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ESSENTIAL CENTRAL RANGE AND SELFADJOINT
COMMUTATORS IN PROPERLY INFINITE

VON NEUMANN ALGEBRAS^)

BY

HERBERT HALPERN

Abstract. The essential central range of an element A of a von Neumann

algebra with respect to a central ideal is characterized as those elements

arbitrarily close to the compression of A to a subspace large with respect to

the ideal. The selfadjoint commutators in a properly infinite algebra are

shown to be the elements whose essential central ranges with respect to the

strong radical contain 0.

1. Introduction. Let & be a von Neumann algebra with center Z. Let (S)

denote the set of nonzero projections in a subset S of &. A (closed two-sided)

ideal 5 of 6? is said to be a central ideal of & if given any bounded set [A¡) in i

and a corresponding set {P¡} of orthogonal projections in (2) then the operator

2 A¡P¡ is in $. For an element f of the spectrum Z of % let [f] denote the

smallest ideal of â containing £. Then the ideal á is a central ideal if and only

if the map

r -+W + KDII« gib {\\A+B\\\Be $ + ]$))

is continuous on Z for every A in (L If P is a projection in 1 and if £ is a

properly infinite projection in &P (by convention 0 is properly infinite), then

the set of projections F in &P such that QF > EQ for some central projection

Q implies EQ = 0 is the set of all projections of a central ideal denoted by

$p(E). All central ideals are of this form. If &P is the weak closure of the

central ideal, then the form is canonicalin the sense that iP(E) = 9^(F) if and

only if P = 6andF~F[12].

Now let 5 be a central ideal of &. If A is an element in &, there is a largest

central projection cs(A) in ¿Esuch that ci(A)A is in 3. The projection 1 - c3(l)

is denoted by Ps. A projection F in & is said to have dimension greater than the

central ideal if = iP(E) (in symbols, dim F > dim 3) if F has central support

Pi and if F > EPi or equivalently, if F has central support Pi and c¡(F)
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= 1 — Ps. The essential central spectrum 2 - Spä A of an element A in &

modulo the central ideal 5 is the set of all C in 2 such that C*(f ) is in the

spectrum of the image A(i + [f]) of A in &,/(<$ + [f]) under the canonical

homomorphism for every f in Z. Here C" is the Gelfand transform of C. If 5

is the ideal (0), then the essential central spectrum of A modulo 5 is called the

central spectrum of A and is written 2 - Sp A. The set 2 — Sp3 A is nonvoid

and strongly closed. Let &~~ be the Banach space of all bounded %-module

homomorphisms of & into 2 and let £E~+ be the subset of all those <j> in &~ that

map &+ into 2+. An element <b in eE~"+ is called a state in éE~ if <p(\) = 1. For

example, if £ is a maximal abelian projection (i.e., E has central support 1) in

the commutant 2' of 2 and if t£(/1) denotes the unique element in 2 with

rE(A)E = EAE for /4 in 6B, then the map te is a state of 6E~. Let Ea(i) be the

subset of @,~+ given by

£a(<D = fo G ér+|*(S) = 0,4<PS) = Ps}.

The essential central range %}(A) of an element A in& modulo the central ideal

í is defined to be the set

%5(A) = fe(4)|+ G Ea(S)}.

The set 9CäC4) is also equal to the set

n{unif clos [te(A + B)\E abelian of central support PS)\B E 5)

[12, 4.8], and is a weakly closed 2-convex subset of 2 containing 2 - Spä A.

Here a set S is %-convex if CAX + (1 - C)A2 is in § whenever C is in 2 with

0 < C < 1 and the ̂ ,- are in § [12].

If 6? is a finite von Neumann algebra, then every central ideal is of the form

&P for some central projection P. If & is a properly infinite von Neumann

algebra, then the ideal 50 generated by the finite projections is a central ideal

and i0 has canonical form

% = w
where £ is a projection of central support 1 for which there is an orthogonal

set {Pj} in (2) of sum 1 such that EP¡ is a a-finite projection. If 6S is the set of

all bounded operators on a Hilbert space, then 50 is the ideal of compact

operators. In general, we have that 9C3 (A) is equal to the intersection of 2 with

the weak closure of the convex hull of the set UA U* where U runs through

the set U(&) of unitary operators in &. The strong radical % of & (i.e., the

intersection of all maximal ideals of <$) is also a central ideal of & and % may

be written as J = \(\). In particular, the dimension of the projection E is

greater than that of % if and only if E ~ 1. In this case the set %AA) is the
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intersection of 2 with the uniform closure of the convex hull of [UAU*\U

G £/(«)}. In the sequel, we write %^(A) simply as %(&) [10], [12].

In this note we show that C is in the essential central range of A modulo the

central ideal 5 if and only if there is, for every e > 0, a projection E in & with

dim F > dim 5 such that ||F(C - A)E\\ < e. For a properly infinite algebra &,

the operator C is in %i(A) if and only if there is a projection E in & with

dim£ > dim 5 such that CE is in the essential central spectrum of EAE in the

algebra &E modulo the central ideal á n &E. Here &E is the von Neumann

algebra E&E on the Hilbert space determined by F. Also the set 9C$ (A) is

shown to be the intersection of the center with the weak closure of

{UA U*\U E U(&)). Using this characterization of the essential central range,

we show by displaying a matrix form similar to that given by J. Anderson [1]

that an element A in a properly infinite von Neumann algebra & is a selfadjoint

commutator in 6? (i.e., there are B and C in â with A = BC — CB and B = B*)

if and only if 0 is in %(A). We also characterize operators similar to selfadjoint

commutators. Finally, we discuss the problem of characterizing commutators

in properly infinite von Neumann algebras.

2. Characterization of the essential central range. In this section we show that

a central element C is in the essential range of A modulo a central ideal 5 if

and only if the compression of C - A to a subspace that is large with respect

to 3 is small.

Lemma 2.1. Let C be in the essential central range of an element A in a

continuous von Neumann algebra & modulo the central ideal 5 of &; then there is,

for every e > 0, an extreme point <£ of Ea(5) such that \\<¡>(A) — C|| < e and such

that the kernel of the canonical representation of the positive functional <£* given

by <j>ç(B) = <b(B) (f )¡jí + [f ]for every f in the spectrum Z of the center 2 ofS.

Proof. By performing a preliminary reduction, we may assume that Pi = 1

so that the canonical representation $P(E) of 3 has the property that the

central support of E is P [11, 2.7]. The set § of all positive 2-module

homomorphisms \p of & into 2 such that i//(3) = (0) and \p(E) = P is a

nonvoid, 2-convex subset of â~+ that is compact in the topology of pointwise

convergence on & where 2 is taken with the weak operator topology [12, 4.3].

If \px is an extreme point of S and if \p2 is a pure (i.e., extreme) state of <£""+

whose canonical representation is faithful [9, 4.6], then the 2-module homo-

morphism c/> = F»//, + (1 - P)\¡/2 is a pure state of &~+. We show that the

kernel of the canonical representation ttj induced by the state <jd> is 4 + [$]. On

the one hand, if ?' (f) = 0, then wv (B) = 0 if and only if

tt2)s(D* BD) = <bç(D*BD) = 0
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for all D in &, or equivalently, if and only if B is in the kernel [f ] = 3 + [f ] of

the canonical representation of (ip2\ [9, Theorem 4.7]. On the other hand, if

P* (£ ) = 1, then it is clear that the ideal $ + [f ] is contained in the kernel of

mf. Now supposing B is not in 5 + [£], we may find a spectral projection F of

£*/? corresponding to an interval of the form [a, ||S|| ] with a > 0 such that

F is not in 5 + [£]. We have that c3(F) (f ) = 0; otherwise, the projection

F = c5(F)F+(l-Cj(F))F

is in 5 + [£]. Because

(1 - Cj(F))F >(l- cs(F))E,

there is a partial isometry U in & with £/* Í/ = (1 - c9(F))E and Í/Í/*

< (1 - cä(F))F. The fact that

^(U*U) = cb((E)= 1

implies that 7r¿(í/) # 0 and consequently that

<n¡.(B*B) > cnrs(F) > atrt(UU*) > 0.

