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INDECOMPOSABLE HOMOGENEOUS PLANE CONTINUA

ARE HEREDITARILY INDECOMPOSABLE

BY

CHARLES L. HAGOPIAN

ABSTRACT.   F. Burton Jones [7] proved that every decomposable

homogeneous plane continuum is either a simple closed curve or a circle of

homogeneous nonseparating plane continua.   Recently the author [5] showed

that no subcontinuum of an indecomposable homogeneous plane continuum

is hereditarily decomposable.   It follows from these results that every homo-

geneous plane continuum that has a hereditarily decomposable subcontinuum is

a simple closed curve.  In this paper we prove that no subcontinuum of an

indecomposable homogeneous plane continuum is decomposable.  Consequently

every homogeneous nonseparating plane continuum is hereditarily indecomposable.

Parts of our proof follow one of R. H. Bing's arguments [2].  At the Auburn

Topology Conference in 1969, Professor Jones [8] outlined an argument

for this theorem and stated that the details would be supplied later.  However,

those details have not appeared.

1. Definitions. A space is homogeneous if for each pair p, q of its points

there exists a homeomorphism of the space onto itself that takes p to q.

A continuum is a nondegenerate compact connected metric space. A

continuum is of type A' provided it is irreducible between a pair of its points

and admits a monotone upper semicontinuous decomposition, each of whose

elements has void interior, whose quotient space is an arc [14].

A finite collection {L¡:  1 < z < zz} of open sets is a chain provided that

L¡ nLj-^0 if and only if \i-j\ < 1.

Throughout this paper R2 is the Cartesian plane with metric p. The

closed interval with end points p and q in R2 is denoted by <p, q). We shall

denote the closure and the boundary of a given set H by Cl H and Bd H respec-

tively.   The union of a collection H of sets is denoted by St H. For definitions

of unfamiliar terms and phrases see [5], [9], and [13].
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2. Preliminaries.  In this section M is an indecomposable homogeneous

continuum in R2 and F is a type A' subcontinuum of M. Let k: E —*• [0, 1] be

the quotient map associated with the minimal admissible decomposition of E

[5, Lemma 3]. Hereafter, we shall refer to this decomposition as simply the

decomposition of E.

Let G= {G,.: 1 < i < «} be a chain in R2 that covers E.

The chain G is said to follow E provided that

(1) k-x(0) C Gx and Ar_1(0 <= G„,

(2) each element of the decomposition of E lies in an element of G, and

(3) if 0 < r < s < 1 and k~x(r) U k~x(s) is contained in an element G¡

of G, then the union of all elements of G that intersect G¡ contains k~x [[r, s] ].

The chain G is said to be free relative to M if M n Bd(St G) is contained

in M n Bd (G, U G„).

A chain {L¡: 1 < i < n} in R2 is called an ordered refinement of G if for

each i, the link L¡ is contained in G{.

We call X = k~x(0) and Z = &-1(i) the end sets of F. No proper subcon-

tinuum of E intersects both X and Z [14, Theorem 8, p. 14]. A subcontinuum F

of M is called an extension of F away from X if F is a continuum of type A'

that contains F and has X as an end set. We define R(X, E) to be the union of

all extensions of F away from X. We let R(E) denote R(X, E) U iî(Z, E).

Lemma 1. The continuum M is atriodic and hereditarily unicoherent [5,

Lemma 1].

Let e be a positive number. A homeomorphism h of M onto Af is called an

eJiomeomorphism if p(v, h(v)) < e for each point v of M. Our next lemma

follows from a theorem of E. G. Effros [3, Theorem 2.1] involving topological

transformation groups.

Lemma 2. Suppose e is a given positive number and x is a point ofM.

Then {y EM: an e-homeomorphism of M onto M takes x to y} is an open sub-

set of M that contains x [5, Lemma 4 (proof)].

Lemma 3. Let Y be an element of the decomposition ofE distinct from

the end sets Xand Z of E. Let F be a type A' subcontinuum of M with end

sets T and V, and let U be an element of the decomposition of F distinct from

T and V.  Suppose h is a homeomorphism of Monto M such that U C\h[Y] ¥=

0andUn h[X U Z] = 0 = h[Y] n (TV V). Then h[Y] = U.

