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MAXIMAL CHAINS OF PRIME IDEALS

IN INTEGRAL EXTENSION DOMAINS. II

BY

L. J. RATLIFF, JR.(»)

ABSTRACT.   Four related subjects are investigated:   (1)   If (L, N) is a

locality over a local domain (R, Af ) such that N n R = Af, and if there exists

an integral extension domain of L which has a maximal chain of prime ideals

of length n (for short, a mcpil n), then there exists an integral extension do-

main of R which has a mcpil n - trd L/R + tid(L/N)/(R/M).  A refinement

of the altitude inequality follows from this.  (2)  A condition for the converse

of (1) to hold is given.  (3)  The class of local domains R such that there exists

an integral extension domain of R which has a mcpil n if and only if there exists

a mcpil n in R is studied.   (4)  Two new equivalences for the existence of mcpil

n in an integral extension domain of a local domain are given.

1. Introduction. Throughout this introduction let (R, M) he a local domain

and let c(R) = {n; there exists an integral extension domain of R which has a

maximal chain of prime ideals of length n}.

This paper is concerned with the relationship between c(R) and c(L), where

(L, N) is a locality over R such that N OR = M (that is, L is a local quotient

ring of a finitely generated integral domain over R). The exact relationship is

found, and it turns out to be very closely related to the altitude formula and the

altitude inequality (see (2.1) for the definitions). (In deriving the relationship

(and in all the results in this paper) we heavily rely on the main theorem in [17] ;

in fact, such heavy use of this result is made that it is summarized in (a)-(f) at

the end of this introduction.) We look at some consequences of the relationship,

and consider some related subjects. We now give some specific information on the

contents of this paper.

In §2 it is proved that if (L, N)isa locality over R such that N DR=M,

and if « G c(L), then zz - trd L/R + txd(L/N)l(R/M) E c(R) (25). An immed-
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iate corollary of this is the following refinement to the altitude inequality:  With

(R, M) and (L, N) as above, there exists m E c(R) such that altitude L +

trd(L/N)l(R/M) = m + trd L/R < altitude R + trd L/R (2.6.2). Then some

further corollaries of (2.5) are given in (2.7)-(2.11).

In §3 a condition for the converse of (2.5) to hold is given in (3.1), and

then some corollaries of (3.1) are given. For example, if R = R(R, I) is the

Rees ring (3.4) of R with respect to an ideal J in R and M is the maximal homo-

geneous ideal in R, then n E c(R) if and only if n + 1 E c(R u) (3.6). (3.7)

shows that for certain Af-primary idealsB in R, n + 1 G c(R m) ifand only if

there exists a prime ideal p in R M such that height p = 1 and depth p = n. This is

a very important property, as is noted in the last paragraph of §4.

In §4 we consider the class C of local domains R such that n E c(R) if and

only if there exists a maximal chain of prime ideals of length n in R. In (4.1) we

show that the following rings are in C : R [X] ,M Xy, for all local domains R;

all Henselian local domains; and, all local domains wihch satisfy the s.c.c. (2.1.3).

Certain other properties of C are given in (4.1). (4.2) gives some properties of

the rings which are in C.  Some questions about C are asked in (4.5)—(4.7), and

one of these is partially answered in (4.8.2) by showing, in particular, that if R

EC is integrally closed and N is a maximal ideal in a finite integral extension do-

main SofR, then SNEC and c(R) = c(SN).   Also, some equivalences of

the upper conjecture are given which relate it to the class C (4.10.3).

In (5.2) we give two more equivalences of the six equivalent conditions

given in [17, (2.14)] (see (a)-(f ) below) for a local domain, and show that these

new conditions are equivalent, in the local ring case, to two of the conditions in

[17]. One of these new equivalent conditions is that, for the domain case, n E

c(R) if and only if there exists a height n — 1 depth one prime ideal in the Hen-

selization of R.  Some consequences of (5.2) relating to H{ -rings (53) are given

in (5.4) and (5.6), and then we close this section with two propositions (5.9) and

(5.10) which characterize all local domains R such that card c(R) < 2. (Nagata's

examples have this property.)

In §6 some results are given showing the existence of certain rings con-

tained in the quotient field F of R which have certain types of maximal chains of

prime ideals. (6.1) shows that if « G c(R), then there exists a locality L =

R[d] (M,d) £ F sucri that triere exists a maximal chain of prime ideals of length

n in L.  Also, there exists a maximal ideal N ma finitely generated ring AC. F

over R such that N n R = M and height N = n (63). Finally, (6.7) shows that

if m > 1 is the smallest element in c(R), then there exists a quadratic transforma-

tion LofR such that n E c(R) if and only if n - m + 1 E c(L).

Throughout, we show that certain known results easily follow from the new

material in this paper. Also, a number of questions are asked, and frequent re-
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marks are interspersed which relate the new results to other results in this paper

and in other papers.

Since we will frequently need to refer to the main result in [17], we close

this introduction by stating it. For typographic reasons, we index the separate

parts by a single letter.

Let (R, M) be a local domain, let k be a positive integer, let ß be a prime

ideal in Rk=R[Xx.Xk] such thatMRk C Q, and let S = (Rk)Q. Then

the following statements are equivalent:

(a) There exists an integral extension domain of R which has a mcpil n

(see (2.2) below).

(b) There exists a minimal prime ideal z in the completion of R such that

depth z = n.

(c) There exists a minimal prime ideal w in the completion of S such that

depth w = n + k — depth Q.

(d) There exists an integral extension domain of S which has a mcpil n +

k - depth Q.

(e) There exists a mcpil n + k — depth ß in S.

(f) There exists a mcpil n + 1 in R[XX],M x y

2. On the altitude inequality. All rings in this paper are assumed to be

commutative rings with an identity element. The undefined terminology is the

same as that in [6]. We mention, in particular, that A C B denotes proper con-

tainment.

The following terminology will be frequently used in what follows.

(2.1) Definitions.  Let A be an integral domain, and let a = altitude

A<<*>.

(2.1.1) A satisfies the first chain condition for prime ideals (fee) in case

every maximal chain of prime ideals in A has length = a.

(2.1.2) A is catenary in case, for each pair of prime ideals P C ß in A,

(A/P)qip satisfies the f.c.c.

(2.1.3) A satisfies the second chain condition for prime ideals (s.c.c.) in case

every integral extension domain of A satisfies the f.c.c.

(2.1.4) A satisfies the chain condition for prime ideals {c.c.) in case, for

each pair of prime ideals P C ß in A, {A/P)q/p satisfies the s.c.c.

(2.1.5) A is quasi-unmixed (resp., unmixed) in case A is semilocal and every

minimal (resp., every) prime divisor of zero in the completion of A has depth

= a.

(2.1.6) A satisfies the altitude formula in case, for each finitely generated
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integral domain B over A and for each prime ideal P in B, altitude Bp +

trd(B/P)l(A/(P n A)) = altitude AprtA + trd B/A, where trd C/D denotes the

transcendence degree of the quotient field of the integral domain C over the quotient

field of its subdomain D.

(2.1.7) A satisfies the altitude inequality in case, for each B and P as in

(2.1.6), altitude BP + trd(B/P)/(A/(P n A)) < altitude ApnA + trd B/A.

It is known [21, Proposition 2, p. 326] that a Noetherian domain satisfies

the altitude inequality. This fact will often be used below.

We also define mcpil and W(k, P) as in [17]. Specifically, we need the

following two definitions.

(2.2) Definition. It will be said that a ring A has a mcpil n in case there

exists a maximal chain of prime ideals of length ninA (that is, a chain of prime

ideals p0 Cpx C • • • C pn such that p0 is minimal, pn is maximal, and height

Pi/Pi-i = 1 0 = 1,...,«).
(2.3) Definition. Let A be an integral domain.

(2.3.1) W(k, P) = {n; there exists a mcpil n in (Ak)p}, where k is a nonnega-

tive integer and P is a prime ideal in Ak = A [Xx, . . . , Xk]   (A0 = A).

(2.3.2) c(A) ={«; there exists an integral extension domain of A which has

a mcpil «}.

(2.4) Remarks. (2.4.1)  Clearly, altitude A is the largest integer in c(A).

(2.4.2) It is clear from the definitions that A satisfies the s.c.c. (2.1.3) if

and only if c(A) = {altitude A}.

(2.4.3) A local domain R is quasi-unmixed (2.1.5) if and only if c(R) =

{altitude R}, since, by (a) •*=> (b), c(R) = {depth z; z is a minimal prime ideal in

the completion of R }.

(2.4.4) If (R, M) is a local domain, then W(l, (M, Xx)) = {n + 1 ; n G

c(R)},by(a)~(f).