This proves that the kernel of tTt is 5 + [f ].

Now let C be in %S(A). There is a ^ in Ea(S) with i/<(/4) = C. For every £ in

Z, there is a state 0t of 7rj(éE) such that ty = ^îtj.. Since îtj. is an irreducible

representation of the continuous algebra & [9, Corollary, Theorem 4.3], there

is a unitary operator U in & such that

(1) |0f(Tf(¿)) - 0rf(¿H(tf)*f,irr(tO*f)l < «

[8, Theorem 2]. Here x^ denotes a unit vector in the Hilbert space of tTj such

that (77j(5)xf,Xj.) = 4j(5) for every B in & Due to the continuity of the left

hand side of (1) as a function of £, we may use the fact that Z is extremally

disconnected to find a unitary ¿7in éEsuch that H^) - <b(U*AU)\\ < e. The

state B -* tb(U* BU) (f ) of â is a pure state whose canonical representation

has kernel í + [f ].   Q.E.D.
We now give a characterization of the essential central range. This was

previously known only for selfadjoint elements [12, 4.9].

Theorem 2.2. In order that an element C in the center 2 of a von Neumann

algebra & be in the essential central range of an element A in & with respect to the

central ideal 5, a necessary and sufficient condition is that CPq = C and that, for

every e > 0, there is a projection F in & with dim F > dim 5 such that

\\F(C - A)F\\ < e.
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Proof. Suppose first that C is in %$(A). It is clear from the definition of

%i(A) that CPS = C. There is no loss of generality in assuming that C = 0

and Fj = 1, and that & is either a continuous, or a discrete finite or properly

infinite algebra.

First we assume & is continuous. Given e > 0, there is an extreme point <#>

of Fa(3) such that ||<i>(-<4)|| < e/3, and such that the kernel of the canonical

representation ttj induced by ^ on the Hilbert space H^ is 3 + [f ] for every £

in the spectrum Z of 2(Lemma 2.1). Let D — A — <b(A) and let [e¡\i G 7} be

a complete orthonormal base of H^ so that

<bç(B) = (irs(B)ex,ex)

for every B in &. Here we are assuming l G 7. For every S in the family ^(1 )

of all finite subsets of I — {1} directed by the inclusion relation, we may find

a projection E(S) in & such that

irs(E(S))ex = ex   and   irs(E(S))e¡ = 0      (/G S)

due to the fact ttj is irreducible (Lemma 2.1). Because the bounded net

{itç(E(S)DE(S))\S E <Ü(I)} converges to 0 in the strong operator topology

on Hp there is a set S in ^(1 ) with

(2) \k¡(E(S)DE(S))ex\\<e/3.

The projection c5(E), where E = E^ is the spectral projection of

E(S)D* E(S)DE(S) in the von Neumann algebra @-E(S) corresponding to the

interval [0, e2/3], is in the ideal f ; otherwise, the projection F is in the kernel

3 + [f ] of 77j and a relation

ns(E(S)D*E(S)DE(S))

= trt((E(S) - E)E(S)D*E(S)DE(S)(E(S) - E))

> 3~xe2irs(E(S) - E)> 3~XE2trs(E(S))

incompatible with the relation (2) arises. Since the map

£-HK(FZ)F)||==||FZ)F(3 + [£])||

is continuous on Z, we can use the fact that Z is extremally disconnected to

find a projection E in & such that c$(E) = 0 and such that

\\EDE(S)\\ = lub (||FZ?F(3 + [f])|f 6Z)< e/3

(cf. [12, 3.1]). If B is an element in 3 with EBE = B and
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\\EDE - B\\ < t/3,

and if F is a projection in 3 majorized by E such that

\\B(E - F)\\ < e/3,

then we have that cä(£ - F) = 0, or equivalently, that dim(E - F) > dim 3,

and that

||(E - F)A(E - F)\\ < \\EDE - B\\ + \\B(E - F)\\ + \\<j>(A)\\ < e.

Now assume that & is a type I algebra. There is no loss of generality in the

assumption that the commutant &' of & is equal to 2 If & is a finite algebra,

the assumption that Pi = 1 implies 3 = (0) [12, 2.3]. This means that there is

a maximal abelian projection E of & such that

\\EAE\\ = \\rE(A)E\\ = ||t£04)|| < e

[12, 4.8]. If & is properly infinite type I algebra, let {£,} be a maximal set of

nonzero orthogonal abelian projections in â such that

\\E,AEj\\ < 2-'SyE

for all /',/. Here 5^. is the Kronecker delta. Setting E = 2 E¡, we get that

\\EAE\\ = Iub||£,./1F,.|| < e/2.

We complete the first part of the proof by showing that c9(E) = 0. On the

contrary, if F = c}(E) is nonzero, then the least upper bound F of the range

projections of EP, AEP, and A* EP is in 3 [7, III, 1, Proposition 2]. If <b is Fa(3)

with <b(A) = 0, then the map \¡/ given by

1(B) = (P - F)cb(B)

is a positive 2(F - F)-module homomorphism of the von Neumann algebra

®(p-f) mt0 'ts center 2(F - F) which vanishes on the central ideal 3[

= 3 D (£(/>_f) of <$(/>_/•) and takes Pä = P - F into P - F. There is a

nonzero abelian projection G in &tP_F\ such that

IM G|| < e/2

due to the fact that

nP - PU(P - F)) = 0

implies that 0 is in %i ((P - F)A(P - F)). Since G is also a nonzero abelian

projection in & and since
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GE¡ = GAE¡ = E¡AG = 0

for all i, the set {E¡} is not maximal. This is a contradiction. Hence, we have

that c9(E) = 0.

The converse is already known [12, 4.9].   Q.E.D.

Remark. If C is in the essential central range of an operator A with respect

to the strong radical in a properly infinite algebra &, then we have shown

elsewhere [11, Proof of Theorem 4] that there is an invertible B in & and a

projection F equivalent to 1 such that EBT ABE = CE.

The next result answers a question of L. Zsidó [15].

Corollary 2.3. Let A be an element in a properly infinite von Neumann

algebra & with center 2; then the intersection of 2 with the sets

§! = weak closure [convex [UAU*\U G U(â)}]

and

S2 = weak closure [UAU*\U G U(&)}

coincide. Here [/(6?) is the set of unitary operators of (L

Proof. The ideal 30 of & generated by the finite projections of â is a central

ideal and S, n 2 is equal to 3C3 (,4) [12, 4.16]. If C is in %i (A), then there is,

for every « = 1, 2, ..., a projection En with dimF„ > dim30 such that

\\En(C-A)En\\<n-x

(Theorem 2.2). Each projection En is properly infinite with central support 1.

We may assume that, for each «, there is a set [P¡\i E I) orthogonal central

projections of sum 1 such that each P is the sum of an infinite set {E„\j E J¡]

equivalent orthogonal projections such that Ey = EnP¡ for some y in J¡ [7, III,

8, Theorem 1, Corollary 2 and III, 1, Theorem 1, Corollary 1], Let 9Cbe a finite

set of unit vectors in the Hilbert space of &. There is a finite subset S of 7, and

for each / G S, a finite subset S¡ of J¡ such that

11(1 - 2 {P,Eg\j E S„i E S))x\\ < (2(||C - A\\ + I)«)"1

for all x in 9C There is, for every / in 5, a unitary operator U¡ in &P¡ that carries

F¡ = EnP¡ onto G¡ = 2 {P¡Ey\j G 5,} and P¡ - F¡ onto P¡ - G¡ because F
~ G¡ and P¡ — F¡~ P¡ — G¡. Thus there is a unitary operator U = U(%,n) in

S such that UP¡ = U¡ for i G S. Setting G = 2 {G¡\i G S] and P = 2 {P¡\i
G S}, we get that
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|((C - A)Ux, Ux)\

< 2||(C - A)\\ ||(1 - G)x|| + |((C - A)EnPUx,E„PUx)\

< n~x + n~x = 2n~x

for every x G %. This proves that C is in the set S2 H 2. Since the relation

S2 n 2 C S, n 2 is clear, we see that S, n 2 = S2 n 2.   Q.E.D.
We now prove a stronger version of Theorem 2.2 that will be needed to

characterize selfadjoint commutators. For this we need to study the spectral

resolution of normal operators in a von Neumann algebra.

