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MAXIMAL CHAINS OF PRIME IDEALS
IN INTEGRAL EXTENSION DOMAINS. II
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L. J. RATLIFF, JR.(})

ABSTRACT. Four related subjects are investigated: (1) If (L, N)isa
locality over a local domain (R, M) such that N N R = M, and if there exists
an integral extension domain of L which has a maximal chain of prime ideals
of length n (for short, a mcpil n), then there exists an integral extension do-
main of R which has a mcpil n — trd L/R + trd(L/N )/(R/M). A refinement
of the altitude inequality follows from this. (2) A condition for the converse

of (1) to hold is given. (3) The class of local domains R such that there exists
an integral extension domain of R which has a mcpil n if and only if there exists
a mcpil n in R is studied. (4) Two new equivalences for the existence of mcpil
n in an integral extension domain of a local domain are given.

1. Introduction. Throughout this introduction let (R, M) be a local domain
and let ¢(R) = {n; there exists an integral extension domain of R which has a
maximal chain of prime ideals of length n}.

This paper is concerned with the relationship between ¢(R) and c(L), where
(L, N) is a locality over R such that N N R = M (that is, L is a local quotient
ring of a finitely generated integral domain over R). The exact relationship is
found, and it turns out to be very closely related to the altitude formula and the
altitude inequality (see (2.1) for the definitions). (In deriving the relationship
(and in all the results in this paper) we heavily rely on the main theorem in [17];
in fact, such heavy use of this result is made that it is summarized in (a)—(f) at
the end of this introduction.) We look at some consequences of the relationship,
and consider some related subjects. We now give some specific information on the
contents of this paper.

In §2 it is proved that if (L, N) is a locality over R such that NN R = M,
and if n €c(L), then n — trd L/R + trd(L/N)/(R/M) €E c(R) (25). An immed-
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jate corollary of this is the following refinement to the altitude inequality: With
(R, M) and (L, N) as above, there exists m € c¢(R) such that altitude L +
trd(L/N)/(R/M) = m + trd L/R < altitude R + trd L/R (2.6.2). Then some
further corollaries of (2.5) are given in (2.7)—(2.11).

In §3 a condition for the converse of (2.5) to hold is given in (3.1), and
then some corollaries of (3.1) are given. For example, if R = R(R, I) is the
Rees ring (3.4) of R with respect to an ideal J in R and M is the maximal homo-
geneous ideal in R, then n € ¢(R) if and only if n + 1 € ¢(R w) (3.6). (3.7)
shows that for certain M-primary ideals B in R, n + 1 € ¢(R y) if and only if
there exists a prime ideal p in R, such that height p = 1 and depth p =n. Thisis
a very important property, as is noted in the last paragraph of §4.

In §4 we consider the class C of local domains R such that n € ¢(R) if and
only if there exists a maximal chain of prime ideals of length n in R. In (4.1) we
show that the following rings are in C: R[X] M,X) for all local domains R;
all Henselian local domains; and, all local domains wihch satisfy the s.c.c. (2.1.3).
Certain other properties of C are given in (4.1). (4.2) gives some properties of
the rings which are in C. Some questions about C are asked in (4.5)—(4.7), and
one of these is partially answered in (4.8.2) by showing, in particular, that if R
€ C is integrally closed and N is a maximal ideal in a finite integral extension do-
main S of R, then Sy, € C and ¢(R) = c(Sy). Also, some equivalences of
the upper conjecture are given which relate it to the class C (4.10.3).

In (5.2) we give two more equivalences of the six equivalent conditions
given in [17, (2.14)] (see (a)—(f) below) for a local domain, and show that these
new conditions are equivalent, in the local ring case, to two of the conditions in
[17]. One of these new equivalent conditions is that, for the domain case, n €
¢(R) if and only if there exists a height n — 1 depth one prime ideal in the Hen-
selization of R. Some consequences of (5.2) relating to H,-rings (5.3) are given
in (5.4) and (5.6), and then we close this section with two propositions (5.9) and
(5.10) which characterize all local domains R such that card ¢(R) < 2. (Nagata’s
examples have this property.)

In §6 some results are given showing the existence of certain rings con-
tained in the quotient field F of R which have certain types of maximal chains of
prime ideals. (6.1) shows that if n € ¢(R), then there exists a locality L =
R[d] 3,4y & F such that there exists a maximal chain of prime ideals of length
nin L. Also, there exists a maximal ideal N in a finitely generated ring 4 C F
over R such that N N R = M and height N =n (6.3). Finally, (6.7) shows that
if m > 1 is the smallest element in ¢(R), then there exists a quadratic transforma-
tion L of R such that n €Ec(R) if and only if n — m + 1 Ec(L).

Throughout, we show that certain known results easily follow from the new
material in this paper. Also, a number of questions are asked, and frequent re-
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marks are interspersed which relate the new results to other results in this paper

and in other papers.
Since we will frequently need to refer to the main result in [17], we close

this introduction by stating it. For typographic reasons, we index the separate
parts by a single letter.

Let (R, M) be a local domain, let k be a positive integer, let Q be a prime
ideal in R, = R[X,, ..., X;] such that MR, C Q,and let § = (Ri)g- Then
the following statements are equivalent:

(a) There exists an integral extension domain of R which has a mcpil n
(see (2.2) below).

(b) There exists a minimal prime ideal z in the completion of R such that
depth z =n,

(c) There exists a minimal prime ideal w in the completion of S such that
depth w = n + k — depth Q.

(d) There exists an integral extension domain of S which has a mcpil n +
k — depth Q.

(e) There exists a mcpil n + k — depth Q in S.

(f) There exists a mcpil #n + 1 in R[X1](M,xl)'

2. On the altitude inequality. All rings in this paper are assumed to be
commutative rings with an identity element. The undefined terminology is the
same as that in [6]. We mention, in particular, that 4 C B denotes proper con-
tainment.

The following terminology will be frequently used in what follows.

(2.1) DEFINITIONS. Let A4 be an integral domain, and let 4 = altitude
A < oo,

(2.1.1) A satisfies the first chain condition for prime ideals (f.c.c) in case
every maximal chain of prime ideals in A4 has length = a.

(2.1.2) A is catenary in case, for each pair of prime ideals P C Q in A4,
(4/P)g p satisfies the f.c.c.

(2.1.3) Asatisfies the second chain condition for prime ideals (s.c.c.) in case
every integral extension domain of A satisfies the f.c.c.

(2.14) A satisfies the chain condition for prime ideals (c.c.) in case, for
each pair of prime ideals P C Q in A4, (A/P)Q ,p satisfies the s.c.c.

(2.1.5) A is quasi-unmixed (resp., unmixed) in case A is semilocal and every
minimal (resp., every) prime divisor of zero in the completion of 4 has depth
=a.

(2.1.6) A satisfies the altitude formula in case, for each finitely generated
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integral domain B over 4 and for each prime ideal P in B, altitude B, +

trd (B/P)/(A/(P N A)) = altitude Apn , + trd B/A, where trd C/D denotes the
transcendence degree of the quotient field of the integral domain C over the quotient

field of its subdomain D.

(2.1.7) A satisfies the altitude inequality in case, for each B and P as in
(2.1.6), altitude Bp + trd(B/P)/(A/(P N A)) < altitude Apn , + trd B/A.

It is known [21, Proposition 2, p. 326] that a Noetherian domain satisfies
the altitude inequality. This fact will often be used below.

We also define mcpil and W(k, P) as in [17]. Specifically, we need the
following two definitions.

(2.2) DEFINITION. It will be said that a ring 4 has a mcpil n in case there
exists a maximal chain of prime ideals of length n in A (that is, a chain of prime
ideals py C p; C +*+ Cp,, such that p, is minimal, p, is maximal, and height
pilpi_y=1@G=1,...,n).

(2.3) DEFINITION. Let A4 be an integral domain.

(2.3.1) W(k, P) ={n; there exists a mcpil n in (4;)p}, where k is a nonnega-
tive integer and P is a prime ideal in A, = A[X,, ..., X, ] (4, = A4).

(2.3.2) ¢(A4) ={n; there exists an integral extension domain of 4 which has
a mcpil n}.

(24) REMARKS. (24.1) Clearly, altitude A is the largest integer in c(4).