Proof.   This lemma follows from the argument presented in paragraphs

9 through 11 in the proof of Theorem 1 of [5].   D

Lemma 4. The collection F of extensions ofE away from the end set X

is linearly ordered by inclusion and does not have a maximal element.
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Proof.  Let F be an element of F, and let d: F—► [0, 1] be the quotient

map associated with the decomposition of F. We assume X = d~x(0). There

exists a positive number s such that d[E] = [0, s]. Since F is irreducible, for

each positive number r less than s, the set d~x(r) is in E. Since the decomposi-

tions of E and F are minimal, each element of the decomposition of E (except

possibly k~x{l)) is an element of the decomposition of F.

If H is an element of F, then F C H or H C F; for otherwise, the continuum

H n d~x [[s, 1] ] (Lemma 1) would separate F U H into three nonempty disjoint

open sets, which contradicts the fact that M is atriodic.  It follows that F is

linearly ordered by inclusion.

To see that no element of F is maximal, let p be a point of the end set

d~x{l) of F. Define e to be p(X, d~x [[1/2, 1] ]). By Lemma 2, a point q of

d~x [[1/2, 1)] and an e-homeomorphism h of M onto M exist such that h(p) =

q. Let U be the element of the decomposition of F that contains q. Note that

X n h~x [U] = 0 = d~x(l) n h~x [X]. Since F is irreducible between X and

¿/""'(l), it is a proper subset of an element of F that is contained in F U A-1 [F]

(Lemma 1). This implies that F does not have a maximal element.   D

Lemma 5. The decomposition ofE is continuous.

Proof.   Let A denote the decomposition of E. Let {y¡} and {Y¡} be

sequences such that each Y¡ is an element of A and each y¡ is a point of

Yt.   Assume {y¡} converges to a point v belonging to an element Y of A.

Define L to be the limit superior of {Y¡}.   Since A is upper semicontinuous,

Y contains L.

We must show that Y = L. To accomplish this we assume the contrary.

Let p be a point of Y - L. There exists a type A' continuum F in R(E) that is

the union of two extensions of E such that the end sets T and F of F miss E

(Lemma 4). Let 8 denote the decomposition of F. Each element of A is

contained in an element of 8. In fact, each element of A that is not an end set

of F is an element of 8. Let U he the element of 8 that contains Y. Define

e to be the minimum of p(p, L) and p(U, TU V).

By Lemma 2, an integer i and an e/2-homeomorphism h of M onto M

exist such that (1) h(y) = y{, (2) Y¡ E 8, and (3) p(Y¡, {p} U T U V) > e/2. It

follows from Lemma 3 that h[U] = Yt. Since p(p, Y¡) > e/2 and A is an

e/2-homeomorphism, this is a contradiction. Hence Y = L and, therefore, A

is continuous.   D

Lemma 6. The continuum Cl R(E) is indecomposable.

Proof.   Let X and Z be the end sets of E. Note that if F is an element
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of the set F of extensions of E away from X, then the decomposition of F is a

continuous collection (Lemma 5) that has the decomposition of F as a subcollec-

tion.

First we prove that Cl R(X, E) is indecomposable. To accomplish this we

assume the contrary.  Suppose there exist proper subcontinua B and C of

Cl R(X, E) such that Cl R(X, E) = BUC.

Assume without loss of generality that X intersects B. Since F is irreducible

and M is hereditarily unicoherent, and since X does not have interior relative to

F, it follows that B contains X.

The sets X and C are disjoint.  For suppose on the contrary that X inter-

sects C. Then C contains X. Let H he an element of F such that H C\(B - C)i=

0 ¥=H(~)(C-B). Since B n H and C n H are continua, this violates the

irreducibility of H.

Define e to be p(X, C).

Let A be an element of F that meets C - B. Note that B - C is contained

in A.

Since Af is second countable, there exists a monotone strictly increasing

sequence {F,} of elements of F such that R(X, E) = \J°¡LXF¡ (Lemma 4).  For

each /, let z¡ he a point of the end set of F. opposite X. Define c to be a point

of Cl R(X, E) that is a limit point of {z¡}. Note that c belongs to C.

