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ABSTRACT. The essential central range of an element 4 of a von Neumann
algebra with respect to a central ideal is characterized as those elements
arbitrarily close to the compression of 4 to a subspace large with respect to
the ideal. The selfadjoint commutators in a properly infinite algebra are
shown to be the elements whose essential central ranges with respect to the
strong radical contain 0.

1. Introduction. Let @ be a von Neumann algebra with center . Let (5)
denote the set of nonzero projections in a subset S of @ A (closed two-sided)
ideal 9 of @ is said to be a central ideal of @ if given any bounded set {4,} in ¢
and a corresponding set {P} of orthogonal projections in () then the operator
2 A4;Bis in §. For an element { of the spectrum Z of &, let [¢] denote the
smallest ideal of @ containing {. Then the ideal § is a central ideal if and only

if the map

§— 1146+ DIl = gb{ll4 + Bl |B € § + {1}

is continuous on Z for every 4 in @ If P is a projection in £ and if E is a
properly infinite projection in @P (by convention 0 is properly infinite), then
the set of projections F in @P such that QF > EQ for some central projection
Q implies EQ = 0 is the set of all projections of a central ideal denoted by
9p(E). All central ideals are of this form. If @P is the weak closure of the
central ideal, then the form is canonical in the sense that $,(E) = 9,(F) if and
onlyif P = Q and E ~ F[12].

Now let § be a central ideal of @ If 4 is an element in &, there is a largest
central projection c4(4) in @ such that ¢4(4)4 is in 9. The projection 1 — ¢4(1)
is denoted by Py. A projection F in @ is said to have dimension greater than the
central ideal § = §,(E) (in symbols, dim F > dim 9) if F has central support
Py and if F > EPy or equivalently, if F has central support Py and c4(F)
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= 1 — Py. The essential central spectrum & — Spg A of an element 4 in @
modulo the central ideal § is the set of all C in € such that C”(¢) is in the
spectrum of the image A(% + [{]) of 4 in @/(9 + [{]) under the canonical
homomorphism for every ¢ in Z. Here C’ is the Gelfand transform of C. If ¢
is the ideal (0), then the essential central spectrum of 4 modulo ¢ is called the
central spectrum of A and is written £ — Sp 4. The set £ — Sp; 4 is nonvoid
and strongly closed. Let @ be the Banach space of all bounded Z-module
homomorphisms of @ into € and let @ ~* be the subset of all those ¢ in @ that
map @* into *. An element ¢ in @V is called a state in @ if ¢(1) = 1. For
example, if E is a maximal abelian projection (i.e., E has central support 1) in
the commutant €’ of £ and if 72(4) denotes the unique element in £ with
15(A)E = EAE for A in @, then the map i is a state of . Let E,($) be the
subset of @ given by

E (%) = {p € @ F|(%) = 0,0(Py) = Py}.

The essential central range ¥4(4) of an element A4 in @ modulo the central ideal
9 is defined to be the set

Hy(4) = {o(4)lo € E,(9)}.
The set %4(4) is also equal to the set
N {unif clos {r;(4 + B)|E abelian of central support P;}| B € ¢}

[12, 4.8], and is a weakly closed Z-convex subset of € containing £ — Spy A
Here a set § is Z-convex if CA; + (1 — C)A, is in § whenever C is in € with
0 < C < 1 and the 4; are in § [12].

If @is a finite von Neumann algebra, then every central ideal is of the form
@P for some central projection P. If @ is a properly infinite von Neumann
algebra, then the ideal §; generated by the finite projections is a central ideal
and %, has canonical form

where E is a projection of central support 1 for which there is an orthogonal
set {P} in (2) of sum 1 such that EP, is a o-finite projection. If @ is the set of
all bounded operators on a Hilbert space, then 4, is the ideal of compact
operators. In general, we have that SCQ (A) is equal to the intersection of € with
the weak closure of the convex hull of the set UAU* where U runs through
the set U(®) of unitary operators in @ The strong radical § of @ (i.e., the
intersection of all maximal ideals of @) is also a central ideal of € and § may
be written as § = §,(1). In particular, the dimension of the projection E is
greater than that of § if and only if E ~ 1. In this case the set J¢(4) is the
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intersection of & with the uniform closure of the convex hull of {U4U*|U
€ U(®)}. In the sequel, we write J(d) simply as H(&) [10], [12].

In this note we show that C is in the essential central range of 4 modulo the
central ideal ¢ if and only if there is, for every ¢ > 0, a projection E in € with
dim E > dim 9 such that ||E(C — A)E|| < &. For a properly infinite algebra @,
the operator C is in ¥4(4) if and only if there is a projection E in @ with
dim E > dim 9 such that CE is in the essential central spectrum of EAE in the
algebra @ modulo the central ideal § N @;. Here @ is the von Neumann
algebra EQE on the Hilbert space determined by E. Also the set K4 (4) is
shown to be the intersection of the center with the weak closure of
{UAU*|U € U(&)}. Using this characterization of the essential central range,
we show by displaying a matrix form similar to that given by J. Anderson [1]
that an element A4 in a properly infinite von Neumann algebra @ is a selfadjoint
commutator in @ (i.e., there are B and Cin @ with 4 = BC — CBand B = B¥)
if and only if 0 is in K(4). We also characterize operators similar to selfadjoint
commutators. Finally, we discuss the problem of characterizing commutators
in properly infinite von Neumann algebras.

2. Characterization of the essential central range. In this section we show that
a central element C is in the essential range of 4 modulo a central ideal § if
and only if the compression of C — 4 to a subspace that is large with respect
to § is small.

LeMMA 2.1. Let C be in the essential central range of an element A in a
continuous von Neumann algebra & modulo the central ideal § of @; then there is,
Jor every & > 0, an extreme point ¢ of E, (%) such that ||¢(4) — C|| < & and such
that the kernel of the canonical representation of the positive functional b, given
by ¢.(B) = &(B) (¢) is 9 + [¢] for every ¢ in the spectrum Z of the center % of @

PROOF. By performing a preliminary reduction, we may assume that Py=1
so that the canonical representation 9,(E) of ¢ has the property that the
central support of E is P [11, 2.7). The set S of all positive Z-module
homomorphisms ¢ of @ into £ such that ($) = (0) and (E) = P is a
nonvoid, Z-convex subset of @ that is compact in the topology of pointwise
convergence on @ where £ is taken with the weak operator topology [12, 4.3].
If ¥, is an extreme point of § and if y, is a pure (i.e., extreme) state of @~
whose canonical representation is faithful [9, 4.6], then the Z-module homo-
morphism ¢ = Py; + (1 — P)y, is a pure state of @ . We show that the
kernel of the canonical representation = induced by the state gy is § + [¢]. On
the one hand, if P"(¢) = 0, then m(B) = 0 if and only if

()¢ (D*BD) = ¢,(D*BD) = 0
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for all D in @, or equivalently, if and only if B is in the kernel [{] = ¢ + [{] of
the canonical representation of (y,), [9, Theorem 4.7]. On the other hand, if
P"(¢) = 1, then it is clear that the ideal § + [¢] is contained in the kernel of
7. Now supposing B is not in § + [{], we may find a spectral projection F of
B*B corresponding to an interval of the form [a, IIBII ] with @ > 0 such that
Fis notin § + [¢]. We have that ¢(F) ({) = 0; otherwise, the projection

F = ¢(F)F + (I = ¢(F))F

isin 9 + [¢]. Because

(1 = ¢(F))F > (1 - ¢(F))E,

there is a partial isometry U in @ with U*U = (1 — ¢((F))E and UU*
< (1 = ¢4(F))F. The fact that

¢§(U* U) =¢(E) =
implies that m(U) # 0 and consequently that
m(B*B) > am(F) > am(UU*) > 0.

