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ABSTRACT.   In this paper we shall apply the cohomology groups con-

structed in [14] to a variety of problems in analysis.  We show that cohomology

classes admit direct integral decompositions, and we obtain as a special case a

new proof of the existence of direct integral decompositions of unitary representa-

tions.  This also leads to a Frobenius reciprocity theorem for induced modules,

and we obtain splitting theorems for direct integrals of tori analogous to known

results for direct sums.  We also obtain implementation theorems for groups of

automorphisms of von Neumann algebras.  We show that the splitting group to-

pology on the two-dimensional cohomology groups agrees with other naturally de-

fined topologies and we find conditions under which this topology is T2.   Finally

we resolve several questions left open concerning splitting groups in a previous

paper [13].

1. This paper will rely heavily on the development in [14] of cohomology

groups whose properties were defined and discussed there. The object of this

paper is to apply these constructions to a variety of problems in analysis. We

obtain for instance a general theorem which guarantees the existence of direct

integral decompositions of cohomology classes in appropriate contexts. This will

contain for instance as a special case the existence of direct integral decomposi-

tions of unitary representations.  This will also give a kind of Frobenius reciproc-

ity theorem for our induced modules, and in addition we obtain a splitting theo-

rem for direct integrals of tori, analogous to the known theorems for products of

tori. Also we use this to study groups of inner automorphisms of von Neumann

algebras, and obtain an implementation theorem stated entirely in terms of von

Neumann algebras.

We also will study the topology on H2(G, A) and relate it to the splitting

group topology defined in [11], and investigate some sufficient conditions for

groups Hq(G, A) to be Hausdorff or in other words for the boundaries to be

closed. We also investigate briefly some aspects of xV1 for amenable groups acting

linearly, and comment on a counterexample against further extensions, and the
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36 C. C. MOORE

existence of invariant measures.  Finally we shall take up several questions con-

cerning universal covering groups as defined in [13], and prove several theorems

stated in [13] with the comment that their proofs would be given in a subsequent

paper.

2. Suppose that G is locally compact separable, A G P(G) and X a measure

space as in [14]. We form the group U(X, A) and let G act as usual by (g • F)(x)

= g ' (F(x)) so that U(X, A) G P(G). Since this module is a direct integral of

copies A, and since cohomology commutes with direct sums, one expects an anal-

ogous result that cohomology commutes with direct integrals. This is the case,

but there is one minor point to be clarified and that is the occurrence of such

groups as U(X, 77"(G, A)). This is well defined if 77"(G, A) is Hausdorff, but if

it is not we view it as a pseudo-polonais group given by the triple (Cn~x(G, A),

Z"(G, A), 5") as in [14, §2]. There U(X, Hn(G, A)) was defined as the cokernel

of the induced map U(X, Çn~x(G, A)) —*■ U(X, Z"(G, A)) with the quotient

topology. Recall that it was shown in [14, Proposition 10] that the closure of

the identity in a topological group such as U(X, 77" (G, A)) consists of aU func-

tions from X in H"(G, A) taking values a.e. in the closure of the identity element

of H"(G, A). We have now the foUowing fact.

Theorem 1. There are isomorphisms of topological groups Hn(G, U(X, A))
=* U(X, H"(G, A)).

Proof.  The cohomology groups on the left are defined as those of a co-

chain complex Ç*(G, U(X, A)), and the «-dimensional group of this complex is

exactly U(Gn, U(X, A)) which can be identified to U(G" x X, A) by our Fubini

theorem. On the other hand, the groups on the right-hand side are defined as

certain cokernels of maps as defined above, but a moment's reflection shows that

they are equivalently described as cohomology groups of a complex U(X, C*(G, A))

where the «-dimensional group is U(X, Cn(G, A)) with coboundary operators A"

defined pointwise by (A"F)(x) = (5"F)(x). Again, by our Fubini theorem

U(X, Cn(G, A)) = U(X, U(G", A)) is isomorphic as a topological group to

U(X x G", A). Moreover, one checks that under this identification A" goes over

into the coboundary coming from the complex Ç*(G, U(X, A)). Thus the two

groups in the statement of the theorem are the cohomology groups with the

correct topologies defined by two complexes of polonais groups which are alge-

braically and topologicaUy isomorphic. The desired result follows at once.

We have several immediate consequences.

Corollary 1.  7/77"(G, A) is Hausdorff then H"(G, U(X, A)) is Haus-

dorff and isomorphic to U(X, 77" (G, .4)) defined in the usual way.

For the foUowing let us denote by 77" (G, B) the group obtained from
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H"(G, B) by dividing by the closure of the identity, or equivalently H"(G, B) is

Z"(G, B) modulo the closure of the boundaries.

Corollary 2.   We have isomorphisms Hn(G, U(X, A)) ~ U(X, H"(G, A)).

Proof.  This follows by dividing each side of the statement of the theorem

by the respective closure of the identity and using Proposition 10 of [14].

If we speciaUze A in the theorem to T, the circle group with trivial action,

and take « = 1, we obtain an isomorphism Hom(G, U(X, T)) — U(X, Hom(G, T)),

which one recognizes as a special case of the existence of direct integral decom-

positions, for let H = L2(X) and note that U(X, T), viewed as multipUcation

operators, are precisely the unitary operators commuting with the von Neumann

algebra A of aU multipUcation operators. A unitary representation it commuting

with A is precisely a homomorphism of G into U(X, T) and the isomorphism

above yields on the right-hand side the explicit direct integral decomposition of

it, in this case into one-dimensional representations.

Direct integral theory is more compUcated than this but essentially the

most general situation is that of a Hubert space L2(X, H0) of vector valued func-

tions in a Hubert space H0 with A as usual the abeUan algebra of multipUcation

operators by scalars. Then the unitary group of aU operators commuting with A

is clearly reaUzed as U(X, V) where P = U(H0) is the unitary group of H0. A

representation it commuting with A is simply a homomorphism of G into U(X, V)

or an element of ZX(G, U(X, V)) and its direct integral decomposition is precisely

an element of U(X, ZX(G, V)). Passage to cohomology amounts to taking a

unitary equivalence class of a representation X £ ZX(G, V) and to taking a restrict-

ed kind of equivalence class for n E ZX(G, U(X, V)) where we conjugate only by

unitaries in U(X, V), which is an equivalence relation appropriate for direct in-

tegral theory. Thus to obtain direct integral theory aU we have to do in a sense

is replace A in Theorem 1 by a noncommutative polonais G-module and take

« = 1, and look at cocycle and cohomology sets. The proof of such a theorem

is exactly the same as the proof of Theorem 1.

Theorem 2. // P is any polonais G-module, commutative or not, then we

have a topological isomorphism of cocycle and cohomology sets

ZX(G, U(X, V)) =* U(X, ZX(X, V))   and   HX(G, U(X, V)) =* U(X, HX(X, V)).

We may make use of Theorems 1 and 2 to give a version of the Frobenius

reciprocity theorem for our induced modules ̂ (A) as defined in [14]. We may

state and prove this for noncommutative modules as weU.

Theorem 3. Let H be a closed subgroup of G and let U be any polonais
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H-module and let V be any locally compact G-module. Then we have an isomor-

phism Hom^K, U) =* HomG(F, I%(U)).

Proof.  If 0 G Hom^F, U), we define K(</>) G HomG(K, r°¡(U)) as fol-

lows: (K(<p)(v))(s) = 0(s_1 • v) where s~x • v denotes the action of G on V.