(2.4.2) It is clear from the definitions that 4 satisfies the s.c.c. (2.1.3) if
and only if c(4) = {altitude 4}.

(2.4.3) Alocal domain R is quasi-unmixed (2.1.5) if and only if c(R) =
{ altitude R}, since, by (a) <= (b), c(R) = {depth z; z is a minimal prime ideal in
the completion of R}.

(244) If (R, M) is a local domain, then W(1, (M, X,)) ={n+ 1;n €
¢(R)}, by (a) <= (f).

The following theorem will allow us to give a refinement to the altitude ine-
quality, as will be shown in (2.6.2) below. To prove (2.5), the following known
result is needed: A transcendental extension domain of a Noetherian domain 4
satisfies the altitude formula relative to 4 [21, Proposition 2, p. 326].

(2.5) THEOREM. Let (R, M) and (L, N) be local domains such that L is a
locality over Rand NN R =M. Ifn €c(L), thenn — trd L/R + trd(L/N)/(R/M)
€c(R).

ProOF. Let L = Ap, where A =R[d,,...,d,],let K be the kernel of
the natural homomorphism fromR,, =R[X,,...,X,,] onto 4, and let P * be the
preimage of Pin R,,,. Let ¢t = trd L/R and ¢’ = trd(4/P)/(R/M) = (since R/M
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is a field) altitude A/P = depth P = depth P*/K = depth P*. Also, by the alti-
tude formula for R,, over R [21, Proposition 2, p. 326], height K +¢ =
height K N R + m; that is, height K = m — ¢

Now, if n € ¢(L), then there exists an integral extension domain, say B, of
R,, which has a saturated chain of prime ideals of length n,say py C++* Cp,
such that p, N R,, =K and p, N R,, =P*. Then, since (R,, ) satisfies the
s.c.c. (since it is a regular local ring (since K N R = (0))), height p, = height K =
m — t. Therefore, since depth p, = depth P* =¢', this chain can be extended
toamepiln+¢ +m—tinB,say (0)C++* Cpy C+++ Cp, C+++ Cq (height
P, =m — t and height q/p, = t'). Let @ =q NR,,. Then this chain extends to a
mepiln +¢t'+m —tin B(Rm-Q)’ and B(Rm-Q) is integral over (R,,),. Hence,
sincé MR,,, C Q (since Q is maximal and Q@ N R = M), it follows from (a) <=
(d) that there exists an integral extension domain of R which has a mcpil n + t
—t,thatisn+¢ -t Ec(R). QED.

The converse of (2.5) is not true, in general. For example, let (R, M) be as
in [6, Example 2, pp. 203—205] in the case r > 0 and m > 0. Then altitude R
=r+m + 1 = (say) a, and the integral closure R’ of R is a finite R-algebra and
has a maximal ideal, say Q, such that height 0 =m + 1<a. LetL = (R')Q.
Then clearly a € c(R), but a €c(L) (since altitude L < a).

However, the converse of (2.5) is true in many important cases, as will be
shown in (3.1) below.

(2.6.2) could be called a refinement to the altitude inequality (2.1.7).

(2.6) CorOLLARY. Let (R, M) and (L, N) be as in (2.5). Then the follow-
ing statements hold:

(2.6.1) There exists an order-preserving injection f: c¢(L) — c(R) given by
f(m)=n —ttd L/R + ttd(L/N)/(R/M), for n € c(L).

(2.6.2) There exists m € c(R) such that altitude L + trd(L/N)/(R/IM) =
m + trd L/R <altitude R + trd L/R.

PrOOF. (2.6.1) The existence of fis clear by (2.5).

(2.6.2) Since altitude L € c¢(L) and altitude R is the largest element in
c¢(R) (24.1), (2.6.2) follows by letting m = f(altitude L). Q.E.D.

The existence of the map fin (2.6.1) can be used to give an easy proof of
some well-known results. For example, see (2.7.2) and (2.7.3).

(2.7) REMARK. Let (R, M), (L, N), and f: ¢(L) — ¢(R) be as in (2.6).
Then the following statements hold:

(2.7.1) If a = altitude R € Im(f) (in particular, if f is a bijection, then

(* altitude L + trd(L/N)/(R/M) = altitude R + trd L/R.
(2.72) If R satisfies the s.c.c., then L satisfies the s.c.c. and (*) holds.
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(2.7.3) If altitude R < 1, then R satisfies the s.c.c.; hence L satisfies the
s.c.C.

Proor. (2.7.1) If a € Im(f), then there exists n € ¢(L) such that f(n)
=n — trd L/R + trd(L/N)/(R/M). Hence, since by (2.4.1), altitude L and a
are the largest elements in ¢(L) and c(R), respectively, and since f preserves order,
the conclusion follows.

(2.7.2) If R satisfies the s.c.c., then c(R) is a one-point set (2.4.2); hence
c(L) is a one-point set (since f is injective); hence L satisfies the s.c.c. (2.4.2).
Further, a € Im( f); hence (*) holds, by (2.7.1).

(2.7.3) If altitude R < 1, then ¢(R) is a one-point set, hence R satisfies
the s.c.c. (2.4.2), and so L satisfies the s.cc. (2.7.2). QED.

(2.8) COROLLARY. Let A be a finitely-generated integral domain over a
local domain (R, M). Then the following statements hold:

(2.8.1) For each prime ideal P in A such that P N\ R = M, height P +
trd(4/P)/(R/M)E{m + t: m €Ec(R), t = trd A/R}.

(2.8.2) For each maximal ideal N in A such that NN\ R = M, height N €
{m+t,meEcR),t=1trd A/R}.

ProoF. (2.8.1) is clear by (2.6.2).

(2.8.2) follows from (2.8.1), since the field A/N is a finitely-generated inte-
gral domain over the field R/M;hence trd(4/N)/(R/M)=0. QED.

With (2.8.2) in mind, it will be shown in (6.3) below that, for each m €
¢(R), there exists a locality (L, N) over R such that VAR =M, L C F = the
quotient field of R, and height N = m.

The following two corollaries to (2.5) are concerned with algebraic exten-
sion domains.

(29) CorROLLARY. Let (R, M) be a local domain, and let A be a finitely-
generated algebraic extension domain of R. Then, for each maximal ideal N in A
such that NN R =M, c(Ay) C c(R).

Proor. If N is a maximal ideal in 4 such that N N R = M, then
trd(4/N)/(R/M) = 0. Therefore the conclusion follows from (2.5). Q.ED.

(2.10) CorROLLARY. Let by, by, ...., b, be analytically independent ele-
ments in a local domain (R, M), and let A = R[b /by, ...,b,[by]. Ifn€E
¢(Apr4), then n + m € c(R).

PROOF. MA is a prime ideal in 4 and the residue classes modulo MA of
the b,/b,, are algebraically independent over R/M [11, Lemma 4 3]; hence the
conclusion follows from (2.5). Q.E.D.

The converse of (2.10) is true in some cases, as will be shown in (6.7).

It is known [9, Corollary 2.5] that a local domain (L, N) which is a locality
over a quasi-unmixed local domain (R, M) is quasi-unmixed. (2.11.1) generalizes
this.
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(2.11) REMARK. Let (R, M) and (L, N) be as in (2.5), and let L* and
R* be the completions of L and R, respectively. Then the following statements
hold:

(2.11.1) If w is a minimal prime ideal in L*, then depth w € {depth z +
trd L/R — trd(L/N)/(R/M); z is a minimal prime ideal in R*}.

(2.11.2) (Cf. [9, Corollary 2.5].) If R is quasi-unmixed, then L is quasi-
unmixed.

Proor. (2.11.1) By (a) <= (b), c(L) = {depth w; w is a minimal prime
ideal in L*} and c(R) = { depth z; z is a minimal prime ideal in R*}. Therefore
(2.11.1) follows from (2.5) and (2.4.3).

(2.11.2) follows from (2.11.1) and (2.4.3). QED.

It is known [1, (10.13)] that, with (L, N) and (R, M) as in (2.5),if R is
analytically irreducible, then R is a subspace of L. (2.11.1) suggests that this
might also be true if R is unmixed (2.1.5). The author does not know if this is
true.