This proves that the kernel of =, is § + [{].

Now let C be in H4(4). There is a ¢ in E,($) with y(4) = C. For every { in
Z, there is a state 6, of wg(@,) such that {y = 7. Since = is an irreducible
representation of the continuous algebra @ [9, Corollary, Theorem 4.3], there
is a unitary operator U in @ such that

Y |9;(7T§(A)) - (Wg(A)Wg(U)Xp"Tg(U)XgN <e

[8, Theorem 2]. Here x; denotes a unit vector in the Hilbert space of # such
that (7(B)x;,x;) = ¢(B) for every B in & Due to the continuity of the left
hand side of (1) as a function of §, we may use the fact that Z is extremally
disconnected to find a unitary U in @ such that ||[y{4) — ¢(U*AU)|| < e. The
state B — ¢(U*BU) (¢) of @ is a pure state whose canonical representation
has kernel § + [{]. Q.E.D.

We now give a characterization of the essential central range. This was
previously known only for selfadjoint elements [12, 4.9].

THEOREM 2.2. In order that an element C in the center € of a von Neumann
algebra @ be in the essential central range of an element A in @ with respect to the
central ideal 3, a necessary and sufficient condition is that CPy = C and that, for
every ¢ > 0, there is a projection F in @ with dimF > dim$ such that
IF(C - A)F| <e.



PROPERLY INFINITE VON NEUMANN ALGEBRAS 121

PrOOF. Suppose first that C is in H4(A4). It is clear from the definition of
%4(4) that CP; = C. There is no loss of generality in assuming that C = 0
and Py = 1, and that & is either a continuous, or a discrete finite or properly
infinite algebra.

First we assume @ is continuous. Given ¢ > 0, there is an extreme point ¢
of E,(9) such that ||¢(4)|| < &/3, and such that the kernel of the canonical
representation 7, induced by ¢, on the Hilbert space H is § + [{] for every {
in the spectrum Z of Z (Lemma 2.1). Let D = 4 — ¢(4) and let {¢,|i € I} be
a complete orthonormal base of H so that

¢;(B) = (m(B)e;, ¢;)

for every B in @ Here we are assuming 1 € I. For every S in the family (/)
of all finite subsets of I — {1} directed by the inclusion relation, we may find
a projection E(S) in @ such that

n(E(S))e, = ¢, and m(E(S))e;=0 (i€ S)

due to the fact =, is irreducible (Lemma 2.1). Because the bounded net
{n(E(S)DE(S))|S € F(I)} converges to 0 in the strong operator topology
on Hy, there is a set S in (/) with

) lm (E(S)DE(S))e | < ¢/3.

The projection cg(E), where E = E, is the spectral projection of
E(S)D* E(S)DE(S) inthe von Neumann algebra @ E(s) corresponding to the
interval [0,¢2/3], is in the ideal ¢; otherwise, the projection E is in the kernel
$ + [¢] of m and a relation

m(E(S)D* E(S)DE(S))
= n((E(S) — E)E(S)D*E(S)DE(S)(E(S) — E))
> 37 (E(S) - E)> 372 n (E(S))

incompatible with the relation (2) arises. Since the map
¢ - |m(EDE)|| = ||[EDE(S + [£])]]

is continuous on Z, we can use the fact that Z is extremally disconnected to
find a projection E in @ such that ¢4(E) = 0 and such that

IEDES)Il = lub {|EDE(S + {])I§ € Z} < ¢/3
(cf. [12, 3.1]). If B is an element in § with EBE = B and
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|EDE - B| < ¢/3,

and if F is a projection in 9 majorized by E such that
IBE - F)ll <¢/3,

then we have that ¢;(E — F) = 0, or equivalently, that dim(E — F) > dim§,
and that

I(E — F)A(E - F)|| < |[EDE — B|| + |B(E - F)| + ll$(4)]| <e.

Now assume that @ is a type I algebra. There is no loss of generality in the
assumption that the commutant @’ of @ is equal to Z. If @ is a finite algebra,
the assumption that P; = 1 implies § = (0) [12, 2.3]. This means that there is
a maximal abelian projection E of @ such that

IEAE] = llrg(AE| = llrg()ll < e

[12, 4.8]. If @ is properly infinite type I algebra, let {E;} be a maximal set of
nonzero orthogonal abelian projections in @ such that

IEAE;| < 27"8;e
for all 4, j. Here §; is the Kronecker delta. Setting E = > E;, we get that
|EAE|| = lub ||E,AE;|| < ¢/2.

We complete the first part of the proof by showing that ¢4(E) = 0. On the
contrary, if P = ¢4(E) is nonzero, then the least upper bound F of the range
projections of EP, AEP, and 4* EP is in ¢ 7, I11, 1, Proposition 2]. If ¢ is E, (%)
with ¢(4) = 0, then the map ¢ given by

WB) = (P — F)¢(B)

is a positive Z(P — F)-module homomorphism of the von Neumann algebra
@p-F) into its center Z(P — F) which vanishes on the central ideal §
=9N &p_r) of &p_r) and takes Py = P— F into P — F. There is a
nonzero abelian projection G in &(p_ ) such that

IGAG| < ¢/2
due to the fact that
WP —-F)AP-F)) =0

implies that 0 is in ¥y (P — F)A(P — F)). Since G is also a nonzero abelian
projection in € and since
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GE, = GAE, = E;AG = 0

for all i, the set {E,} is not maximal. This is a contradiction. Hence, we have
that ¢y(E) = 0.

The converse is already known [12, 49]. Q.E.D.

REMARK. If C is in the essential central range of an operator A with respect
to the strong radical in a properly infinite algebra @ then we have shown
elsewhere [11, Proof of Theorem 4] that there is an invertible B in @ and a
projection E equivalent to 1 such that EB 'ABE = CE.

The next result answers a question of L. Zsid6 [15].

COROLLARY 2.3. Let A be an element in a properly infinite von Neumann
algebra @ with center Z; then the intersection of  with the sets

$, = weak closure [convex {UAU*|U € U(@)}]

and

$, = weak closure (UAU*|U € U(®Q)}

coincide. Here U(R) is the set of unitary operators of Q.

Proor. The ideal %, of @ generated by the finite projections of @ is a central
ideal and & N Zis equal to K (4) [12, 4.16]. If Cis in %y,(4), then there is,
foreveryn = 1,2, ..., a projection E, with dim E, > dim 4, such that

IE,(C = A)E, | <n”!

(Theorem 2.2). Each projection E, is properly infinite with central support 1.
We may assume that, for each n, there is a set {P|i € I'} orthogonal central
projections of sum 1 such that each P, is the sum of an infinite set {E;lj € 1}
equivalent orthogonal projections such that E; = E, P for some in J; [7, 11,
8, Theorem 1, Corollary 2 and III, 1, Theorem 1, Corollary 1]. Let % be a finite
set of unit vectors in the Hilbert space of @ There is a finite subset S of I, and
for each i € §, a finite subset S; of J; such that

(1 - S{RE;lj € S;,i € SHxll < (IC - 4] + D)™

for all x in X. There is, for every / in S, a unitary operator U, in & P, that carries
F = E,R onto G; = X {PRE;|j € S;} and B, — F onto B — G; because F,
~ G;and P — F ~ P, — G;. Thus there is a unitary operator U = U(%,n) in
@ such that UR, = U, for i € §. Setting G = 3 {G;|i € S}and P = I {B|i
€ S}, we get that
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I(C — A)Ux, Ux)|
< 2l(€ = I = G)x|| + |((C — 4)E, PUx,E, PUx)|
< nl+ a7l =2n7!

for every x € %. This proves that C is in the set §, N Z. Since the relation
§, N ZC§ N Zis clear, we see that§ N =5, N L. QE.D.