Then <p((sh)~x • v) - 0(ft_1 • (s_1 • u)) = h~x ■ 0(s_1 • u), so AT(0)()j) satisfies

the 77-covariance property and, since it is Borel, it is in 7^(C/). Now

(K(<p))(t ■ v)(s) = 0ÍS"1 • (ft;)) = 0((r1s)~1 • v) = (K(P)(vXrxs)

so that K(<p) intertwines. Finally 0 —* K(<¡>) is an injection since if K(<j>) — K(<p'),

then 0(s • v) = 0'(s ■ u) for almost aU s for each v. By continuity this is true for

all s and hence 0(u) = 0'(u).

To complete the proof we must show that K is onto, so let 0 G

HomG.(K, ff](U)). We have seen in [14, Proposition 17] that 7^(i/) as a topolog-

ical group is the same as U(G/H, U) and as 0 G ZX(V, U(G/H, U)), Theorem 2

provides us with a Borel function x —*■ p(x) from G/77 into ZX(V, U) such that

(0(u))(c(x)) = (p(x))(v) a.e. where c is the Borel cross section of G/77 into G de-

fining the isomorphism of I%(U) with U(G/H, U). Then since 0(u) is 77-covariant

we find that 0(u)(c(x)ft) = h~x • ((p(x))(v)), and if we write (P(c(x)h))(v) =

h~x ■ ((p(x))(v)), then t —> F(r) is a Borel map of G into Hom(F, Í/) such that

^("XO = P(t)(v) f°r ü G K. We now use the fact that 0 is a G-equivariant map

which says that F(f)(s • v)= 0(s • v)(t) = F(s_1f)(u) holds for almost all t for

each s and v. By Fubini we can exclude a null set JV C G x V so that if (t, v) $

N, P(t)(s • v) = P(s~xt)(v) = 0(s • v)(t) holds for almost all s.  Now again by

Fubini we can select a t so that (t, v)#N for almost aU v, and so for such a f,

7^0(5 • u) = P(s~xt)(v) holds for almost all s and almost aU v. But F(f)(s • u) is

a continuous function of s for each fixed r and v and so F(s~1 t)(v) is equal al-

most everywhere to a continuous function for almost aU v. However, this is ad-

ditive in v so it is true for all v. In other words, we may modify P( • ) on a fixed

null set so that P(s)(u) becomes continuous in s, and we assume this done. Then

P(t)(s • v) = P(s~xt)(v) still holds for almost all t for each s and v, but now by

continuity, it holds for aU t. We may then put s = t and conclude that P(sX$ ' v)

= P(e)(v) and since for some s, P(s) is a continuous homomorphism of V into U,

it follows that 0 = P(e) is also. Then F(s)(w) = 0(s_1 • w) and so ^(WXS) ~

0(s_1 • w) and 0 = Â"(0). Thus the map K is onto as desired, and we are finished.

It is, of course, undesirable to have to restrict V in the above theorem to

be locaUy compact, but one very easily produces counterexamples when this

hypothesis is dropped so this is about as well as one can do.  Incidentally, we

note a somewhat interesting sidelight of the above proof and that is that

(AT0)(u)(s) = 0(s_1 • v) when viewed as an element of ^(U) is a continuous func-
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tion on group G  So we have the following fact.

Proposition 1.   Any locally compact G-submodule M of ¡^(U) (or indeed

any G-submodule which is the continuous image of a locally compact G-module)

necessarily consists of continuous functions in the sense that each class fEM

contains a (unique) continuous function.

Let us proceed with other appUcations of Theorem 1 ; one of the simplest

being a vanishing theorem, namely if Hn(G, A) = 0, then it follows that

xY"(G, U(X, A)) = 0. Let us apply this idea as follows: if B is the torus 7\ or

T" or rw, a countable product of copies of T, and E is any locally compact

abelian group satisfying an exact sequence 0—»-2?—> E —* G —*0 where G is,

of course, abelian, then necessarily E is the product B x G algebraically and to-

pologicaUy. This is the equivalent of saying that if a £ H2(G, B) corresponds to

an extension E of G by B which is abelian, then a = 0. The proof if this state-

ment is routine using Pontrjagin duality, for one converts the above into a dual

sequence 0 —»• G —*■ Ê —* B —*0, and since È is free as abehan group and is

discrete, È = G x B and then we duaUze again. Now since groups of the form

U(X, T) are continuous direct products of circles, we might hope that the same

result works for them.

Theorem 4. // G is locally compact and if E is an extension of G by a

group U(X, T) such that E is abelian, then the extension splits as U(X, T) x G

topologically and algebraically.

Proof.  Since U(X, T) is divisible as a group it is clear that the extension

spUts as an abstract group but we want more than that. We first observe that the

action of G on U(X, T) in the above extension E is trivial as E is abelian. Now

if G is any locaUy compact group, and A is any abelian G-module with trivial

action, and if a £ Z2(G, A) or a E Z2(G, T), then a'(s, t) = a(t, s) is in the same

group. Now let a' = 0(a), a E Z2(G, A) (¿(a) = a if a E Z2(G, A)), so that <¡>

(0) is an order two automorphism. Since <t>(a) = a for any a E B2(G, A) or a E

B2(G, .4), 0, 0 defines an order two automorphism again denoted by <¡> (0_) on

H2(G, A) (H2(G, A)). We need the foUowing fact.

Proposition 2.   0 = 0 and a cohomology class a defines an extension E

which is abelian if and only if 0(a) = a.

Proof.  If a E H2(G, A), and a is a cocycle representative, the correspond-

ing group extension may be reaüzed algebraically as A x G with multipUcation

given by (a, ^)(a', g') = (a + a' + a(g, g'), gg) and so it is immediate that E is

abelian if and only if 0(a) = a or equivalently 0(a) = a. Since the natural map

H2(G, A)—*H2(G,A)is an isomorphism, it is clear by inspection that 0 = 0.
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(Note that this impües for instance that an a £ Z2(G, A) such that a(s, t) =

a(t, s) for almost all s and t defines an abelian extension.)

Let us now return to the proof of the theorem. The given extension E is

represented by a class a in H2(G, U(X, Tj) with 0(a) = a, and by Theorem 1

there is a Borel map x —► a^ of G into H2(G, T) corresponding to a. Since

0(a) = a, <p(ax) = ax for almost all x. But then such an ax defines an abeUan

extension of G by T which splits as remarked above, and so ax = 0 a.e., and

hence a = 0 and the extension E spUts.

We note that the hypothesis that G be locaUy compact is essential here,

and the result is false in general even for U(X, T) = T for we have already re-

marked in [14] that if X is nonatomic, then U(X, T) admits no continuous homo-

morphisms to the circle group T.  Then if we embed T into U(X, T) as the con-

stant functions on X we obtain an extension 0 —♦ T —*■ U(X, T)—+G—+0

where G is the quotient group which does not spUt topologicaUy.

Let us give another appUcation of these ideas. Suppose that A is a von

Neumann algebra reaUzable on a separable Hubert space and let Aut(A) be the

fuU automorphism group of A, and Inn(A) the inner automorphisms. The group

Inn(A) is isomorphic to the quotient U(A)/Z(A) where U(A) is the unitary group

in A, and Z(A), the unitary operators in the center Z of A. We give this the

quotient topology starting from the strong topology on U(A) in which it is polo-

nais.   Now Aut(A) also has a natural topology given by the pointwise conver-

gence on the predual A* of A, in which it is also polonais, and the natural in-

jection i: Inn(A) —* Aut(A) is continuous and hence also a Borel isomorphism.

It foUows that if G is locaUy compact separable or even polonais and if p is a

homomorphism of G into Inn(A), then p is continuous as a map into Inn(A) if

and only if i ° p is continuous as a map into Aut(A). Therefore there is no am-

biguity about what we mean by a (strongly) continuous representation of G into

Inn(A), the inner automorphisms of G.  The problem that arises about such rep-

resentations p is whether or not they are implementable in the sense that there

exists a continuous unitary representation it of G with it(g) E U(k) and p(g)(a) =

ir(g)air(g)~x.