The point c belongs to Cl R(X, E) - R(X, E). To see this assume c is a

point of R(X, E). Let L he an element of F that contains K U {c}, and let w

he a point of R(X, E)- L. Define S to be the minimum of e and p(w, L). It

follows from Lemma 2 that an integer i and a Ô-homeomorphism /of M onto M

exist such that f(c) = z¡ and w belongs to F¡. Since M is hereditarily unicoherent

and f[L] contains z¡ and misses w, and since F. is irreducible, the sets L and

f[L] are disjoint. Since M is atriodic, it follows that f[L] is a subset of R(X, E).

However, B - C C K C L and f[X] C M - C. This implies that f[L] is not

contained in B U C, which contradicts the assumption that Cl R(X, E) = B U C.

Let ex he a positive number less than e such that if Y is an element of the

decomposition of A, then {v EM: p(v, Y) < ex} does not contain K. By

Lemma 2, there exists an ex 4iomeomorphism hx of M onto M such that hx(c)

belongs to R(X, E). Let N he an element of F that contains K U {hx(c)}.

The sets N and h^1 [N] are disjoint. For suppose on the contrary that

N n K[x [N] =É 0. Then since no element Y of the decomposition of Af has the

property that h~[x [Y] contains N, the point c belongs to R(E). Since c does not

belong to R(X, E), there exists an extension of F away from Z that contains c.

Therefore R(E) contains a continuum whose intersection with C is not connected,

which is impossible (Lemma 1).
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Let e2 be the minimum of ex and p(N, h~[x [N]). Let h2 he an e2-

homeomorphism of M onto M such that h2(c) is in R(X, E) (Lemma 2).  Define

F to be an element of F that contains AT U {h2(c)}. By the preceding argument,

P and h2x [P] axe disjoint.  Hence N, hj1 [N], and h2x [N] axe mutually disjoint

sets that meet M - C. Thus C U N U K[x [N] U h2x [P] is a triod, and this is a

contradiction of Lemma 1. It follows that Cl R(X, E) is indecomposable.

We complete this proof by showing that Cl R(X, E) = C1 R(E). To

accomplish this assume there exists an extension Q of E away from Z that is not

contained in Cl R(X, E). By Lemma 2, there exist homeomorphisms fx and/2

of M onto M near the identity such that QVfx [Q] U f2 [Q] U Cl R(X, E) is a

triod (see the second paragraph in the proof of Theorem 1 of [5] ).  It follows

from this contradiction that Cl R(X, E) contains R(Z, E).  Hence Cl R(X, E) =

Cl R(E).   D

Since M is atriodic, R(E) is a composant of Cl R(E). A continuum in

R(E) that intersects more than one element of the decomposition of some exten-

sion of E is said to be essential to R(E). Note that every continuum essential

to R(E) is of type A' (Lemma 5).

Lemma 7. For each positive number e, there exists a positive number 8

such that if h is a 8-homeomorphism of M onto M, then h [R(E)] has the follow-

ing property. If H is a continuum essential to h [R(E)] with end sets T and V

such that p(T, V)<8 and if there exists an element U of the decomposition of

H such that p(T, U) > e, then each point of R(E) is within e of H.

Proof.  Assume the contrary. Let e be a positive number such that for

each positive integer i, there exists an i~x -homeomorphism h¡ of M onto M with the

following properties. A point pi of R(E) and a continuum H¡ essential to

h¡[R(E)] having end sets Tt and Vi exist such that p(p¡, H¡) > e and p(T¡, V¿) <

f"1.  Furthermore, there exists an element U¡ of the decomposition of H¡ such

that p(7\, U¡) > e.

For each i, let u¡ be a point of U¡, and let t¡ and v¡ be points of T. and V¡,

respectively, such that p(t¡, v¡) <i~x. Let t, u, and p be points of Cl R(E) that

are limit points of {t¡}, {u¡}, and {p¡}, respectively.   Let A = {x E M:

p(x, p) < e/4} and B = {x E M: p(x, p) < e/2}.   Assume without loss

of generality that {t¡}, {«,}, and {p¡} converge to t, u, and p, respectively, and

each Ht misses B.