We now prove a stronger version of Theorem 2.2 that will be needed to
characterize selfadjoint commutators. For this we need to study the spectral
resolution of normal operators in a von Neumann algebra.

DEFINITION 2.4. Let Q be the spectrum of the abelian von Neumann algebra
% generated by the center £ of a von Neumann algebra @ and a selfadjoint
element 4 in @; for every element C in the set Z, of selfadjoint elements of &,
let E,(C) denote the projection in ® whose Gelfand transform is the
characteristic function of the open and closed subset closure {w € Q|4 (w)
< C"(w)} of Q.

We notice that {E,(A\)|—c0 < A < oo} is the spectral resolution of A4.

PROPOSITION 2.5. Let A be a selfadjoint operator in the von Neumann algebra
@ with center Z and let  be a central ideal of @ The map

C - E((C) = E(C)

of Z, into the lattice of projections of the von Neumann algebra ® generated by £
and A satisfies the following properties:

(i) PE(C) = PE(CP) for every C in Z, and every projection P in Z;

(i) E(lub X) = lub {E(C)|C € X} for every subset X of %, that is bounded
above;

(iii) (4 — C)(gb {E(C")|C’ > C} — E(C)) = O for every C in Z,; and

(iv) ¢(E(C + D) — E(C — D)) = 0 for every D > 0 in &, if and only if
C € Z— Spd.

Here C > D means that the set {w € Q|C” (w) > D" (w)} is dense in Q.

PROOF. (i) Clear.

(ii) This is clear if % is a monotonely increasing net in Z. In general, for any
finite subset C;, ..., C, of %, there are projections R, ..., B, in Z of sum 1
such that lub C; = 3 P.C;. Using part (i) and the fact that E(C) < E(D) for
C < D in Z,, we have that

b E(C;) < E(ubC;) = I BRE(C;) < Wb E(C).

This means that
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E(lub %) = E(lub {lub C;|{C;} is a finite subset of X})
= lub {E(lub C;)|{C;} is a finite subset of X}

= lub {E(C)|C € %X}.
(i) Let C’ = C + n~!. Then we have that

0< (4 -C)E(C)-EC) <n ..
Thus we have

(4 -C)eb{E(C) - E(C)IC" > C}=0.

(iv) Let C be in £— Spg4 and let {B} be a sequence of orthogonal
projections in € of sum 1 such that DB, > n'P for every n = 1,2,....
Because

P(E(C + D) — E(C — D)) > P(E(P(C +n"Y)) — E(P(C - n"")))

for every central projection P majorized by P, and because CP is in
ZP — Spgp AP [12, 3.10], it is sufficient to show that the assumption that
(E(C +n~') = E(C-n"")) = Eisin 9 leads to a contradiction. In fact, we
have that (C — A)(1 — E) is invertible in ®(1 — E) since (C — 4) () # 0
for every w in @ with (1 — E) (w) = 1. If B is the inverse of (C — A)(1 — E)
in (1 — E), then B is the inverse of C — A modulo 4. This contradicts the
definition of the essential central spectrum. Thus, we have that ¢4(E) = 0.

Conversely, let C in €, be such that ¢;(E(C + D) — E(C — D)) = 0 for
every D in €, with D > 0. For every { in the spectrum of Z and every
n=1,2 ..., the projection E(C + n~') — E(C — n~") is not in § + [¢] [12,
3.1] and

IC™ @) = DEC +n™") = E(C—n™))E + DI < n7"

Hence, each C (¢) is in the spectrum of the canonical image of A in

/¢ +[¢]). QED.

COROLLARY 2.6. Let A be a normal element in a von Neumann algebra @ with
center € and let A, (resp. A,) be 27 (4 + A*) (resp. (2i )14 = 4*)). Then an
element C in Z is in the essential central spectrum of A modulo the central ideal
9 if and only if

Cg((EA‘(Cl + ‘Dl) - EAI(CI - Dl))(EAz(CZ + D2) - EAz(Cz - Dz))) =0
for every D, D, > 0in Z. Here
G =2""C+C* and C,=(2)"'(C-C*)

The next result is needed in §3.
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CoROLLARY 2.7. If A is a selfadjoint operator in a type 11, von Neumann
algebra @, then there are two equivalent orthogonal projections of sum 1 that
commute with A.

Proor. The set X of all selfadjoint elements C in the center £ of @ such that
the value of the canonical operator-valued trace ® of @ (cf. [7, I, 4, Definition
2]) does not exceed 1 at the point E(C) = E,(C) is a bounded monotonely
increasing net in € (Proposition 2.5(i) and (ii)). We get an element Cy = lub%
such that ®(E(Cy)) < § and such that ®(E(C)) >} for every C > C,
(Proposition 2.5(ii)). There is a projection E majorized by

F = glb {E(C) - E(Cy)IC > Cp)
such that
B(E) = 3 - ®(E(Gy))

because @ is a continuous algebra. Since E commutes with 4 due to the fact
AF = C,F (Proposition 2.5(iii)), the projections E(Cy) + E and its orthogo-
nal complement are equivalent orthogonal projections that commute with A4.
Q.E.D.

The next two lemmas are phrased in sufficient generality so that they will be
applicable to the matrix decomposition in §3.

LeMMA 2.8. Let E; (i = 1,2) be projections of central support 1 in the
continuous von Neumann algebra @ and let ¢ be a a-weakly continuous state of
@~ such that &(E,) = a > 0. Then for any B in the interval |0, e[ and any A in @,
there are projections F; (i = 1, 2) of central support 1 majorized by the E; respec-
tively such that ¢(F,) > fand F,AF, =0.

PrOOF. Let  be the center of @ Given any P in (%) it is sufficient to show
that there is a Q in (2P) and projections F, of central support Q majorized by
the respective E; such that ¢(F) > BQ and F,AF, = 0. There is no loss of
generality in the assumption that P = 1.

We may assume that E, AE, is not 0. Let U be a partial isometry and B a
positive operator in @ so that UB is the polar decomposition of E,AE,. We
may assume that the central support of the range projection F of B is 1 and
that the central support P of

E = glb {Eg(C’) — ER(C)|C’ > C},

where C is in ZF — Sp B in @, is either 0 or 1. On the one hand, if P = 0,
then the strong limit of the monotonely decreasing sequence

G,=Ey(C+n)=Eg(C—-n"") (n=12...)
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is 0 and so we can find a number n and a Q in () such that

04(G,) < (a = B)Q,

and such that FQ — G, Q has central support Q. But the projection G, Q also
has central support Q (Proposition 2.5(iv)). Hence the projections

F=Q(E —G,) and F = UG,U*Q

are projections of central support Q such that ¢(F) > BQ and KLAF = 0.
On the other hand, if P = 1, then we may write E as the sum of an infinite
sequence {G,} of orthogonal projections of central support 1 which commutes
with B (Proposition 2.5(iii)). There is a Q in () with ¢(G,)Q < (a — B)Q.
Setting F; = (E, — G,)Q and F, = UG, U*, we get two projections with
¢(F) > BQ and F,AF, = 0. Q.E.D.