Theorem 5. Suppose G is locally compact separable with H2(G, T) = 0.

Then any (strongly) continuous representation of G by inner automorphisms of

A as above is implementable.

Proof.  We consider the group extension 1 —*■ Z(A) —► tV(A) —* 1(A) —*

1 and the homomorphism p of G into 1(A) gives us a puU back group extension

1 -+ Z(A) -+E-* G -M.
This could be equivalently defined by taking a Borel cross section s of 1(A)

into U(A) and defining a Borel two cocycle a'(u, v) = s(u)s(v)s(uv)~1 of 1(A)
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with values in Z(k). Then a(g, tí) = a'(p(u), p(v)) is an element of Z2(G, Z(A))

which defines the extension above. Then if a is the class of a, the point is that

the vanishing of a, or the spUtting of the above extension is clearly necessary

and sufficient for the implementabihty of p. Now in view of our assumptions

on Â, Z(k) is isomorphic to a group U(X, T) so that a G 772(G, U(X, T)), which

by Theorem 1 is U(X, H2(G, T)) = (0), by hypothesis. So a = 0 and p is im-

plementable.

Of special interest is the case G = R where 772(R, T) = (0) is weU known.

See [7].

Corollary. Any (strongly) continuous one parameter group of inner

automorphisms of such an A is implementable.

We note that for the Poincaré group P, which has such representations p of

interest, that H2(P, 7) = (0) so that any such p is implementable. L. Michel [9]

has obtained this result by direct methods sometime ago. We can also find an

equivalent statement of Theorem 5 in general with no mention of cohomology.

Theorem 5'.  Let G be separable locally compact and suppose that any

continuous representation of G by (inner) automorphisms of the algebra B(H) of

all bounded operators is implementable.   Then any continuous representation of

G by inner automorphisms of A is implementable.

Proof. We note that 772(G, T) =£ 0 is the same as the existence of a non-

trivial projective representation, on 77 and this is exactly the same as a nonimple-

mentable representation of G by automorphisms of 5(77).

3. We now want to turn attention to the question of a more detailed study

of the topology on H2(G, A) and, in particular, the comparison of this topology

with the splitting group topology introduced in [11]. Suppose that A G P(G);

we shaU say the extension 1 —* B —* E —* G —■* 1 is a splitting group for A if

(1) B (and hence also F) are locally compact and, (2) if we let F operate on A

by means of the quotient map to G so that B operates trivially, then in the re-

striction-inflation sequence [10] arising from the spectral sequence

0 -+ Hx(G, A) -* HX(E, A) -* HX(B, A)G -&♦ 772(G, A) ¿* H2(E, A)

the transgression homomorphism from HX(B, A)G to 772(G, A) is surjective.

Note that HX(B, A) = Hom(B, A) is Hausdorff so that Theorem 1.1 of [10] is

indeed applicable. Note also that tg is onto if and only if the inflation map / is

zero. Now Hom(2?, A)G is clearly polonais and the kernel of the map tg is the

image of the restriction map r from HX(E, A) which in turn is the quotient of

ZX(E, A) by the projection map p.  Thus we have ZX(E, A) -riR^ Hom(B, A)G

—* 772(G, A) —* 0 and we can give 772(G, A) the quotient topology from
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Hom(x?, A)  . In fact this is a pseudo-polonais topology and could be represented

by the triple (ZX(E, A), Hom(fi, A)G, r <> p), and as in [11] we call this the

splitting group topology Js on H2(G, A). The terminology implies uniqueness

(independence of E) which we shall estabUsh presently. But the point is that

xY2(G, A) already has a topology from the isomorphism with H2(G, A) which we

caU Jm (for convergence in measure). Moreover we define a third topology Jc

by giving Z2(G, A) the compact open topology and then taking the quotient

topology on H2(G, A).

Proposition 3.   We have inclusions Js D 3C 3 Jm.

Proof.  That Jc D Jm is clear since uniform convergence on compact sets

impUes convergence in measure. On the other hand, to see that Js Z> Jc we

choose a Borel cross section s of G into E such that s(K) has compact closure in

E whenever K is compact in G.  (This is always possible by [8, Lemma 1.1].)

Then if a is the cocycle in Z2(G, B) defined by this cross section, a maps com-

pact sets in G x G into compact sets in B.  Now to prove our assertion, we must

show that if \n —► X in Hom(x?, A)G, then tgiXn) —*■ tg(K) in the topology Jc,

or, equivalently, that we may find cocycle representatives bn of tg(K„) and b of

tg(\), such that bn—*b uniformly on compact sets of G x G.  In fact, let

bn(s, t) = \n(a(s, t)) and b(s, t) = A(a(s, t)); these are cocycle representatives by

definition of the transgression map tg, and as X„ —► X uniformly on compact

subsets of B, it follows by the properties of a that bn —* b uniformly on com-

pact subsets of G x G.  This completes the proof.

Our main result ties all of these topologies together and also shows that Js

when it exists is independent of the choice of spUtting group.

Theorem 6. If the module A has a splitting group, then the topologies

Js, Jc, Jm on H2(G, A) all coincide, and hence Js is independent of which

splitting group is used.

Proof.  In view of the proposition it suffices to show that Js C Jm or

that convergence in measure in H2(G, A) implies convergence in Js defined by a

spUtting group, say E. We shaU do this by constructing a map from Z2(G, A)

into Hom(x?, A)G which on cohomology inverts the transgression map. We first

embed Z2(G, A) into Z2(E, A) via the inflation map i as the closed subgroup C

of the latter group of functions constant almost everywhere on cosets of B.  Since

the inflation map i: H2(G, A) —*■ H2(E, A) is the zero map, we see that C C

x?2(xT, A). Now if 8 is the coboundary map, (8)~X(C) is a closed subgroup D of

CX(E, A). Furthermore we may characterize elements d £ D as those such that

8(d) is constant a.e. on cosets of B. Now 8 is of course continuous and if M is

its kernel, D/M has a continuous bijection onto C which is therefore a Borel iso-
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morphism, and it follows that there is a Borel cross section say t from C to D

with 5 « t = id.

We now investigate D more closely; for d G D, 8(d)(s, f) = 8(d)(s, tb) holds

for almost all triples (s, t, ft) in E x E x B.  When we write this out and rearrange

terms and substitute u = st, v = t, we see that u~x • (d(ub) - d(u)) = v~x •

(d(vb) - d(v)) for almost all triples (u, v, ft) in E x E x B.  Consequently, the

left-hand side cannot depend on u, and is therefore equal to a function cx(b) for

almost all pairs («, ft) and, similarly, the right-hand side must be the same func-

tion. Thus d(ub) = d(u) + u • cx(b) for almost all pairs (u, ft). On the other

hand, the same argument applied to 8(d)(bs, t) = 5(cf)(s, t) yields an equation

d(bu) = c2(b) + d(u) for almost all pairs. Now

c2(bxb2) = d(bxb2u)-d(u) = (d(bxb2u)-d(b2u))

+ (d(b2u) - d(u)) = c2(bx) + c2(b2)

is vaUd for almost all (u, bx, b2), and hence c2(ft,ft2) = c2(bf) + c2(b2) for

almost all pairs. By [14, Theorem 3] there is a continuous homomorphism which

we also denote by c2 of B into A which agrees with c2 almost everywhere.  It is

easy to see then that we may modify the function d on a null set, and hence

make no essential change, so that d(bu) = c2(ft) + d(u) holds for all pairs (ft, u).