By Lemma 2, an integer i and a homeomorphism f of M onto M exist such

that a continuum F essential to fh¡[R(E)] contains u, misses t, and intersects A.

Define e' to be the minimum of e/4 and p(t, F). It follows from Lemma 2 that

an integer / and an e'-homeomorphism g of M onto M exist such that g(u) = u¡
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and {ti, Vj}C\ g[F] = 0. Note that g[F] U H is a triod in M. This contradiction

completes our proof. D

Lemma 8. Every chain in R2 that follows E has an ordered refinement that

follows E and is free relative to M.

Proof.   Let G = {G¡: 1 < i < n} be a chain in R2 that follows E. Since

M is atriodic, there exist open sets A and B in Gx and Gn, respectively, such

that F is a component of M - (A U B).

Since no component of M - (A U5) meets both F and Af - St G, there

exist disjoint open sets C and D in R2 such that (1) C D E, (2) D D M - St G,

and (3) C U D D M - (A U B) [13, Theorem 44, p. 15].

Let Ij = Gx and Z,„ = Gn. For each integer i (1 < i < n), define L¡ to be

C n G;. The chain {L¡: 1 < / < «} is an ordered refinement of G that follows

F and is free relative to M.   D

Let S he the equivalence relation on R2 that relates distinct points p and q

if and only if p and ç belong to an element of the decomposition of F. Since

Mis indecomposable and homogeneous, no proper subcontinuum of M separates

R2 [5, Lemma 1 (second paragraph of proof)]. Hence we can assume that the

quotient space R2IS is R2 [12].  Let it be the quotient map associated with S.

Distinct elements U and Y of the decomposition of F that are not end sets

are said to be decomposably accessible from a side of F if there exist arc segments

A and B in R2 - it[M] such that (1) n[U] E Cl A, (2) it[Y] G Cl B, and (3)

Cl A and Cl B abut on the same side of the arc 7r[F] in R2 [2, p. 215].

Lemma 9. Let U and Y be elements of the decomposition ofE that are

not end sets. If Y is accessible from R2 - M, then U and Y are decomposably

accessible from a side of F.

Proof. Assume without loss of generality that U = AT1 (1/3) and Y =

AT1 (1/2) (k is the quotient map associated with the decomposition of E). Let /

be an arc in R2 and y be a point of Y such that I C\M= {y}.

Let C = k~x[[0, 1/2]], D = A"1 [[1/3, l]],ff, - ^»[[O, 1/4] j,H2 =

r1 [[1/4, 3/4] ], and H3 = k~x [[3/4, 1] ].

Letting x be a point of I- {y}, we define e to be one-third the minimum

of p(x, E), p(I, Hx U H3), p(C, H3), p(D, Hx), and p(H2, k~x(0) U krx(l)).

Let G = {Gx, G2, G3} be a chain in R2 that follows F such that (1) for

i= 1,2, and 3,H¡C G¡, each point of Gi is within e of H¡, and 7r[Gf] is an

open disk, and (2) for i = 1 and 2,7r[G,.] n 7r[G/+1] is an open disk. Note

that J intersects Bd G2 and misses Cl (Gx U G3).

Let L = {Lx, L2, L3} he an ordered refinement of G that follows E and is

free relative to M (Lemma 8).
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We assume without loss of generality that it[E] is lying on a horizontal

line B in R2 and ir[I - {y}] is below B on a vertical line.

Assume U and Y axe not decomposably accessible from a side of E. Let A

be a vertical line segment in R2 below B that has n[U] as an end point. It

follows from Lemma 2 that a point u of U and an e-homeomorphism h of M

onto ilf exist such that (1) h(u) EL2f)(M-E), (2) ith(u) E A, and (3) the

segment in A from it(u) to nh(u) is in ir[L2].

Since M is atriodic and h(u) is not in E, the sets G2 O F and G2 n /z[F]

are disjoint. Note that ith[D] contains irh(u), intersects zr[G3], and misses

tt[C U / U Q G,].   Since L is free relative to M and zrfC U 7] D zr[Cl G3] =

0, this is impossible [13, Theorem 28, p. 156]. It follows that U and Y axe

decomposably accessible from a side of E.   D

3. Principal results.

Theorem 1. If M is an indecomposable homogeneous continuum in R2, then

M is hereditarily indecomposable.