LEMMA 2.9. For any finite subset X of a properly infinite von Neumann algebra
@ and any sequence {E,} of properly infinite projections of central support 1, there
is a sequence {E} of equivalent projections of central support 1 such that
E, < E,and E,AE, = 0 forevery 1 < m < n < o and A in %.

Proor. We may assume that @ is either purely infinite or semifinite. First
assume & is purely infinite. By passing to a direct summand of @ and to
subprojections of the E,, if necessary, we may assume that each E, is o-finite
[7, 111, 1, Lemma 7]. Since the least upper bound of the E, is o-finite, we may
assume @ is o-finite by reducing to @ if necessary. Applying Lemma 2.7
recursively, we may find projections

(Epulm > 1} (n=12,...)

in @ and corresponding maximal abelian projections {F,} in the commutant of
the center £ of @ such that

E,,<E,<E, forn<p<
E  AE, =0 for 1 <m<nandAm?X
and

T(Eppir) 22 -3 (370<j < k}fork =0,1,...

Here 7, = 7 .Setting E, = glb, E, , we get that

nm?
m(E,) = glbr (E,, ) > 27!

so that E;, is equivalent to 1 [7, III, 8, Theorem 1, Corollary 5] and that
EJAE, =0for1 < m<n< o and4 in%X.



128 HERBERT HALPERN

Now let @ be semifinite. Suppose we have found equivalent finite projections

1» E3, ..., E of central support 1 such that E;, < E, form=1,2,...,n
and E AE; = Ofor1 < m <p < nand 4 in % The least upper bound F
of the range projections of E, |AE, for 1 < m < nand 4 in X is a finite
projection, and so there is a projection £}, with E;, ~ E; | < E,,, — F. By
induction the required sequence {E}} exists. Q.E.D.

We now obtain the desired extension of Theorem 2.2.

THEOREM 2.10. Let @ be a von Neumann algebra with center %, and let
$ = $5(G) be a central ideal of & in canonical form. Suppose that &(1 — Q) is a
continuous von Neumann algebra. Let O be in the essential central spectrum
modulo § of an element A in @. For any sequence {a,,} of positive numbers and any
finite subset X of @, there is a sequence {E,} of projections in @ such that

(1) dimE, > dim4;

(2) E,BE,, = 0forall 1 < m < n< o and B inX; and

(3 IE,AE,| < a, for all n.
In particular, if 1 is in %, then the projections {E,} are orthogonal.

REMARK. For the applications in §3 it is important to notice that the strong
radical ¢ of a properly infinite algebra @ satisfies the hypothesis of Theorem
2.10. We recall, in fact, that @Q is the weak closure of the central ideal 9,(G)
(cf. Introduction) and so &(1 — Q) is of type III or (0) if QQ(G) = ¢ because
¢ contains all finite projections.

If @ has a nonzero type I direct summand @P with P = (0) and E is an
abelian projection of central support P, there is no orthogonal sequence {E,}
of projections of central support P that satisfies (3) for a, = 27'n =1,
2,...)and4A =1-E.

ProoF. We may assume that P; = 1, and by passing to direct summands,
that @ is continuous and § = (0) or that the support of §is 1.

If @ is continuous and § = (0), then there is a sequence {F,} of projections
with central support 1 such that ||F,AF,|| < a,. The desired sequence {E,}
may be constructed in a recursive fashion from Lemma 2.8 (cf. Proof, Lemma
29).

Now suppose the support of 9 is 1. We also suppose that X contains the
identity 1. There is a sequence {F,} of projections in @ with dim F, > dim ¢
and ||E,AF|| < a, for every n = 1,2, ... (Theorem 2.2). The projections F,
must be properly infinite projections of central support 1 since every finite
projection is in § (12, 2.2). Let § be the set of all families

S ={E,l(n,i) € NxX1I}

of nonzero projections in @ with the following properties
(i) E,; ~ E,forallm,nin Nand i € I,
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(i) E,BE,; =0 for all distinct pairs (m,i), (n,j) in NXI and B in
Y =%UX* U {4,4%); and

(iii) |E,;AE,;|| < a,fornin Nandi € L
Here X* = {B*|B € %X} and N is the set of natural numbers. The set $ is
nonvoid, and in fact, for every nonzero central projection P, there is a
sequence {E/} of equivalent orthogonal projections of central support P such
that E;, < F,and E, BE, = Oforall 1 < m <n < oo and Bin % (Lemma
2.9). By Zorn’s lemma we may find a maximal set S = {E,;|(n,i) € N X I}in
the partial ordering on § given by the relation

(3) {E,l(n,i) € NxI'} <{Ey;|(ni) € NXI"}

if and only if I’ C I” and E,; = E,; for i € I'. For convenience, let k be a
point not in I. Let {N,|m € N} be a partition of the natural numbers into
countably many disjoint infinite sets such that the smallest number in the set
N, is not smaller than m, and let

E, = S{E,|(ni) € N, x I}

for m =1,2,.... We show that each projection E, has dimension greater
than that of ¢ by showing ¢4(E,) = 0. First we notice that each projection
E; = 3 {E,|i € I} has central support P equal to 1; otherwise, there would
be a sequence {E,; } of central support 1 — P such that

{E,l(n,i) € NX (I U {k})}

lies in . Since the projections E, are equivalent, the projections E, are
equivalent, properly infinite, orthogonal projections of central support 1 [7, III
2, Proposition 10]. We show that ¢4(E,) = P is zero. On the contrary, assume
P is nonzero. We may write E; as the sum of an infinite sequence {G,} of
orthogonal projections each equivalent to E; and thus to each E,,. Because

P3E,<P3G, = PE,

we get that P 3 E, is in 9. The least upper bound E of the range supports of
the finite set of elements {PB 3 E,|B € %} is also a projection in 4. This
means that the algebra C = &p- ) is properly infinite and that 0 is in the
essential range of the element C = (P — E)A(P — E) in @modulo the central
ideal ¢ = § N Cof C. Indeed, if ¢ is a positive Z-module homomorphism of
the algebra @ into € with ¢(1) = 1, $(4) = 0 and ¢(9) = (0), then the
function ¢ on € given by

YD) = (P - E)¢(D)
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is a positive module homomorphism of € into its center (P — E) with
Y(P—E)=P—E(C)=0,and (') = (0). There is a sequence {F,} of
projections in € with dim F;, > dim¢’ such that ||F, AF,|| < a,. Since the
weak closure of ¢’ is C and since the orthogonal complement of the largest
central projection in C that is in 9" is 0, the projections F, are properly infinite
and of central support P — E in C There are equivalent projections
{E,i|n € N} of central support 1 such that E,, < F,, and E, BE,,, = O for
l1<m<n< oandBintheset{(P— E)D(P — E)|D € %}. Then the set

{E,il(n,i) € Nx (I U {k})}
is in §. This is a contradiction. Hence, we have that ¢(E;) = 0 and that
dim E, > dim . Thus {E, } is a sequence of projections satisyfing property (1).
We show that {E, } also satisfies (2) and (3). In fact, for 1 < m < n < o and
B in %, we have that
IE,BE, Il = “2 {E,iBE;|(p.q,i.j) € N, XN, ><1><1}“ =0
from (ii), and that

IEnAE, |l =

- ‘2 (E,AE,|(p.i) € me””

= 1ub (I, AE, I (p.i) € Ny X 1} <

S (Epdey|(p.0.0) € Ny x N, x X 1)

from (ii) and (iii). Q.E.D.
We now examine the relation of the essential central spectrum and essential
central range.