The following theorem will allow us to give a refinement to the altitude ine-

quality, as will be shown in (2.6.2) below. To prove (2.5), the following known

result is needed:  A transcendental extension domain of a Noetherian domain A

satisfies the altitude formula relative to A [21, Proposition 2, p. 326].

(2.5) Theorem. Let (R, M) and (L, N) be local domains such that L is a

locality over RandNHR=M. IfnE c(L), then n - trd L/R + trd(L/N)l(R/M)

Ec(R).

Proof.  Let L = Ap, where A = R [dx, .. ., dm ], let K be the kernel of

the natural homomorphism from Rm =R[XX.Xm ] onto A, and let P * be the

preimage of P in Rm. Let t = trd L/R and t' = trd(A/P)l(R/M) = (since R/M
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is a field) altitude A/P = depth P = depth P*/K = depth P*. Also, by the alti-

tude formula for Rm over R [21, Proposition 2, p. 326], height K +1 -

height KC\R+m; that is, height K = m - t.

Now, if n E c(L), then there exists an integral extension domain, say B, of

Rm which has a saturated chain of prime ideals of length n, say p0 C • • • C pn

such that p0 D Rm =K and p„nRm =P *. Then, since (Rm)K satisfies the

S.C.C. (since it is a regular local ring (since K n R = (0))), height p0 = height K =

m - t.  Therefore, since depth p„ = depth P* = t', this chain can be extended

to a mcpil n +1' + m - t inB, say (0) C • • • Cp0 C • • • Cp„ C • • • C q (height

p0 = m - t and height q/pn = t'). Let ß = q O Rm. Then this chain extends to a

mcpil n + t' + m - t xnB,R   _QyandB(R   _ß) is integral over (i?m)ß. Hence,

since MRm C ß (since ß is maximal and ß <~> R = M), it follows from (a) *==*

(d) that there exists an integral extension domain of R which has a mcpil n + t'

- t, that is n + t' - t G c(R).   QED.

The converse of (2.5) is not true, in general. For example, let (R, M) be as

in [6, Example 2, pp. 203-205] in the case r > 0 and m > 0. Then altitude R

= r + m + 1 = (say) a, and the integral closure R' of R is a finite R-algebra and

has a maximal ideal, say ß, such that height ß = m + Ka.  Let Z, = (R')q.

Then clearly a G c(R), but a Gc(L) (since altitude I < a).

However, the converse of (2.5) is true in many important cases, as will be

shown in (3.1) below.

(2.6.2) could be called a refinement to the altitude inequality (2.1.7).

(2.6) Corollary. Let (R, M) and (L, N) be as in (2.5). Then the follow-

ing statements hold:

(2.6.1) There exists an order-preserving injection f: c(L) —*■ c(R) given by

f(n) = n - trd L/R + txd(L/N)/(R/M),for n E C(L).

(2.6.2) There exists m E c(R) such that altitude L + txd(L/N)/(R/M) =

m + trd L/R <altitudeR + trd L/R.

Proof.  (2.6.1) The existence of/is clear by (2.5).

(2.6.2) Since altitude L E c(L) and altitude R is the largest element in

c(R) (2.4.1), (2.6.2) follows by letting m = /(altitude L).   0.ED.

The existence of the map /in (2.6.1) can be used to give an easy proof of

some well-known results. For example, see (2.7.2) and (2.7.3).

(2.7) Remark. Let (R, Ai), (L, N), and /: c(L) —► c(R) he as in (2.6).

Then the following statements hold:

(2.7.1) If a = altitude R E Im(/) (in particular, if /is a bijection, then

(*) altitude L + txd(L/N)/(R/M) = altitude R + trd L/R.

(2.7.2) If R satisfies the s.c.c, then L satisfies the s.c.c. and (*) holds.
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(2.73) If altitude R < 1, then R satisfies the s.cc; hence L satisfies the

s.c.c.

Proof.  (2.7.1) If a G Im(/), then there exists « G c(L) such that /(«)

= « - trd L/R + trd(L/N)/(R/M). Hence, since by (2.4.1), altitude L and a

are the largest elements in c(L) and c(R), respectively, and since /preserves order,

the' conclusion follows.

(2.72) If R satisfies the s.c.c, then c(R) is a one-point set (2.4.2); hence

c(L) is a one-point set (since /is injective);hence L satisfies the s.c.c. (2.4.2).

Further, a G Im(/); hence (*) holds, by (2.7.1).

(2.73) If altitude R < 1, then c(R) is a one-point set, hence R satisfies

the S.C.C. (2.4.2), and so L satisfies the s.c.c.   (2.7.2).   Q.E.D.

(2.8)  Corollary.   Let Abe a finitely-generated integral domain over a

local domain (R, M). Then the following statements hold:

(2.8.1) For each prime ideal Pin A such that PC\R=M, height P +

ttd(A/P)l(R/M) E{m + t:mEc(R), t = trd A/R}.

(2.82) For each maximal ideal N in A such that NC\R=M, height N E

{m + t;mE c(R), t = trd A/R}.

Proof. (2.8.1) is clear by (2.6.2).

(2.8.2) follows from (2.8.1), since the field A/N is a finitely-generated inte-

gral domain over the field R/M; hence trd(A/N)/(R/M) = 0.   QED.

With (2.82) in mind, it will be shown in (6.3) below that, for each m E

c(R), there exists a locality (L, N) over R such that NnR=M,LCF= the

quotient field of R, and height N=m.

The following two corollaries to (2.5) are concerned with algebraic exten-

sion domains.

(25) Corollary.   Let (R, M) be a local domain, and let A be a finitely-

generated algebraic extension domain ofR. Then, for each maximal ideal N in A

such thatNC\R=M, c(AN) C c(R).

Proof. If AT is a maximal ideal in A such that NC\R=M, then

tid(A/N)l(R/M) = 0. Therefore the conclusion follows from (2.5).   QED.

(2.10) Corollary. Let b0, bx,.bm be analytically independent ele-

ments in a local domain (R, M), and let A = R[bx/b0,.... bm/b0]. Ifn E

c(AMA), then n+mE c(R).

Proof. MA is a prime ideal in A and the residue classes modulo MA of

the bt/bQ are algebraically independent over R/M [11, Lemma 43]; hence the

conclusion follows from (2.5).   QJED.

The converse of (2.10) is true in some cases, as will be shown in (6.7).

It is known [9, Corollary 2.5] that a local domain (L, N) which is a locality

over a quasi-unmixed local domain (R, M) is quasi-unmixed.   (2.11.1) generalizes

this.
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(2.11) Remark.   Let (R, M) and (L, N) be as in (2.5), and let L* and

R* be the completions of L and R, respectively. Then the following statements

hold:

(2.11.1) If w is a minimal prime ideal in L*, then depth w E {depth z 4-

trd L/R — txd(L/N)/(R/M); z is a rninimal prime ideal in R*}.

(2.11.2) (Cf. [9, Corollary 2.5].) If R is quasi-unmixed, then L is quasi-

unmixed.

Proof.  (2.11.1) By (a) <=* (b), c(L) = {depth w; w is a minimal prime

ideal in L*} and c(R) = { depth z; z is a minimal prime ideal in R*}. Therefore

(2.11.1) follows from (2.5) and (2.4.3).

(2.11.2) follows from (2.11.1) and (2.4.3).   Q.E.D.

It is known [1, (10.13)] that, with (L, N) and (R, Af) as in (2.5), if R is

analytically irreducible, then R is a subspace of L. (2.11.1) suggests that this

might also be true if R is unmixed (2.1.5). The author does not know if this is

true.

3. A condition for /: c (L) —► c(R) to be bijective. In this section we

give a condition under which the converse of (2.5) holds; that is, in terms of the

map / of (2.6.1), for / to be a bijection. Then we give some corollaries to the

result.

To prove (3.1), we need the following result:  If a local domain L is a

locality over a complete local domain, then L is unmixed (2.1.5). This follows

from [5, Proposition 4], as noted in the paragraph preceding (2.5) in [17].

(3.1)   Theorem.   Let (R, M) be a local domain and let (L, N) be a local-

ity over R of the form: L = R[XX,. .., Xk, dx,... , dm]p (k > 0), dx,.. .,

dm in the quotient field ofRk = R[XX,. . ., Xk], and P C\R=M. Assume

that R is a subspace of L.  Then nEc(L) if and only ifn — trd L/R +

txd(L/N)/(R/M) = n-k + depth P E c(R).

Proof.  Let L° = AQ, where A = R*[XX,... ,Xk,dx,... ,dm],R*

is the completion of R, and ß = PA (so ß is a prime ideal and L is a dense sub-

space of L°  [11, Lemma 3.2] ). Since R is a subspace of L, R* is a subring of

the completion L* = L°* of L and of L°; hence ß contains all the prime divisors

of zero in A and R* is a subring of L° [11, Lemma 4.5 (1 )].