Thus d is a continuous function on each coset of B.  Now finally we can argue

in the same way that Cj(ftjft2) = cx(bx) + cx(b2) for almost all pairs (note that

B operates trivially on 41). Then we use Theorem 3 of [14] again to produce a

continuous homomorphism again denoted by cx agreeing with the old ct almost

everywhere. Then we have d(ub) = d(u) + u • cx(b) holding for almost all pairs.

But we have arranged for d(v) to be continuous on each coset which implies that

d(ub) is continuous on G and the right-hand side is also continuous; hence for

almost all u, equality holds for aU ft.  Then for such a u, d(ub) = d(ubu~ u) =

d(u) + c2(ubu~x) = d(u) + u • cx(b) and so c2(ubu~x) = u • cx(b) holds for

almost all u.  But both sides are continuous in u and this must hold for all u.

For u = e, we find c2 = cx and so we drop the subscripts, and call it c; we have

c(ubu~x) = u • c(b) so that c G Hom(fi, A)G. Moreover it follows readily that

d(ub) = d(u) + u • c(b) for all u and ft so in fact c(b) = d(b).

Now let s be a Borel cross section of G into E as in the lemma with s(e) =

e.  Let us define dx(b • s(g)) = d(s(g)) so that dx is Borel function constant on

cosetsof5.  It is therefore clearly a member of the group D.  Now let us also

define 0(c)(ft • s(g)) = c(b). Then a simple calculation shows that 0(c) G D and

that d = 0(c) -I- d2. Clearly 0(c) can be defined for any c G Hom(fi, A)G and

c —* 0(c) is clearly a continuous injective homomorphism of this group into D.

Finally let A^ be the subgroup of D consisting of functions constant on cosets of

B, and 0 be the map from Hom(5, A)G x N into D given by 0(c, d2)- 0(c) +
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d2. Our result above is precisely that 0 is onto, and it is clear that it is also

continuous and injective. Then by the closed graph theorem, it is a homeomor-

phism. Let p denote the composition of the projection to the first factor with

the inverse of 0 so that p(d) = cifd = 0(c) + d2 as above. Then of course p

is a continuous homomorphism from D onto Hom(x?, A)G.

RecaU finally that i embedded Z2(G, A) into Z2(E, A) as a group C, and

that t is some Borel cross section of C back to D inverting S, and we consider

the composition 0 = p o t o i of Z2(G, A) into Hom(z?, A)G = HX(B, A)G which

is a Borel map. We want to show that the identity map from H2(G, A) =

H2(G, A) in the topology Jm to itself with the topology Js is continuous. To

do this it is enough to show that the projection into H2(G, A) mod the closure

of the identity (e)s in the topology 3S is continuous. However, from the defini-

tion of Js, H2(G, A)l(e)s can be identified with HX(B, A)G modulo the closure

of the kernel of the transgression homomorphism, which we denote by K.  Let q

denote the projection into this quotient, and we see that the map q o 0,0 as

above, from Z2(G, A) into HX(B, A)G/K is now a homomorphism and as it is

Borel, it is necessarUy continuous. FinaUy q ° 9 vanishes on B2(B, A) and,

hence, defines a continuous map of H2(G, A) into HX(B, A)G/K, which one can

see from the algebra is precisely the map we need to know is continuous. This

completes the proof of the theorem.

We might remark that it is somewhat surprising that Jc, the compact open

topology on Borel cycles turns out in many cases to be quite reasonable on the

quotient H2(G, A). The example discussed in [11, p. 84] where the spUtting

group topology on H2(G*, T) is the reals mod the rationals R/Q gives the same

result for the topology Jm. We might add that the previous theorem provides

the missing converse of Theorem 2.5 of [11] and much more.

Let us turn for a moment to the question of when our cohomology groups

are Hausdorff. In general it is hard to say when they are Hausdorff and we have

only fragmentary results. One such is the following. (See also Theorem 13.)

Theorem 7. If G is abelian, then H2(G, T) is Hausdorff.

Proof.  We consider the mapping 0 of Z2(G, 7) to itself, introduced in

Theorem 3, defined by ^(a)(s, t) = a(t, s), and we observed there that <p(a) = a

if and only if the corresponding extension E was abelian. But with T as coeffi-

cient group an extension E is trivial if and only if it is abeUan. Thus aEB (G,T)

if and only if 0(a) = a, but 0 is clearly a continuous map and so B2(G, T) is

closed as desired.

As we noted earlier, Johnson [4] has introduced cohomology groups associ-

ated to a representation of G by bounded operators on a Banach space B.  We

want to discuss the relation between his theory and ours. Thus suppose that
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A = B is a Banach space and that we are given a homomorphism p of G into the

invertible operators on B with \p(g)\ <K.  If B is norm separable there is Utile

question as to what continuity conditions to impose-namely that B be a G-mod-

ule in the sense we are using. On the other hand, there are many interesting

nonseparable B where we should Uke the theorem to apply. This problem and

others are taken care of by assuming that we have a "separable weak topology"

J on B by which we understand a locally convex separated topology on B usuaUy

weaker than the norm topology such that the unit baU Bx is J-compact and

metrizable. We assume that each p(g) is J continuous and that g —* p(g)(v) is J

continuous in which case we say that (B, J) is a G-module. It is very easy to see

by the same kind of arguments used in [14, Proposition 11] that (g, v) —*■ p(g)(v)

is jointly continuous from G x 2fr —»■ 2? where Br is the ball of radius r, and

where J is taken as the topology on Br and B.  If B itself is separable it is immedi-

ate that the Borel structure on Br generated by J is the same as that generated

by the norm topology. Then (g, v) —*■ p(g)(v) is jointly Borel from G x Br into

B, and hence immediately jointly Borel from G x B into B, and then by Proposi-

tion 11 it is jointly continuous and, hence, B is a G-module. Conversely, if B is

a G-module, and p(g) is J continuous for each g, then one easUy deduces that

g "~* P0f)0O is continuous from G to B with J as topology. Hence our assump-

tions on the action are equivalent to B being a G-module if B is separable, and

we do include a large number of interesting examples for which B is nonseparable.

It goes without saying of course that the most common examples of weak topol-

ogy arise when B is the dual of a separable Banach space B* and we use the

weak*-topology on B in that case.

Let us agree to say that a bounded function from G into B is weakly Borel

if it is Borel with respect to the a-field generated by J. In the foUowing theorem,

ZX(G, B) is, strictly speaking, undefined unless B is separable, but as one can see

that does not reaUy matter as long as it consists of functions satisfying fist) =

P(s)(f(t)) + /{$)> for what the theorem is describing is just BX(G, B), which is by

definition all functions of the form fig) = p(g)b - ft for some ft G &

Johnson establishes a fundamental vanishing theorem which in our context

becomes the following. We include the proof since it is quite short.

Theorem (Johnson). 7/G is amenable and operates by p on B by a uni-

formly bounded representation and ifB admits a separable weak topology J, so

that (B, J)isa G-module, then BX(G, B) is the set of bounded weakly Borel

functions in ZX(G,B).

Proof.  We can of course use the invariant mean on G to renorm B up to

equivalence so that p(g) is an isometry but that is not crucial. In any case if

/G BX(G, B),fis) = p(s)(b) - ft is clearly a bounded weakly continuous function.
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On the other hand, if/is a bounded one cocycle / takes values in a weakly com-

pact and metrizable set.  If/is weakly Borel it follows by standard arguments

that it is also weakly continuous. We then form the function h(s) = p(s~x )(f(s))

which is also bounded and then form its right invariant mean b = M(h) which is

possible since the norm balls in B are weakly compact. Then we compute that

p(t)b -b = p(t\M(h)) -M(h) = M(p(t)h) - M(h)

= Ms(p(ts-x)f(s))-M(h)

and since p(ts~x)fis) = fit) -fits'1) we find that the above is equal to

Ms(f(t) -Ats-1)) -M(h) = fit) -MM'1)) -mx^Ms)),

but now p(s~x)fis) + fis~x) = 0 so that the last two terms cancel and we have

P(0(o) ~b — fit) is a coboundary as desired.

