %'\v(J) —* v(J) x 2D.  Since p is a bundle equivalence,

the projections

(2v(J) - v(J)) x cK —i* 2v(J) - v(J) -^-> /

and

l'KJ)^v(J)^J

coincide on %'\iÇ) ̂  v(J) x 2D.  These maps define the required fibering f.

Since the fiber of v(J) is S1, the fiber F of this projection is homeomorphic to
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((S1 x 7) xcK) U- (D2 x D4). Here p is a homeomorphism (S1, 1, 2D) —*

(3D2, D4). An easy calculation shows that F is contractible, proving Assertion 1.

The fiber bundle projection ^restricts to a fiber bundle projection Y U

(2v(J) x cK) —*• J.  We denote this restriction by /

Assertion 2. Under assumption H(m + 1), the interior of the mapping

cylinder Z(f) is a manifold.

Proof of Assertion 2. Away from J the interior of the mapping cylinder

is just (Y U (2v(J) x cK)) x R.  Since dimension (2v(J) x R) is m, all of these

points have Euclidean neighborhoods under assumption H(m + 1).

Near a point on / the mapping cylinder is homeomorphic to cone (dF) x

Rm~2, where Fis defined in Assertion 1. The five lemma and Van Kampen's

theorem show that dF is simply connected and has the homology of 5s. A homo-

topy equivalence 37" —* 5s may therefore be defined by collapsing the comple-

ment of a 5-cell in dF to a point.

Under assumption H(m + 1) bF x Rm~x is a manifold, for in bF any

vertex * lies in the cross-product of * with an 51 fiber of v(J) or 2i>(J), hence has

neighborhood homeomorphic to cK xRm. By [3, Corollary 2], 2m_1(3F) *

Sf7, so coae(bF) x Rm~2 is locally Euclidean. This proves Assertion 2.

Assertion 3. Under assumption H(2) the manifold X obtained by attach-

ing the mapping cylinder Z(f) to X - X\2p(J) = (M - 2v\J)) x cK along 2v(J) x

cK is homeomorphic to X.

Proof of Assertion 3. According to Assertion 1, X\2v(J) fibers over J

with fiber F.  But under assumption H(2) both bF and F are manifolds. We have

shown that dF is a homotopy 5-sphere and F is contractible. By the Poincaré

theorem, F=*D6 =* cone(3F). The group of the D6 bundle X\2v\J) is AutT0P(56).

There is a natural imbedding of AutTOP(356) in AutTOP(56) induced by coning.

The topological version of the Alexander trick shows that the quotient group

AutTOP(56)/AutTOP(356) is contractible. Hence X\2v(J) is equivalent to the

disk bundle got by coning on the fibers of its sphere bundle boundary. This space

is clearly Z(f). This proves Assertion 3.

Assertion 4.   Under assumption H(2) the mapping cylinder Z(f) has a

simplicial triangulation which restricts to a subdivision of \2i>(J)\ x c\K\ on 2v(J)

x cK and which is a PL triangulation on Y.

Proof of Assertion 4. The projection \2v(J)\ x c\K\ •—*■ |2z>(7)| is cer-

tainly a piecewise linear map of polyhedra. So is the PL manifold fiber bundle

projection \2v(J)\ —*• /.

The PL structure on 2i>(J) x K given by the triangulation \2v(J)\ x |£| ex-

tends to a PL structure of Y by the remark following Lemma 2.6, and such an

extension may be chosen so that the TOP bundle fY=f\Y: Y —*■ J is a PL bun-

dle. This follows from the bundle straightening theorem of the Appendix. We
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have the commutative diagram of piecewise linear maps of polyhedral:

001 x m inclusion , y

inclusion

\2v(f)\ x c\K\-> J

By [12, Theorem 2.15] Y and /may be triangulated and \2ù(J)\ x c\K\ subdivided

so that all maps are simplicial. The mapping cylinder of a simplicial map is sim-

plicial [17, p. 151], and so the assertion is proven.

We now embark on proofs of versions of these four assertions for X' when

m = 2, 3.

For m = 3, / is a circle. Fundamental use is made of the following theorem

which Browder and Levine [1] originally proved in the smooth category. It may

also be verified in PL and TOP by use of PL and TOP transversality and handle-

body theory.

2.7. Theorem (Browder-Levine). Let W be a compact connected CAT

manifold of dimension n > 6 andf: W —► S1 a map such that

(i) f\bW ~*Sl isa CAT fiber bundle;

(ii) f#: 7^(WO —> itx(Sl) is an isomorphism.