Definition 2.4. Let ñ be the spectrum of the abelian von Neumann algebra

© generated by the center 2 of a von Neumann algebra & and a selfadjoint

element A in &; for every element C in the set 2A of selfadjoint elements of 2,

let EA(C) denote the projection in $ whose Gelfand transform is the

characteristic function of the open and closed subset closure {u G Ü\A (tí)

< C* (tí)) of fi.
We notice that [EA(X)\—co < X < oo} is the spectral resolution of A.

Proposition 2.5. Let A be a selfadjoint operator in the von Neumann algebra

â with center 2 and let i be a central ideal of & The map

C-»£<(C) = £(C)

of %h into the lattice of projections of the von Neumann algebra $ generated by 2

and A satisfies the following properties:

(i) PE(C) = PE(CP)for every C in Zh and every projection P in 2;

(ii) £(lub %) = lub {£(C)|C G %)for every subset % of %h that is bounded

above;

(iii) (A - C)(glb {£(C')|C > C} - £(C)) = 0/or every C in %h; and

(iv) c,(£(C + D) - E(C - D)) = 0 for every D > 0 in %h if and only if

C G 2-Spj/l.

Here C> D means that the set [a E S2|C* (w) > D~ (<J)} is dense in Q.

Proof, (i) Clear.

(ii) This is clear if % is a monotonely increasing net in 2 In general, for any

finite subset C,,..., Cn of % there are projections Px,..., Pn in 2 of sum 1

such that lub C, = 2 F/ C,. Using part (i) and the fact that £(C) < £(£>) for

C < D in %h, we have that

lub£(C() < £(lubC,) = 2 P¡E(C¡) < lub E(C¡).

This means that
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£(lub 9C) = F(lub {lub C,|{C(} is a finite subset of %})

= lub {F(lub C¡)\{C¡} is a finite subset of %)

= lub{F(C)|C G %}.

(iii) Let C = C + ri~x. Then we have that

0 < (A - C)(E(C) - E(C)) < «"'.

Thus we have

(A - C) gib [E(C) - E(C)\C > C) = 0.

(iv) Let C be in 2 - Sp3 A and let {P,} be a sequence of orthogonal

projections in 2 of sum 1 such that DPn > n~xPn for every « = 1, 2,_

Because

P(E(C + D) - E(C - D)) > P(E(P(C + «"')) - E(P(C - «"')))

for every central projection F majorized by Pn and because CP is in

2F - Sp5P AP [12, 3.10], it is sufficient to show that the assumption that

(E(C + n~x) — E(C — n~x)) — E is in 3 leads to a contradiction. In fact, we

have that (C - A)(l - E) is invertible in <&(l - F) since (C - Af (a) # 0

for every a in Í2 with (1 — E) (a) = 1. If F is the inverse of (C — A)(\ — E)

in %(\ - E), then B is the inverse oî C - A modulo 3. This contradicts the

definition of the essential central spectrum. Thus, we have that c}(E) = 0.

Conversely, let C in 2A be such that ct(E(C + D) - E(C - D)) = 0 for

every 7) in 2A with Z) > 0. For every f in the spectrum of 2 and every

« = 1, 2.the projection E(C + n~x) - E(C - n~x) is not in 3 + [?] [12,

3.1] and

||(C* 0") - A)(E(C + «-')- E(C - «-'))(3 + KDII < n~x.

Hence, each C*(f) is in the spectrum of the canonical image of A in

«/($ + [£])•   Q-E-D.

Corollary 2.6. Let A be a normal element in a von Neumann algebra & with

center 2 and let Ax (resp. A2) be 2~X(A + A*) (resp. (2/)~X(A - A*)). Then an

element C in 2 is in the essential central spectrum of A modulo the central ideal

3 // and only if

Ci((EAi(Cx + Dx) - EAx(Cx - Dx))(EAi(C2 + D2) - EAi(C2 - D2))) = 0

for every Dx, D2 > 0 in 2. Here

Cx = 2~'(C + C*)   and   C2 = (2i)'X(C - C*).

The next result is needed in §3.
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Corollary 2.7. // A is a selfadjoint operator in a type llx von Neumann

algebra &, then there are two equivalent orthogonal projections of sum 1 that

commute with A.

Proof. The set 9C of all selfadjoint elements C in the center 2 of & such that

the value of the canonical operator-valued trace $ of & (cf. [7, III, 4, Definition

2]) does not exceed \ at the point £(C) = EA(C) is a bounded monotonely

increasing net in 2 (Proposition 2.5(i) and (ii)). We get an element C0 = lub9C

such that $(£(C0)) < \ and such that $(£(C)) > \ for every C> C0

(Proposition 2.5(h)). There is a projection £ majorized by

F=glb{£(C)-£(C0)|C>C0}

such that

4>(£) = i-<D(£(C0))

because & is a continuous algebra. Since £ commutes with A due to the fact

AF = C0F (Proposition 2.5(iii)), the projections £(C0) + £ and its orthogo-

nal complement are equivalent orthogonal projections that commute with A.

Q.E.D.
The next two lemmas are phrased in sufficient generality so that they will be

applicable to the matrix decomposition in §3.

Lemma 2.8. Let £, (/ — 1,2) be projections of central support 1 in the

continuous von Neumann algebra <£ and let ebbe a a-weakly continuous state of

@~ such that (¡>(El ) > a > 0. Then for any ß in the interval ] 0, a [ and any A in &,

there are projections F¡ (i= 1, 2) of central support 1 majorized by the E¡ respec-

tively such that 0(Fj)>ßandF2AF1 = 0.

Proof. Let 2 be the center of &. Given any P in (2) it is sufficient to show

that there is a Q in (2P) and projections F¡ of central support Q majorized by

the respective £, such that <b(Fx) > ßQ and F2AFX = 0. There is no loss of

generality in the assumption that P = 1.

We may assume that E2AEX is not 0. Let U be a partial isometry and B a

positive operator in & so that UB is the polar decomposition of E2AEX. We

may assume that the central support of the range projection £ of B is 1 and

that the central support P of

£ = glb{£B(C')-£5(C)|C'>C},

where C is in 2£ - Sp B in &F, is either 0 or 1. On the one hand, if P = 0,

then the strong limit of the monotonely decreasing sequence

G„ = EB(C + «-') - EB(C - n~x)      (« = 1,2,...)
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is 0 and so we can find a number « and a g in (2) such that

Q<b(Gn) <(a- ß)Q,

and such that FQ - GnQ has central support Q. But the projection GnQ also

has central support Q (Proposition 2.5(iv)). Hence the projections

FX = Q(EX-G„)   and   F2 = UGnU*Q

are projections of central support Q such that <#>(F¡) > ßQ and F2AFX =0.

On the other hand, if F = 1, then we may write F as the sum of an infinite

sequence {G'n} of orthogonal projections of central support 1 which commutes

with B (Proposition 2.5(iii)). There is a Q in (2) with <p(G'n)Q < (a - ß)Q.

Setting Fx = (Ex - G'n)Q and F2 = UG'nU*, we get two projections with

<Í>(F,) > ßQ and F2AFX = 0.   Q.E.D.

Lemma 2.9. For any finite subset % of a properly infinite von Neumann algebra

â and any sequence {F„} of properly infinite projections of central support 1, there

is a sequence {E'n} of equivalent projections of central support 1 such that

E'm < Em and E'nAE'm = Ofor every 1 < m < n < oo and A in 9C

Proof. We may assume that & is either purely infinite or semifinite. First

assume & is purely infinite. By passing to a direct summand of & and to

subprojections of the En if necessary, we may assume that each En is a-finite

[7, III, 1, Lemma 7]. Since the least upper bound of the En is a-finite, we may

assume & is a-finite by reducing to &E if necessary. Applying Lemma 2.7

recursively, we may find projections

[Enm\m > n)       (n = 1,2,...)

in Sand corresponding maximal abelian projections [Fn] in the commutant of

the center 2 of & such that

Enm < Enp < En for " < P < m>

EmAEmn = 0 for 1 < m < « and A in 9C;

and

\{EñK¥k) >2-2 {3-y'|0 <y < k} for k = 0,1,....