The hypotheses of the theorem regarding J are satisfied if, for instance, B

is the dual of some separable Banach space 2?„, and we take J to be the weak*-

topology. Our assumption on p(g) is just that it is the dual of some operator

\(g) on 5* which is a natural assumption. This theorem extends results of

Browder [2] for we simply take G to be the integers acting by isometries so that

we are considering a single invertible isometry T of B.  AU Borel conditions evap-

orate and a cocycle /is entirely determined by its value at 1, x = fil), and the

value fin) is simply 2?=0X T'(x). That / is a coboundary is the same as saying

that x = Ty - y has a solution y; our result above simply states under the exis-

tence of an appropriate weak topology that x = Ty - y if and only if the norms

of sums |2"=07"(x)| are uniformly bounded in n.   Our interest in this question

was in part motivated also by a question of I. Segal corresponding to the case

G = R, and B a von Neumann algebra with R acting by * automorphisms.  Here

we have a natural predual x?* and the theorem appUes.

Browder also observes that there are some situations where the theorem is

true even without the existence of J. For instance, if M is a compact metric

space, if t£> is a minimal homeomorphism of M, and if U is the induced operator

on C(M), all continuous complex valued functions on M, the result characterizing

solvability of / = Ug-g stUl holds. It might be worthwhile to point out that a

very slight extension to the nonminimal case of this result fails.  Let us consider

M = T x T, T the circle, and let Z act by n • (u, v) = (s"u, v) where s is not of

finite order.  This is an isometric action which decomposes triviaUy into disjoint

minimal sets which in this case even give a fibration of M.   If U is the induced

operator on C(M), we claim the theorem is false and we can produce /£ C(M)

with |2"=0i/"/l uniformly bounded but such that /= Ug-g has no solution in

C(M). Of course it follows from the theorem that it has a solution in ¿„(Af)-  If
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g were a solution to such an equation we note that g( • , v) must for each v be

unique up to an additive constant since only the constant functions are invariant

under translation by s.  Therefore if we have a solution we can normaUze it by

subtracting the function (u, v) —► g(l, v) so that the result satisfies g(l, v) = 0

in which case the solution g is unique if it exists. Now if U is the Unear map on

C(T) given by (Uf%u) = fisu), then 1 - U, even when restricted to the subspace

of those g such that g(l) = 0, has a nonclosed range and is one-one. Its inverse

must be discontinuous and so there is a sequence gn with £„(1) = 0 and with

\gn\ = 1 but with \fn\—+0 where f„ = (U- l)gn. Then we define a function g

on T x T by

g(u, expO/ÍX«-1) + (1 - t)(n + I)"1))) = tgn + (l-t)gn+x

for 0 < t < 1, and gXu, 0) = 0, and g(u, exp(27ri(- s))) = g(u, exp(2m's)). The

function g is clearly continuous at every point of T x T except possibly at points

(u, 1). Moreover g(l, v) = 0. We let fiu, v) = g(su, v) -g(u, v). Then/is given

by the same kind of formula as g and since \fn \ —*■ 0 it is clear that / is, in fact,

continuous everywhere. By our remarks above, if (U - l)h = /is to have a solu-

tion h, then the function g above has to be continuous, but it is clearly not con-

tinuous, for as \gn\ = 1 there is a point un where \g„(un)\ = 1, and we may take

a subsequence n(m) such that «„(m) converges to u0 and gnfm)—+ a, \a\ = 1.

Then g(un/my exp(2m(n(m))~x)) —♦ a but g(u0, 1) = 0 so g is discontinuous.

One rather immediate application of Johnson's theorem on bounded co-

cycles concerns the existence of invariant measures for group actions. Specifically,

assume that a locaUy compact separable group G acts as a Borel transformation

group on a standard Borel space X, leaving a measure p quasi-invariant (cf. [1]).

Then if for each gGG,we let r(g) be the logarithm of the Radon-Nikodym deriv-

ative of the transformed measure g • p with respect to p, it may be verified triv-

iaUy that tig) is a one cocycle in Zx (G, U(X, R)) where G operates as usual on

the module in question. Moreover, if we replace p by an equivalent measure v

given by a Radon-Nikodym derivative /, then the corresponding cocycle changes

by a coboundary, namely 50(log /), where log / is viewed as an element of

U(X, R). Thus the cohomology class of r, [r], is uniquely determined, and it is

clear that [r] = 0 if and only if the group action admits an invariant measure v

equivalent to the given measure p. The vanishing theorem has the following im-

mediate consequence (cf. [6, p. 99] ).

Theorem 8. Let G, X, p, and r be as above, and suppose that all the r(g)

are essentially bounded functions on X with a bound independent of g. Then if

G is amenable, there is a G-invariant measure v equivalent to p.

Proof.  We use the Banach space B = L^X) and use the weak*-topology
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from L j (X). It is clear that the hypotheses are verified and we conclude that [r]

viewed as an element of xY1 (X, B) is zero and hence that [r] = 0 in Hx (X, U(X, R))

since B C U(X, R). Note that as r = 50(log /) with log(/) bounded, we can even

assert that there exists an invariant measure v such that dv/dp is bounded above

and below (in fact by a bound determinable from the original bound on the sup

norms of r(g)).

This theorem would appear to depend in an essential way on the hypothesis

that G is amenable; however, by using totally different techniques, we are now

able to estabUsh this same theorem for arbitrary G.  This result will appear in a

subsequent paper.

4. We shall now turn our attention to some questions and unanswered

problems arising in [13]. We recaU that a locally compact G is said to be "simply

connected" in the algebraic sense if every extension 1 —* A—* E —*■ G —► 1

with A a locally compact G-module with trivial action splits and spUts uniquely;

that is, there is one and only one continuous homomorphism of G into E invert-

ing the projection. We observed that this condition is equivalent to xV1 (G, B) =

H2(G, B) = (0) for every locaUy compact trivial G-module. The first condition

is equivalent to HX(G, T) = Hom(G, T) = (0) which in turn is the same as

[G, G], the commutator subgroup being dense. We observed that the second is

equivalent to H2(G, T) = (0) and H2(G, D) = 0 for every discrete group D, and

raised the question whether indeed the second condition (which might be hard to

verify) is superfluous. We can show now that it is and even estabUsh somewhat

more.  Let us recall that a polonais group was said to be unitary if it can be

realized as a closed subgroup of the unitary operators on a separable Hubert space.

We noted that aU locaUy compact separable groups are unitary as the regular rep-

resentation provides such an embedding.  It might be useful to also point out

that if A is a polonais G-module which is unitary, we can find a reaUzation of A

as a unitary group on some H together with a unitary representation it of G on

H such that g • a = n(g)air(g)~x ; that is the action of G can be implemented by

a unitary representation. To see this, note that if A is unitary, then 1(A) is also

unitary and that the action of G on 1(A), which is just translation, is implement-

able by a unitary representation. Then we note that A as G-module can be em-

bedded as a sub-G-module of 1(A) and we are done. We return to the situation

at hand regarding simply connected groups.

Proposition 4. IfHx(G, T) = H2(G,T) = (0), then G is simply connec-

ted. Moreover H2(G, A) = 0 for any unitary G-module with trivial action.