Then the universal cover WofWhas the homotopy type of a finite complex if

and only if fis homotopic rel bW toa CAT fiber bundle map.

Remark.   If /is homotopic rel bW to a fiber bundle map with fiber F

then W =* F x R.

Denote X' - ((M - 2v\J)) x cK) by X'\2v(J) and X' - ((M - 2v(J)) x cK)

by X'\2v(J).

Assertion l'. For m = 2,3 the natural fibering

2ù(f)xcK^1+2v(J)-E*J

In
extends to a fibering N —► /.

Proof of Assertion l\   The assertion is obvious for m = 2, since then

/ consists of a single point.

For m = 3, J =* S . By Assertion 1, p„Pj extends to a fibering Y —► /.

The map fY induces an isomorphism on fundamental groups since the fiber FY is

simply connected.   [FY °* (S1 x (cK - 2D)) U- (D2 x S3), where p is a homeo-

morphism (S1, 2D) -£-> (bD2, S3). See proof of Assertion 1.] By definition

Y x R ^N x R, so the universal covers of Y and N have the same homotopy

type. The composition
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N inclusion ̂ YxRP^YJj^J

then satisfies the hypothesis of 2.7, and Assertion 1' follows from the conclusion

of 2.7.

We denote by /' the bundle map N U (2j>(7) x cK) —► J which is defined

to be equal to fN on N and p„p, on 2v(J) x cK.

Assertion 2'.   Under assumption H(m + 1) and m = 2,3, the interior of

the mapping cylinder Z(f') is a manifold

Proof of Assertion 2'.   Once we know that a fiber of/' has the homo-

topy type of 5s, the proof follows exactly as did the proof of Assertion 2.

Let FN and FY be the fibers of fN and fY respectively.  The universal

covers N and Y are then FN x R and FY x R respectively.  By definition there

is a homeomorphism h: N x (-1, 1) —► Y x (-1, 1) such that near dN x (-1, 1)

p2 = hp2: bN x (-1, 1)-+(-!, Oand/jyp, =fYPlh:Nx (-1, l)-^7.

Hence FN x R x (-1, 1) is homeomorphic to FY x R x (-1,1) by a homeo-

morphism which respects projection to R x (-1, 1) near bFN x R x (-1, 1).

Thus there is a homotopy equivalence g: FN —► FY which is a homeomor-

phism near dFN.

Now dF of Assertion 2 was obtained by adjoining cK x 51 to FY along

their boundaries by a homeomorphism we will denote J": K x S1 —► dFY. dF

was there shown to have the homotopy type of 5s. The fiber of/' is obtained

by adjoining cK x 51 to FN by a homeomorphism f': K x S1 —► dFN such that

J = gÇ'.  It follows from the 5-lemma and Van Kampen's theorem that the fiber

of/' has the homotopy type of 5s. This proves Assertion 2'.

Assertion 3'.    Under assumption H(m +1) and for m = 2,3 the manifold

X ' obtained by attaching in the natural way the mapping cylinder Z(f') to X' -

X'\2v(J) = (M - 2v\J)) x cK along 2i>(J) x cK is homeomorphic to X'.

Proof of Assertion 3'.  We will show that X'\2v(J) and Z(f') are s-

cobordant rel boundary; that is, there is a manifold C such that 30 = X'\2v(J)

L)fl Z(f'), where h is the natural identification of the boundaries d(X'\2v(J)) =

N U (2v(J) x c/Q - 3Z(/), and such that the inclusions X'\2v\J) —* C and

Z(f') —► C are simple homotopy equivalences. Note that whereas X'\2v(J) and

Z(f') may not be manifolds along their boundaries, 30 will be a manifold because

2i>(J) x cK is bicollared in 30.

Observe that X'\2v\J) has the homotopy type of X\2v(J) which, by

Assertion 1, has the homotopy type of J.  Similarly Z(f') has the homotopy type

of J (indeed collapses to J). Furthermore the inclusion of N U (2v(J) x cK) in

X'\2v(J) or Z(f') clearly induces an isomorphism on fundamental groups. Hence

7T,(3C) - Z for m = 3 and 7^(30) = 0 for m = 2.

Therefore the universal covers of both X'\2v\J) and Z(f') are contractible,
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and the universal cover of 3C is obtained by adjoining these in the natural way

along the universal cover of N' U (2i>(J) x cK). By the proof of Assertion 2' the

universal cover of N' U (2v(J) x cK) has the homotopy type of Ss. It follows by

Van Kampen's theorem and the 5-lemma that the universal cover of bC has the

homotopy type of S6.