Here t„ = rFg. Setting E'„ = glbm Enm, we get that

rn(E'„) - glbT„(F„J > 2-1

so that F„ is equivalent to 1 [7, III, 8, Theorem 1, Corollary 5] and that

E'nAE'm = 0forl <m<«<oo and A in %.
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Now let 62 be semifinite. Suppose we have found equivalent finite projections

E\, E'2, ..., E'nof central support 1 such that E'm < Em for m = 1, 2, ..., n

and £^£^ = 0 for 1 < m < p < n and A in %. The least upper bound £

of the range projections of En+xAE'm for 1 < m < n and A in % is a finite

projection, and so there is a projection E'n+X with E'n ~ E'n+X < En+X - F. By

induction the required sequence [E'n) exists.   Q.E.D.

We now obtain the desired extension of Theorem 2.2.

Theorem 2.10. Let & be a von Neumann algebra with center % and let

3 = $q(G) be a central ideal of din canonical form. Suppose that 62(1 — Q) is a

continuous von Neumann algebra. Let 0 be in the essential central spectrum

modulo 3 of an element A in 62. For any sequence (an) of positive numbers and any

finite subset %of&, there is a sequence (£„} of projections in S such that

(l)dim£„ > dim 3;

(2) EnBEm = Ofor all I < m < n < oo and B in %; and

(3)\\EnAEj <anforalln.

In particular, if 1 is in % then the projections (£„} are orthogonal.

Remark. For the applications in §3 it is important to notice that the strong

radical } of a properly infinite algebra 62 satisfies the hypothesis of Theorem

2.10. We recall, in fact, that &Q is the weak closure of the central ideal 3g(G)

(cf. Introduction) and so 62(1 - Q) is of type III or (0) if 3ß(G) = % because

3/ contains all finite projections.

If 62 has a nonzero type I direct summand SP with 3F = (0) and £ is an

abelian projection of central support P, there is no orthogonal sequence {£„}

of projections of central support P that satisfies (3) for an = 2-1 (n = 1,

2,... ) and A = 1 - £.
Proof. We may assume that Pi = 1, and by passing to direct summands,

that 62 is continuous and 3 = (0) or that the support of 3 is 1.

If S is continuous and 3 = (0), then there is a sequence [Fn] of projections

with central support 1 such that HE^Fjl < an. The desired sequence {£„}

may be constructed in a recursive fashion from Lemma 2.8 (cf. Proof, Lemma

2.9).
Now suppose the support of 3 is 1. We also suppose that % contains the

identity 1. There is a sequence {Fn} of projections in 62 with dim Fn > dim 3

and llE^-Fjl < an for every n = 1, 2, ... (Theorem 2.2). The projections Fn

must be properly infinite projections of central support 1 since every finite

projection is in 3 (12, 2.2). Let S be the set of all families

S = {Ej(n,i)ENXl]

of nonzero projections in 62 with the following properties

(i) Em¡ ~ Eni for all m, n in N and / G /;
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(ii) EnjBEmi = 0 for all distinct pairs (m,i),(n,j) in NX I and B in

« = % U %* U {A,A*}; and

(iii) ||Fn/y4Fm|| < an for n in A/ and / G I.

Here 9C* = {B* \B G 9C} and TV is the set of natural numbers. The set S is

nonvoid, and in fact, for every nonzero central projection F, there is a

sequence {E'n) of equivalent orthogonal projections of central support F such

that E'n < Fn and E'nBE'm = 0 for all 1 < m < « < oo and F in <?) (Lemma

2.9). By Zorn's lemma we may find a maximal set 5 = [En¡\(n, i ) E NX I) in

the partial ordering on S given by the relation

(3) {f;,I(«,/) g tvx 7'} < {f;|(«,o G TVX7"}

if and only if I' C 7" and E'ni = E'^ for / G 7'. For convenience, let k be a

point not in 7. Let {TVm|m G TV} be a partition of the natural numbers into

countably many disjoint infinite sets such that the smallest number in the set

Nm is not smaller than m, and let

Fm = 2{Fj(«,/)GTVmX7}

for m = 1,2,_We show that each projection En has dimension greater

than that of 3 by showing c5(En) = 0. First we notice that each projection

E'n = 2 {Fm|/ G 7} has central support F equal to 1; otherwise, there would

be a sequence {Enk) of central support 1 - F such that

{Ej(n,i) G 7VX(7U {*})}

lies in S. Since the projections E'n are equivalent, the projections F„ are

equivalent, properly infinite, orthogonal projections of central support 1 [7, III

2, Proposition 10]. We show that c^(Ex) = F is zero. On the contrary, assume

P is nonzero. We may write Ex as the sum of an infinite sequence {Gn} of

orthogonal projections each equivalent to Ex and thus to each Em. Because

P2F„<P2C/I = FF1,

we get that F 2 F„ is in 3. The least upper bound F of the range supports of

the finite set of elements {PB 2 En\B E <?)} is also a projection in 3. This

means that the algebra Q = &(P_E) is properly infinite and that 0 is in the

essential range of the element C = (P - E)A(P - E) in G modulo the central

ideal 3' = 3 n Q of Q. Indeed, if <f> is a positive 2-module homomorphism of

the algebra & into 2 with </>(l) = 1, <t>(A) = 0 and <f>(3) = (0), then the
function fonS given by

UP) = (F - E)<b(D)



130 HERBERT HALPERN

is a positive module homomorphism of Q into its center 2(F — £ ) with

t(P - E) = P - E, \p(C) = 0, and #') = (0). There is a sequence {F'n} of

projections in Q with dim£^ > dim3' such that ||F^F^|| < an. Since the

weak closure of 3' is G and since the orthogonal complement of the largest

central projection in Q that is in 3' is 0, the projections F'n are properly infinite

and of central support P — E in 6. There are equivalent projections

[Enk\n G A} of central support 1 such that Emk < F'm and EnkBEmk = 0 for

1 < m < n < oo and B in the set {(P - E)D(P - E)\D E eH). Then the set

[Ej(n,i) ENx(IU{k})}

is in S. This is a contradiction. Hence, we have that cs(Ex) = 0 and that

dim En > dim 3. Thus {£„} is a sequence of projections satisyfing property (1).

We show that {£„} also satisfies (2) and (3). In fact, for 1 < m < n < oo and

B in % we have that

\EnBEj =

from (ii), and that

i    m        tn i

2 {E^BE^qJJ) ENnxNmXlXl}

2 {^fy 10», ?,/,/) G A„, X Nm X / X /}

2{Ep¡AEp¡\(p,i)ENmXl}

= lub {ll^^-ll \(p,i) ENmXl}<a„

from (ii) and (iii).   Q.E.D.

We now examine the relation of the essential central spectrum and essential

central range.

Corollary 2.11. Let S be a von Neumann algebra and let 3 = 5g(G) be a

central ideal of S in canonical form. Suppose that 62(1 — Q) is a continuous von

Neumann algebra. Then an element C in 2 is in the essential central range of an

element A in 62 modulo the central ideal 3 // and only if there is a projection E in

S with dim £ > dim 3 such that CE is in the essential central spectrum of EA E

in &E modulo the central ideal in £62 £.

Proof. There is no loss of generality in that assumption that Fä = 1 and

C = 0. If 0 is in 9Cä(/l), there is a sequence {£„} of projections in 62 with

dim £„ > dim 3, ||£m.4£j| < m~x, and EnBEm = 0forl<m<«<oo

and B in the set [l, A, A*} (Theorem 2.10). Let £ be the projection £ = 2 £„ •

Each Em has dimension greater than that of 3' = 3 n £62£ since
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(4) cr(Ej = Ci(Em)E = 0.