Proof.  The first statement clearly foUows from the second, and so we

have only to prove it. As A C U(H) for some separable Hubert space H, let A
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be the von Neumann algebra generated by A and let U be its unitary group. Now

A is clearly abelian, and so U has the form U(X, T) and hence we have an em-

bedding A —*• U(X, T) of A as a closed subgroup. Let B denote the quotient so

that 0 —> A —* U(X, T)—+ B —+0 is an exact sequence of (trivial) G-modules.

Now the long exact sequence of cohomology together with the observation that

HX(G, B) = Hom(G, B) = (0) as [G, G] is dense impUes that the induced map

772(G, A) —*• H2(G, U(X, T)) is injective. But the latter group is by Theorem 1

equal to U(X, H2(G, T)) which is zero by assumption. Thus 772(G, A) = (0) as

desired and we are done.

RecaU that a surjective continuous homomorphism p of locaUy compact

groups E —*■ G was said to be a covering map if [E, E] is dense in F (i.e.

771(F, 7) = 0) and if the kernel of p is central in F.  Then it foUows that F is

an extension of G by the trivial G-module ker(p) and of course [G, G] is neces-

sarily dense in G.  In [13], we discussed the question of finding for any G with

[G, G] dense in G, an F with a covering map p onto G such that E is simply

connected.  If such an E exists it is unique and indeed the whole extension of

G by ker(p) is essentially unique.  In analogy with the situation in topology we

say that E is (the) simply connected covering group of G, and the kernel of p,

which we denote by 7Tj(G), is caUed the fundamental group of G.   It is an abelian

locaUy compact group (and there are cases when the topology is nontrivial).

The justification for this terminology comes from the fact that if G is a semi-

simple Lie group, it has a universal covering group in our sense which coincides

with the topologicaUy defined universal covering group, and our nx(G) is discrete

and coincides with the usual fundamental group.

Suppose for the moment that G does have a universal covering group E;

then the restriction inflation sequence reads

(0) = HX(E, A) -+ Hx(irx(G), A) -+ H2(G, A) -+ H2(E, A) = (0)

for any unitary G-module with trivial action. Then in terms of the previous sec-

tion we have the foUowing consequence of Theorem 6.

Proposition 5.  If G has a universal covering group E, then E is a splitting

group for any unitary G-module with trivial action. Moreover the splitting group

topology is Hausdorff and the transgression map Hx(irx(G), A) = Hom(nx(G), A)

—*■ H2(G, A) is a homeomorphism from the compact open topology on the first

group to the topology of convergence in measure on the second group.

We have already mentioned in [11, p. 84] and earUer in this paper an ex-

ample of a group G* for which [G, G] is dense in G but with 772(G, T) topo-

logicaUy isomorphic to R/Q in the spUtting group topology Js and hence also in

Jm. SpecificaUy this group is obtained by looking at the universal covering group
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G of SL2(i?) which is an extension of SL2(Ä) by the integers (natural numbers)

Z, and then replacing Z by Z*, the compactification of Z with respect to all sub-

groups of finite index and taking the image of the cocycle defining G in

H2(SL2(R), Z*). It is immediate that [G*, G*] is dense in G* but not equal to

G* and the proposition above impUes that G* cannot have a universal covering

group. Thus the density of [G, G] in G is not sufficient for existence of a uni-

versal covering group. However, we can still ask if [G, G] = G is a sufficient

condition. Even this turns out to be false as we shall see momentarily, although

there is a weaker replacement for it. Before we proceed to that, however, we

shaU give proofs of two affirmative results which were only stated in [13] with

a promise that their proofs would appear in a subsequent paper (this one). These

results are as foUows.

Theorem 9. // G = [G, G] and if G is almost connected, that is, G/G0 is

compact, where G0 is the identity component, then G has a universal covering

group.

Theorem 10. If G isa connected Lie group with [G, G] = G, then its

universal covering group is again a connected Lie group with E = [E, E], and

ttx(G) « ii\op(G) <&H2(®,R)* where n\op(G) is the usual topological funda-

mental group and where //2(($, R) is the two-dimensional Lie algebra cohomol-

ogy vector group.

Proof of Theorem 9. We have shown in [11] that there is a group F

which is a central extension of G by some locaUy compact group B such that F

is a spUtting group for the circle group T as trivial G-module. Now let E be the

closure of the commutator subgroup of F. If p is the projection from F to G, it

foUows that p(E) = G since G = [G, G]. (Note that this might faü if [G, G] is

only dense in G.) We set A = B n E, and E is a central extension of G by A.

Moreover as F = E • B where B is central, [F, F] = [E, E] is dense in E, so

HX(E, T) = 0. By Proposition 4, it remains to show that H2(E, T) = 0.

First of aU the inflation map iE from H2(G, T) to xY2^, T) can be obtain-

ed as the composition r ° iF where iF is the inflation map to H2(F, T) and r is

restriction to H2(E, T). Now iF = 0 is equivalent to the fact that F is a splitting

group, and it foUows that iE = 0. Moreover, we claim that the restriction map

r from H2(E, T) to H2(A, T) is also the zero map. This foUows just as [13]

from the observation that if a £ Z2(E, T), then b(x, y) = a(x, y)a(y, x)~x for

x £ E and y E A is the commutator [x, y] in the group extension HofEbyT

defined by a and where x and y are any elements of xY projecting onto x and y.

Since [E, E] is dense in E, it foUows that b(x, y) = 0 since b is continuous and

bilinear in x and y. Thus for x,yEA, a(x, y) = a(y, x) and the restriction of a
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to A is symmetric, and we have already observed that then the class of a is trivial.

Finally the spectral sequence of the group extension G by A gives us an

injection of the quotient group ker(f)/lm(iE) into HX(G, HX(A, T)) =

Hom(G, Hom(4, T)) which is zero since G = [G, G]. Thus ker(r) = lm(iE) =

(0) and we have just shown that ker(r) is all of 772(F, T). This completes the

proof of Theorem 9.

Proof of Theorem 10. We know that G has a universal covering group

F by the above. Now G = [G, G] implies that [($, $] = ($ where (S is the

Lie algebra of G and so if G is the ordinary topological covering group of G,

[G, G] = G so that G is a covering group in our sense. The universal property

of E implies that F is (the universal) covering group of G also. Then we also

have an exact sequence for irx (G) as follows:

0 -» Ttx(G) -* nx(G) -* n\op(G) — 0

since 7tÎ°p(G) is the kernel of the map G-^ G.  If we can show that itx(G) is

the vector space it is asserted to be, the sequence above splits topologically since

the kernel is divisible and the quotient discrete. To put matters another way,

we have shown that the result for G follows if we know it for G, and we may

and henceforth do assume that G = G is topologicaUy simply connected.

Let Z2(®, R) be the vector space of cocycles in dimension two for the

Lie algebra cohomology of ($ with coefficients in R, the real line, and let

B2(<$, R) be the coboundaries and choose a hnear map t: 772((§, R) —*

Z2(®,R) inverting the quotient map. Now for each X, Y G (S, a —* t(á)(X, Y)

is linear in a G H2(®,R) and defines an element ß(X, Y) of V = H2(<$,R)*,

the linear dual of 772(($, R). It is immediate that ß is a two cocycle of ($ with

values in V, and we let e be the corresponding central extension 0 —* V —»■ e

—+ i$ —* 0. One has to verify two facts, namely that [e, e] = e and that the

inflation map 772(($, 7?) —> H2(e, R) is the zero map-the latter foUows simply

because we have constructed e in the way we did, and it is the smallest such e

that has this property. Then one observes that [e, e] also has this property so

that e = [e, e] as desired. We can now precisely copy the argument in Theorem

9 transcribed into Lie algebra terms and conclude that 772(e, R) = 0.