Proof.   Assume M has a decomposable subcontinuum. It follows from

[5, Theorem 1 (paragraphs 1,2, and 3 of proof)] that M has a subcontinuum E

of type A'. Let k: E —► [0, 1] be the quotient map associated with the

decomposition of E.

Since M is homogeneous, we can assume without loss of generality that

k~x [(0, 1)] is accessible from R2 - M.

Define S to be the equivalence relation on R2 that relates distinct points

p and q if and only if {p, q} is a subset of an element of the decomposition of

E. Let 7T be the quotient map associated with S.

Assume without loss of generality that R2/S = R2, that the arc zr[F] is

lying on the horizontal axis of R2, that it[k~x(i/22)] = (i, 0) for each integer i

(0 < i < 22), and that each point of zr[F] is an end point of an arc segment in

R2 - it[M] below zr[F] (Lemma 9).

For each i (1 < i < 5), let o( - (4i - 1, - 1), p{ = (4z* -1,0), and q¡ =

(4i-l,l)inÄ2,andlet

A¡ =n-1[<oi,qi>] andÄ/ = /c-1[[0,(2z-l)/ll] U [2í/ll,l]].

Define ex to be one-third the minimum of the union of

{p(^,5f):   1<«<5},      {p(E,iTx(q¿):   KK5},

{p(k-x(0) U k-x{l), r1 [[1/11, 10/11]])}, and

{p(k-x[[0, HU]],k-x[[(i + 1)111, 1]]): 1 <i <9}.
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Note that if h is an ej4iomeomorphism of M onto M, then the chain

formed by taking ex -neighborhoods in R2 of the elements of

{kTx[[(i-l)/ll, HU]]:   1 </< 11} follows ft [F].

For each point x of F, let Wx be the open set {y EM:  an ex•

homeomorphism of M onto M takes x to y} (Lemma 2), and let Gx he an open

set in {z ER2: p(x, z) < ex} such that WX=MC\GX.

For each / (1 < i < 11), let G, = \J{GX: x Ek~x[[(i-l)/ll,i¡ll]]}.

Using the method described in the proof of Lemma 8, we define an ordered

refinement L = {L¡: 1 < i < 11} of the chain {G¡: 1 < i < 11} that follows F

and is free relative to M having the following property:

Property 1. For each point vofMD \J{L¡: 2 <i < 10}, there exists an

ex -homeomorphism h of M onto M such that y belongs to h [E] and L follows

h [E]. (Here the open sets A and F in the proof of Lemma 8 are in Gx - G2

and Gn - G10 respectively.)

It follows from the proof of Lemma 9 that there exists a horizontal interval

Ix below <Pj, ps) in R2 - n[M] such that the end points of Ix are in (ox, px) U

<os, p5> and no point of it[M] lies between Ix and (px, ps).

Let I2 be an arc above (px, ps) in 7r[(St L)-M] that is irreducible between

ipx, qx) and (ps, qs) such that every point of R2 between I2 and {px, ps) is in

7r[St L]. We find that there exists such an arc I2 as follows.  Let v be a point of

M n L6 that is accessible from R2 - M such that ir(y) is above 7i[F]. Let A be

an ex homeomorphism of M onto M such that h [E] contains y and is followed

by L (Property 1). There exists an arc A in (St L) - M to one side of h[E]

that meets ¿j and Lxx (Lemma 9 (proof)).  By choosing y sufficiently close

to F and h sufficiently close to the identity, we get that every point of R2

between {px, ps) and a subarc of it[A] irreducible between {px, qx) and

<ps, qs) belongs to 7r[St L]. Let I2 he that subarc of it[A].

Define r and s to be the end points of I2 belonging to (px, qx) and

<ps, qs) respectively. Let D he the bounded complementary domain of I2 U

<PV Ps> U <plf r> U <ps, s> in F2.

Suppose B is a component ofMC\ it~x [D] that intersects \J{L¡: 4 </ < 8}.