By Theorem 2.7 when m = 3 and trivially when m = 2, bC fibers over /

with fiber a homotopy S6, hence an actual S6. The induced D1 bundle is then

the required s-cobordism C. (Recall there is no Whitehead torsion for irx(C) = 0

orZ.)

Extend the s-cobordism C by the product s-cobordism over X' - X'\2v(J) =

X' - Z(f'). The result is an s-cobordism between X' and X' which is a product

cobordism between bX' and bX' = bX'. The assertion then follows from the

TOP s-cobordism theorem.

Assertion 4'.   Under assumption H(m + 1) and for m = 2,3 the mapping

cylinder Z(f') has a simplicial triangulation which restricts to a subdivision of

\2ù(J)\ x c\K\ on 2i>(J) x cK and which is a PL triangulation on N.

Proof of Assertion 4'.  The proof is exactly that of Assertion 4, except

in case m = 3 the PL version of 2.7 is used instead of the bundle straightening

theorem of the Appendix to deduce that fN:N—*Jof Assertion 1' may be

assumed PL.

In order to conclude the proof of 2.5 it suffices to show that the PL struc-

ture on 9AT (resp. 9AT') which we have defined does not extend to a PL structure

over all of X (resp. X').

Let Rm be an open m-disk in M - 2v(J). If the PL structure on 9AT (resp.

bX') did extend over all of X (resp. X') then the codimension zero open imbedded

submanifold Rm x cK C ((M - 2v(J)) x cK) C X' C X would inherit a PL struc-

ture extending the natural PL structure on Rm x K.  Siebenmann shows that this

is impossible [15, Theorem 2, Assertion 2]. This completes the proof of 2.5 and

so of 2.1.

Theorem 2.1 suffers a weakness which must be surmounted to obtain any

triangulation results on 8-manifolds. For m = 3,4 there may be PL structures on

% which do not extend to simplicial structures on f. Theorem 2.1 has shown only

that at least one which does not PL extend does extend simplicially. There is a

trick presented later which allows the triangulation of the 7-manifolds of Theorem

0.1 anyway, but the situation is more serious for 8-manifolds, when m = 4. We

show here that the problem reduces to an existence problem for s-cobordisms;

later sufficient s-cobordisms will be created.

Let p be the bundle projection £ ' —»• M and i: bX U |' —*■ X - %' the in-

clusion. There is a natural injective map H3(M; Z2) -£*■ H3(bX; Z2) defined as

the composition of the injective map H3(M; Z2) -£-> H3(%'; Z2) and the isomor-
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phism

/Y3(¿'; Z2) -ß^^ H3(X - f; Z2) -^ ff30* Z2).

By an s-cobordism between manifolds M and M' with boundary we will

mean an s-cobordism which restricts to a product cobordism between bM and 3Ai'.

Let W be a topological s-cobordism W from M - v(J) to a smooth manifold

M. Consider the composition d of the maps

Ä*W 3W0 (.■*)-! » H\bW, M) -^ 7/3(Af, *(/)) -p* ^3(iW).

2.8. Lemma. Let a in H*(W, bW)be the obstruction to extending the

smooth structure onbWto all of W.  Then, assuming 7/(2), rAe PL triangulation

ofdX corresponding to pd(a) extends to a simplicial triangulation ofX.

Proof of 2.8.  Let W1 be the union of W x cK and (X\2v(J)) x I along

2v(J) x 7 x cK = X\2v(J) x I.  Then W is an s-cobordism between X and a mani-

fold X.   A Whitehead triangulation of M and the procedure above provide a sim-

plicial triangulation of X which is PL near dX.  By the topological s-cobordism

theorem, W is homeomorphic to X x 7.

Let Pi : (W, dW) x K —► (W, dW) be the projection. The obstruction in

H3(dX; Z2) to making bW - (X U X) = bX x 7 a PL concordance between 3*

and 3 A" is then the image of a under the composition

H*(W, dW) -* + H\W, dW) x K-—r*H\bX x (I, bl))
Pi Ie

-——-?H3(bXxO).
e(j*)

By naturality this is p*d(u). Clearly p*d(a) and p*d(a) are cohomologous in

X - %'. Hence p*d(a) = p*d(a).

Remark. If M - v(T) can be retriangulated rel v(J) with obstruction d(a)

we get the same conclusion, but M has such a low dimension in the applications

that this is not known to be possible.