Since

lim\\EAEEj = lim||Fm,4Fj| = 0,

we get that 0 is in 2 F - Sp9- EAE.

Conversely, let F be a projection in & with dim E > dim 3 such that 0 is in

the essential central spectrum of EAE modulo 3' = 3 n &E. For every

m = 1,2, ..., there is an Em in &E with dim Em > dim 3' such that

\\EmEAEEm\\ < m~x (cf. [12, 3.16]). Because F has central support 1, we get

that dim Em > dim 3 from relation (4). We conclude from Theorem 2.2 that

%¡(A) contains 0.   Q.E.D.

3. Selfadjoint commutators. In this section the selfadjoint commutators in

properly infinite von Neumann algebras are characterized as those elements

that contain 0 in their essential central range modulo the strong radical. A

matrix form similar to that used for bounded operators on a separable space

in [1] is found for such operators.

Definition 3.1. A sequence {F„|l < « < m) (where m is a finite or

countable cardinal) of orthogonal projections in a properly infinite von

Neumann algebra is said to be a matrix base if 1 ~ F, —' E2 ~ • • • and

2 En = 1.
Let [En 11 < « < m) be a matrix base for the properly infinite algebra 6? and

let Un be partial isometries of & with domain support En and range support 1.

Then each element A in & can be written as

A=2EnAEm = 2Un*-U„AUn*-Um.

The m X m-matrix (UnA U*) is said to be a matrix with regard to the base {En}.

The matrix depends on the choice of the partial isometries; however, in the

sequel the choice of the matrix base is critical and the choice of the partial

isometries is immaterial.

We now begin a series of matrix reductions. The first extends the result in

Corollary 2.7.

Lemma 3.2. For every selfadjoint operator A in a properly infinite von Neumann

algebra &, there is a matrix base {F(|l < /' < 2}for& that commutes with A.

Proof. Let £ be the strong radical of (£, let 2 be the center of S, and let Cu

and C¡ be the least upper bound and greatest lower bound respectively of

2 - Sp«A [12, 3.11]. Since there is a projection F in 2 with PCU > PC, and

(1 - P)CU = (1 - P)C,, we may assume that either Cu > C, or that Cu
= q.
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If Cu > C,, then the projections £ = EA(C„ + D) - EA(CU - D) and

1 - £ are equivalent to 1 whenever 0 < D < 2-1(C„ - C¡) due to Proposi-

tion 2.5(iv). Hence, we may assume Cu = C = C,.

Let £ denote the range projection of the selfadjoint operator C - A in %\

then the projection c<j.(£)(l - £), which annihilates C - A, is equivalent to

c(E) = cÁE) and can be written as the sum of two orthogonal projections £,,

E2 both equivalent to c(E) [7, III, 8, Theorem 1, Corollary 2]. The projections

£j + c(E)E and £2 form a matrix base for 62c(£) that commute with

c(E)(C - A) and thus with c(E)A. So we may assume that c(E) = 0, or

equivalently, that £ ~ 1.

It is sufficient to show that given any selfadjoint operator A in % with range

support equivalent to 1, there are equivalent orthogonal projections of sum 1

that commute with A. We prove first that there are at least two nonzero

equivalent orthogonal projections majorized by the range support £ of A that

commute with A. Assume for the present that £ = 1. Let Cx, C2 be in 2 with

Cj > C2 > 0 and let F(CX, C2) be the projection in $ given by

F(CX,C2) = (£(C,) - £(C2)) + (£(-C2) - £(-C,))

where £(C2) = EA(C2) (cf. Definition 2.4). By decomposing into the product

of two algebras, we may suppose that either there is a Cx in 2 with

Mll + i = c0>q>o

such that £(C0, Cx) is properly infinite of central support 1 or that F(C0, Cx)

is finite or zero for every C0 > C, > 0 (Proposition 2.5(i)).

First assume F(C0,CX) is properly infinite of central support 1. We show

that there is a C2 in 2 with Cx > C2 > 0 such that

£(C„C2)>£(C0,C1).

In fact, we show more: for any C, C in 2 with C> C > 0 so that £(C, C)

is properly infinite of central support 1, there is a C" in 2 with C > C" > 0

such that

F(C',C") > F(C,C).

Since we have that

PE(D) = PE(PD)

for every selfadjoint D in 2 (Proposition 2.5(i)), it is sufficient to show that for

any P in (2) there is a Q in (2P) and a C" in ZQ with C'Q > C"Q > 0 and

ß£(C'ß,C"Ö) > QF(CQ,C'Q).
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There is no loss of generality in the assumption that P = 1. We show that the

relation

F(C,C) > F(C',C")

for all C" with C > C" > 0 leads to a contradiction. In fact let [Fn] be a

sequence of orthogonal projections of sum £(C, C) such that Fn ~ F(C, C)

for every n [7, III, 8, Theorem 1, Corollary 2]. We have that

1 ~ 1 - F(C0,C) = 2 F(m-xC',(m + \)~XC) < 2 E, < F(C,C)

because the range projection of A given by 1 - £(0 +) + £(0) is equal to 1.

This is a contradiction due to the fact F(C, C) is in %. So there is a C" in 2

with C > C" > 0 such that

F(C',C") > F(C,C).

Noting that F(C, C") in the previous expression is properly infinite of central

support 1, we may find a strictly decreasing sequence {C„} in 2+ such that

£(C0,C,)< F(CX,C2)< ■■-. Setting

£, = 2 F(C2n,C2n+x)  and £2 = 2 F(C2n_x,C2n),

we obtain two orthogonal projections Ex and £2 of sum 1 such that

E2< Ex< F(C0,CX) + £2.

Since £(C0,Cx) is in the strong radical, we get that £, ~ £2 ~ 1.

Now we assume that F(CQ,n~x) is a finite or zero projection for every

n = 1,2,_If 62 is a continuous algebra, then there are, for each n = 1,2,

..., two equivalent orthogonal projections of sum F(C0,n~x) which commute

with AF(C0,n~x) and consequently with A (Corollary 2.7). Since F(C0,n~x) is

nonzero for some n (Proposition 2.5(iii)), we obtain nonzero equivalent

orthogonal projections commuting with A. Therefore, we may assume that S

is of type I. There is an « such that F(C0,n~x) is not an abelian projection;

otherwise, the properly infinite projection 1 can be expressed as the least upper

bound of a monotonely increasing sequence (F(C0,«_1)} of abelian projec-

tions which is also an abelian projection. This means that there is an n and a

ß in (2) such that QF(C0,n~x) is the sum of m (m > 2) orthogonal abelian

projections of central support ß. Because AF(C0,n~x)Q can be represented as

a diagonal m x m operator matrix over 2£(C0,«"')ß based on matrix units

arising from the m equivalent orthogonal abelian projections of sum

E(C0,«-1)ß[6], we may find two nonzero orthogonal equivalent projections

(actually abelian projections) which commute with AF(C0,n~x)Q and thus

with A.
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In every case we have found two nonzero equivalent orthogonal projections

that commute with A. We now remove the assumption that the range

projection F is equal to 1. Let V be an isometry in 6l whose range support is

F. The element V*AV is a selfadjoint element in the strong radical whose

range support is 1. As was just shown, there are nonzero orthogonal equivalent

projections F, and F2 that commute with VA V*. The projections VEX V* and

VE2 V* are nonzero equivalent orthogonal projections majorized by E that

commute with A.

We now construct the desired projections by a maximality argument. Let

{F¡,G¡\i G 7} be a maximal set of nonzero mutually orthogonal projections

majorized by F that commute with A such that E ~ G¡ for every i. The

projections F = 2 F¡ and G = 2 G¡ are equivalent orthogonal projections

majorized by E that commute with A. The projection

E' = c(F)(E - (F + G))

is equivalent to c(F) since c(F) = c(G), and the range support E' of AE' in

the strong radical of the properly infinite von Neumann algebra 6Ec(F) is

equivalent to c(F). This means c(F) = 0; otherwise, the arguments of the

preceding paragraphs can be applied to show that {F¡, G¡] is not maximal. Thus

we have that the projections F, 1 - F form a matrix base that commutes with

A.   Q.E.D.
Remark. Combining the results of Corollary 2.7, Lemma 3.2, and [6], we

obtain that, for every selfadjoint operator A in a von Neumann algebra with

no type In (« odd) part, there are two equivalent orthogonal projections of sum

1 commuting with A.