Now, nEc(L) if and only if (by (a) <=> (b) applied to L) there exists a

depth n minimal prime ideal in L* = if* if and only if (by the comment pre-

ceding this theorem) there exists a depth n minimal prime ideal in L°. Also, z'

is a minimal prime ideal in L° if and only if (since R* <ZL° and ß contains all

the prime divisors of zero in A) z = (z' C\ A) n R* is a minimal prime ideal in

R* and z' = zT(Xx,..., Xk) n L°, where T is the total quotient ring of R*.
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Further, L°/z' is a locality over the complete local domain R*/z, and R*/z satis-

fies the altitude formula. Therefore altitude L°/z + trd(A/Q)l(R*/M*) =

altitude R*/z + k; and depth Q = altitude A/Q = [6, (14.6)]  trd(A/Q)/(R*/M*),

since R*/M* is a field. Therefore depth z' = depth z + k — depth Q. Hence,

there exists a depth « minimal prime ideal in L° if and only if there exists a

depth n - k + depth Q minimal prime ideal in R*; and this is true if and only if

(by (a) «-» (b)) « - * + depth ß 6 c(/î). Finally, Äfc [dx,. . . , dm ] IP = A/Q,
so depth P = depth Q.   Q.E.D.

The condition that R be a subspace of L is stronger than is needed for the

conclusion of (3.1), as will be seen in (6.7). However, the author knows of no

other condition which always works.

If some dt in (3.1) is not in the quotient field of R[XX,. . . , Xk], then L

need not be a dense subspace of L°. For example, let R he the regular local ring

given in [6, (E32), p. 206], and let d = dx be the element c in [6]. Then d E

R*,d is integral over R, and R[d] is a local domain which is not a dense sub-

space of R*[d] =R*.

It should be noted that, with R and I as in (3.1), if R is a subspace of L,

then the map /of (2.6.1) is a bijection; hence (2.7.1) holds.

(3.2) Remark.  Let (R, M) be a local domain. Then the following state-

ments hold:

(3.2.1)   (3.1) gives another proof of (a) •*=> (d), since R is a subspace of

(Rk)Q, by [11, Lemma 4.5(1)].

(3.22) (Cf. [17, (2.15)].) c(R(X)) = c(R), where R(X) = R[X]MR[X],

since R is a subspace of R(X), by [11, Lemma 4.5(1)].

While on the subject of R(X), it should be noted that « G c(R(X)) does not

imply that there exists a mcpil n in R(X) (in contrast to n E c(D) if and only if

there exists a mcpil n in D, where D = R [X] ím,x))- ^or example, let R be a

catenary (2.1.2) local domain such that altitude R > 1 and such that its integral

closure has a height one maximal ideal (as in [6, Example 2, pp. 203-205]).

Then R(X) is catenary [12, Theorem 4.11], altitude R(X) > 1, and its integral

closure has a height one maximal ideal.

(3.3) Remark.   Let (R, M) and (L, N) be as in (3.1), and assume that R

is a subspace of L. Then the following statements hold:

(3.3.1) R is quasi-unmixed if and only if L is quasi-unmixed.

(3.3.2) R satisfies the s.c.c. if and only if L satisfies the s.c.c.

Proof.  (33.1) follows from (3.1) and (2.4.3), and (3.3.2) follows from

(3.1) and (2.4.2).   QJED.

To prove the next corollary to (3.1), we need some information on Rees

rings.

(3.4) Definition.   Let / = (dx.dm)R he an ideal in a local domain



MAXIMAL CHAINS OF PRIME IDEALS. II 125

(R, M). Then the Rees ring R = R(R, I)ofR with respect to I is defined to be

the subring R = R[tdx,. . . , tdm, u] of R[t, u], where t is an indeterminate and

u = lit. The ideal M = (tdx, . . . , tdm, M, m)R is called the maximal homo-

geneous (irrelevant) ideal in R.

We summarize in the following remark the known results on Rees rings

which will be needed in the remainder of this paper.

(3.5) Remark.   Let the notation be as in (3.4).

(3.5.1) R is a graded Noetherian domain, and the elements in R are finite

sums 2" k Cjt', where c, G V (with the convention that I' = R, if j < 0). More-

over, u'R nR =I> (j>0).

(3.5.2) M is a maximal ideal in R and every homogeneous ideal in R is con-

tained in M   [20, Theorem 3.1 (step (ii))].

(3.5.3) If H is a maximal relevant ideal in R, then H is prime and (M, «)R

Ç/YCM, and depth H = 1 [20, Theorem 2.1]. (A homogeneous ideal H in R

is said to be irrelevant in case H contains all homogeneous elements of sufficiently

large degree; otherwise H is said to be relevant. H is a maximal relevant ideal in

case H is maximal with respect to being relevant.)

(3.5.4) The form ring f(R, /) of R with respect to I is isomorphic to R/«R

[19, Theorem 2.1].

(3.6) Corollary. Let I be an ideal in a local domain R, let R = R(R, I)

be the Rees ring of R with respect to I, and let L = R^, where M is the maximal

irrelevant ideal in R.   Then n G c(R) if and only ifn + lE c(L).

Proof.  Let R* he the completion of R, let R° = R(R*, IR*), and let M°

be the maximal irrelevant ideal in R°. Then M° contains all prime divisors of

zero in R° (since M° contains all homogeneous ideals in R° and the prime divisors

of zero are homogeneous). Therefore, since R is contained in the quotient field

of R [t], R is a subspace of L   [11, Lemma 4.5(1)]. Therefore the conclusion

follows from (3.1).   Q.EJD.

We close this section of the paper with one further result on Rees rings and

c(R). More will be said about (3.7) in the next section of the paper.

(3.7) Proposition.   Let (R, M) be a local domain.  Then there exists an

M-primary ideal B in R such that, with R = R(R, B) and M the maximal irrelevant

homogeneous ideal in R, the following statements are equivalent:

(3.7.1) nEc(R).

(3.7.2) zz + lGc(RM).

(3.7.3) There exists a maximal relevant ideal N in R such that height N = n.

(3.7.4) There exists a minimal prime divisor p ofuR such that depth p =

height M/p = n.
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(3.7.5) There exists a minimal prime ideal z in the form ring F = V(R, B)

such that depth z = n.

Proof.  We note, to begin with, that if B = (bx,.. ., bm)R is an M-

primary ideal and p is a minimal prime divisor of uR(R, B), then B = uR C\ R

C p n R, so depth p = height M/p (since u R is homogeneous implies p C M,

and since depth p = altitude R/p and R/p is a homomorphic image of

(R/M)[XX,... ,Xm] = (say)D, andD satisfies the s.c.c).

Now, by [11, Proposition 3.9], there exists an M-primary ideal B in R such

that the following sets are equal: {depth z; z is a minimal prime ideal in the

completion of R}; {depth p; p is a minimal prime divisor of uR(R, B)}; and,

{ height N; N is a maximal relevant ideal in R(R, B)}. Therefore, for this B, since

depth p = height M/p (by the preceding paragraph), (3.7.3) and (3.7.4) are

equivalent, and each is equivalent to (3.7.1), by (a) <=> (b). Also, (3.7.1) and

(3.7.2) are equivalent, by (3.6). Finally, (3.7.4) and (3.7.5) are equivalent, since

?=-R/uR (3.5.4).   QEJJ.

4. The class of local domains (R, M) with c(R) = W(0, M). Let C be the

class of local domains (R, M) such that {m; there exists an integral extension do-

main of R which has a mcpil m} = {«; there exists a mcpil « in R}; that is, such

that c(R) = W(0,M) (see (23)). In this section we will give some information

onC.

Our first result on C gives some knowledge of the rings which are in C.

(4.1)   Proposition.   The following statements hold:

(4.1.1) IfR satisfies the s.c.c, then REC.

(4.1.2) For all local domains R, R [X] q E C, for all maximal ideals Q in

R [X] such that Q n R = M.

(4.1.3) IfR is Henselian, then REC.

(4.1.4) For all local domains R, there exist M-primary ideals B in R such

that R m G C, where R = R(R, B).

(4.1.5) If R C S are local domains such that S is integral over R, then R E

C if and only if S G C.

(4.1.6) REC if and only ifR(X) E C.

(4.1.7) IfR G C and p is a prime ideal m R, then it is not necessarily true

that R/p or Rp is in C.

Proof.  (4.1.1) If R satisfies the s.c.c, then c(R) is a one-point set (2.4.2);

hence c(R) = W(0, M), and so R G C.