3. The proof of the main Theorem 0.1.

Case I. n = 5. This is treated by Siebenmann [15]. He assumes iV* is orien-

table, in which case //*(#; Z) has no 2-torsion and consequently ßQf^CN; Z2)) = 0.

He requires orientability to ensure that the Poincaré dual to kN in H^N; Z2)

can be represented by a circle with normal 50(4) bundle. According to 1.2, if

ß(kN) = 0 the Poincaré dual of kN can be represented by an imbedded circle

with orientable normal bundle, and Siebenmann's proof is applicable.

Case II: n = 6, 7, 8. By 1.2, the Poincaré dual to kN may be represented

as the inclusion of the fundamental class of some connected smooth submanifold
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M with oriented orthogonal normal bundle v(M). That is, kN is the image of the

nontrivial element of H^ffiM), i>(M);Z2) under the homomorphism

H\v\M), KM); Z2) ——> H\N, N-M; Z2) -L> H*(N; Z2).

The restriction of kN to N - M is therefore trivial by exactness in the cohomology

sequence of (N, N-M). By naturality of the triangulation obstruction, N-M

is PL triangulable. By the product structure theorem [6], the PL structure on

N-M is isotopic to one which restricts to a PL structure on v(M).

By [9], the isotopy classes of PL structures on i>(M) are in 1-1 correspon-

dence with H3(v(M); Z2).

Case lia: « = 6. The following is a portion of the Thom-Gysin sequence

for (v(M), v(M)), coefficients in Z2.

0 = H3(M) -* H3(i>(M)) -> H°(M) -* H\M) = 0.

Since M is connected, H3(i>(M)) — H°(M) — Z2, so there are two possible

PL structures on v(M). One PL structure is that which PL extends to all of v(M),

induced by the natural Whitehead PL structure on the smooth manifold v(M).

By 2.1 there is a PL structure (v(M)\ which is not isotopic to the White-

head structure but some PL triangulation of (i>(M))z does extend to a simplicial

triangulation of v(M). Hence, in either case, some PL triangulation of N - v(M)

extends to a simplicial triangulation of v(M), and N is homeomorphic to a simp-

licial complex.

Case lib: « = 7. The relevant portion of the Thom-Gysin sequence is

0 -♦ H3(M) -£♦ H3(v(M)) -* H°(M) — HA(M) = 0.

Since H3(M) =■ H°(M) ** Z2, H3(i>(M)) ̂Z2®Z2, and there are now four PL

structures possible on i>(M). Since image(p*) — Z2, two of these PL structures

extend to PL structures on v(M). By 2.1 one of the other PL structures has a

PL triangulation which extends to a simplicial triangulation of v(M). We now

show that the image of the restriction H3(N-M) —* H3(v(M)) is Z2. It follows

that with a correct choice of a PL structure onN-M the restriction of the

structure to v(M) is not the one PL structure which may not extend either sim-

plicially or piecewise-linearly to v(M).

If /*: H3(M) —* H3(N) (all coefficients are Z2) fails to be injective, kN =

0 by 1.1 so N is PL triangulable and we are done. If the map is injective, /'*:

#3(A0 —► H3(v(M)) is surjective.

H3(N)-► H3(N - v(M))

H3(V(M))->H3(i>(M))



noncombinatorial manifolds 285

is a commutative diagram. Since the bottom map is injective H (N - v(M)) —+/

H3(i>(M)) has image at least Z2. As this suffices, we leave to the reader the task

of showing that the image is exactly Z2 as claimed. This completes the proof

for n = 7.

Case He. « = 8. Let M be any smooth 4-manifold, possibly with boundary.

Following [2], say that two s-cobordisms W and W' from M to a smooth mani-

fold are equivalent if there are smooth s-cobordisms V and V' with b2W = bx V,

b2W' = blV' and a homeomorphism of W U V onto W' U K' which is the iden-

tity on M = 3 j IV and a diffeomorphism from 32 V to 32 F'.

LetMk denote the connected sum of M and k copies of 52 x 52.

In [14] we prove the following theorem.

3.1. Theorem.   There is an integer k such that for any compact 4-mani-

fold M there is a 1-1 correspondence between H3(M, bM; Z2) and equivalence

classes of s-cobordisms ofMk to a smooth manifold.

Remarks. The equivalence is generated by selecting a representative W of

the s-cobordism class and mapping the obstruction to extending the smoothing

of 3 W to all of W by the composition

H\W, W-^H3(bW, d2w)-^H3(Mk,dMk)-^H3(M, dM).

Here q is the natural projection Mk —*■ M.