The next lemma extends the results of Anderson and Stampfli [2].

Lemma 3.3. Let A be an element in a properly infinite von Neumann algebra &;

then there is a matrix base Ex, E2 (resp. Fx, F^ of & such that FXAE2 = F2AEX
= 0.

Proof. Let F be a positive selfadjoint operator in & and let U be a partial

isometry of ¿8 so that A = UB is the polar decomposition of A. The projections

c(U*U)(\ - U*U) and c(U*U)(\ - UU*) may be written as the sum of

two equivalent orthogonal projections E, E' and F, F' respectively. Here

c(U*U) = c^(U* U) where f is the strong radical of &. The projections

Ex = E + c(U* U)U* U,       E2 = E'

and

Fx = F+ c(U* U)UU*,       F2 = F'

are equivalent orthogonal projections of sum c(U* U) respectively with
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FXAE2 = F2AEX = 0.

So we may assume that c(U* U) = 0. There are equivalent orthogonal

projections F, F' of sum U* U that commute with B due to the fact that U* U

is properly infinite (Lemma 3.2). The projections UEU* and UE'U* are

orthogonal equivalent projections of sum UU*. Setting

F, = E + (1 - U* U),       E2 = E'

and

Fx = UEU* + (1 - Í/Í/*),       F2 = UE'U*,

we get matrix bases that satisfy the desired relations.   Q.E.D.

We now are ready to characterize a selfadjoint commutator. We treat the

product of a-finite type I algebras separately. This case is slightly anomalous

and in fact follows from the preceding lemmas via the analysis of J. Anderson

[1]. In the sequel let an = ((« + l)!)-1 for n - 1, 2,_

THEOREM 3.4. Let & be the product of a-finite properly infinite type I von

Neumann algebras. Then an element A in & is a selfadjoint commutator in & if and

only ifO is in the essential central range of A modulo the strong radical $of&.

Proof. First let A have the matrix representation

ft ;)•
where B E %. Since %(B*B + BB*) = {0}, we may write B as the infinite

matrix operator B = (B¡j) over & with ||B(-,-|| < 2||5||min{a/,a-}. In fact, by

applying Theorem 2.10 to B*B + BB*, we may find a sequence (En) of

orthogonal projections in & such that dim En > dim % and

\\En(B*B + BB*)EJ <4a^||F||2

for all 1 < « < oo. Replacing F, by 1 - 2 [E„\n > 2}, we get a matrix base

{F„} of & such that

||F„FFJ| < 2||5||min{aTO,a„}.

The calculation of M. David [5, Theorem 3] now shows that A is a selfadjoint

commutator.

Now let A be an operator in Cüsuch that %(A) contains 0. Applying Theorem

2.10, we may find an orthogonal sequence (7^} of maximal abelian projections

of & of sum F such that 1 - F ~ F ~ 1 and such that
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\\FmAFn\\< »-'«„„,

for all m, n = 1, 2, ... [7, III, 8, Theorem 1, Corollary 5]. Here 8 is the

Kronecker delta. We have that FA F is in $ since G = 2 {Ejl < « < m} is in

% and

||E4E(1 - G)|| = lub {HE^EJI |« > m) < (m + l)-1.

The 2,2 term of the matrix of A induced by the matrix base 1 - F, F is in %

Using Lemma 3.3, we can follow the analysis of J. Anderson [1] to write A as

an 8 x 8-matrix over S such that each of the four 2x2 diagonal blocks is of

the form (5). Thus A is a selfadjoint commutator.

Conversely, let A = BC — CB with B = B* and C in 62. We may assume

that 0 is in 2 — Sp* B. Given e > 0, there is a projection £ in 62 with

dim £ > dim £ and with ||5£|| = ||£5|| < e (Proposition 2.5(iv)). We have

that \\EAE\\ < 2e||C||, and thus that 0 G %%(A).   Q.E.D.
Now we can restrict our attention to properly infinite algebras with no o-

finite type I direct summands.

Lemma 3.5. Let A be a selfadjoint operator in a properly infinite von Neumann

algebra S with no a-finite type I direct summands and let {£„} be a sequence of

projections in S which commute with A; then for every n = 1, 2,..., there are

equivalent orthogonal projections EnX and En2 commuting with A and majorized

by En such that lub (£„ - (EnX + En2)) is in the strong radical ofS.

Proof. We may assume that either 62 is a continuous o-finite algebra or that

62 has no o-finite direct summand. In case 62 is a continuous o-finite algebra, we

show that £„ may in fact be written as the sum of two equivalent orthogonal

projections commuting with A. Let Pn be the largest central projection in 62

such that EnPn is finite. Then EnPn (resp. £n(l - P„)) may be written as the sum

of two equivalent orthogonal projections commuting with AEnPn (resp.

AEn(\ - Pn)) due to Corollary 2.7 (resp. Lemma 3.2). So £„ may be written as

the sum of two equivalent orthogonal projections commuting with A.

Now suppose 62 has no a-finite direct summands. For every « = 1,2,...,

we may use the reasoning of the preceding paragraph to find two equivalent

orthogonal projections EnX, En2 commuting with A and majorized by En so

that £„ - (EnX + En2) is a finite projection. To complete the proof it is

sufficient to show that the least upper bound F of a monotonely increasing

sequence [Fn] of finite projections in a von Neumann algebra with no o-finite

direct summands is in the strong radical [7, III, 2, Proposition 5]. Since the

strong radical is a central ideal, and since any direct summand of a finite

projection is finite, it is sufficient to show that there is a nonzero central

projection ß such that FQ is in the strong radical. Let x be a unit vector in
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the Hubert space of &. For each n — 1, 2, ..., there is an orthogonal set {Q¡}

central projections of sum 1 such that Fn Q¡ is a-finite [7,1, 6,Proposition 9(iii)].

There is a finite subset of the Q¡ of sum Qn such that ||jc - <2„;c|| < 2~"~x.

Setting Q equal to the greatest lower bound of the monotonely decreasing

sequence [Qx Q2 • • • Qn) of central projections, we obtain the required nonzero

projection because ||x — Qx\\ < 2~x and because FQ is a-finite and conse-

quently in the strong radical.   Q.E.D.

If 0 is in the essential central range of A modulo the strong radical of the

properly infinite algebra (2, the projections {En} of Theorem 2.10 induce the

matrix decomposition A = (C¡) over â with ||Cm„|| < an8mn for m, n > 2.

Here we replace F, of Theorem 2.10 by 1 — 2 [E„\n > 2), which majorizes

F, and is thus equivalent to 1. We may also choose the Fn so that EmBEn = 0

for 2 < m < « < oo and F in a preassigned finite subset of (L We now obtain

a second matrix form for A.

Lemma 3.6. 7_^r A be an element in a properly infinite von Neumann algebra &

with no a-finite type I direct summands and let [En) be an infinite matrix base of

& such that ||F„FFj| = 0 for 2 < m < « < oo and B in the set %

= [A*,A,A*A,AA*). Then there are orthogonal equivalent projections EnX and

En2 of sum En such that

En¿ 2 {F„2|« > 2} = EX2A 2 [EnX\n > 2} = 0.

Proof. Let U be a partial isometry and B a positive element of & so that UB

is the polar decomposition of EXA 2 {F„|n > 2}. Because each En (n > 2)

commutes with B due to the validity of the relation

EmB*BEn = EmA*(Ex + Em)(En + Ex)AEn = EmA* AEn = 0

for 2 < m < « < oo, each En commutes with the range projection F of B.