(4.1.2) follows from (d) <=> (e), since MR[X] C Q, if Q is maximal and

Q n R = M.

(4.1.3) is given in [15,(3.2)].
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(4.1.4) follows from (3.7.2) <-* (3.7.4).

(4.1.5) is given in [15,(3.14)].

(4.1.6) c(R) = c(R(X)) (3.2.2). Also,W(0,M)=W(0,MR(X)) [2, Theorem

6]. Therefore ,R EC if and only if R(X) E C.

(4.1.7) Let (R,M) he a local domain which is not in C. (For example, let/?

be as in [6, Example 2, pp. 203-205] in the case m = 0.) Let D = R [X ] iMtXy

Then DEC (4.1.2), but R = D/XD <ßC and R(X) = DMD $C (by (4.1 *6)).

Q.E.D.
Our next result gives some properties of each ring in C.

{42) Proposition.  The following statements hold for (R, M) E C :

(4.2.1) For all prime ideals Q in R [X ] such that Q n R = M, R[X]Q E C.

(4.2.2) There exists a depth n minimal prime ideal in the completion ofR

if and only if there exists a prime ideal p in R such that height p = n — 1 and

depth p = 1.

(4.2.3) IfR is catenary, then R satisfies the s.c.c.

(4.2.4) If (L, N) is a locality over R such that N C\R=M,andifnE

c(L), then n - trd L/R + txd(L/N)\(R/M) E W(0,M).

(4.2.5) If (L, N) is as in (3.1) and R is a subspace of L, then n E c{L) if

and only ifn- trd L/R + txd(L/N)/(R/M) E W{0,M).

Proof.  (4.2.1) If MR[X] CQ,thenR[X]QEC,by {4.12). If MR[X]

= Q, then R [X] Q = R(X) E C, by (4.1.6).

(4.2.2) It is known that if there exists a mcpil n in a local domain R, then

there exists a prime ideal p in R such that height p = « - 1 and depth p = 1

[2, Theorem 5]. The conclusion follows from this and (a) «=> (b).

(4.23) If R is catenary, then c(R) = W(0,M) = {altitude R}; hence R

satisfies the s.c.c. (2.4.2).

(4.2.4) is clear by (2.5).

(4.2.5) is clear by (3.1).   Q.E.D.

An easy proof of the following known result can now be given.

(43) Corollary (cf. [11, Theorem 221]). A catenary Henselian local

domain satisfies the s.c.c.

Proof. This follows from (4.1.3) and (423).   QED.

(4.4)   Remark.   It follows from (4.3) that a local Henselian domain R t

of altitude two satisfies the s.c.c. Also, if altitude R = 3 and R is H, (that is,

height one prime ideals have depth two), then R satisfies the s.c.c. (since R is

catenary). In particular, if R is a local Henselian UFD of altitude three, then R

satisfies the s.c.c. (since height one prime ideals are principal implies that R is

Hx). The author does not know if all local UFD's of altitude three satisfy the

s.c.c.
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Another proof that an altitude three Henselian local domain which is Hx

satisfies the s.cc. (equivalently, is quasi-unmixed [10, Theorem 3.1]) is given in

(5.5.2) below.

The author suspects that C contains most local domains. (See (4.10.3) for

one reason.) In any case, there are some interesting problems in this area. We

mention three of these in (4.5)—(4.7). To explain the first problem, let R be a

local domain. Then c(R) is a finite set, so, by the going-up theorem and [17,

(2.2)], there exists a finite integral extension domain S of R such that n E c(R)

if and only if there exists a mcpil n in S.  Therefore, if S is local, then SEC,

hence REC (4.1.5).  (SEC, since, if A C B are integral domains such that B

is integral over A, then c(B) C c(A).) This leads to the following question which

the author has not been able to answer:

(4.5) Question. With the preceding notation, if N is a maximal ideal in S,

is SN E CI

More generally, we ask:

(4.6) Question.  If REC and N is a maximal ideal in a finite integral ex-

tension domain S of R, is SN E C?

(4.7) Question.  If REC, if L is as in (3.1), and if R is a subspace of L, is

LE CI

A partial answer to (4.6) is given in (4.8.2).

(4.8) Remark.   Let (R, M) he a local domain.

(4.8.1) If R has the property that, for each integral extension domain S of

R, each maximal chain of prime ideals in S contracts in R to a maximal chain of

prime ideals, then REC.

(4.8.2) If REC and the integral closure R' of R is quasi-local, then, for

each integral extension domain S of R, and for each maximal ideal N in S,SN E

C and c(SN) = c(R).

Proof.  (4.8.1) is clear.

(4.8.2) Let 5 be an integral extension domain of R and let N be a maximal

ideal in S. Let S' he a Galois (not necessarily separable) extension domain of R

which contains S, and let (0) C px C • • • c pn = M be a mcpil « in R. Then

there exists a covering chain of prime ideals (0) C Px C • • • C Pn = N' in S'.

Let N" he a maximal ideal in S' such that N" D S = N.  Then, since N' and AT"

are conjugate [6, (10.12)] (since R' is quasi-local), there exists a mcpil « in S',

say (0) C g, C • • • C Qn = N" such that Q, D R = p¡ (i=l,..., n). There-

fore, with q¡ = Q¡ n S, (0) C qx C ■ • • C qn = N is a mcpil n contained in AT.

(The chain is maximal, since q¡C\R = p. and (0) Cpx C • • • C pn = Af is maxi-

mal.) Therefore c(R) C W(0, NSN) and W(0, NSN) C c(SN) C c(R), by (2.9).

Hence SN E C and c(SN) = c(R).   Q.E.D.

One further problem in this area (related to (4.8.1)) will now be mentioned.



MAXIMAL CHAINS OF PRIME IDEALS. II 129

(4.9) Question.  If R C 5 are local domains such that S is integral over R,

then does every maximal chain of prime ideals in S contract in R to a maximal

chain of prime ideals?

Using induction on altitude R, it suffices to prove that if P is a height one

prime ideal in S, then height P n R = 1.

(4.10.3) contains some comments relating the upper conjecture to the class

C. For further comments on this conjecture, see [3, Propositions 3.3 and 3.7]

and [17, (2.21) and (2.22)].

(4.10) Remark. The following statements hold for a local domain (R, Af):

(4.10.1) If R EC, nE c(R), and n > 1, then there exist infinitely many

prime ideals p in R such that height p = n — 1 and depth p = 1.

(4.10.2) lfREC.nE c(R), and zz = 1, then altitude R - 1.

(4.10.3) The following statements are equivalent: (i) The upper conjecture

holds. (That is, {zz + 1 ; zz G W(0, M)} C W(l, (M, Xx )) C {n + 1 ; n E W(0, M)}

U{2}.) (ü) W(0,M)Cc(R)ÇW(0,M)U{l}. (in) If R <ß C, then W(0,M)

C c(R) = W(0, M) U {1}. (iv) If R EC, then altitude R > 1 and there exists

height one maximal ideal in the integral closure R' of R.

Proof.  (4.10.1) It is known that if there exists a prime ideal p in a local

domain, such that height p = h > 0 and depth p = d > 0, then there exist in-

finitely many such prime ideals [12, (2.2.1)]. Therefore the conclusion follows

from (4.2.2) and (a) <=* (b).

(4.10.2) follows from (4.2.2) and (a) <=> (b).

(4.10.3) Assume that (i) holds and let R be a local domain. Then clearly

W(0, M) C c(R). Also, if zz G c(R), then n + I E W(l, (M, Xx)) (by (2.4.4)),

so, by (i), zz G W(0, M)oxn = 1; hence c(R) Ç W(0, M) U {1}. Thus (i) <=*•

(ü).

Assume that (ii) holds and let (R, M) be a local domain such that R£ C.

Then W(0, M) C c(R), so c(R) = W(0, M) U {1}, by (ii); hence (ii) => (ni).

Next, assume that (iii) holds and RfiC. Then clearly altitude R > 1.

Also, there exists an integral extension domain of R which has a height one maxi-

mal ideal (by (iii)), so [12, Lemma 2.9] says there exists a height one maximal

ideal in R'. Thus (iii) => (iv).

To show that (iv) •» (iii), let (R, M) be a local domain £ C, so W(0, M) C

c(R). Then, by (iv), 1 G c(R), E W(0,M). Also, by [15, (4.7)], there exists a

local domain (S, N) such that W(0, M) = W(0, N) and c(S) C c(R) = c(S) U

{1}. Then, by (iv), SEC (since 1 «È c(S)), so c(R) = c(S) U {1} = W(0, N) U

{l} = W(0,Af)U{l}.