COROLLARY 2.11. Let @ be a von Neumann algebra and let § = QQ(G ) be a
central ideal of @ in canonical form. Suppose that &(1 — Q) is a continuous von
Neumann algebra. Then an element C in & is in the essential central range of an
element A in @ modulo the central ideal § if and only if there is a projection E in
@ with dim E > dim 9 such that CE is in the essential central spectrum of EAE
in @ modulo the central ideal $ N ERE.

ProoF. There is no loss of generality in that assumption that Py = 1 and
C = 0. If 0 is in ¥4(4), there is a sequence {E,} of projections in @ with
dim E, > dim §, |E,, AE,,| < m™', and E,BE, = 0for 1< m<n< oo
and B in the set {1, 4, 4*} (Theorem 2.10). Let E be the projection E = 3 E,.
Each E,, has dimension greater than that of § = § N EQE since
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(4) Cg*(Em) = Cg(Em)E = 0.
Since
lim||EAEE,, || = lim||E,, AE, | = 0

we get that 0 is in £E — Spy, EAE.

Conversely, let E be a projection in @ with dim E > dim 9 such that 0 is in
the essential central spectrum of EAE modulo ¢ = § N @;. For every
m=12,..., there is an E, in @z with dim E, > dim §’ such that
|E, EAEE, || < m™! (cf. [12, 3. 16]) Because E has central support 1, we get
that dim E,, > dim $ from relation (4). We conclude from Theorem 2.2 that
%4(4) contains 0. Q.E.D.

3. Selfadjoint commutators. In this section the selfadjoint commutators in
properly infinite von Neumann algebras are characterized as those elements
that contain 0 in their essential central range modulo the strong radical. A
matrix form similar to that used for bounded operators on a separable space
in [1] is found for such operators.

DerFINITION 3.1. A sequence {E,|l < n < m} (where m is a finite or
countable cardinal) of orthogonal projections in a properly infinite von
Neumann algebra is said to be a matrix base if 1 ~ E; ~ E, ~--- and
SE, =

Let{E,|1 < n < m}be a matrix base for the properly infinite algebra @ and
let U, be partial isometries of € with domain support E, and range support 1.
Then each element 4 in @ can be written as

A =3 EAE, =3 Ur-U,AUS - U,.

The m X m-matrix (U, AU, ) is said to be a matrix with regard to the base {E,,}.
The matrix depends on the choice of the partial isometries; however, in the
sequel the choice of the matrix base is critical and the choice of the partial
isometries is immaterial.

We now begin a series of matrix reductions. The first extends the result in
Corollary 2.7.

LEMMA 3.2. For every selfadjoint operator A in a properly infinite von Neumann
algebra @, there is a matrix base {E;|1 < i < 2} for @ that commutes with A.

PROOF. Let § be the strong radical of @ let £ be the center of @ and let C,
and C; be the least upper bound and greatest lower bound respectively of
€ — Sped [12, 3.11]. Since there is a projection P in € with PC, > PC, and
(l - {é‘ = (1 - P)C;, we may assume that either C, > C, or that C,
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If C,> C;, then the projections E = E,(C, + D) — E,(C,— D) and
1 — E are equivalent to 1 whenever 0 < D < 27/(C, — C,) due to Proposi-
tion 2.5(iv). Hence, we may assume C, = C = C,.

Let E denote the range projection of the selfadjoint operator C — 4 in §;
then the projection c,(E )(1 — E), which annihilates C — 4, is equivalent to
o(E) = cg(E ) and can be written as the sum of two orthogonal projections E;,
E, both equivalent to ¢(E) [7, III, 8, Theorem 1, Corollary 2]. The projections
E, + c(E)E and E, form a matrix base for @(E) that commute with
¢(E)(C — A) and thus with ¢(E)A4. So we may assume that ¢c(E) = 0, or
equivalently, that E ~ 1.

It is sufficient to show that given any selfadjoint operator 4 in ¢ with range
support equivalent to 1, there are equivalent orthogonal projections of sum 1
that commute with 4. We prove first that there are at least two nonzero
equivalent orthogonal projections majorized by the range support E of 4 that
commute with 4. Assume for the present that E = 1. Let |, C, be in Z with
C; > C, > 0 and let F(C;, C,) be the projection in § given by

F(C,,C,)) = (E(C) — E(G)) + (E(-C) — E(-C}))

where E(C,) = E,(C,) (cf. Definition 2.4). By decomposing into the product
of two algebras, we may suppose that either there is a C, in Z with

4l +1=C,> ¢ >0

such that F(C,, C;) is properly infinite of central support 1 or that F(Cy, C,)
is finite or zero for every Cy, > C; > 0 (Proposition 2.5(i)).

First assume F(Cy, C,) is properly infinite of central support 1. We show
that there is a C, in € with C; > C, > 0 such that

F(C,,Cy) > F(Cy, C)).

In fact, we show more: for any C, C’ in € with C > C’ > 0 so that F(C,C’)
is properly infinite of central support 1, thereisa C” in Zwith C’ > C” > 0
such that

F(C’,C") > F(C,C’).
Since we have that
PE(D) = PE(PD)

for every selfadjoint D in € (Proposition 2.5(i)), it is sufficient to show that for
any P in (%) there is a Q in (2P) and a C” in ZQ with C'Q > C”"Q > 0 and

QF(C'Q,C"Q) > QF(CQ,C’Q).
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There is no loss of generality in the assumption that P = 1. We show that the
relation

F(C,C") > F(C',C")

for all C” with C’ > C” > 0 leads to a contradiction. In fact let {F,} be a
sequence of orthogonal projections of sum F(C,C’) such that F, ~ F(C,C’)
for every n [7, 111, 8, Theorem 1, Corollary 2]. We have that

1~1-F(CpC)=3Fm™'C,(im+1)7'C") < 3 E, < F(C,C")

because the range projection of A4 given by 1 — E(0 +) + E(0) is equal to 1.
This is a contradiction due to the fact F(C,C’) is in . So thereisa C” in &
with C’ > C” > 0 such that

F(C’,C") > F(C,C).

Noting that F(C’,C”) in the previous expression is properly infinite of central
support 1, we may find a strictly decreasing sequence {C,} in " such that
F(Cy,C)) < F(C|,Cy) < . Setting

E; = 3 F(Cppy Copy) and E; = 3 F(Cpp_y5 Cyp),
we obtain two orthogonal projections E; and E, of sum 1 such that
E, < E, < F(Cy,C)) + E,.

Since F(Cy, C;) is in the strong radical, we get that E; ~ E, ~ 1.

Now we assume that Fi (Co,n_') is a finite or zero projection for every
n=12,....If @is a continuous algebra, then there are, for each n = 1, 2,
..+, two equivalent orthogonal projections of sum F(C,, n~') which commute
with AF(Cy,n~") and consequently with 4 (Corollary 2.7). Since F' (Cosn™") s
nonzero for some n (Proposition 2.5(iii)), we obtain nonzero equivalent
orthogonal projections commuting with 4. Therefore, we may assume that @
is of type I. There is an n such that F (Co,n-') is not an abelian projection;
otherwise, the properly infinite projection 1 can be expressed as the least upper
bound of a monotonely increasing sequence {F(Co,n"')} of abelian projec-
tions which is also an abelian projection. This means that there is an »n and a
Q in (2) such that QF(Cy,n™") is the sum of m (m > 2) orthogonal abelian
projections of central support Q. Because 4 F(C,, n! )Q can be represented as
a diagonal m X m operator matrix over & F (Co,n"')Q based on matrix units
arising from the m equivalent orthogonal abelian projections of sum
F(Cy,n")Q[6], we may find two nonzero orthogonal equivalent projections
(actually abelian projections) which commute with AF(Cy,n')Q and thus
with 4.
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In every case we have found two nonzero equivalent orthogonal projections
that commute with 4. We now remove the assumption that the range
projection E is equal to 1. Let V be an isometry in @ whose range support is
E. The element V*AV is a selfadjoint element in the strong radical whose
range support is 1. As was just shown, there are nonzero orthogonal equivalent
projections E, and E, that commute with ¥4 V*. The projections VE, V* and
VE, V* are nonzero equivalent orthogonal projections majorized by E that
commute with 4.