Now we let F be the topologically simply connected Lie group with De

algebra e. Then as G is simply connected we find an exact sequence of groups

1—* V —*■ E —*■ G —* I where we have identified the abeUan Lie algebra V
with the corresponding simply connected group. Since [e, e] = e, we have

[E, E] = E and as V is central, F is a covering group of G.  But we showed in

[13] that for topologicaUy simply connected Lie groups E, H2(E, T)=*H2(E,R)

=* 772(e, R) and the final group is zero. Thus E is simply connected in our sense,

and we observe then that nx(G) = Kas desired.
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We now turn to the question of more general sufficient conditions for the

existence of a universal covering group. We note that if such a covering group

existed it would foUow that the natural topology Jm on H2(G, T) is first of aU

Hausdorff and secondly is locally compact as it is the Pontrjagin dual of it^G)

by virtue of Proposition 5. We can now establish the converse of this.

Theorem 11. Suppose G = [G, G]; then G has a universal covering group

E if and only ifH2(G, T) is locally compact and Hausdorff in the topology Jm.

Proof.  We have noted the necessity of the condition. Conversely suppose

that H2(G, T) is locally compact, and Hausdorff. Let us consider the group ex-

tension 0 —»■ B2 —► Z2 —> xY2 where we abbreviate X2 = X2(G, T)forX =

B, Z, H. We note that 51 maps CX(G, T) onto B2 and has kernel ZX(G, T) which

is zero by hypothesis. Now since x?2 is closed, it follows that 51 is, in fact, an

isomorphism of topological groups and, in particular, B2 *• CX(G, T) is a group

of the form U(G, T). Now since the total group Z2 is abelian and the quotient

H2 is locaUy compact, our spUtting theorem (Theorem 3) applies and Z2 ■*

Bj x H2, and let us fix some continuous homomorphism <x> of H2 into Z2 de-

fining this decomposition. Now a —> ip(a) is a continuous homomorphism of H2

into Z2 C U(G x G, T). We apply our direct integral theorem (Theorem 1) to

see that tx> corresponds to an element a of U(G x G, Hom(xY2, T)) which we may

verify directly to be an element of the subgroup Z2(G, Hom(H2, T)) since

<p(a) £ Z2(G, T). Now let A = Hom(//2, T) and let E be the group extension of

G by A defined by the cocycle a constructed above. To complete the proof, aU

we have to do is show that E is simply connected or, equivalently, that HX(E, T)

- H2(E, T) = 0.

We consider the restriction inflation sequence from the group extension

and, in particular, we look at the transgression homomorphism tg: Hx (A, T) =

HomU, T) into xY2(G, T) = H2(G, T) = H2. By duaUty Hom04, T) =

Hom(Hom(/Y2, T)T) * H2: Moreover if we look at the direct definition of the

transgression map in terms of cocycles (after all it is a special case of the Mackey

obstruction map) in [5], we see that tg is in fact the identity map from H2 to

H2. Now as xYx(G, T) = 0 is given, the restriction-inflation sequence is

0 -* HX(E, T)-*Hx(A,T)-&+ H2(G, A) -¿» xY2(xY, A).

The fact that tg is a bijection teUs us two things; first that HX(E, T) = 0 and,

secondly, that the inflation map i is the zero map. We then use these two facts

as in the proof of Theorem 9 to show that H2(E, T) = 0. This completes the

proof.

As an example of this we have
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Theorem 12. Suppose [G, G]=Gand thatH2(G, T) is countable; then

G has a universal covering group and in this case ttx (G) is compact.

Proof. We observe that 52(G, T) is the continuous one-one image of the

polonais group Cx (G, T)lZx (G, T) and so it is a Borel subset. It has countable

index in Z2(G, T) and if we could show it was open, then 772(G, T) would be

Hausdorff and locaUy compact and the previous theorem would apply. Moreover

■nx(G) being the dual group of 772(G, T) would be compact. Thus the proof is

reduced to the following fact.

Proposition 6.  If A is polonais and B is a Borel subgroup of countable

index, then B is open in A.

Proof.  Let X = A/B and give this the discrete Borel structure-all subsets

are Borel. Then it may be verified that the natural transitive operation of G on

X is a Borel transformation group on a standard space X.  Moreover the counting

measure p on X is quasi-invariant and so G operates on the measure algebra M

of A", but now by Proposition 11 of [14] this action must be continuous. We

observe that B is precisely the isotropy group of an atom of M and hence B is

closed. Then a category argument shows us immediately that B is open and the

proposition and Theorem 12 are proved.

We have a coroUary of this as follows:

Corollary. If [G, G] is dense in G and if G is almost connected and

ifH2(G, R) = 0, then G has a covering group.

Proof.  For almost connected groups we proved in [11] that a cokemel

of the map 772(G, R) —* H2(G, T) was countable, and hence in this case the

hypotheses of Theorem 12 are satisfied.

We now consider what happens in general if one assumes the stronger

condition that [G, G] = G and is not just dense in G.

Theorem 13. 7/G = [G, G] and if A is any abelian polonais G-module

with trivial G-action, then H2(G, A) is Hausdorff.

Proof.  Let an G B2(G, A) with an -* a; we shaU show a G B2(G, A).

First we can pass to a subsequence and assume that an—*a almost everywhere

and moreover we can modify each an and a on a nuU set so that they are Borel

and satisfy the cocycle identity everywhere. Then we construct the semidirect

product 77 = 7(4) • G, and for each ft G Z2(G, A) we let F(ft) be the correspond-

ing group extension of G by A constructed in [14, Theorem 10] as a subgroup

of H.  Specifically let T(b, g)(x) = big, g~ xx) so that T(b, g) G 1(A) and let

L(b, g) = (T(b, g), g). Then the group F(ft) is the group generated by A C 1(A)
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as constants, and the elements ¿(ft, g), g G G.  Now if ft is trivial, the extension

splits, so there is a unique continuous homomorphism M(b) of G into F(6) of

the form M(b)(g) — (N(b)(g), g). Now the 7(4) component N(b) of M(b) is easily

seen to be a crossed homomorphism of G into 1(A) of the form N(b)(g) =

7(ô, g) + A(b, g) and we have M(b)(g) = A(b, g) • L(b, g) where A(b, g) is in A

(which is in the center of 77), and T and L are as above.

Then if gx, g2 G G, let \gx, g2] be their commutator, and it follows from

the observation above that M(b)(\g, g2]) = [Lift, gx), L(b, g2)]. Now if ft = an,

we see that by Fubini, anig, g~xx) —*■ aig, g~xx) for almost all x for almost

aU g, and consequently we may exclude a nuU set N in g so that if g ^ N,

Tifin, g) —*T(a, g) and L(an, g) —*■ L(a, g). It follows therefore that

M(an)(]gx, g2]) has a limit, namely [L(a, gx), L(a, g2)] in 77 provided gx, g2 $

N, since each M(an) is a homomorphism, it follows that M(an)(s) has a limit for

all s in the subgroup G' of G generated by aU commutators ]gx, g2], g¡ $N.

Proposition 7.   We have G' = G.

Proof.  A standard formula for commutators gives

\8ig2> £3] " I?i» \Z2> g3]]\g2> g3] fei> g3]-

Then as Nc • Nc = G, we see that G' contains all commutators \g, g3] for g G

G and g3 $N.  A similar argument on the second variable shows that G' contains

aU commutators and hence is equal to G.

It foUows then that the sequence of homomorphisms M(an) converges

pointwise on G to some limit which is necessarily a homomorphism M of G into

77 = 7(4) • G. Moreover, M, being the limit of a sequence of Borel maps, is

Borel, and then as usual it foUows that M is continuous. Moreover for g —

\gx, g2], g¡ $N, we have noted that

Mfflg) = «m M(an)(g) = [L(a, gx), L(a, g2)\ G E(a),

and so M(a)(g) G E(a) for all g G G' and, hence, for all g G G.  Since the second

component of M(a)Xg) is necessarily g, as the same was true for each M(an)ig),

M(a) is a spUtting homomorphism for the group E(a) and, hence, a G B2(G, A)

as desired.