Finally, assume that (iii) holds and let R be a local domain. It may clearly

be assumed that {« + 1; zz G W(0, M)} C 1V(1, (Af, Xx)); that is, by (2.4.4), that

rV(0, Ai) C c(R), soREC.  Therefore, by (iii) and (2.4.4), W(l, (M, Xx)) =
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{n + l;-nE W(0,M)} U{2}, hence (iii) =* (i).   Q.E.D.

We close this section with a comment showing the importance of knowing

more properties of the rings in C. Namely, let (R, M), B, and R w be as in (3.7).

Then R „ G C, by (3.7.2) <=> (3.7.4). Also, by (3.7.3) *=> (3.7.4) (and (3.5.3)),

there exists a height n depth one prime ideal in R ̂  if and only if there exists a

height one depth « prime ideal in R M. If every REC (or, even, if every

R[X] (m,x) e O na(itms property, then it can be shown that the //-conjecture

(that is, an Hx-local domain (see (5.3)) is catenary) holds. (See [14, (4.5)], where

it is shown that the //-conjecture implies the catenary chain conjecture (that is,

the integral closure of a catenary local domain satisfies the c.c. (2.1.4)).) (In this

regard, there are two conditions, either of which implies that, with (R, M) a local

domain, if n G c(R), then there exists a height one depth « — 1 prime ideal in /?.

Namely, there exists b EM such that either:  (a) every prime divisor p of bR is

such that height p = 1 and R/p is unmixed; or, (b) for all minimal prime ideals z

in the completion R* of R, height (z, b)R* = 1 and, for all minimal prime di-

visors p of bR, R/p is quasi-unmixed. Does every R [X] im,x) g C satisfy one °f

these conditions?)

5. Two more equivalences of (a)—(f). In this section we give, in (5.2), two

new equivalences of the six statements (a)-(f) in the introduction, and we extend

the equivalence of (b) and (f) to the case R contains nonzero divisors of zero.

Then some corollaries of (5.2) are given which relate the results to H{ -rings ((5.4)

and (5.6)), and this section is closed by characterizing all local domains R such

that card c(R) < 2 ((5.9) and (5.10)).

To prove (5.2), we need a result which was essentially proved in [10, Propo-

sition 2.16]. Unfortunately, the hypothesis in [10, Proposition 2.16] is not

general enough for our present need, so we prove it anew in (5.1).

(5.1) Lemma (cf. [10, Proposition 2.16]). Let (R*,M*)be the comple-

tion of a local ring R, and let z be a minimal prime ideal in R* such that depth z

= « > 1. Then, for each i= 1,...,«- 1, there exist infinitely many prime

ideals q in R such that height q =i and qR* has a minimal prime divisor P such

that zCP, height P = height P/z = i, and depth P = n-i.

Proof. Let b E M, G z n R. Then there exists a prime ideal P in R*

such that (z, b)R* C P and height P/z = 1 (by the principal ideal theorem in

R*/z). Therefore, if S = {P E Spec R*;zCP and height P/z* = 1 }, then M =

U {P n R; P E S}. Also, M * £ S, since depth z > 1 ; hence S is an infinite

set. Further, only finitely many P E S are such that height P > height z 4- 1 = 1

[2, Theorem 1], so there exist infinitely many PES such that height P =

height P/z = 1 and z n R C P n R = (say) q. Therefore height q > 1, so 1 =
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height P > height qR* = [6, (22.9)] height q > 1; hence height q = 1 and P is

a minimal prime divisor of qR*. Also, depth P = depth P/z = zz — 1 (since

R*/z is catenary).   Then R*/qR* s= (R/q)*, the completion of R/q, and there

exists a depth zz — 1 minimal prime ideal in R*/qR*.

If zz - 1 > 1, then fix one of the P and q =P OR and repeat the above

for R/q.  Then it follows that there exist infinitely many prime ideals p in R

such that q C p, height p/q = 1, and pR* has a minimal prime divisor p* such

that P Cp* and height p*/P = 1 (so height p*/z = 2, since R*/z is catenary).

Then only finitely many of the p* are such that height p* > height P + Í [2,

Theorem 1], so infinitely many of the p* are such that 2 = height p*/z =

height p* = height p; and depth p* = zz — 2. Therefore, the conclusion follows

from a finite number of repetitions.   Q.E.D.

The following theorem is the main result of this section. It gives two ad-

ditional equivalences of (a)-(f) of the introduction in the local domain case, and

it extends the equivalence of (b) and (f ) to local rings with zero divisors.

{52) Theorem.  Let n be a positive integer. Then the following statements

are equivalent for a local ring (R, M):

(5.2.1) There exists a minimal prime ideal z in the completion R*ofR

such that depth z = n.

(5.2.2) There exists a prime ideal PinD = R [X] (m,x) mcn tnat height P

= n and depth P= 1.

(5.23) There exists a prime ideal q in the Henselization RH ofR such

that height q = n — 1 and depth q = 1.

(5.2.4) 77iez-e exists a prime ideal p in R such that height p = n — 1 and

such that the integral closure of R/p has a height one maximal ideal.

Proof. (5.2.1) =*• (5.2.2). Assume that (5.2.1) holds, let z be a depth n

minimal prime ideal in R*, and let w = z n R, so z is a minimal prime divisor of

wR*. Then R/w is a local domain, R*/wR* =• (R/w)*, the completion of R/w,

and D/wD = (R/w)[X] ,Miw Xy so, by (b) ■*=> (f), there exists a mcpil n + 1

in D with wD as the smallest term. Then, by [4, Lemma 1], there exists a

mcpil zz 4- 1 in D, say wD = p0 C • • • C pn+, = (Af, X)D such that height

p¡ = z* {i < n + 1). Therefore height pn= n and depth pn = 1; hence (5.2.2)

holds.

(5.2.2) => (5.2.1) Assume that (5.2.2) holds, let p be a height zz prime

ideal in D such that depth p = 1, and let w he a minimal prime ideal in R such

that w Cp and height p/w — n. Then, clearly, there exists a mcpil zz + 1 in

D/wD, so there exists a depth zz minimal prime ideal in the completion {R/w)*

= R*/wR* of R/w, by (b) <=> (f), and so there exists a depth zz minimal prime

ideal in R*, as desired.
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(5.2.1) => (5.2.4) Let z be a depth « minimal prime ideal in R*, and let w

= z n R, so the completion (R/w)* of R/w is isomorphic to R*/wR*. Now, if

« = 1, then there exists a height one maximal ideal in the integral closure of R/w

[10, Proposition 3.5] and height w = 0. Therefore" it may be assumed that « >

1. Then, by (5.1), there exists a prime ideal p in R such that height p = n — 1

and pR* has a minimal prime divisor p* such that z C p* and height p* =

height p*/z = n — 1. Then depth p* = depth p*¡z = 1 (since depth z = n and

R*/z is catenary); hence the completeion (R/p)* = R*lpR* of Ä/p has a depth

one minimal prime ideal. Therefore, there exists a height one maximal ideal in

the integral closure of R/p [10, Proposition 3.5], and so (5.2.4) holds.

(5.2.4) => (5.2.1) Assume that (5.2.4) holds. Then there exists a depth one

minimal prime ideal in R*/pR* [10, Proposition 3.5] ; hence pR* has a depth one

minimal prime divisor p*, and necessarily height p* = height p = n — 1. There-

fore, if z is a minimal prime ideal in R* such that z Cp* and height p*/z = n

- 1, then depth z = n (since R*/z is catenary). Therefore (5.2.1) holds.

(5.2.1) *=> (5.2.3) RH is a local ring and R* is the completion of RH

[6, (43.10)], so, by (5.2.1) <=> (5.2.4), there exists a depth « minimal prime

ideal in R* if and only if there exists a prime ideal q in RH such that height q =

n — 1 and the integral closure / of RH/q has a height one maximal ideal. Now

RH/q is a Henselian local domain, so there exists a height one maximal ideal in

/ if and only if depth q = altitude RH/q = 1.   QMD.

(5.3) Definition.  A ring A is said to be an Hiring (or, A is said to be

H¡) in case, for each height i prime ideal p in A, depth p = altitude A - i  (That

is, height p + depth p = altitude .4.)

Numerous properties of Ht -local domains are given in [7] and [8], and

some additional properties of such rings are given in [14] and [18]. There are

a number of reasons why such rings are of importance. Here, we mention only

two reasons:  such rings led to the //-conjecture (that is, an Hx -local domain is

catenary) which, like the upper conjecture, is implied by the depth conjecture

and implies the catenary chain conjecture (see [13, §3] and [16]); and, if

every Henselian local domain is an //,-ring, then the chain conjecture holds

[14,(2.4)].
The following corollary relates (52) to certain local rings being //„-rings.