3. A condition for f: ¢ (L) — c(R) to be bijective. In this section we
give a condition under which the converse of (2.5) holds; that is, in terms of the
map f of (2.6.1), for f to be a bijection. Then we give some corollaries to the
result.

To prove (3.1), we need the following result: If a local domain L is a
locality over a complete local domain, then L is unmixed (2.1.5). This follows
from [S, Proposition 4], as noted in the paragraph preceding (2.5) in [17].

(3.1) THEOREM. Let (R, M) be a local domain and let (L, N) be a local-
ity over R of the form: L =R[X,,...,X,,d,,...,d, 1p k=>0),4d,,...,
d,, in the quotient field of Ry = R[X,,...,X;],and PO R =M. Assume
that R is a subspace of L. Then n € ¢(L) if and only if n — trd L/R +
trd(L/N)/(R/M) = n — k + depth P € c(R).

PROOF. LetL® = A,,where 4 =R*[X,,...,X;.d,,...,d,],R*
is the completion of R, and Q@ = P4 (so Q is a prime ideal and L is a dense sub-
space of L° [11, Lemma 3.2]). Since R is a subspace of L, R* is a subring of
the completion L* = L°* of L and of L°; hence Q contains all the prime divisors
of zero in 4 and R* is a subring of L® [11, Lemma 4.5(1)].

Now, n € ¢(L) if and only if (by (a) <> (b) applied to L) there exists a
depth n minimal prime ideal in L* = L°* if and only if (by the comment pre-
ceding this theorem) there exists a depth n minimal prime ideal in L°. Also, z’
is a minimal prime ideal in L° if and only if (since R* C L° and Q contains all
the prime divisors of zero in 4) z = (z' N 4) N R* is a minimal prime ideal in
R*and z' = zT(X,, ..., X,) N L°, where T is the total quotient ring of R*.
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Further, L°/Z' is a locality over the complete local domain R*/z, and R*/z satis-
fies the altitude formula. Therefore altitude L°/z' + trd(4/Q)/(R*/M™*) =
altitude R*/z + k; and depth Q = altitude 4/Q = [6, (14.6)] trd (4/Q)/(R*IM™*),
since R*/M* is a field. Therefore depth z' = depth z + k — depth Q. Hence,
there exists a depth # minimal prime ideal in L° if and only if there exists a
depth n — k + depth Q minimal prime ideal in R*; and this is true if and only if
(by (a) <= (b)) n — k + depth Q € ¢c(R). Finally,R, [d,,...,d,]1/P=A/0,
so depth P = depth Q. Q.ED.

The condition that R be a subspace of L is stronger than is needed for the
conclusion of (3.1), as will be seen in (6.7). However, the author knows of no
other condition which always works.

If some d, in (3.1) is not in the quotient field of R[X,, ..., X;], then L
need not be a dense subspace of L°. For example, let R be the regular local ring
given in [6, (E3.2), p. 206], and let d = d, be the element ¢ in [6]. Thend €
R*, d is integral over R, and R[d] is a local domain which is not a dense sub-
space of R*[d] = R*.

It should be noted that, with R and L as in (3.1), if R is a subspace of L,
then the map f of (2.6.1) is a bijection; hence (2.7.1) holds.

(3.2) REMARK. Let (R, M) be a local domain. Then the following state-
ments hold:

(3.2.1) (3.1) gives another proof of (a) <= (d), since R is a subspace of
(Ri)g, by [11, Lemma 4.5(1)].

(3:2.2) (Cf. [17,(2.19)]) c¢(R(X)) = c(R), where R(X) = R[X ]y (x)>
since R is a subspace of R(X), by [11, Lemma 4.5(1)].

While on the subject of R{X), it should be noted that n € c(R(X)) does not
imply that there exists a mcpil 7 in R(X) (in contrast to n € ¢(D) if and only if
there exists a mepil 7 in D, where D = R[X] o, X)). For example, let R be a
catenary (2.1.2) local domain such that altitude R > 1 and such that its integral
closure has a height one maximal ideal (as in [6, Example 2, pp. 203—205]).
Then R(X) is catenary [12, Theorem 4.11], altitude R(X) > 1, and its integral
closure has a height one maximal ideal.

(3.3) REMARK. Let (R, M)and (L, N) be as in (3.1), and assume that R
is a subspace of L. Then the following statements hold:

(3.3.1) R is quasi-unmixed if and only if L is quasi-unmixed.

(3.3.2) R satisfies the s.c.c. if and only if L satisfies the s.c.c.

Proor. (3.3.1) follows from (3.1) and (2.4.3), and (3.3.2) follows from
(3.1) and (24.2). QED.

To prove the next corollary to (3.1), we need some information on Rees
rings.

(34) DEFINITION. LetI=(d,,...,d,)R be an ideal in a local domain
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(R, M). Then the Rees ring R = R(R, I) of R with respect to I is defined to be
the subring R = R[td,, . . ., td,,, u] of R[t, u], where ¢ is an indeterminate and
u=1/t. The ideal M = (td,, ..., td,,, M, u)R is called the maximal homo-
geneous (irrelevant) ideal in R.

We summarize in the following remark the known results on Rees rings
which will be needed in the remainder of this paper.

(3.5) REMARK. Let the notation be as in (3.4).

(3.5.1) R is a graded Noetherian domain, and the elements in R are finite
sums Z" . ¢ ¢/, where ¢ € I’ (with the convention that I/ = R, if j < 0). More-
over,u!/RNR =1 (j=0).

(3.5.2) M is a maximal ideal in R and every homogeneous ideal in R is con-
tained in M [20, Theorem 3.1 (step (ii))].

(3.5.3) If H is a maximal relevant ideal in R, then H is prime and (M, u)R
C HC M, and depth H = 1 [20, Theorem 2.1]. (A homogeneous ideal H in R
is said to be irrelevant in-case H contains all homogeneous elements of sufficiently
large degree; otherwise H is said to be relevant. H is a maximal relevant ideal in
case H is maximal with respect to being relevant.)

(3.5.4) The form ring F(R, I') of R with respect to I is isomorphic to R/uR
[19, Theorem 2.1].

(3.6) CoROLLARY. Let I be an ideal in a local domain R, let R = R(R, I)
be the Rees ring of R with respect to I, and let | = R, where M is the maximal
irrelevant ideal in R. Thenn € c(R) if and only if n + 1 € ¢(L).

PROOF. Let R be the completion of R, let R® = R(R*, IR*), and let M°
be the maximal irrelevant ideal in R°. Then M° contains all prime divisors of
zero in R° (since M° contains all homogeneous ideals in R® and the prime divisors
of zero are homogeneous). Therefore, since R is contained in the quotient field
of R[t], R is a subspace of L [11, Lemma 4.5(1)]. Therefore the conclusion
follows from (3.1). Q.E.D.

We close this section of the paper with one further result on Rees rings and
¢(R). More will be said about (3.7) in the next section of the paper.

(3.7) ProrosITION. Let (R, M) be a local domain. Then there exists an
M-primary ideal B in R such that, with R = R(R, B) and M the maximal irrelevant
homogeneous ideal in R, the following statements are equivalent:

3.7.1) n€c(R).

(B72) n+1€cRy).

(3.7.3) There exists a maximal relevant ideal N in R such that height N = n.

(3.7.4) There exists a minimal prime divisor p of uR such that depth p =
height M/p = n.
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(3.7.5) There exists a minimal prime ideal z in the form ring F =F(R, B)
such that depth z = n.

ProoF. We note, to begin with, that if B = (b,, ..., b,,)R is an M-
primary ideal and p is a minimal prime divisor of uR(R, B), then B=uR N R
C p NR, so depth p = height M/p (since ¥R is homogeneous implies p C M,
and since depth p = altitude R/p and R/p is a homomorphic image of
R/M)[X,,...,X,] = (say) D, and D satisfies the s.c.c.).

Now, by [11, Proposition 3.9], there exists an M-primary ideal B in R such
that the following sets are equal: {depth z; z is a minimal prime ideal in the
completion of R}; {depth p; p is a minimal prime divisor of ¥R(R, B)}; and,

{ height N; N is a maximal relevant ideal in R(R, B)}. Therefore, for this B, since
depth p = height M/p (by the preceding paragraph), (3.7.3) and (3.7.4) are
equivalent, and each is equivalent to (3.7.1), by (a) <= (b). Also, (3.7.1) and
(3.7.2) are equivalent, by (3.6). Finally, (3.7.4) and (3.7.5) are equivalent, since
F=R/uR (354). QED.