Since il/ is atriodic, it follows from Property 1 and Lemma 5 that Cl F is the

image of a subcontinuum of F (essential to F(F)) under an ex -homeomorphism.

Note that the chain L - {Lx, Lxx} follows Cl B.

Define e2 to be the minimum of e, and p(M, iCx [Ix UI2]). By Lemma 7,

there exists a positive number e3 less than e2 such that if A is an e34iomeomor-

phism of M onto M, then h [R(E)] has the following property:

Property 2. If/fis a continuum essential to h[R(E)] with end sets T

and F such that p(T, V)<e3 and if there exists an element U of the decompo-

sition of H such that p(T, U) > e2, then each point of R(E) is within e2 of H.
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Let K he the component of zr_1 [D n <p3, <73>] whose closure meets both

it~x(p3) and iTx [I2]. Note that K separates L2C\MC\ xTx [D] from Lxo n

M n zr_1 [D] in rr-1 [D].

A point p of K and three e34iomeomorphisms /, h, and ftj of M onto M

exist such that (1) / = A, A-1, (2) the closure of the p-component C of M C\

it~x [D] is essential to h[R(E)], and (3) R(E) separates p from f(p) in ir~x [D].

To see this let x be a point of zr_1(p3) Ct Cl A. By Lemma 2,W = {y EM: an

e3/2-homeomorphism of M onto M takes x to y} is open in M. Let p and # be

points of K n (W -R(E)) that belong to distinct inaccessible composants [10]

of the indecomposable continuum Cl R(E) (Lemma 6).

Define h and hx to be e3/2-homeomorphisms of M onto M such that A(x) =

p and Aj(x) = q. Note that / = hxh~x is an e3-homeomorphism. Since M is

atriodic, it follows from Lemma 5 that A maps a subcontinuum of F that is

essential to R(E) onto Cl C. By Property 1,R(E) intersects an arc in A that is

irreducible between C and the ^-component of M O n~x [D] and R(E) separates

these components in zr-1 [D]. Hence p, /, A, and hx have the required properties.

Let F be a continuum that is irreducible with respect to the following

properties:

1. F is an extension of F in M away from k~x (0).

2. F separates p from f(p) in ir~x [D].

The existence of such a continuum F follows from Property 1 and the fact that

Cl R(E) = Cl R(k-x(0), E) (Lemma 6 (proof)).

Let d: F —► [0, 1 ] be the quotient map associated with the decomposition

ofF. We assume d~x(Q) = /c_1(0).

Property 3. No component of F n it~x [D] whose closure meets both

it~x [(pj, r>] and iTx [<p5, s>] is contained in an element of the decomposition

of F. To see this assume the contrary. Let u be the first point of [0, 1] such

that d ~x (v) contains a component of F O it~x [D] whose closure meets

zr-1 [(pj, r>] and zr-1 [<ps, s>]. By Lemma 1 and Property 1, L follows a type

A' continuum in d~x(v) that meets L6 O it~x [D]. By Lemmas 2 and 3, a

homeomorphism g of M onto M and a point u of [0, v) exist such that gd~x (v) =

d~x(u) and d~x(u) contains a component of F n zr-1 [D] whose closure meets

71-1 [(Pv r'] and zr-1 [<p5, s>]. This contradicts the definition of v.

Let I be the collection of intervals [x, y] in [0, 1] such that d~x [[x, v]]

is a continuum irreducible with respect to containing a component of F n

zr-1 [D] whose closure meets both zr-1 [<p,, r>] and n~x[(ps, s>]. It follows

from Property 3 that I is finite.

Let e be the point of [0, 1] such that d~x [[0, e] ] = F.  Let J = I U

{[0,e]}.
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Define {x,: 1 < i < 2zz} to be the finite increasing sequence in [0, 1] such

that St J = U {[x2i_,, x2/] : 1 < z < n}. Note that Xj = 0, x2 = e, and

x2n = 1.

The interval [x2n_x, x2n] has the following property:

Property 4. There exists a point yn of A such that (1) the closure of

the yn -component Cn of M n zr-1 [D] is essential to h[R(E)], and (2)

d~l\.\.x2n-i> *2nj] separatesyn from f(yn) in zr"x [D].