We have as an immediate coroUary the foUowing fact.

Corollary.   If G = [G, G] then G has a universal covering group if and

only ifH2(G, T) is locally compact.

The final point that we come to is to give an example of a group G with

[G, G] = G, so that 772(G, T), which is necessarily Hausdorff, is not locaUy com-

pact. At the same time we shall resolve negatively another question that was left



GROUP EXTENSIONS AND COHOMOLOGY. IV 55

open in [13] ; more precisely let K be a compact open subgroup of a locally com-

pact group xY such that K and xY both have fundamental groups. Then there is a

continuous map of ity(K) into it¡(H) and since it^K) is compact, the image is

closed. The question is whether the image is also open, as it is in a great many

special cases.  It is true when K is normal in which case the cokernel of the map

is the fundamental group it^H/K) of the discrete quotient group G/K, which is

known to be discrete. We shall see that the answer to this question in general

is "no", and this example, as we shaU see, will lead us naturally to a counterex-

ample to the question of existence of fundamental groups.

Let H0 be the free abelian group on five generators (xf) and let A0 be the

alternating group on five symbols acting on xY0 by permuting the x¡. Let xY be

the invariant subgroup of aU elements Hx"' with 2«, = 0, and let G0 = xY • A0

be the semidirect product. Note that y¡ = xtx¡+it i = 1, 2, 3, 4, are free gener-

ators for H, and if a £ A0,

ay ¡a- lyJx = xof¡)x-,xí+, }x/+, xfx.

If a(i + 1) = i + 1, this becomes x^yxj1 and if a(í) = i - 1, we get yi_l.

Now if i > 1, there is always a a E A0 with a(f) = i - 1 and a(i + 1) = i + 1,

80 y l'y 2> y 3 are ^ commutators, and taking i = 4, a(4) = 5 and o(5) = 5, we

see that xsx^x = y^x is a commutator and hence so is^4 and so [G0, G0] D xY

and as [A0, A0] = A0, [G0, G0] = G0. Moreover, as y —> aya~xy~x is linear

from xY0 to H0 it foUows that any element in H0 is a product of at most 4 com-

mutators and as A 0 is finite it follows that there is an integer q so that any ele-

ment of G0 is a product of q commutators.

Now let T be the circle group viewed as a trivial xY-module and let Ba =

IH°(T) be the induced G0-module so that as a group, B0 is a 60-dimensional

torus which has a circle S of G0 invariant elements. Let B = B0/S, and we note

that the topological universal covering group P of B is a 59-dimensional vector

space on which G0 operates via A0 and every nontrivial representation of A0

occurs with multiplicity equal to its degree. It follows immediately that in the

semidirect product G = B • G0, [B, A0] = B and, in fact, there is an integer m

such that every element of B is a product of m commutators [b, a],b EB,

oEA0. Then it follows that if K = B • A0, [K, K] = K and there is p such

that every element of K is a product of p commutators. Finally note that

G = [G, G] and there is some integer « such that any element of G is a product

of n commutators in G, and any element of K is a product of « commutators

from K.   Finally we note that K is compact and open in G.

We know that K has a universal covering group (in our sense) and, in fact,

itl (K) is finite as K is a compact Lie group. We claim that G also has a funda-

mental group, and to do this we shall simply show that H2(G, T) is countable
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and use Theorem 12. We note that G = B • G0 is a semidirect product and that

H2(B, T) = (0) since B is a torus, and that 771(5, T)G° = (0) by construction

of B, and reaUzation of 771 (B, T)asa lattice in the dual of the vector space V

above. The spectral sequence for the group extension then gives, since the exten-

sion is semidirect,

772(5, T) - 772(G0, T) ©HX(G0, HX(B, Tj)

where 771 (B, T) = È.

Proposition 8.  77ie group H2(G0, T) is finite.

Proof. We know that G0 is an extension of A0 by 77 and using the spec-

tral sequence for this group extension it suffices to prove that each of the three

groups H2(A0, T), HX(A0, HX(H, T)) and 772(77, T)A° is finite. The first is, in

fact, of order two, the second consists of classes of crossed homomorphisms of

a finite group into a 4-dimensional torus and is, consequently, finite. Finally

772(77, T) consists of skew symmetric bUinear maps 77 x 77 into T, which as a

group is a torus (of dimension 6 in this case). If the fixed point set of A0 on

this group were not finite, we could construct by Ufting an 7? valued A0 invariant

skew symmetric biUnear functional on 77, and this can be extended to 77 ® 7?.

But 77 ® R as -40-module is an irreducible four-dimensional representation of

A0 and as such admits no skew symmetric bUinear invariants. We conclude then

that 772(77, T) ° is finite and the proposition is proved.

Proposition 9.   The group Hx (G0, B) is a free group of rank four.

Proof. We consider the definition of B as B0 = B © T and duaUze to

find Ê0 = B © Z, the decompositions being direct as groups and as G0-modules.

Now since B0 is the module induced by a torus going from 77 to G0, it is im-

mediate that B0 is the result of inducing f = Z as 77-module up to G0. Then

by Shapiro's lemma (cf. [14, Theorem 6]), 771(G0, B0) =* HX(H, Z) =* Z4.

Moreover, as [G0, GQ] = G0,771(G0, Z) = (0) and so HX(GQ, B0) = HX(G0, B)

®HX(G0, Z) impUes that 771(G0, B) =* Z4 as desired.

These two lemmas taken together say that 772(G, T) is a finitely generated

group of rank four and, in particular, is countable. Thus G has a universal cover-

ing group and 7Tj(G) is the sum of a finite group and a four-dimensional torus,

and in any case is not discrete. We have already observed that irx(K) is finite

and so the map irx(K) —*■ ttx(G) cannot have open image. This gives the desired

counterexample.

Now as to the existence of universal covering groups, let G2 be the infinite

restricted direct product of countably many copies of the group G relative to the

compact open subgroup K.  RecaU that G2 consists of aU sequences (gn) in the
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complete product with gnE K for aU but a finite number of indices «. Then

G2 is locaUy compact and our earUer remarks that there is an integer « such that

every element of G (resp. of K) is a product of « commutators of G (resp. of K)

imply that G2 = [G2, G2] and in fact that any element of G2 is a product of

« commutators.

Now let M be the kernel of the restriction map in cohomology: xY2(G, 7)

—* H2(K, T). Then M is of finite index and is therefore a finitely generated

group of rank four. Then let xVj be the infinite restricted product of copies of

the group xY2(G, T) relative to its subgroup M.  Then Nt has a subgroup My

isomorphic to the complete Cartesian product of countably many copies of M,

and Mx is of countable index in Ny (or equal to xVj). We topologize Nt by

making Mx open and giving it the product topology, and one may see immedi-

ately that xVj is polonais but not locally compact.

Now if a EH2(G2, T), let a„ be the restriction of a to the nth component

of the restricted product. We may argue just as in [13, Theorem 12.1] that

a—*(an) yields an algebraic isomorphism of H2(G2, T) onto Nv But now

since each restriction map a —*■ an is continuous relative to the topologies Jm

[14, Proposition 27], it is an easy map to see that the above defined map of

H2(G2, T) into Nx is continuous. Then an application of the closed graph

theorem (both groups are polonais) shows that it is an isomorphism of topologi-

cal groups, and we conclude that H2(G2, T) is not locally compact, and hence

that G2 cannot have a universal covering group. This is our desired example.
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