4. The class of local domains (R, M) with ¢(R) = W(0, M). Let C be the
class of local domains (R, M) such that {m; there exists an integral extension do-
main of R which has a mcpil m} = {n; there exists a mcpil n in R}; that is, such
that ¢(R) = W(0, M) (see (2.3)). In this section we will give some information
on C.

Our first result on C gives some knowledge of the rings which are in C.

(4.1) ProrosITION. The following statements hold:

(4.1.1) If R satisfies the s.c.c., then R € C.

(4.1.2) For all local domains R, R[X] o € G, for all maximal ideals Q in
R[X] such that Q "R =M.

(4.13) If R is Henselian, then R € C.

(4.1.4) For all local domains R, there exist M-primary ideals B in R such
that Ry € C, where R = R(R, B).

(4.15) If R C S are local domains such that S is integral over R, then R €
Cifand only if S € C.

(4.16) ReCifandonly if RIX) EC.

(4.1.7) If R € Cand p is a prime ideal in R, then it is not necessarily true
that Rjp or R, is in C.

ProOOF. (4.1.1) If R satisfies the s.c.c., then c¢(R) is a one-point set (2.4.2);
hence ¢(R) = W(0, M), and soR €C.

(4.1.2) follows from (d) <= (e), since MR [X] C Q, if Q is maximal and
OQNR=M.

(4.1.3) is given in [15, (3.2)].
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(4.1.4) follows from (3.7.2) <= (3.7.4).

(4.1.5)is given in [15,(3.14)].

(4.1.6) c(R) =c(R(X)) (3.2.2). Also, W(0,M) = W(0, MR(X)) [2, Theorem
6]. Therefore, R € Cif and only if R(X) €C.

(4.1.7) Let (R,M)be alocal domain which is not in C. (For example, let R
be as in [6, Example 2, pp. 203—205] in the casem = 0.) Let D =R[X] M, x)
Then D € C (4.12), but R = D/XD ¢C and R(X') = Dy, €C (by (4.1.6)).
QED.

Our next result gives some properties of each ring in C.

(42) ProPOSITION. The following statements hold for R, M) EC :

(4.2.1) For all prime ideals Q in R[X] such that Q "R = M, R[X]Q eC.

(4.2.2) There exists a depth n minimal prime ideal in the completion of R
if and only if there exists a prime ideal p in R such that height p = n — 1 and
depth p = 1.

(4.23) If R is catenary, then R satisfies the s.c.c.

(4.24) If (L, N)is a locality over R such that NN R =M, and if n €
c(L), thenn — trd L/R + trd(L/N)/(R/M) € W(0, M).

(4.25) If (L, N)is as in (3.1) and R is a subspace of L, then n € c(L) if
and only if n — trd L/R + ttd(L/N)/(R/M) € W(0, M).

Proor. (4.2.1) If MR[X] C Q, then R[X]Q €C,by (4.12). f MR[X]
= Q, then R[X]Q = R(X)€EC, by (4.1.6).

(4.2.2) It is known that if there exists a mcpil n in a local domain R, then
there exists a prime ideal p in R such that height p =n — 1 and depthp =1
[2, Theorem 5]. The conclusion follows from this and (a) <= (b).

(4.2.3) If R is catenary, then ¢(R) = W(0, M) = {altitude R}; hence R
satisfies the s.c.c. (2.4.2).

(4.2.4) is clear by (2.5).

(4.2.5) is clear by (3.1). Q.ED.

An easy proof of the following known result can now be given.

(4.3) COROLLARY (CF. [11, THEOREM 221]). A catenary Henselian local
domain satisfies the s.c.c.

ProoF. This follows from (4.1.3) and (42.3). QE.D.

(44) ReMaRrk. It follows from (4.3) that a local Henselian domain R
of altitude two satisfies the s.c.c. Also, if altitude R = 3 and R is H, (that is,
height one prime ideals have depth two), then R satisfies the s.c.c. (since R is
catenary). In particular, if R is a local Henselian UFD of altitude three, then R
satisfies the s.c.c. (since height one prime ideals are principal implies that R is
H,). The author does not know if all local UFD’s of altitude three satisfy the
s.c.C.
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Another proof that an altitude three Henselian local domain which is H,
satisfies the s.c.c. (equivalently, is quasi-unmixed [10, Theorem 3.1]) is given in
(5.5.2) below.

The author suspects that C contains most local domains. (See (4.10.3) for
one reason.) In any case, there are some interesting problems in this area. We
mention three of these in (4.5)—(4.7). To explain the first problem, let R be a
local domain. Then c(R) is a finite set, so, by the going-up theorem and [17,
(2.2)], there exists a finite integral extension domain S of R such that n € ¢(R)
if and only if there exists a mcpil n in S. Therefore, if S is local, then S € C,
hence R € C (4.1.5). (S € C, since, if A C B are integral domains such that B
is integral over A4, then ¢(B) C c¢(4).) This leads to the following question which
the author has not been able to answer:

(4.5) Question. With the preceding notation, if N is a maximal ideal in S,
isSy €C?

More generally, we ask:

(4.6) Question. If R € C and N is a maximal ideal in a finite integral ex-
tension domain S of R, is S, € C?

(4.7) Question. If R € C,if L is as in (3.1), and if R is a subspace of L, is
LeC?

A partial answer to (4.6) is given in (4.8.2).

(4.8) REMARK. Let (R, M) be a local domain.

(4.8.1) If R has the property that, for each integral extension domain S of
R, each maximal chain of prime ideals in S contracts in R to a maximal chain of
prime ideals, then R € C.

(4.8.2) If R € C and the integral closure R’ of R is quasi-local, then, for
each integral extension domain S of R, and for each maximal ideal N in S, S, €
C and ¢(Sy) = c¢(R).

Proor. (4.8.1) is clear.

(4.8.2) Let S be an integral extension domain of R and let N be a maximal
ideal in S. Let S’ be a Galois (not necessarily separable) extension domain of R
which contains §, and let (0) Cp, C +++ Cp, =M be a mepil # in R, Then
there exists a covering chain of prime ideals (0) CP, C+++ CP, =N'in §'.
Let N” be a maximal ideal in S’ such that N" NS = N. Then, since N’ and N"
are conjugate [6, (10.12)] (since R’ is quasi-local), there exists a mcpil 7 in S,
say (0)CQ, C+++CQ, =N"suchthat O; NR=p, (i=1,...,n). There-
fore, with ;= Q; N §,(0) Cq, C -+ Cq, =N is a mepil n contained in N.
(The chain is maximal, since ¢; "R =p, and (0) Cp, C +++ Cp, =M is maxi-
mal.) Therefore ¢(R) C W(0, NSy) and W(0, NSy) C c(Sy) C c(R), by (2.9).
Hence S); € C and ¢(Sy) = c(R). QE.D.

One further problem in this area (related to (4.8.1)) will now be mentioned.
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(4.9) Question. If R C S are local domains such that S is integral over R,
then does every maximal chain of prime ideals in S contract in R to a maximal
chain of prime ideals?

Using induction on altitude R, it suffices to prove that if P is a height one
prime ideal in S, then height PN R = 1.

(4.10.3) contains some comments relating the upper conjecture to the class
C. For further comments on this conjecture, see [3, Propositions 3.3 and 3.7]
and [17, (2.21) and (2.22)].

(4.10) REMARK. The following statements hold for a local domain (R, M):

(4.10.1) If R€C, n €Ec(R), and n > 1, then there exist infinitely many
prime ideals p in R such that height p = n — 1 and depth p = 1.

(4.10.2) f REC, nE€Ec(R), and n = 1, then altitude R = 1.

(4.10.3) The following statements are equivalent: (i) The upper conjecture
holds. (Thatis,{n + 1;n € W(O,M)} C WA, M, X,)) S{n+ 1;n € WO, M)}
U{2}) (i) WO,M)CcR)CWO,M)VU{1}. (i) If R & C, then W(0, M)
CcR)=W(@O,M) VU {1}. (iv) If R &C, then altitude K > 1 and there exists
height one maximal ideal in the integral closure R’ of R.