(5.4) Corollary.  With the notation of (5.2) and with a = altitude R,

the following statements hold:

(5.4.1) IfR is Hn  (n < a), then either R is Hn_x or there exists a depth

n minimal prime ideal in R*.

(5.4.2) IfD is Hn+ x  (n < a), then either D is Hn or there exists a depth

n minimal prime ideal in R*.
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(5.4.3) If RH is Hn (n<a - 1), then there does not exist a depth n + 1

ninimal prime ideal in R*. Moreover, either RH is Hn_x or there exists a depth

n minimal prime ideal in R*.

(5.4.4) IfD is Hn  (n < a), then there does not exist a depth n minimal

prime ideal in R*.

(5.4.5) IfR is Henselian and D is Hn  (n < a - 1), then there does not

exist a minimal prime ideal z in R* such that depth z G {zz, zz + 1}.

Proof.  (5.4.1) Assume that R is not Hn_x. Then there exists a prime

ideal p in R such that height p = zz - 1 and depth p < a - n + 1. Suppose

depth p > 1. Then p is contained in infinitely many prime ideals; hence there

exists a prime ideal P in R such that p C P and height P = n   [2, Theorem 1].

Hence, since RisHn, depth P = a - zz, and so depth p > a - zz + 1 ; contradic-

tion. Therefore depth p = 1 ; hence there exists a depth n minimal prime ideal in

R* (by (5.2.1) «-* (5.2.4)).

(5.4.2) The proof is similar to that of (5.4.1), using (5.2.1) *=» (5.2.2).

(5.43) The first statement is clear by (5.2.1) <=> (5.2.3). The second

statement follows from (5.4.1) applied to RH.

(5.4.4) is clear by (5.2.1) *=* (5.2.2).

(5.4.5) By (5.5.1) below, if D is Hn, then R is Hn and Hn_x, so the con-

clusion follows from (5.4.3).   Q.ED.

(5.5) Remark.  (5.5.1) It is known [18, (3.7)] that D is Hn+X if and

only if R is a C„-ring (that is,R isHn, Hn+X, and, for each height zz prime ideal

p in R, all maximal ideals in the integral closure of R/p have the same height

(= altitude R/p = depth p)). Therefore, another way of stating (5.4.2) is:  If R

is a Cn-ring, then either R is a C„_,-ring (that is (since R is Hn) R is Hn_x and,

for each height zz — 1 prime ideal q in R, all maximal ideals in the integral closure

of R/q have the same height), or there exists a height zz — 1 prime ideal q in R

such that there exists a height one maximal ideal in the integral closure of R/q

(by (5.4.2) and (5.2.1) ««* (5.2.4)).

(5.5.2) If R is a Henselian local domain, altitude R = 3, and RisHx, then

R is quasi-unmixed. (This follows easily from (5.4.3) and (5.2.1) ■*=*■ (5.2.3).)

(In this regard, see (4.4).)

The following corollary considers the case when there are no minimal prime

ideals z in the completion of R with depth z G {zz, zz + 1,. . . , a - 1}.

(5.6) Corollary. With the notation of (5.2), the following statements

are equivalent for n < a = altitude R:

(5.6.1) Ifz is a minimal prime ideal in R*. then either depth z = a or

depth z < zz.
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(5.6.2) DisHn,Hn+x,...,Ha+x.

(5.6.3) RHisHn_x,Hn,...,Ha.

(5.6.4) R is Hn_x, Hn,... , Ha and, for each prime ideal p in R such that

height p>n — l,all maximal ideals in the integral closure of R/p have the same

height.

(5.6.5) For each prime ideal PinD such that height P>n, depth P =

(a + 1) — height P and D/P is quasi-unmixed.

(5.6.6) For each prime ideal q in RH such that height q > n — 1, depth q

= a - height q and RH/q is quasi-unmixed.

(5.6.7) For each prime ideal p in R such that height p > « — 1, depth p

= a - height p and R/p is quasi-unmixed.

Proof.  (5.6.1) •» (5.6.2), by (5.4.2), since altitude D = a +1 implies D

isHa>Ha+U

(5.6.2) and (5.6.4) are equivalent, as noted in (5.5.1).

(5.6.4) => (5.6.7) Assume that (5.6.4) holds and let p be a prime ideal in R

such that height p > « — 1. Then depth p = a — height p = (say) d and R/p is

Hx,...,Hd [18, (2.4)] ; hence R/p is catenary [13, Theorem 2.2]. Therefore,

since, for each prime ideal q in R/p such that depth q > 1, there are no height

one maximal ideals in the integral closure of (R/p)/q, R/p is quasi-unmixed (by

[11, Theorem 2.19] and [10, Theorem 3.1]). Therefore (5.6.7) holds.

(5.6.7) => (5.6.5) Assume that (5.6.7) holds, and let P he a prime ideal in D

such that height P > n. Then depth P = (a + 1) - height P, by (5.5.1). Also,

height P C\R>n — 1, so R/(P n R) is quasi-unmixed; hence D/P is quasi-unmixed

[10, Corollary 3.7], and so (5.6.5) holds.

(5.6.5) => (5.6.1) Assume that (5.6.5) holds and let z* be a minimal prime

ideal in the completion of D. Assume that depth z* <a + 1, and suppose that

d = depth z* > n.  Then, as in the proof of (5.2.1) «* (5.2.4), there exists a

height d — 1 prime ideal P in D such that there is a height one maximal ideal in

the integral closure of D/P. Now a > d — 1 > n, so either D/P is not quasi-un-

mixed or depth P = 1; and this contradicts (5.6.5). Therefore depth z* < «.

Now let D' = R*[X] ,M * Xy so D is a dense subspace of/)' [11, Lemma 3.2].

Therefore, since the minimal prime ideals in D' are the ideals zD' with z a mini-

mal prime ideal in R*, since depth zD'= depth z 4- 1, and since D'/zD' is un-

mixed (see the comment preceding (3.1)), it follows that if depth z < a, then

depth z < n — 1. Therefore (5.6.1) holds.

(5.6.1) => (5.63), by (5.4.1) applied to R = RH, since RH isHa and Ha_x.

(5.6.3) implies (5.6.6), as in the proof that (5.6.4) => (5.6.7).

Finally, if (5.6.6) holds and z is a minimal prime ideal in R* = (RH)*

such that depth z = d>n, then, by (5.1), there exists a height d — 1 prime ideal
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p in R" such that depth p = 1 (since R/p is Henselian), so d = a (5.6.6),

hence (5.6.1) holds.   Q.E.D.

It follows from (5.6) that if zz - 1 is the largest integer i<a such that there

exists a depth z* minimal prime ideal in R*, then, for each prime ideal p in R

such that height p > n — 1, depth p = a — height p and R/p is quasi-unmixed.

In particular, we have the following remark.

(5.7) Remark.  The following statements are equivalent:  (a) There does

not exist a depth a - 1 minimal prime ideal in R*. (b) D is Ha_x. (c) RH is

Ha_2. (d) For each height a — 2 prime ideal p in R, R/p is quasi-unmixed and

altitude R/p = 2.

Proof.  Clear by (5.6.1) *=► (5.6.2) <=*>,(5.6.3) <=> (5.6.7).   Q.E.D.

We next note that two known results follow readily from (5.6).

(5.8) Remark.   Let (R, M) be a local ring, and let a = altitude R. Then

the following statements hold:

(5.8.1) (Cf. [11, Remark 2.23(i)] and [13, Theorem 2.2].) If R is

Henselian and R is H0, //*,,..., Ha, then R is quasi-unmixed (and conversely).

(5.8.2) (Cf. [11, Theorem 2.21] and [13, Theorem 2.2].) If R[X](MX)

is H0, Hx, . . . , Ha+,, then R is quasi-unmixed (and conversely).

Proof.  (5.8.1) follows from (5.6.1) <=> (5.6.3), and (5.8.2) follows from

(5.6.1) <=* (5.6.2).   Q.E.D.
We close this section with two propositions which characterize all local do-

mains R such that card c(R) < 2. For this, we may clearly assume that

altitude R > 1.  (In this regard, note that Nagata's examples [6, Example 2,

pp. 203-205] have this property.)

(5.9) Proposition. Let (R, M ) be a local domain, and let a = altitude R

> 1. Then c(R) C{a, n} (1 <n<a)if and only if, for each prime idealp in R,

if there exists a height one maximal ideal in the integral closure of R/p, then

heightp E{a — l,n — 1}.

Proof. c(R) ç {a, zz} if and only if (by (a) =*• (b)) depth z E {a, zz}, for

all minimal prime ideals z in the completion of R, if and only if (by (5.2.1) *=*

(5.2.4)), for all prime ideals p in R, if there exists a height one maximal ideal in

the integral closure of R/p, then height p G {a — 1, zz — 1}.   Q.E.D.