Note that [xx, x2] does not have Property 4. Following Bing [2, p. 225],

we now show that if / = [x2i_x, x2/] has Property 4, then so does / =

1*2/-3» x2i-2\ • The resulting contradiction will complete our proof.

We assume without loss of generality that zr-1 [I2] is above E and

7r~1 [<Pi. r>] is to the left of zr-1 [<p5, s>] in R2.

Suppose / has Property 4. For convenience we suppose d~x [J] is below

d~x [/] and f(y¡) is above d~l [I]. (Other cases are handled with similar

arguments to that given in this case.) Then d~x [J] separates y¡ from f(y¡) in

7r-1 [D] and / has Property 4 unless   vf is above d~x [J], so we suppose y¡ is

between d~x [7] and d~x[J].

Let X and Z be the end sets of Cl C¡. The proof now breaks down into

two cases.

Case 1. Suppose d~x(x2l_x) and d-1(x2i_2) intersect the same element

of {zr-1[<p,, r)],zr_1[<ps, s>]}. We suppose zr"1[<p1, r>]  meets Z,

^CKíí-i). and d~x(x2i_2).

Let Cf_i be the first component of M C\it~x [D] (whose closure intersects

zr-1 [<pj, r>] and zr-1 [<ps, s>]) that is met by extending Cl C¡ away from X

in M.    The existence of C¡_x follows from the indecomposability of

Cl R(X, Cl C¡) (Lemma 6 (proof)) and an argument similar to the one for

Property 3. Note that Cl C¡_x is essential to h[R(E)]. Let L be the shortest

extension of Cl C¡ away from X that contains C¡_ x.

Let y¡_x be a point of A O C¡_x. By considering the position of

d~l [[*2/-3» *2/J 1 ' we see *at yi-i ^ between d~x [/] and d~x [J]. Let N

be the subcontinuum of L essential to h[R(E)] that hasy¡ in one end set and

y¡_x in the other. Since L - {Lx, L1X} follows Cl C¡_x and Q C¡, the

continuum N does not come within e2 of zr_I(p4).

The point y¡_ x is below C¡ and p(y,-_ j, d~1 [/] ) > e3 ; for otherwise, a

subcontinuum of L would violate Property 2. Note that /()>,•_,) belongs to

L6rm-X[D].

We now show that d~x [J] separates yt_ x from f(y¡_, ) in zr~ ' [D].

Consider the continuum P in R2 that is the union of d~x [[*2i_3> x2i] ] and an

arc segment Q in zr-1 [D n <p4, c74>] - c?_1 [[x2/_3, x2l] ] that has one end
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point in d~x [7] and the other in d~l [J]. Since no point of N is within e2 of

Q, the continuum /[N] does not intersect P. Hence f(y¡_x) is either above

d~x [Í] or below d~x [J]. It is not above d~x [I] because p(yt_i, d~x [/]) > e3

and p(y,_j, f(y{-i)) < e3. Hence / has Property 4.

Case 2. Suppose ¿-1(*2i-i) and d~x(x2l_2) intersect different elements

of {ir~x [<Pj, r>], 7T-1 [<ps, s>]}. We assume without loss of generality that

tt~l [<p5, s>] meets Z, d~1(¡e2<_1), and d~x(x2i_3). Define Cf_,, ¿,y¡_x,

and TV as in Case 1.

If yt-i is above d~x [J], it is between cf-1 [/] and d~x [J], and /(y;_i)

is above d~* [7]. Since both y¡ and y¡_ x are within e3 of d~x [/], it follows

as in Case 1 that a subcontinuum of L violates Property 2.

Hence y¡_ x is below cf ~x [J] and /(y,-_ ! ) is above. Therefore / has

Property 4.   D

Theorem 2. Every homogeneous plane continuum that does not separate

the plane is hereditarily indecomposable.

Proof.   Since every homogeneous nonseparating plane continuum is

indecomposable [4], [6], this theorem follows immediately from Theorem 1.   D

The following question, raised in [6], remains unanswered. Is every

homogeneous nonseparating plane continuum a pseudo-arc [1], [11]?
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