PROOF. (4.10.1) It is known that if there exists a prime ideal p in a local
domain, such that height p = h > 0 and depth p =d > 0, then there exist in-
finitely many such prime ideals [12, (2.2.1)]. Therefore the conclusion follows
from (4.2.2) and (a) < (b).

(4.10.2) follows from (4.2.2) and (a) <= (b).

(4.10.3) Assume that (i) holds and let R be a local domain. Then clearly
W0, M) C c(R). Also,if n €Ec(R),thenn + 1€ W(1, (M, X,)) (by (24.4)),
s0, by (i), n € W(0, M) or n = 1; hence ¢(R) C W(0, M) U{1}. Thus (i) =
(i).

Assume that (ii) holds and let (R, M) be a local domain such that R ¢ C.
Then W(0, M) C c(R), so ¢(R) = W(0, M) U {1}, by (ii); hence (ii) = (iii).

Next, assume that (iii) holds and R ¢ C. Then clearly altitude R > 1.
Also, there exists an integral extension domain of R which has a height one maxi-
mal ideal (by (iii)), so [12, Lemma 2.9] says there exists a height one maximal
ideal in R'. Thus (iii) = (iv).

To show that (iv) = (iii), let (R, M) be a local domain & C, so W(0, M) C
¢(R). Then, by (iv), 1 € ¢(R), € W(0, M). Also, by [15, (4.7)], there exists a
local domain (S, NV) such that W(0, M) = W(0, N) and ¢(S) C cR)=c@)V
{1}. Then, by (iv), S € C (since 1 & ¢(S)), s0 c(R) = ¢(S)U {1} = W@O,N)U
{1}=wW@O,M)U{1}.

Finally, assume that (iii) holds and let R be a local domain. It may clearly
be assumed that {n + 1;n € W(0, M)} C W(1, (M, X,)); that is, by (2.4.4), that
W(0,M) Cc(R),so R & C. Therefore, by (iii) and (2.4.4), W(1, M, X)) =
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{n+ 1;;n€ WO, M)} U{2}, hence (iii) = (i). QE.D.

We close this section with a comment showing the importance of knowing
more properties of the rings in C. Namely, let (R, M), B, and R , be as in (3.7).
Then R € C, by (3.7.2) = (3.74). Also, by (3.7.3) <= (3.7.4) (and (3.5.3)),
there exists a height n depth one prime ideal in Ry if and only if there exists a
height one depth n prime ideal in R ;. If every R € C (or, even, if every
R[X] wm,x) € C) had this property, then it can be shown that the H-conjecture
(that is, an H,-local domain (see (5.3)) is catenary) holds. (See [14, (4.5)], where
it is shown that the H-conjecture implies the catenary chain conjecture (that is,
the integral closure of a catenary local domain satisfies the c.c. (2.1.4)).) (In this
regard, there are two conditions, either of which implies that, with (R, M) a local
domain, if n € ¢(R), then there exists a height one depth n — 1 prime ideal in R.
Namely, there exists b € M such that either: (a) every prime divisor p of bR is
such that height p = 1 and R/p is unmixed; or, (b) for all minimal prime ideals z
in the completion R* of R, height (z, b))R* = 1 and, for all minimal prime di-
visors p of bR, R/p is quasi-unmixed. Does every R[X] wm,x)€C satisfy one of
these conditions?)

5. Two more equivalences of (a)—(f). In this section we give, in (5.2), two
new equivalences of the six statements (a)—(f) in the introduction, and we extend
the equivalence of (b) and (f) to the case R contains nonzero divisors of zero.
Then some corollaries of (5.2) are given which relate the results to H;-rings ((5.4)
and (5.6)), and this section is closed by characterizing all local domains R such
that card c(R) <2 ((5.9) and (5.10)).

To prove (5.2), we need a result which was essentially proved in [10, Propo-
sition 2.16]. Unfortunately, the hypothesis in [10, Proposition 2.16] is not
general enough for our present need, so we prove it anew in (5.1).

(5.1) LEMMA (cF. [10, PROPOSITION 2.16]). Let (R*, M™*) be the comple-
tion of a local ring R, and let z be a minimal prime ideal in R* such that depth z
=n>1. Then, foreachi=1,...,n — 1, there exist infinitely many prime
ideals q in R such that height q = i and qR* has a minimal prime divisor P such
that z C P, height P = height P[z = i, and depth P=n — i.

PROOF. Let b €M, & z N R. Then there exists a prime ideal P in R*
such that (z, b))R* C P and height P/z = 1 (by the principal ideal theorem in
R*[z). Therefore, if S = {P € Spec R*; z C P and height P/z- = 1}, then M =
U{PNR;PES}. Also,M* & S, since depth z > 1; hence S is an infinite
set. Further, only finitely many P € S are such that height P > heightz + 1 =1
[2, Theorem 1], so there exist infinitely many P € § such that height P =
height P/z = 1 and z N R C P N R = (say) q. Therefore height g = 1,50 1 =
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height P > height gR* = [6, (22.9)] height g > 1; hence height ¢ = 1 and P is
a minimal prime divisor of gR*. Also, depth P = depth P/z = n — 1 (since
R*/z is catenary). Then R*/gR™ = (R/q)*, the completion of R/q, and there
exists a depth # — 1 minimal prime ideal in R*/qR*.

If n — 1> 1, then fix one of the P and ¢ = P N R and repeat the above
for R/q. Then it follows that there exist infinitely many prime ideals p in R
such that ¢ C p, height p/q = 1, and pR* has a minimal prime divisor p* such
that P C p* and height p*/P = 1 (so height p*/z = 2, since R*/z is catenary).
Then only finitely many of the p* are such that height p* > height P + 1 [2,
Theorem 1], so infinitely many of the p* are such that 2 = height p*/z =
height p* = height p; and depth p* = n — 2. Therefore, the conclusion follows
from a finite number of repetitions. Q.E.D.

The following theorem is the main result of this section. It gives two ad-
ditional equivalences of (a)—(f) of the introduction in the local domain case, and
it extends the equivalence of (b) and (f) to local rings with zero divisors.

(52) THEOREM. Let n be a positive integer. Then the following statements
are equivalent for a local ring (R, M):

(5.2.1) There exists a minimal prime idedl z in the completion R* of R
such that depth z = n.

(5.2.2) There exists a prime ideal Pin D = R[X] (M,x) Such that height P
=nand depth P = 1.

(5.2.3) There exists a prime ideal q in the Henselization R® of R such
that height q =n — 1 and depth q = 1.

(5.2.4) There exists a prime ideal p in R such that height p =n — 1 and
such that the integral closure of R/p has a height one maximal ideal.

ProOF. (5.2.1)=(5.2.2). Assume that (5.2.1) holds, let z be a depth n
minimal prime ideal in R*, and let w = z N R, so z is a minimal prime divisor of
wR*. Then R/w is a local domain, R*/wR* = (R/w)*, the completion of R/w,
and D/wD = (R/W)[X ] 31w, x> 50, by (b) <= (£), there exists a mcpil n + 1
in D with wD as the smallest term. Then, by [4, Lemma 1], there exists a
mepil n + 1in D, say wD =py C =+ Cp, ., = (M, X)D such that height
p; =i (i<n+1). Therefore height p, = n and depth p, = 1; hence (5.2.2)
holds.

(5.2.2) = (5.2.1) Assume that (5.2.2) holds, let p be a height n prime
ideal in D such that depth p = 1, and let w be a minimal prime ideal in R such
that w C p and height p/w = n. Then, clearly, there exists a mcpil # + 1 in
D/wD, so there exists a depth n minimal prime ideal in the completion (R/w)*
= R*/WR* of R/w, by (b) <> (f), and so there exists a depth n minimal prime
ideal in R*, as desired.
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(5.2.1)=(5.2.4) Letz be a depth # minimal prime ideal in R*, and let w
=z N R, so the completion (R/w)* of R/w is isomorphic to R*/wR*. Now, if
n = 1, then there exists a height one maximal ideal in the integral closure of R/w
[10, Proposition 3.5] and height w = 0. Therefore it may be assumed that n >
1. Then, by (5.1), there exists a prime ideal p in R such that height p =n — 1
and pR* has a minimal prime divisor p* such that z C p* and height p* =
height p*/z = n — 1. Then depth p* = depth p*/z = 1 (since depth z = n and
R*/z is catenary); hence the completeion (R/p)* = R*/pR* of R/p has a depth
one minimal prime ideal. Therefore, there exists a height one maximal ideal in
the integral closure of R/p [10, Proposition 3.5], and so (5.2.4) holds.