We now construct the desired projections by a maximality argument. Let
{E,G,li € I} be a maximal set of nonzero mutually orthogonal projections
majorized by E that commute with 4 such that F ~ G; for every i. The
projections F = 3 F and G = X G; are equivalent orthogonal projections
majorized by E that commute with 4. The projection

E' = (F)(E-(F+G))

is equivalent to ¢(F) since ¢(F) = ¢(G), and the range support E’ of AE’ in
the strong radical of the properly infinite von Neumann algebra @c(F) is
equivalent to ¢(F). This means ¢(F) = 0; otherwise, the arguments of the
preceding paragraphs can be applied to show that {F, G;} is not maximal. Thus
we have that the projections F, 1 — F form a matrix base that commutes with
A. QE.D.

REMARK. Combining the results of Corollary 2.7, Lemma 3.2, and [6], we
obtain that, for every selfadjoint operator 4 in a von Neumann algebra with
no type I, (n odd) part, there are two equivalent orthogonal projections of sum
1 commuting with 4.

The next lemma extends the results of Anderson and Stampfli [2].

LEMMA 3.3. Let A be an element in a properly infinite von Neumann algebra &;
then there is a matrix base E,, E, (resp. R, F) of @ such that FAE, = F, AE,
= 0.

PROOF. Let B be a positive selfadjoint operator in @ and let U be a partial
isometry of @so that 4 = UB is the polar decomposition of 4. The projections
«(U*U)(1 = U*U) and ¢(U*U)(1 — UU*) may be written as the sum of
two equivalent orthogonal projections E, E’ and F, F’ respectively. Here
«(U*U) = (U *U) where ¢ is the strong radical of & The projections

E, = E+(U*U)U*U, E,=F

and
F =F+U*U)UU*, F=F

are equivalent orthogonal projections of sum c(U* U) respectively with
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FAE, = FAE, = 0.

So we may assume that ¢(U*U) = 0. There are equivalent orthogonal
projections E, E’ of sum U* U that commute with B due to the fact that U* U
is properly infinite (Lemma 3.2). The projections UEU* and UE'U* are
orthogonal equivalent projections of sum UU*. Setting

E=E+(1-U*U), E,=E
and
= UEU* + (1 - UU*), FE = UE'U*,

we get matrix bases that satisfy the desired relations. Q.E.D.

We now are ready to characterize a selfadjoint commutator. We treat the
product of o-finite type I algebras separately. This case is slightly anomalous
and in fact follows from the precedlng lemmas via the analysxs of J. Anderson
[1]. In the sequel let a,, = ((n + D) forn=1,2,.

THEOREM 3.4. Let @ be the product of o-finite properly infinite type 1 von
Neumann algebras. Then an element A in Q is a selfadjoint commutator in @ if and
only if 0 is in the essential central range of A modulo the strong radical  of @.

Proor. First let 4 have the matrix representation

® o 2)

where B € §. Since %(B* B + BB*) = {0}, we may write B as the infinite
matrix operator B = (B;) over @ with ||B,|| < 2| B|| min{a;, a;}. In fact, by
applying Theorem 2.10 ‘o B*B + BB*, we may find a sequence {E,} of
orthogonal projections in @ such that dim E, > dim § and

|E,(B* B + BB*)E,|| < 42| B|"

forall 1 < n < 0. Replacing E; by 1 — 3 {E,|n > 2}, we get a matrix base
{E,} of @ such that

IE, BE,,|| < 2||B||min{a,,,a,}.

The calculation of M. David [5, Theorem 3] now shows that 4 is a selfadjoint
commutator.

Now let 4 be an operator in @ such that %(4) contains 0. Applying Theorem
2.10, we may find an orthogonal sequence {F,} of maximal abelian projections
of @ of sum F such that | — F ~ F ~ | and such that
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IE,AE| < n7's

mn

for all myn=1,2,... [7, III, 8, Theorem 1, Corollary 5]. Here & is the
Kronecker delta. We have that FAFisin §since G = 3 {F,|l < n < m}isin
¢ and

IFAF(1 = G)|| = lub {|E,AE||n > m) < (m+ 1)

The 2,2 term of the matrix of 4 induced by the matrix base 1 — F, Fisin ¢
Using Lemma 3.3, we can follow the analysis of J. Anderson [1] to write 4 as
an 8 X 8-matrix over @ such that each of the four 2 X 2 diagonal blocks is of
the form (5). Thus 4 is a selfadjoint commutator.

Conversely, let A = BC — CB with B = B* and C in & We may assume
that 0 is in € — Spy B. Given & > 0, there is a projection E in @ with
dim E > dim ¢ and with ||BE|| = ||EB|| < e (Proposition 2.5(iv)). We have
that |[EAE|| < 2¢||Cl|, and thus that 0 € ¥4(4). QE.D.

Now we can restrict our attention to properly infinite algebras with no o-
finite type I direct summands.

LeMMA 3.5. Let A be a selfadjoint operator in a properly infinite von Neumann
algebra @ with no o-finite type 1 direct summands and let {E,} be a sequence of
projections in @ which commute with A; then for every n = 1,2, ..., there are
equivalent orthogonal projections E,, and E,, commuting with A and majorized
by E, such that lub (E, — (E,; + E,;)) is in the strong radical of @.

ProoF. We may assume that either € is a continuous o-finite algebra or that
@ has no o-finite direct summand. In case @ is a continuous o-finite algebra, we
show that E, may in fact be written as the sum of two equivalent orthogonal
projections commuting with 4. Let P, be the largest central projection in @
such that E, P, is finite. Then E, P, (resp. E, (1 — P,)) may be written as the sum
of two equivalent orthogonal projections commuting with AE, P, (resp.
AE,(1 — P)) due to Corollary 2.7 (resp. Lemma 3.2). So E, may be written as
the sum of two equivalent orthogonal projections commuting with A4.

Now suppose @ has no o-finite direct summands. For everyn = 1,2, ...,
we may use the reasoning of the preceding paragraph to find two equivalent
orthogonal projections E,;, E,, commuting with 4 and majorized by E, so
that E, — (E,; + E,,) is a finite projection. To complete the proof it is
sufficient to show that the least upper bound F of a monotonely increasing
sequence {F,} of finite projections in a von Neumann algebra with no o-finite
direct summands is in the strong radical [7, III, 2, Proposition 5]. Since the
strong radical is a central ideal, and since any direct summand of a finite
projection is finite, it is sufficient to show that there is a nonzero central
projection Q such that FQ is in the strong radical. Let x be a unit vector in
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the Hilbert space of @ Foreachn = 1,2, ..., there is an orthogonal set {Q;}
central projections of sum 1 such that F, Q is o- ﬁmte [7, 1, 6,Proposition 9(111)]
There is a finite subset of the Q; of sum Q, such that [x — @, x| < 27,
Setting Q equal to the greatest lower bound of the monotonely decreasing
sequence {Q, 0, * * - Q,} of central prOJectlons, we obtain the required nonzero
projection because ||x — Ox|| < 27! and because FQ is o-finite and conse-
quently in the strong radical. Q.E.D.