There are equivalent orthogonal projections FnX and Fn2 (n > 2) commuting

with B and majorized by EEn such that

F=2{EEn-(FnX+Fn2)\n>2)

is in the strong radical % of & (Lemma 3.5). The projection En — EnE(n > 2)

(resp. F, - UU*) is also the sum of orthogonal projections GnX, Gn2, Gni such

that GnX ~ Gn2 and Gn3 is in % Then we let

Enx = (EE„ - Fn2) + GnX + G„3

and

En2 = Fn2 + Gn2

for « > 2 and
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El, = U 2 {££„ - E„2I« > 2}U* + Gxx + (7,3

and

£,2= c/2{E„2|«>2}í/* + G12.

We have that c(EnX) = c(En2) = 0 for n > 2 and so £„, ~ 1 ~ £n2. Here

c = cj. Also we have that

c(Exx) = c(u(f+ 2 {/j> > 2})i/* + Gxx + G13)

= c(t/(s{F„]|«>2))i/* + Cll)

= c(t/(2 {E> > 2})t/* + G12) = c(£12),

and thus £,, ~ 1 ~ £12 We also have that

EUA 2 {£„2I" > 2) = u(e - 2 {E> > 2}) 2 {E„2|« > 2)B = 0

and

¿12^ 2 {£„, I" > 2} = U 2 {£> > 2}(e - 2 {En2l« > 2})fi = 0.

Q.E.D.
Now if 0 is in the essential central spectrum of A in the properly infinite von

Neumann algebra 62, then we may employ Theorem 2.10 and Lemma 3.6 (as

applied to A*) to write A as a 4 X 4-matrix (A¡¡) over 62 such that /141 = /132

= 0 and such that A33 and A44 can be further decomposed to infinite operator

matrices (C«) over 62 of the form ||Cy|| < a¡8¡j. To apply Lemma 3.6 to this

new matrix we need the next lemma.

Lemma 3.7. Let A be an element of a properly infinite von Neumann algebra S

and let [Fn} be an infinite matrix base for S such that FxAFm = Qfor m > 2 and

\\FnAFm || < an8mnfor m, n > 2; then there is an infinite matrix base [En)for S

such that EnBEm = 0 for 2 < m < n < oo and B in the set % = [l,A,A*,

AA*,A*A),and\\ExAEj < am, \\EmAE„\\ < ajor m > 2.

Proof. We use the same arguments as in the proof of Theorem 2.10. Let S

be the family of all sets

S = {Eni\(n,i) G AX/}

of nonzero projections in 62 such that
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(i) Emi ~ Eni for all m,n in TV and i G I;

(ii) EnjBEmi = 0 for all B in % and distinct pairs (m,i), (n,j) in TV x 7; and

(iii) Fní < 7^ for all « in TV and /' in 7.

From Lemma 2.9, we conclude that S is nonvoid, and from Zorn's lemma we

find a maximal set S = {Fm-|(«,í) G TV x 7} in § in the partial ordering (3).

Let {TV„ |« G TV} be a partition of TV into a sequence of infinite sets such that

the smallest element of Nn is not less than «. As in Lemma 2.9, we can show

that each of the projections

F„ = 2{Fj(«v)G7V,,X7}

is a properly infinite projection of central support 1. We show that each En is

equivalent to 1. If & is the product of a-finite algebras, then each En is

equivalent to 1 since each En is properly infinite. So we may assume that & has

no a-finite direct summands. We show that En ~ 1 by showing that the largest

central projection P such that PEn is in the strong radical % is F = 0. We argue

by contradiction. As in Theorem 2.10, we have that F 2 F„ is in % For every

n = 1, 2, ..., the orthogonal complement Gn in PFn of the least upper bound

of the range supports of the elements FnBP'2, En for B in 9C is equivalent to

F due to the fact this least upper bound is in % Setting G = 2 Gn and

applying Lemma 2.9 to the element GAG in the properly infinite algebra &G

and to the sequence (G„) of projections, we may find a sequence [Gnk) of

projections in &G so that

{Ej(n,i) E TVX(/U{*})}

is greater than S in the partial ordering on §. This is a contradiction. So

F„~l.

Replacing F, by 1 — 2 {F„ \n > 2} if necessary, we obtain a matrix base

[En] that satisfies the required conditions. On the one hand, we have

\\EmAEj = lub [\\EniAEj \(n,i) G 7Vm X 7} < «„

for m > 2, and

\\EmBEj = lub [WE^BEJ \(p,q,i,j) E Nm X Nn X I X I) = 0

for m, n > 2 and B in %. On the other hand, we have that
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\\ExAEj < JA 2 {£„/!(«,/) G AmX/}||

< ||S [a 2 (EJ E I}\n G Aw|| < ||S {AFH\n e Nm)

< ||S {F„AFn\n E Njj < lub {||£^£j| \n G Nm) < am

for m > 2.   Q.E.D.

Now we can prove our main theorem.

Theorem 3.8. An element A in a properly infinite von Neumann algebra S is a

selfadjoint commutator if and only ifO is in the essential central range of A modulo

the strong radical of 62.

Proof. If A is a selfadjoint commutator, then the essential central spectrum

*X(A) of 62 modulo the strong radical % contains 0. The proof presented in

Theorem 3.4 is sufficient.

Conversely, we may assume 62 has no o-finite type I direct summands

(Theorem 3.4). Let A be in 62 and let 0 G %(A). We have already indicated

after Lemma 3.5 that with regard to a matrix base £,- (1 < / < 4) the operator

A can be written as a 4 X 4-matrix (Ay) over 62 such that A4X = A32 = 0, and

such that y433 and A^ can be written with respect to an infinite matrix base as

matrices over 62 of the form (C¡), where ||C,J| < a S-- for /,/ = 1,2,_Let

A' (resp. A") be given by

' —=frt
Setting C equal to A' (resp. A") and applying Lemma 3.7 to C*, we get a

matrix base [Fn | 1 < n < oo} for 62 such that Fn BFm = 0 for all 2 < m < n

< oo and B in the set %= {1,C,C*,C*C,CC*}, and \\FmCFx\\ < am,

^Fm CFm || < am for m > 2. From Lemma 3.6 applied to the matrix base {Fn\

we see that C may be written as a 4 X 4-matrix over S of the form Figure 1,

where \\A¡\\, \\B¡\\, \\C¡\\, \\D¡\\ are majorized by a¡. Actually, the entries (*) of

the 3,1 and 4,2 (resp. 3,4 and 4,3) blocks have the same form as the 4,1 (resp.

4,4) block. However, we do not need this information here. Reassembling the

matrix A from the various parts and applying J. Anderson's rearrangement [1],

viz. l->7-»6->4->l,2->5->2, 3 -> 3, 8^8, we obtain an 8x8-

matrix over 62 whose four 2 X 2-diagonal blocks have the form Figure 2, where

||Z?J < a¡, \\C¡\\ < a,-. From the calculation of M. David [5], we get that each

of these four diagonal blocks is a selfadjoint commutator in 62 and thus that A

itself is a selfadjoint commutator (cf. [1], [11, Proof, 4]).   Q.E.D.
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F,

Figure 1

F,

F,

Figure 2

An operator A in a von Neumann algebra S is said to be similar to an

operator F in tí if there is an invertible C in & with G4C-1 = B. We can now

characterize those operators in a properly infinite algebra that are similar to a

selfadjoint commutator.
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Proposition 3.9. An operator A in a properly infinite von Neumann algebra S

with strong radical f is similar to a selfadjoint commutator in S if and only if there

/jflK>0 such that

\\(a-A)(^+[m\>^\

for every complex a and every f in the spectrum Z of the center 2 of 62, or

equivalently, such that

\\(a-A)(Wi)\\ >K|a|

for every a and maximal ideal 511 in 62.

Proof. Suppose there exists such a k > 0. For convenience suppose that

\\A\\ = 1. There is a C in 2such that

cA<tt-IHG + l?])ll

[12, 3.2]. There is a projection F in 2 such that CP > 0 (i.e. {£ G Z|C*(f)

> 0} is dense in {£ G Z|PA(£) = 1}) and C(l - P) = 0. We have that

A(\ - P) is in the strong radical of S/X_P) [12, 3.1], and thus A(\ - P) is a

selfadjoint commutator in Srx_Py By passing to the direct summand 62p, we

may assume that C > 0. There is an orthogonal sequence {P} of projections

in 2 of sum 1 such that C*(f ) is in the interval [(n + l)~ ,n~x] whenever

Pn (f ) = 1. For every n = 1,2,... there is a Bn in % such that

1104 + Pn)(\l\)\\

is in the interval [(« + l)"1, 2n~x] for every f with £,*(£) = 1. The sum

2 (n + I)(A + Bn)Pn converges in the strong topology to an element B in 62.