It is also shown that for M orientable, k = 1.

Return to the case M C N representing the Poincaré dual of kN. Let Z)4

be a smooth open 4-disk in M - v\J). Then v(M) is trivial over £>4. Perform

surgery in the ambient manifold v(M)\D4 — R* on k trivial smooth circles in Z)4

(k as defined in 3.1). The result of the surgery is to change M to Mk and v(M)

to q*(v(M)) — p(Mk), the normal bundle of Mk inN.

Note that [Mk], the fundamental Z2 homology class of Mk, is homologous

in Af to [M], via the cobordism given by the surgery. Hence N-Mk is PL tri-

angulaba and, as above, we may assume that v(Mk) has a PL structure for which

it is a PL submanifold of N-Mk and that this structure does not extend to

v(Mk). It remains to show that this PL triangulation extends to a simplicial tri-

angulation across v(Mk).

The remarks preceding 2.1 show that the difference between i>(Mk) and the

structure which has been shown to simplicially extend is represented in H3(v(Mk))

by P*(8) for some 5 in H3(Mk). By 2.8 it suffices to produce a topological co-

bordism W from Mk - v(J) to a smooth manifold such that the obstruction to

extending the smooth structure on 3 W to all of W is mapped by d to 5. The re-

marks following 3.1 show that, since H3(M, v(J)) —+ H3(M) is onto, the required

cobordism exists. This completes the proof.
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Appendix. The bundle straightening theorem. The following theorem was

used in Assertion 4 of the proof of Proposition 2.5.

Theorem.  Let f: Mm —*-Q? bea map o/PL manifolds such that

(i) fisa topological fiber bundle.

(ii) There is a PL submanifold N CM such that f is PL near N and /[A/:

N —> j\N) is a PL fiber bundle.

(iii) m - q > 5.

Then there is an isotopy ht: M —*M rel N sucA that A0 is the identity and

/Aj is a PL fiber bundle.

Proof of theorem. Choose a PL triangulation of Q such that f(N) is a

full subpolyhedron.

Suppose inductively that for some 0 < i < q an isotopy has already been

defined rel N altering / to,a PL bundle over a neighborhood of a subcomplex

g('-i) 0f q containing the (i - 1) skeleton and properly contained in the /-

skeleton. Let A be an /-simplex of Q not in q'*~1'.

Since /is a PL map near N and near/-1(ô*i-1*)> it follows from the PL

product structure theorem that M may be isotoped relNUf~l(Q^~^) so that

/_1(A) is a PL submanifold of M [6].

Let F denote the TOP fiber off.  Since A is contractible there is a homeo-

morphism g:f~i(A) —*F x A such that p2g =f:f~l(A) —* A.

Let K be the full subcomplex j\N) n A of A and let F' be the fiber of the

bundle N—*-f(N). Since Kis full in A, K is contractible and there is a homeo-

morphism g': N n /_1(A) -*F'xK such that p2g' = /: N n/"'(A) -»> tf.

Then £(£')"1: F' x K—+F x Ais an imbedding which commutes with projec-

tion to A. For a fixed vertex v in K, gfe')-1!^' x {u} determines an imbedding

F' —* F. By the TOP isotopy extension theorem the trivialization g may be

altered so that g(g')~x = i * (identity)^: F' x K —*■ F x A.

Since f\N is a PL fiber bundle, g'~1(F' x K) is a PL submanifold of

f~l(A) on which /is a PL map. Since /is a PL fiber bundle over a neighborhood

of ß(«-i)f f-\oA) is a PL submanifold off-*(A) with/I/"1^) a PL map.

The homeomorphisms g and g' therefore assign PL structures to F x A and

i(F') x K such that i(F') x K is a PL submanifold of F x A, and F x A is sliced

near F x 9A and ¡(F') x K [7].

By the sliced concordance implies isotopy theorem [7], there is a PL

structure (F x A)£ on F x A and an isotopy Af: F x A —■*■ (F x A)L from the

identity to a PL homeomorphism such that p2A( = p2 on a neighborhood of

(F x 9A) U (F' x K) and the projection (F x A)s —* A is a PL bundle.

Damp out the action of^~1Aif:/-1(A) —*f~i(A) through a tubular

neighborhood of/-1(A) in M, and denote the resultant isotopy of M by ht.
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Since ht is an isotopy, the map fht is always a TOP fiber bundle. Moreover fht

is fixed on a neighborhood of N U ß*'-1* and/Aj is a PL fiber bundle over A.

The theorem then follows by induction over simplices of Q.
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