If 0 is in the essential central range of 4 modulo the strong radical of the
properly infinite algebra @, the projections {E, } of Theorem 2.10 induce the
matrix decomposition 4 = (C;;) over & with IIC | < a,8,, for m,n > 2.
Here we replace E; of Theorem 2.10 by 1 — ¥ {E,|n > 2}, which majorizes
E, and is thus equivalent to 1. We may also choose the E, so that E,, BE, = 0
for2 < m < n < o0 and B in a preassigned finite subset of @& We now obtain
a second matrix form for 4.

LEMMA 3.6. Let A be an element in a properly infinite von Neumann algebra @
with no o-finite type 1 direct summands and let (E,} be an infinite matrix base of
@ such that |E,BE,| =0 for 2<m<n< oo and B in the set %X
= {4*,4,A* A, AA*)}. Then there are orthogonal equivalent projections E,, and
E,, of sum E, such that

EyAZ{Eyin > 2} = EpA S {E, In > 2} = 0.

PROOF. Let U be a partial isometry and B a positive element of @ so that UB
is the polar decomposition of E;4 3 {E,|n > 2}. Because each E, (n > 2)
commutes with B due to the validity of the relation

E,B*BE, = E, A*(E, + E,)(E, + E|)AE, = E,A*AE, = 0

for 2 < m < n < 0, each E, commutes with the range projection E of B.
There are equivalent orthogonal projections F,; and F, (n > 2) commuting
with B and majorized by EE, such that

F =3 (EE, - (E, + E,)ln > 2}

is in the strong radical § of @ (Lemma 3.5). The projection E, — E, E (n > 2)
(resp. E; — UU™) is also the sum of orthogonal projections Gn, ’ G 2> Gy3 such
that G,; ~ G, and G5 is in §. Then we let

Enl = (EEn - }:;12) + Gnl + Gn3

and
En2 = F;IZ + Gn2

forn > 2 and
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= UZ (EE, - Fyln > 2)U* + G, + G}
and
= U3 {E,ln > 2)U* + G,,.

We have that ¢(E,|) = c( 2) = 0forn > 2andso E, ~1~ E,. Here
¢ =c. Also we have that

(Eyy) = c(U<F+ S{En> 2})U* + Gy, + 0,3)

= (V(S Bl > 2)0* + 6,)

= c(y(z {Eyln > 2}>U* + G,z) = o(Ep),

and thus E;; ~ | ~ E;; We also have that

EnA S (Bl > 2} = U(E - 2 (Faln > 2)) S (gl > 2)8 = 0
and

EpA 'S (Eyln > 2) = US (B > 2)(E - S (ol > 2))8 = 0.

QE.D.

Now if 0 is in the essential central spectrum of A in the properly infinite von
Neumann algebra @, then we may employ Theorem 2.10 and Lemma 3.6 (as
applied to 4*) to write 4 as a 4 X 4-matrix (4 ;) over @ such that 4y = A3,
= 0 and such that 433 and A4, can be further decomposed to infinite operator
matrices (C;;) over & of the form IC;ll < ;8. To apply Lemma 3.6 to this
new matrix we need the next lemma

LeMMA 3.7. Let A be an element of a properly infinite von Neumann algebra @
and let {E,} be an infinite matrix base for @ such that Fy AF, = 0 for m > 2 and
|EAE, |l < a,8,,, for m,n > 2; then there is an infinite matrix base {E,} for @
such that E,BE,, =0 for 2< m < n < o and B in theset?x,—{lAA*
AA*,A*A}, and IIEIAE,,,H < a,, |E, 4E, || < a,, form > 2.

PrOOF. We use the same arguments as in the proof of Theorem 2.10. Let &
be the family of all sets

S ={E,l(n,i) € NX1I}

of nonzero projections in @ such that
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() E,; ~ E,forallmpnin Nand i € I;

(ii) E,; BE,,; = 0 for all B in % and distinct pairs (m,i), (n,j) in N X I; and

(iii) E,; < F,forallnin N and i in .
From Lemma 2.9, we conclude that § is nonvoid, and from Zorn’s lemma we
find a maximal set S = {E,;|(n,i) € N X I}in § in the partial ordering (3).
Let {N,|n € N} be a partition of N into a sequence of infinite sets such that
the smallest element of N, is not less than n. As in Lemma 2.9, we can show
that each of the projections

E, = S {E,lmi) € N,xI}

is a properly infinite projection of central support 1. We show that each E, is
equivalent to 1. If @ is the product of o-finite algebras, then each E, is
equivalent to 1 since each E, is properly infinite. So we may assume that € has
no o-finite direct summands. We show that E, ~ 1 by showing that the largest
central projection P such that PE, is in the strong radical is P = 0. We argue
by contradiction. As in Theorem 2.10, we have that P 3 E,, is in §. For every
n =1,2,..., the orthogonal complement G, in PF, of the least upper bound
of the range supports of the elements F, BP X E, for B in % is equivalent to
P due to the fact this least upper bound is in §. Setting G = X G, and
applying Lemma 2.9 to the element GAG in the properly infinite algebra @
and to the sequence {G,} of projections, we may find a sequence {G,} of
projections in & so that

{Enil(n,i) € Nx (1 U {k})}

is greater than S in the partial ordering on §. This is a contradiction. So
E, ~ 1
Replacing E; by 1 — 3 {E,|n > 2} if necessary, we obtain a matrix base
{E,} that satisfies the required conditions. On the one hand, we have
|E,AE, |l = lub {|E,,AE,||(n,i) € N, X1} < a,,

form > 2, and

|E,, BE,|l = lub {|E, BE,||(p.4,i,j) € Ny X NyXIX 1} =0

for m, n > 2 and B in %. On the other hand, we have that
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|E,AE, || < ||4 Z{E,l(n,i) € N, x I}

<|zugmen,)

<|g{az@iennen,}

< ||[S{EA4E|n € N,}||< Wb {|E4E]|l|n € N,} € a,

form > 2. Q.E.D.
Now we can prove our main theorem.

THEOREM 3.8. An element A in a properly infinite von Neumann algebra @ is a
selfadjoint commutator if and only if 0 is in the essential central range of A modulo
the strong radical of @.

PROOF. If 4 is a selfadjoint commutator, then the essential central spectrum
%(A) of @ modulo the strong radical ¢ contains 0. The proof presented in
Theorem 3.4 is sufficient.