(5.24)=(5.2.1) Assume that (5.2.4) holds. Then there exists a depth one
minimal prime ideal in R*/pR* [10, Proposition 3.5] ; hence pR* has a depth one
minimal prime divisor p*, and necessarily height p* = height p = n — 1. There-
fore, if z is a minimal prime ideal in R* such that z C p* and height p*/z =n
— 1, then depth z = n (since R*/z is catenary). Therefore (5.2.1) holds.

(5.2.1) == (5.2.3) RH is alocal ring and R* is the completion of R
[6, (43.10)], so, by (5.2.1) <= (5.2.4), there exists a depth n minimal prime
ideal in R* if and only if there exists a prime ideal ¢ in R¥ such that height ¢ =
n — 1 and the integral closure I of R¥/q has a height one maximal ideal. Now
RH /q is a Henselian local domain, so there exists a height one maximal ideal in
I'if and only if depth ¢ = altitude R”/g =1. QED.

(5.3) DEFINITION. A ring A is said to be an H;-ring (or, A is said to be
H)) in case, for each height i prime ideal p in A, depth p = altitude 4 — i (That
is, height p + depth p = altitude 4.)

Numerous properties of H;-local domains are given in [7] and [8], and
some additional properties of such rings are given in [14] and [18]. There are
a number of reasons why such rings are of importance. Here, we mention only
two reasons: such rings led to the H-conjecture (that is, an H,-local domain is
catenary) which, like the upper conjecture, is implied by the depth conjecture
and implies the catenary chain conjecture (see [13, §3] and [16]); and, if
every Henselian local domain is an H, -ring, then the chain conjecture holds
[14, (24)].

The following corollary relates (5.2) to certain local rings being H,,-rings.

(54) COROLLARY. With the notation of (5.2) and with a = dltitude R,

the following statements hold:

(54.1) IfRisH, (n<a), then either R is H,_, or there exists a depth
n minimal prime ideal in R*.

(542) IfDisH,,, (n<a),then either D is H, or there exists a depth
n minimal prime ideal in R*.



MAXIMAL CHAINS OF PRIME IDEALS. I 133

(543) IfRH is H, (n<a — 1), then there does not exist a depth n + 1
ninimal prime ideal in R*. Moreover, either RY is H, _, or there exists a depth
n minimal prime ideal in R*.

(54.4) IfDis H, (n<a), then there does not exist a depth n minimal
prime ideal in R*.

(54.5) If R is Henselian and D is H, (n <a - 1), then there does not
exist @ minimal prime ideal z in R* such that depthz€ {n,n + 1}.

PrROOF. (5.4.1) Assume that R is not H,_,. Then there exists a prime
ideal p in R such that height p = n — 1 and depth p <a — n + 1. Suppose
depth p > 1. Then p is contained in infinitely many prime ideals; hence there
exists a prime ideal P in R such that p C P and height P =n [2, Theorem 1].
Hence, since R is H,, depth P = a — n, and so depth p > a — n + 1; contradic-
tion. Therefore depth p = 1; hence there exists a depth n minimal prime ideal in
R* (by (5.2.1) = (5.2.4)).

(5.4.2) The proof is similar to that of (5.4.1), using (5.2.1) «= (5.2.2).

(5.4.3) The first statement is clear by (5.2.1) <> (5.2.3). The second
statement follows from (5.4.1) applied to R¥.

(5.4.4) is clear by (5.2.1) = (5.2.2).

(5.4.5) By (5.5.1) below, if D is H,,, then R is H, and H,
clusion follows from (5§4.3). Q.ED.

(5.5) REMARK. (5.5.1) It is known [18, (3.7)] that Dis H,,, , if and
only if R is a C,,-ring (that is, R is H,, H, , ,, and, for each height n prime ideal
p in R, all maximal ideals in the integral closure of R/p have the same height
(= altitude R/p = depth p)). Therefore, another way of stating (5.4.2) is: If R
is a C,-ring, then either R is a C,,_ -ring (that is (since R is H,) R is H, _, and,
for each height n — 1 prime ideal g in R, all maximal ideals in the integral closure
of R/q have the same height), or there exists a height n — 1 prime ideal q in R
such that there exists a height one maximal ideal in the integral closure of R/gq
(by (54.2) and (5.2.1) = (5.24)).

(5.5.2) If R is a Henselian local domain, altitude R = 3, and R is H,, then
R is quasi-unmixed. (This follows easily from (5.4.3) and (5.2.1) < (5.2.3).)

(In this regard, see (4.4).)

The following corollary considers the case when there are no minimal prime

ideals z in the completion of R withdepthz€{n,n+1,...,a - 1}.

_1» o the con-

(5.6) COROLLARY. With the notation of (5.2), the following statements
are equivalent for n < a = altitude R:

(5.6.1) If z is a minimal prime ideal in R*, then either depth z = a or
depth z <n.
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(562) DisH, , H,,,,...,H,,,.
(563) R®isH,_,H,, ... H,.
(564) RisH,_ ,H,,...,H, and, for each prime ideal p in R such that
height p 2 n — 1, all maximal ideals in the integral closure of R/p have the same
height.

(5.6.5) For each prime ideal P in D such that height P > n, depth P =
(@ + 1) — height P and D|P is quasi-unmixed.

(5.6.6) For each prime ideal q in R¥ such that height ¢ =>n — 1, depth q
= q — height q and R™[q is quasi-unmixed.

(5.6.7) For each prime ideal p in R such that height p > n — 1,depth p
= g — height p and R/p is quasi-unmixed.

ProOOF. (5.6.1) = (5.6.2), by (5.4.2), since altitude D = a + 1 implies D
isH,H,,,.

(5.6.2) and (5.6.4) are equivalent, as noted in (5.5.1).

(5.64) = (5.6.7) Assume that (5.6.4) holds and let p be a prime ideal in R
such that height p > n — 1. Then depth p = a — height p = (say) d and R/p is
H,,...,H, [18,(2.4)]; hence R/p is catenary [13, Theorem 2.2]. Therefore,
since, for each prime ideal q in R/p such that depth q > 1, there are no height
one maximal ideals in the integral closure of (R/p)/q, R/p is quasi-unmixed (by
[11, Theorem 2.19] and [10, Theorem 3.1]). Therefore (5.6.7) holds.

(5.6.7) = (5.6.5) Assume that (5.6.7) holds, and let P be a prime ideal in D
such that height P > n. Then depth P = (g + 1) — height P, by (5.5.1). Also,
height PN R = n — 1, so R/(P N R) is quasi-unmixed; hence D/P is quasi-unmixed
[10, Corollary 3.7], and so (5.6.5) holds.

(5.6.5) = (5.6.1) Assume that (5.6.5) holds and let z* be a minimal prime
ideal in the completion of D. Assume that depth z* <a + 1, and suppose that
d = depth z* > n. Then, as in the proof of (5.2.1) = (5.2.4), there exists a
height d — 1 prime ideal P in D such that there is a height one maximal ideal in
the integral closure of D/P. Now a >d — 1 2> n, so either D/P is not quasi-un-
mixed or depth P = 1; and this contradicts (5.6.5). Therefore depth z* <n.
Now let D' = R*[X](M.’x), so D is a dense subspace of D' [11, Lemma 3.2].
Therefore, since the minimal prime ideals in D' are the ideals zD' with z a mini-
mal prime ideal in R*, since depth zD'= depth z + 1, and since D'/zD’ is un-
mixed (see the comment preceding (3.1)), it follows that if depth z < a, then
depth z < n — 1. Therefore (5.6.1) holds.

(5.6.1) = (5.6.3), by (5.4.1) applied to R = R¥, since R¥ is H, and H,_,.

(5.6.3) implies (5.6.6), as in the proof that (5.6.4) = (5.6.7).