To prove the last result of this section, we use the following fact about a

catenary local domain R:  The integral closure of R satisfies the c.c. if and only

if, for each height one prime ideal p in R, R/p satisfies the s.c.c. [14, (4.3)].

(5.10) Proposition. Let (R, M) and a be as in (5.9). 77zezz the follow-

ing statements hold:

(5.10.1) c(R) = {a} if and only ifR satisfies the s.c.c.
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(5.10.2) c(R) = {a, 1} if and only if R is catenary, R does not satisfy the

S.C.C., and the integral closure R' ofR satisfies the c.c. (2.1.4).

(5.10.3) c(R) = {a, n} (1 < « <a) if and only if, for all height h prime

ideals p in R(0<h <a), c(R/p) C {a - h, « - «} and there exists a prime

ideal q in R such that height q = « — 1 and 1 E c(R/q).

Proof.  (5.10.1) is clear from the definitions.

(5.10.2) Assume first that c(R) = {a, 1}. Then, by (5.6.1) *=> (5.6.7),

for each prime ideal p =£ (0) in R, R/p is quasi-unmixed (hence R/p satisfies the

s.cc. [10, Theorem 3.1]), and R is H¡ (1 < i <a); hence R is catenary [13, The-

orem 2.2]. Therefore R' satisfies the c.c. [14, (4.3)]. Further, by hypothesis,

R is not quasi-unmixed, so R does not satisfy the s.c.c.

Conversely, for each height one prime ideal p in R, R/p satisfies the s.c.c.

[14, (4.3)] (hence R/p is quasi-unmixed). Therefore, since S/P is quasi-unmixed

if S is [6, (34.5)] (where S is a local domain), it follows that, for all nonzero

prime ideals p in R, R/p is quasi-unmixed and depth p = a — height p (since R

is catenary). Therefore, if z is a minimal prime ideal in the completion of R, then

depth z G {a, 1}, by (5.6.1) •*=> (5.6.7). Moreover, there exists some z such that

depth z =£ a, since R is not quasi-unmixed [10, Theorem 3.1]. Hence c(R) =

{a, l},by(a)~(b).
(5.10.3) If c(R) = {a, «}, then for all height h prime ideals p in R (0 <

h < a), c(R/p) C{a-h,n-h} [17, (2.25.1)]. Also, by (a) «=> (b), there

exists a depth « minimal prime ideal z in the completion R* of R, so, by (5.1),

there exists a height « — 1 prime ideal q in R such that there exists a depth one

minimal prime ideal in the completion (R/q)* = R*/qR* of R/q.  Therefore 1 G

c(R/q),by(a)<=*(b).

Conversely, if p is a height h prime ideal in R (0 < h < a), and if there

exists a height one maximal ideal in the integral closure of R/p, then 1 G c(R/p)

Ç {a -h,n-h), so « G {a - 1, « - 1). Therefore, by (5.9), c(R) Q {a, «}.

Finally, since there exists a height n - 1 prime ideal q in R such that 1 G c(R/q),

« = 1 + height q E c(R) [17, (2.25.1)] ; and clearly a E c(R).   Q.EJD.

It should be noted in (5.103) that if « > n, then c(R/p) = {a - «}; hence

R/p satisfies the s.cc, for all prime ideals p in R such that height p > n.  Also,

by letting « = 1 in (5.103) we get (5.10.2).

6. Some specific overlings. In this section we construct some finitely-gener-

ated overrings of a local domain R (rings which contain R and are contained in

the quotient field of R) which have maximal chains of prime ideals with certain

properties. These results could, for the most part, have been given in §2, but it

was felt that the readability of this paper would be improved by delaying the

material to the final section of this paper.
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By [3, Theorem 1.10], if (R, M) is a local domain and zz G c(R), then

there exists a principal integral extension domain R[c] of R which has a mcpil zz.

The following proposition shows that there exists a locality A of the form A =

R[d] íM d\ contained in the quotient field of R which has a mcpil zz.

(6.1) Proposition. Let F be the quotient field of a local domain (R, M).

Then n E c(R) if and only if there exists a locality A = R[d] ,M ds Q F (A de-

pends on n) which has a mcpil zz.

Proof.  Let n E c(R). Then, by (5.2.1) <=> (5.2.4), there exists a prime

ideal p in R such that height p = zz - 1 and such that there exists a height one

maximal ideal N in the integral closure S of R/p.  Therefore, if depth p = 1,

then let d = 0 and A = R.  If depth p > 1, then let x G N such that x is not in

any other maximal ideal in 5.  Let x = c'/b', with c and b' in R/p, and let A' =

(R/p) [x]'M/p,x)>s0 altitude A' — 1 (since SN is the integral closure of A').

Let b and c be preimages in R of b' and c. Then (R/p) [x] = R [c/b] lp*, where

p* = pR [l/ô] n R[c/b] ; hence A' a A/p*A, where A = R[c/b]/Mc/0), and so

depth p*A = 1. Also, height p*A = height p* = height p = zz — 1, so there

exists a mcpil zz in A.

The converse was given by (2.9).   Q.E.D.

(6.2) Corollary (Cf. [13, Theorem 33]). Let (R, M) and F be as in

(6.1). Then R satisfies the s.c.c. if and only if, for all localities A = R [d] Qj.d)

C F, altitude A = altitude R and A is catenary.

Proof.  Clear, by (2.4.2) and (6.1).   Q.E.D.

In (2.8.2) it was shown, in particular, that if A is a finitely-generated alge-

braic extension domain of a local domain R, and if N is a maximal ideal in A,

then height N E c(R). The converse of this will now be given.

(6.3) Proposition. Let (R, M) and F be as in (6.1), and let n E c(R).

Then there exists a finitely-generated ring A over R such that AC F and A has

a maximal ideal N such that N (~\R=M and height N = n.

Proof. By (3.7), let B he an Af-primary ideal such that there exists a

maximal relevant ideal ß in R = R(R, B) such that height Q = n.  Then, since ß

is relevant, tb Ê. Q, for some b E B.  Let C = R [1/tb] and A = R [B/b]. Then

C = A [tb, 1/tb]. Also, by [11, Remark 3.11], N = QC n A is a prime ideal

such that NC C\R = Q; hence (since tb is transcendental over A) height N = height ß

= zz.   Further, by [11, Remark 3.11], depth N = depth ß - 1. Hence, by

(3.5.3), N is a maximal ideal in A. Finally, N(~)R = QnR=M, since (M, u)R

CQ (3.5.3).   Q.E.D.

(6.4) Remark.   Let (R, M) and B he as in (3.7). If R/M is an infinite
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field, then it can be shown that given maximal relevant ideals Qx, . . . , Qk in R

= R(R, B) such that {height Q¡; i = 1,. .. ,k} = c(R) (see (3.7)) there exists

b E B such that tb G U Q¡;hence A = R[B/b] has, by (6.3) and its proof,

maximal ideals P¡ = Q¡C n A such that PfnR=M and {height P{; i = 1,.. .,

k} = c(R).

The next result shows that if m > 1 is the smallest element in c(R), then

there exists a quadratic transformation L of R such that « G c(R) if and only if

m - m + 1 G c(¿). To prove this result, we need the following lemma which

should be of use in other problems involving the completion of a local ring.

(6.5) Lemma. Let (R*,M*) be the completion of a local ring (R, M),

and let zx,. .., z  be minimal prime ideals in R*. Assume that n «■

min {depth z¡;j = 1,. .. ,g} > 1. Then there exist bx, ... ,bn in M such that,

with Bji = (Zj, bx,.. ., b¡)R* (j = 1, .. .,g and i = 0, 1,. .., « (for i = 0,

Bj0 = Zj)) the following statements hold:

(6.5.1) If p is a minimal prime divisor ofBj. and i < n, then height p =

height p/z. = i

(6.5.2) If p is a minimal prime divisor ofB. n and depth z, > «, then

height p = height p/z¿ = n. If depth z¡ = n, then Bjn is M ̂ -primary.

Proof. Assume first that « > 1 and that bx, ... , bk (0 < k < « - 1)

are elements in M such that each minimal prime divisor p of each B. f (/ = 1,

. . . , g and i = 0,1, ... ,k) is such that height p = height p/z. = L   Let S' =

{«?; q is a minimal prime divisor of B-k, for some j = 1,. . . ,g} and let S" =

{p* E Spec R*; there exists qES' such that q C p*, height p*/q = 1, and

height p* > height q + l=k+l}. Let S = S' U S", so S is a finite set, by

[2, Theorem 1]. Also, Ai* G S, since k < n - 1 and each R*/z, is catenary.