We have that

ll*f¿+[í])||> 1

and

||(a-/?)(5 + M)||>K|a|

for every complex a and every f in the union of the sets (f G Z|^*(f) = 1}

and thus for every £ in Z. This means that the canonical image of B in the

algebra 62/(3/ + [f]) is never a scalar multiple of the identity. There is an

invertible C in 62 and a projection F equivalent to 1 such that FCBC~X F = 0

[11, Proof, Theorem 4]. For every £ > 0 and every n = 1, 2, ..., there is a

projection En in % such that

11^(1-£,,)||<e/(||C|| ||C-'||).
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The range projection Fn of F(C~X) En is in f and thus Gn = F - Fn is

equivalent to 1. Setting G = 2 GnPn, we get a projection G equivalent to 1

such that

||GG4C_1G|| < IIFCFC-'FII + ||C|| ||C-'|| lub„ ||5(1 - F„)|| < e.

We conclude that %(CAC~X) contains 0 (Theorem 2.2), and consequently that

CAC~X is a selfadjoint commutator in & (Theorems 3.4 and 3.8).

Conversely, let A be a selfadjoint commutator in &. We have that

(6) ll(«-^)ii+[f])ll>l«l

for every scalar a and every f G Z; otherwise,

\a\ = \<b(a-Ai(n\<\\(oc-A)(f+[m<W\

for some a and f. Here <b is a state of A~ which vanishes on % U (/!}

(Theorems 3.4 and 3.8). If C is an invertible element in &, then we have that

||(a-OfC-,)e+[f])||>(||C||||C-1tir,|«l

for every a and f.   Q.E.D.

Remark. The preceding proposition shows that the operators of class (F') in

a properly infinite algebra, viz. those operators which are not equal to a scalar

multiple of the identity (zero included) modulo any maximal ideal, that were

studied in [10] are contained in the set of operators similar to a selfadjoint

commutator.

Corollary 3.10. For any operator A and any normal operator B in a properly

infinite von Neumann algebra the operator BA — AB is a selfadjoint commutator.

Proof. We may assume that 0 is in the essential central spectrum of F

modulo the strong radical [12, 3.5]. For every e > 0, there is a projection F in

& equivalent to the identity with

\\EB\\ = \\BE\\ < e

(Corollary 2.6). Hence, the essential central spectrum of BA -AB modulo the

strong radical contains 0 (Theorem 2.2) and so BA - AB is a selfadjoint

commutator (Theorem 3.8).   Q.E.D.

Remark. Actually, for any A and any seminormal F (i.e. either

±(BB* — B* B) is positive) in a properly infinite algebra, the operator

AB — BA is a selfadjoint commutator (cf. [11, Note "added in proof"]).

The next proposition extends the results of H. Radjavi [13] for the algebra

of bounded operators on a separable Hilbert space.
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Proposition 3.11. A selfadjoint operator in a properly infinite von Neumann

algebra is a selfadjoint commutator if and only if its essential central spectrum

modulo the strong radical contains a nonpositive and a nonnegative element.

Proof. The essential central range of a selfadjoint operator modulo the

strong radical is the smallest central convex set containing the essential central

spectrum modulo the strong radical [12, 4.4].   Q.E.D.

The next result extends that of J. Williams [14] for the algebra of all

bounded operators on a separable Hilbert space.

Proposition 3.12. Every commutator of a properly infinite factor von Neumann

algebra is similar to a selfadjoint commutator.

Proof. An operator A is a commutator in a properly infinite factor 62 if and

only if there is an invertible B in 62 and a projection £ in 62 with £ ~ 1 such

that EBAB~XE = 0 [3], [4], [10]. Thus, every commutator of 62 is similar to a

selfadjoint commutator (Theorems 3.4 and 3.8).

One may also use the arguments of J. Williams [14] together with Theorems

3.4 and 3.8 to avoid the computations of [3], [4], [10].   Q.E.D.

One might conjecture that an operator is a commutator if and only if it is

not equal to a nonzero scalar multiple of the identity modulo every maximal

ideal (i.e. if and only if it is an operator of class (£)). If the center is large, this

turns out to be false.

Example 3.13. In every properly infinite von Neumann algebra 62 not equal

to a finite product of factors, there is an operator of class (F) which is not a

commutator. Indeed, there is for every natural number m a neighborhood

V = Vm of 1 contained in the sphere of radius one about 1 such that AB — BA

in Vm and ||/1|| < 1 implies ||2?|| > m. This holds even for factors. Notice that

every neighborhood of the identity contains commutators [10, 3.10]. On the

contrary, there would be bounded sequences [An] and [Bn] in 62 with

[AnBn — BnAn) converging to the identity. This is impossible [16, Problem

183]. So such a neighborhood Vm exists.

Now let [Pm) be an orthogonal sequence of nonzero central projections of 62

of sum 1. There is a commutator Cm in SPm such that ||Cm - 1|| < 1 and

Cm = AB- BA for \\A\\ < 1 implies ||£|| > m2. Then the operator C

= 2 m~lCm is in class (£). In fact, let f be in the spectrum of the center.

Either Pm~ (£) = 1 for some m or P„ (f ) = 0 for all m. In the first case

C(^ + m) = (BA-AB)(j + m)

for some A and B in 62 Pm. Here $• is the strong radical. Hence C is not a

nonzero scalar multiple of the identity modulo f + [f ]. In the second case we

have that
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IICÖ + M)ll< |c(l - 2 {F„|« > «,})([£])< 2(m + 1) '

and so C(f + [f ]) = 0. Now suppose C = AB - BA for A, B in &. We may

assume that \\A\\ < 1. This means that ||mF7^|| > m2. This is impossible. So

C is not a commutator.

In contradistinction to factors we show that not every commutator is similar

to a selfadjoint commutator when the center is sufficiently large.

Proposition 3.14. Let A be an operator of class (F) in a properly infinite von

Neumann algebra &; then there is a sequence {ßn} of strictly positive numbers and

a sequence [Pn] of orthogonal central projections of sum 1 smcA that ^ ßnAPn

converges in the strong topology to a commutator in &.

Proof. Let % be the strong radical of & and let 7¿ = cAA). There is a

sequence [Pn\n > 1} of orthogonal central projections of sum 1 - PQ such that

M(!r + (¿DU > ""' for every f in the spectrum of the center of &P„ [12, 3.1].

Therefore, the operators APn (n > 1) are of class (F') in &Pn. There is Bn and

C„ in &Pn with

AP„ = B„C„- C„B„ft n    n n    ft

for all « > 0 [10]. Setting ßn equal to the inverse of \\Bn \\ \\Cn \\ + 1, we see that

2 ß„APn converges in the strong topology and that it is a commutator in &

Q.E.D.
Example 3.15. Let 6Ebe a properly infinite von Neumann algebra. Suppose

there is a sequence {Pn} of nonzero orthogonal central projections of sum 1. Let

En be a projection in &Pn such that En~ Pn — En~ Pn and let

^=2(/T1F„ + «-2F„).

Then A is in class (F) and so there is a sequence {ßn} of strictly positive

numbers and a sequence [Qn] of orthogonal central projections of sum 1 such

that F = 2 ßn^Qn iS a commutator in 6L (Proposition 3.14). There is no state

<j> in &~ and invertible C in (2 with <b(j) = (0) and (¡>(CBC~X) = 0; otherwise,

the state <j> would vanish on CAC~X or equivalently %,(CAC~X) would contain

0. This is known to be impossible (cf. [11, p. 63ff.]). Hence, the operator F is

not similar to a selfadjoint commutator.
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