Finally, if (5.6.6) holds and z is a minimal prime ideal in R* = (R¥)*
such that depth z = d > n, then, by (5.1), there exists a height d — 1 prime ideal
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p in R¥ such that depth p = 1 (since R¥/p is Henselian), so d = a (5.6.6),
hence (5.6.1) holds. Q.E.D.

It follows from (5.6) that if n — 1 is the largest integer i < @ such that there
exists a depth i minimal prime ideal in R*, then, for each prime ideal p in R
such that height p 2 n — 1, depth p = a — height p and R/p is quasi-unmixed.
In particular, we have the following remark.

(5.7) REMARK. The following statements are equivalent: (a) There does
not exist a depth @ — 1 minimal prime ideal in R*. (b) DisH,_,. (c) R¥ is
H,_,. (d) For each height @ — 2 prime ideal p in R, R/p is quasi-unmixed and.
altitude R/p = 2.

ProOF. Clear by (5.6.1) <= (5.6.2) = (5.6.3) <= (5.6.7). QE.D.

We next note that two known results follow readily from (5.6).

(5.8) REMARK. Let (R, M) be alocal ring, and let 4 = altitude R. Then
the following statements hold:

(5.8.1) (Cf. [11, Remark 2.23(i)] and [13, Theorem 2.2].) If R is
Henselian and R is Hy, Hy, . . . , H,, then R is quasi-unmixed (and conversely).

(5.8.2) (Cf. [11, Theorem 2.21] and [13, Theorem 2.2].) IFR[X] u,x)
isHy, H,,...,H,,,, then R is quasi-unmixed (and conversely).

Proor. (5.8.1) follows from (5.6.1) <= (5.6.3), and (5.8.2) follows from
(5.6.1) = (5.6.2). QED.

We close this section with two propositions which characterize all local do-
mains R such that card ¢(R) < 2. For this, we may clearly assume that
altitude R > 1. (In this regard, note that Nagata’s examples [6, Example 2,
pp- 203-205] have this property.)

(59) ProrosiTION. Let (R, M) be a local domain, and let a = altitude R
> 1. Then c(R) C{a, n} (1 <n < a)ifand only if, for each prime ideal p in R,
if there exists a height one maximal ideal in the integral closure of R/p, then
heightp €E{a — 1,n — 1},

ProOOF. ¢(R) C {a, n} if and only if (by (a) = (b)) depth z € {q, n}, for
all minimal prime ideals z in the completion of R, if and only if (by (5.2.1) +=>
(5.2.4)), for all prime ideals p in R, if there exists a height one maximal ideal in
the integral closure of R/p, then height p €{a — 1,n — 1}. Q.E.D.

To prove the last result of this section, we use the following fact about a
catenary local domain R: The integral closure of R satisfies the c.c. if and only
if, for each height one prime ideal p in R, R/p satisfies the s.c.c. [14, (4.3)].

(5.10) ProrosiTION. Let (R, M) and a be as in (5.9). Then the follow-
ing statements hold:
(5.10.1) ¢(R) = {a} if and only if R satisfies the s.c.c.
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(5.10.2) ¢(R) = {a, 1} if and only if R is catenary, R does not satisfy the
s.c.c., and the integral closure R' of R satisfies the c.c. (2.1.4).

(5.10.3) ¢(R) = {a, n} (1 <n <a) if and only if, for all height h prime
idealspin R (0 <h <a),c(R/p) C {a — h, n — h} and there exists a prime
ideal q in R such that height q =n — 1 and 1 € c(R/q).

Proor. (5.10.1) is clear from the definitions.

(5.10.2) Assume first that ¢(R) = {a, 1}. Then, by (5.6.1) <= (5.6.7),
for each prime ideal p # (0) in R, R/p is quasi-unmixed (hence R/p satisfies the
s.c.c. [10, Theorem 3.1]), and R is H; (1 <i <a); hence R is catenary [13, The-
orem 2.2]. Therefore R’ satisfies the c.c. [14, (4.3)]. Further, by hypothesis,

R is not quasi-unmixed, so R does not satisfy the s.c.c.

Conversely, for each height one prime ideal p in R, R/p satisfies the s.c.c.
[14, (4.3)] (hence R/p is quasi-unmixed). Therefore, since S/P is quasi-unmixed
if S is [6, (34.5)] (where S is a local domain), it follows that, for all nonzero
prime ideals p in R, R/p is quasi-unmixed and depth p = a — height p (since R
is catenary). Therefore, if z is a minimal prime ideal in the completion of R, then
depth z € {g, 1}, by (5.6.1) = (5.6.7). Moreover, there exists some z such that
depth z # a, since R is not quasi-unmixed [10, Theorem 3.1]. Hence ¢(R) =
{a, 1}, by (a) = (b).

(5.10.3) If c(R) = {a, n}, then for all height & prime ideals pin R (0 <
h<a),c(R/p) C {a - h n—h} [17,(2.25.1)]. Also, by (a) <= (b), there
exists a depth n minimal prime ideal z in the completion R* of R, so, by (5.1),
there exists a height n — 1 prime ideal g in R such that there exists a depth one
minimal prime ideal in the completion (R/q)* = R*/qR* of R/q. Therefore 1 €
¢(R/q), by (a) = (b).

Conversely, if p is a height A prime ideal in R (0 < & < a), and if there
exists a height one maximal ideal in the integral closure of R/p, then 1 € ¢(R/p)
C{a-hn-h},soh€ {a—1,n—1}. Therefore, by (5.9), c(R) < {a, n}.
Finally, since there exists a height n — 1 prime ideal ¢ in R such that 1 € ¢(R/q),
n =1 + height ¢ € ¢(R) [17, (2.25.1)]; and clearly a € ¢(R). Q.ED.

It should be noted in (5.10.3) that if A > n, then c(R/p) = {a — h}; hence
R/p satisfies the s.c.c., for all prime ideals p in R such that height p >n. Also,
by letting n = 1 in (5.10.3) we get (5.10.2).

6. Some specific overrings. In this section we construct some finitely-gener-
ated overrings of a local domain R (rings which contain R and are contained in
the quotient field of R) which have maximal chains of prime ideals with certain
properties. These results could, for the most part, have been given in §2, but it
was felt that the readability of this paper would be improved by delaying the
material to the final section of this paper.
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By [3, Theorem 1.10], if (R, M) is a local domain and n € ¢(R), then
there exists a principal integral extension domain R[c] of R which has a mcpil n.
The following proposition shows that there exists a locality 4 of the form 4 =
R[d] 3,4 contained in the quotient field of R which has a mepil n.

(6.1) PROPOSITION. Let F be the quotient field of a local domain (R, M).
Then n € c(R) if and only if there exists a locality A = R[d ] m,a) G F (4 de-
pends on n) which has a mcpil n.

ProoF. Let n € c(R). Then, by (5.2.1) < (5.2.4), there exists a prime

ideal p in R such that height p = n — 1 and such that there exists a height one
maximal ideal NV in the integral closure S of R/p. Therefore, if depth p = 1,
then letd =0 and 4 = R. If depth p > 1, then let x € N such that x is not in
any other maximal ideal in S. Let x = ¢'/b’, with ¢’ and b' in R/p, and let A' =
(R/P) [x] p1p,xy» 50 altitude A" = 1 (since Sy is the integral closure of 4").
Let b and ¢ be preimages in R of ' and ¢’. Then (R/p) [x] = R[c/b]/p*, where
p* =pR[1/b] N R[c/b]; hence A’ = A/p*A, where A = R[c/b] (M,¢/p)> 2nd 50
depth p*4 = 1. Also, height p*4 = height p* = height p = n — 1, so there
exists a mepil 7 in A.

The converse was given by (2.9). Q.E.D.

(6.2) CoroLLARY (CF. [13, THEOREM 3.3]). Let (R, M) and F be as in
(6.1). Then R satisfies the s.c.c. if and only if, for all localities A = R[d] M,d)
C F, altitude A = dltitude R and A is catenary.

ProoOF. Clear, by (2.4.2) and (6.1). Q.E.D.

In (2.8.2) it was shown, in particular, that if 4 is a finitely-generated alge-
braic extension domain of a local domain R, and if N is a maximal ideal in A4,
then height N € ¢(R). The converse of this will now be given.