Therefore, let bk+ x EM, £ \J {P n R; P G S}, and let Q he a minimal prime

divisor of Bjk+X (for some j = 1,.. . ,g). Then Q properly contains a minimal

prime divisor q of B-k (since S' C S), so height Q > k + 1. Also, height Q/q =

1, by the principal ideal theorem, so height Q/z- = k + 1 (since R*/z, is catenary

and height q/z- = k). Further, height Q>k+ 1, since S" C S.  Therefore height

Ô = height Q/z. = * + l. Hence it follows that bx,. . . , bn_x exist, if n > 1.

To pick bn (if « > 1) or to pick bx  (if « = 1) such that (6.5.2) holds,

let S' he as above for k = n — 1. Let d be such that depth z, = n if and only if

j>d (Kd<g). lîd=l,thenany b„£M,<È \J {PnR;PES'} wûl do,

so assume that d> 1. Let 5" = {p* G Spec R*; there exists a minimal prime

divisor q ofBjn_x (j < d) such that q C p*, height p*/q = 1, and height p*

> «}. Let S = S' U S", so S is a finite set and M* <$ S. Let bn EM, $

\J{Pf\R;PES}. Then it is seen as above that, for each minimal prime divisor Q of

BJn (j <d), height Q = height Q/zf = n; and Bjn is M"-primary, for/ =
d,... ,g.    Q.E.D.
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(6.6 ) Remark. With the notation of (6.5), if z,,..., z  are all the

minimal prime ideals in R*, then height(i>,,..., b¡)R = height (ft,,..., b¡)R*

= i, for i = 1,.. . ,zz.

Proof.  Let Bt = (b,, ... , b¡)R and suppose that height B¡ < i, for

some i. Then height B¡R* = height B¡ < i, so there exists a minimal prime di-

visor p* of B¡R* such that height p* < i   Then z, Cp*, for some/ = 1.g,

so height^., B¡)R* < i; contradiction (6.5).   Therefore height Bt = height B¡R*

= i (i = 1, . . ., zz).   Q.E.D.

The following result shows that the converse of (2.10) is sometimes true.

It also shows that the condition that R be a subspace of L in (3.1) is stronger

than is needed for its conclusion.

(6.7) Proposition. Let (R, M)bea local domain, and assume that

xnin{depth z;z is a minimal prime ideal in the completion R* ofR} = zzz > 1.

77zezz, for each k = 2,..., zzz, there exist analytically independent elements

bx,... ,bkin R such that, with A = R[b2/bx, .. ., bk/bx], n G c(R) if and

only ifn-k + lE c(AMA).

Proof.  Let z,,... , zg be the minimal prime ideals in R*, and let bx,

.. ., bk (2 < k < m) be as in (6.5). Let B = (bx,..., bk)R. Then height B =

k (6.6), so the b¡ axe a subset of a system of parameters in R; hence they are

analytically independent in R. Therefore, with A as above,MA is a prime ideal

such that height MA = height Af - (k — 1) and depth AÍ4 = k — 1 [11, Lemma

4.3]. Let D = R*[b2/bx,.... bk/bx], fix/ and let z = z¡, and let w =

zR*[l/bx] n D. Then, since bx + z,.. . ,bk+ z axe a subset of a system of

parameters in R*/z (6.5), wCM*D [11, Remark 4.4(i)] and height M*D/w =

height M */z -(k-1) [11, Lemma 43]. Therefore depth wDM.D =

depth z - k + 1. Also, AMA is a dense subspace of DM»D [11, Lemma 3.2],

so, as in the proof of (3.1) and since z = z;- was arbitrary, {depth q; q is a mini-

mal prime ideal in the completion of AMA } = {depth z;- - k + 1;/ = 1,..., g}.

Therefore, by (a) «=* (b), zz G c(R) if and only if n-k+ IE c(AMA) (k =

2,...,m).   QED.

(68) Remark.   It is clear from the proof of (6.7) that, if z,,..., zg

are minimal prime ideals in the completion of R (possibly not all of them) and

dt = depth z¡ > 1  (i= 1,.. . ,g), then there exist analytically independent ele-

ments bx,..., bm (m = min d¡) in jR such that, for k - 2,..., m, d¡ - k + 1

G c(Ama) (i=1.S), where A =R[b2/bx.bk/bx].

This paper will be closed with the following remark. The remark stands in

relation to (6.7) much as (6.2) stands in relation to (6.1).

(69) Remark.  Let (R, M) be a local domain, and let a = altitude R.
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Then the following statements hold:

(6.9.1) If R is catenary, then, for all analytically independent elements b,

c in R, R(c/b) = R[c/b]MRic,b] is catenary and altitude R(c/b) = a - 1 (and

conversely) [12, Theorem 4.12].

(6.9.2) If, for all analytically independent elements b, c in R, R(c/b) satis-

fies the s.c.c. and altitude R(c/b) = a — 1, then either R satisfies the s.cc or R

is catenary and the integral closure /?' of R satisfies the c.c

Proof.  (6.9.2) Let z be a minimal prime ideal in the completion R* of

R.  If « = depth z > 1, then there exist analytically independent elements b, c

in R such that n - 1 G c(R(c/b)) (6.8). Therefore, by hypothesis, n — 1 =

altitude R(c/b) = a — 1; hence n = a. Thus, for all minimal prime ideals z in

R*, depth z G {1, a}, so the conclusion follows from (5.10.2).   Q.E.D.

BIBLIOGRAPHY

1. S. Abhyankar, Resolution of singularities of embedded algebraic surfaces, Pure and

Appl. Math., vol. 24, Academic Press, New York and London, 1966.    MR 36 #164; erratum,

36, p. 1568.

2. S. McAdam, Saturated chains in Noetherian rings, Indiana Univ. Math. J. 23

(1973/74), 719-728.    MR 48 #11094.
3. S. McAdam and E. G. Houston, Chains of primes in Noetherian rings, Indiana Univ.

Math. J. 24 (1975), 741-753.

4. S. McAdam and L. J. Ratliff, Jr., Semi-local taut rings (forthcoming).

5. M. Nagata, On the chain problem of prime ideals, Nagoya Math. J. 10 (1956), 51—

64.    MR 18, 8.

6.  -, Local rings, Interscience Tracts in Pure and Appl. Math., no. 13, Inter-

science, New York, 1962.    MR 27 #5790.

7. M. E. Pettit, Jr., Properties of Herings, Ph. D. Thesis, University of California, River-

side, 1973.

8. M. E. Pettit, Jr., Properties of Herings (forthcoming).

9. L. J. Ratliff, Jr., On quasi-unmixed semi-local rings and the altitude formula, Amer.

J. Math. 87 (1965), 278-284.    MR 31 #3448.

10. -, On quasi-unmixed local domains, the altitude formula, and the chain con-

dition for prime ideals. I, Amer. J. Math. 91 (1969), 508-528.    MR 40 #136.

11. -, On quasi-unmixed local domains, the altitude formula, and the chain con-

dition for prime ideals. II, Amer. J. Math. 92 (1970), 99-144.    MR 42 #249.

12. -, Characterizations of catenary rings, Amer. J. Math. 93 (1971), 1070—

1108.    MR 45 #6804.

13. -, Catenary rings and the altitude formula, Amer. J. Math. 94 (1972),

458-466.    MR 47 #221.

14. -, Chain conjectures and H-domains, Conf. on Commutative Algebra (Univ.

Kansas, Lawrence, Kan., 1972), Lecture Notes in Math., vol. 311, Springer-Verlag, Berlin,

1973.    MR 49 #2714.

15. -, Four notes on saturated chains of prime ideals, J. Algebra 39 (1976),

75-92.

16. -, Equivalences of the chain conjectures (forthcoming).

17. L. J. Ratliff, Jr. and S. McAdam, Maximal chains of prime ideals in integral ex-

tension domains. I, Trans. Amer. Math. Soc. 224 (1976), 103-116.

18. L. J. Ratliff, Jr. and M. E. Pettit, Jr., Characterizations of H ¡-local rings and of

Cflocal rings (forthcoming).



MAXIMAL CHAINS OF PRIME IDEALS. II 141

19. D. Rees, A note on form rings and ideals, Mathematika 4 (1957), 51—60.

MR 19, 835.

20. -, A-transforms of local rings and a theorem on multiplicities of ideals,

Proc. Cambridge Philos. Soc. 57 (1961), 8-17.    MR 22 #9521.

21. O. Zariski and P. Samuel, Commutative algebra. Vol. II, University Ser. in Higher

Math., Van Nostrand, Princeton, N. J., 1960.    MR 22 #11006.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, RIVERSIDE,

CALIFORNIA  92502