(6.3) ProrosiTION. Let (R, M) and F be as in (6.1), and let n € c(R).
Then there exists a finitely-generated ring A over R such that A C F and A has
a maximal ideal N such that N N R = M and height N = n.

Proor. By (3.7), let B be an M-primary ideal such that there exists a
maximal relevant ideal Q in R = R(R, B) such that height Q = n. Then, since Q
is relevant, tb &€ Q, for some b € B. Let C = R[1/tb] and A = R[B/b]. Then
C = A[tb, 1/tb]. Also, by [11, Remark 3.11], N = QC N 4 is a prime ideal
such that NC N R = Q; hence (since b is transcendental over A) height N = height Q
=n. Further, by [11, Remark 3.11], depth N = depth @ — 1. Hence, by
(3.5.3), N is a maximal ideal in 4. Finally, NN R = Q N R = M, since (M, u)R
€0(353). QED.

(64) REMARK. Let (R, M) and B be as in (3.7). If R/M is an infinite
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field, then it can be shown that given maximal relevant ideals @,, ..., Oy in R
= R(R, B) such that {height Q;;i=1,...,k} =c(R) (see (3.7)) there exists
b € B such that tb & U Q,;hence A = R[B/b] has, by (6.3) and its proof,
maximal ideals P; = Q,C N A such that P, "R =M and {height P;i=1,...,
k} = c(R).

The next result shows that if m > 1 is the smallest element in ¢ (R), then
there exists a quadratic transformation L of R such that n € ¢(R) if and only if
n—m+ 1€c(L). To prove this result, we need the following lemma which
should be of use in other problems involving the completion of a local ring.

(6.5) LEMMA. Let (R*,M™*) be the completion of a local ring (R, M),
andletz,, . ..,z, be minimal prime ideals in R*. Assume that n =
min {depth zi;i =1,...,8}>1. Then there existb,, ...,b, in M such that,
withB; ;= (@, by, ..., b)R* (J=1,...,gandi=0,1,...,n (fori=0,
B; o = z;)) the following statements hold:

(6.5.1) If p is a minimal prime divisor of B; ; and i <n, then height p =
height p/z; = i

(6.5.2) If p is a minimal prime divisor of B]-’n and depth z i >n, then
height p = height p/zi =n. If depthz; = n, then Bj'” is M *-primary.

PROOF. Assume first that n> 1 and that b,,...,b, 0<k<n-1)
are elements in M such that each minimal prime divisor p of each Bi.i (j=1,
...,gandi=0,1,...,k)is such thatheightp=heightp/zj= i LetS' =
{4; q is a minimal prime divisor of B; ,, for somej =1, ...,g} and let §" =
{p* € Spec R*; there exists ¢ € S’ such that q C p*, height p*/q = 1, and
height p* > height g + 1 =k + 1}. Let S =S"U S", s0 S is a finite set, by
[2, Theorem 1]. Also, M* & S, since K <n — 1 and each R*/zi is catenary.
Therefore, let b, ., €M, € \J {P N R; P € S}, and let Q be a minimal prime
divisor of B; 4y (forsomej=1,...,g). Then Q properly contains a minimal
prime divisor q of B; ; (since S’ C ), so height @ >k + 1. Also, height Q/q =
1, by the principal ideal theorem, so height Q/zi =k + 1 (since R*/z, is catenary
and height q/z; = k). Further, height Q > k + 1, since S” C S, Therefore height
Q = height Q/zj =k + 1. Hence it follows that b, ..., b,_, exist,if n> 1.

To pick b, (if n> 1) or to pick b, (if # = 1) such that (6.5.2) holds,
let S’ be as above for k =n — 1. Let d be such that depth z; = n if and only if
j=2d (1<d<g). Ifd=1,thenany b, €M, € U {PNR;P€S'} will do,
so assume that d > 1. Let §” ={ p* € Spec R*; there exists a minimal prime
divisor g of B,-’n__l (7 <d) such that q C p*, height p*/q = 1, and height p*
>n}. Let S=58"US", 50 Sis a finite set and M* & S. Letb, €M, &

U{P N R;PES}. Then it is seen as above that, for each minimal prime divisor Q of
B; , (J <d), height Q = height 0/z; = n; and B; , is M™ -primary, forj =
d...,g QED.
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(6.6) REMARK. With the notation of (6.5), if z,, . .., z, are all the
minimal prime ideals in R*, then height(b,, . .., b)R = height(5,, . . . , b)R*
=i, fori=1,...,n

ProoF. Let B; = (b, ..., bR and suppose that height B, <1, for
some . Then height BiR* = height B; <1, so there exists a minimal prime di-
visor p* of B;R* such that height p* < i. Then z; C p*, for somej=1,...,8,
so height(z;, B,)R* <i; contradiction (6.5). Therefore height B; = height B,R*
=i @=1...,n. QED.

The following result shows that the converse of (2.10) is sometimes true.
It also shows that the condition that R be a subspace of L in (3.1) is stronger
than is needed for its conclusion.

(6.7) ProrosITION. Let (R, M) be a local domain, and assume that
min {depth z; z is a minimal prime ideal in the completion R* of R} = m > 1.
Then, for each k = 2, . . . , m, there exist analytically independent elements
by,...,by in R such that, with A =R[b,/b,, ...,b;/b,],n € c(R) if and
onlyifn—k+1€c(Ay,)-

PROOF. Letz,,.. ., z, be the minimal prime ideals in R*,and let b,,
eeosy by Q<Ek<m)be asin (6.5). Let B=(b,,..., b;)R. Then height B =
k (6.6), so the b, are a subset of a system of parameters in R; hence they are
analytically independent in R. Therefore, with A as above, MA is a prime ideal
such that height MA = height M — (k — 1) and depth MA = k — 1 [11, Lemma
43]. Let D =R*[b,/b,, ..., b,/b,],fixjand let z = z;, and let w =
zR*[l/bl] N D. Then,since by +z,..., b, + z are a subset of a system of
parameters in R*/z (6.5), w C M *D [11, Remark 4.4(i)] and height M *Djw =
height M */z — (k — 1) [11, Lemma 4.3]. Therefore depth wDysepy =
depth z — k + 1. Also, A, , is a dense subspace of Dysapy [11, Lemma 3.2],
s0, as in the proof of (3.1) and since z = z; was arbitrary, {depth ¢; ¢ is a mini-
mal prime ideal in the completion of 4, , } = {depth z; — k+1;j=1,...,8}.
Therefore, by (a) <= (b),n €Ec(R) if and only if n — k + 1 €Ec(4,,,) k=
2,...,m). QED.

(68) REMARK. It is clear from the proof of (6.7) that,if z,, ..., zZy
are minimal prime ideals in the completion of R (possibly not all of them) and
d;=depthz;>1 (i=1,...,g), then there exist analytically independent ele-
ments by, ..., b, (m=mind)in R such that,fork=2,...,m, d; -k +1
€c(Apyy) G=1,...,8),where A =R[b,/b,, ..., b/b,].

This paper will be closed with the following remark. The remark stands in
relation to (6.7) much as (6.2) stands in relation to (6.1).

(6.9) REMARK. Let (R, M) be a local domain, and let @ = altitude R.
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Then the following statements hold:

(6.9.1) If R is catenary, then, for all analytically independent elements b,
cin R, R(c/b) = R[c/b] yyg|¢p) is catenary and altitude R(c/b) = a — 1 (and
conversely) [12, Theorem 4.12].

(6.9.2) If, for all analytically independent elements b, ¢ in R, R(c/b) satis-
fies the s.c.c. and altitude R(c/b) = a — 1, then either R satisfies the s.c.c. or R
is catenary and the integral closure R’ of R satisfies the c.c.

PROOF. (6.9.2) Let z be a minimal prime ideal in the completion R* of
R. If n = depth z > 1, then there exist analytically independent elements b, ¢
in R such that n — 1 € ¢(R(c/b)) (6.8). Therefore, by hypothesis,n — 1 =
altitude R(c/b) = a — 1; hence n = a. Thus, for all minimal prime ideals z in
R*, depth z € {1, a}, so the conclusion follows from (5.10.2). Q.E.D.
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