Conversely, we may assume @ has no o-finite type I direct summands
(Theorem 3.4). Let A be in @ and let 0 € H(4). We have already indicated
after Lemma 3.5 that with regard to a matrix base E; (1 < i < 4) the operator
A can be written as a 4 X 4-matrix (4;;) over @ such that 4,; = A3, = 0, and
such that A3; and 4,4 can be written with respect to an infinite matrix base as
matrices over @ of the form (C;;), where IC;ll < o;8;fori,j=1,2,.... Let
A’ (resp. A”) be given by

o (A A [ , =(A22 Ay >>
A <0 A44> (esp.A 0 4,))
Setting C equal to A4’ (resp. A”) and applying Lemma 3.7 to C*, we get a
matrix base {F;|l < n < oo} for @ such that EBE, =0 forall2 < m<n
< o and B in the set X = {1,C,C*,C*C,CC*}, and ||E,CE| < a,,
%, CE,|l < a,, form > 2. From Lemma 3.6 applied to the matrix base {F,),
we see that C may be written as a 4 X 4-matrix over @ of the form Figure 1,
where [|4; [, I|B;]l, IC;]l, |D; | are majorized by a;. Actually, the entries (+) of
the 3,1 and 4,2 (resp. 3,4 and 4,3) blocks have the same form as the 4,1 (resp.
4,4) block. However, we do not need this information here. Reassembling the
matrix 4 from the various parts and applying J. Anderson’s rearrangement [1],
vizz. 157-56->4-51,2->5->2,3—>3,8—>8, we obtain an 8 X 8-
matrix over @ whose four 2 X 2-diagonal blocks have the form Figure 2, where
Bl < a;, IC;]| < @;. From the calculation of M. David [5], we get that each
of these four diagonal blocks is a selfadjoint commutator in @ and thus that A
itself is a selfadjoint commutator (cf. [1], [11, Proof, 4]). Q.E.D.
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* * * 0
* * 0 *
B, G 0
B, G
%* . *
0
A, D, 0
A, D,
* * .
0
FIGURE 1
* 0
B, C,
. 0
FIGURE 2

An operator 4 in a von Neumann algebra @ is said to be similar to an
operator B in @ if there is an invertible C in @ with C4 Cc~! = B. We can now

characterize those operators in a properly infinite algebra that are similar to a
selfadjoint commutator.
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PROPOSITION 3.9. An operator A in a properly infinite von Neumann algebra @
with strong radical  is similar to a selfadjoint commutator in @ if and only if there
is a k > 0 such that

(e = )& + EDI > «led

for every complex o and every § in the spectrum Z of the center € of &, or
equivalently, such that

(@ = AEV| > «laf
for every a and maximal ideal . in Q.

ProOF. Suppose there exists such a k > 0. For convenience suppose that
l4]l = 1. There is a C in € such that

C ) = lla@ + KD

[12, 3.2]. There is a projection P in € such that CP > 0 (i.e. {¢ € Z|C"(¢)
> 0} is dense in {¢ € Z|P"(¢) = 1)) and C(1 — P) = 0. We have that
A(1 = P) is in the strong radical of @q-py [12,3.1), and thus A(1 — P) is a
selfadjoint commutator in €q-p)- By passing to the direct summand &, we
may assume that C > 0. There is an orthogonal sequence {1;1} of projections

in € of sum 1 such that C"(¢) is in the interval [(n + 1), n~!] whenever
B () = 1.Foreveryn = 1,2,... thereisa B, in § such that

4 + B,)EDI

is in the interval [(n + 7, 2n~'] for every ¢ with P (¢) = 1. The sum
2 (n+ 1)(4 + B,) B, converges in the strong topology to an element B in @.
We have that

1B + DIl > 1

and

(e = B)(¢ + [§DIl > o

for every complex a and every { in the union of the sets {{ € Z|B"({) = 1}
and thus for every { in Z. This means that the canonical image of B in the
algebra @/(% + [¢]) is never a scalar multiple of the identity. There is an
invertible C in @ and a projection F equivalent to 1 such that FCBC™'F = 0
[11, Proof, Theorem 4)]. For every ¢ > 0 and every n = 1, 2, ..., there is a
projection E,, in § such that

I1B,(1 = E)I < e/dIcllic™ .
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The range projection F, of F(C"l)*E,l is in § and thus G, = F—F, is
equivalent to 1. Setting G = X G, B, we get a projection G equivalent to 1
such that

lccAC™'G| < [IFCBCT'F|| + |Icl IC™Y)| lub, |B(1 = E,)|| < e

We conclude that {(CAC ") contains 0 (Theorem 2.2), and consequently that
CAC™! is a selfadjoint commutator in € (Theorems 3.4 and 3.8).
Conversely, let 4 be a selfadjoint commutator in & We have that

(6) Il = )& + DIl > lad

for every scalar « and every { € Z; otherwise,

lal = lele = 4 ) < lllw = G + DI < lod

for some « and {. Here ¢ is a state of A~ which vanishes on ¢ U {4}
(Theorems 3.4 and 3.8). If C is an invertible element in @, then we have that

@ = cac™HG+ DI > dchic™ )™ e

for every a and {. Q.E.D.

REMARK. The preceding proposition shows that the operators of class (F’) in
a properly infinite algebra, viz. those operators which are not equal to a scalar
multiple of the identity (zero included) modulo any maximal ideal, that were
studied in [10] are contained in the set of operators similar to a selfadjoint
commutator.

COROLLARY 3.10. For any operator A and any normal operator B in a properly
infinite von Neumann algebra the operator BA — AB is a selfadjoint commutator.

PrROOF. We may assume that O is in the essential central spectrum of B
modulo the strong radical [12, 3.5]. For every ¢ > 0, there is a projection E in
@ equivalent to the identity with

IEB|| = ||BE|| < e

(Corollary 2.6). Hence, the essential central spectrum of B4 — AB modulo the
strong radical contains 0 (Theorem 2.2) and so BA — AB is a selfadjoint
commutator (Theorem 3.8). Q.E.D.

REMARK. Actually, for any 4 and any seminormal B (i.e. either
+(BB* — B*B) is positive) in a properly infinite algebra, the operator
AB — BA is a selfadjoint commutator (cf. [11, Note “added in proof”]).

The next proposition extends the results of H. Radjavi [13] for the algebra
of bounded operators on a separable Hilbert space.
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ProposiTION 3.11. A4 selfadjoint operator in a properly infinite von Neumann
algebra is a selfadjoint commutator if and only if its essential central spectrum
modulo the strong radical contains a nonpositive and a nonnegative element.

Proor. The essential central range of a selfadjoint operator modulo the
strong radical is the smallest central convex set containing the essential central
spectrum modulo the strong radical [12, 4.4]. Q.E.D.

The next result extends that of J. Williams [14] for the algebra of all
bounded operators on a separable Hilbert space.

PROPOSITION 3.12. Every commutator of a properly infinite factor von Neumann
algebra is similar to a selfadjoint commutator.

PROOF. An operator 4 is a commutator in a properly infinite factor & if and
only if there is an invertible B in @ and a projection E in @ with E ~ 1 such
that EBAB™'E = 0 [3], [4], [10]. Thus, every commutator of @ is similar to a
selfadjoint commutator (Theorems 3.4 and 3.8).

One may also use the arguments of J. Williams [14] together with Theorems
3.4 and 3.8 to avoid the computations of [3], [4], [10]. Q.E.D.

One might conjecture that an operator is a commutator if and only if it is
not equal to a nonzero scalar multiple of the identity modulo every maximal
ideal (i.e. if and only if it is an operator of class (F)). If the center is large, this
turns out to be false.

ExaMPLE 3.13. In every properly infinite von Neumann algebra € not equal
to a finite product of factors, there is an operator of class (F) which is not a
commutator. Indeed, there is for every natural number m a neighborhood
V = ¥, of 1 contained in the sphere of radius one about 1 such that AB — B4
in ¥, and ||4]| < 1 implies ||B|| > m. This holds even for factors. Notice that
every neighborhood of the identity contains commutators [10, 3.10]. On the
contrary, there would be bounded sequences {4,} and {B,} in & with
{4,B, — B,A,} converging to the identity. This is impossible [16, Problem
183]. So such a neighborhood ¥, exists.

Now let {B,} be an orthogonal sequence of nonzero central projections of @
of sum 1. There is a commutator C,, in P, such that ||C,, — 1|l < 1 and
C,, = AB— BA for ||4]| <1 1mphes ||B|| > m?. Then the operator C
= 2 m lC is in class (F). In fact, let { be in the spectrum of the center.
Either P, (§) = 1 for some m or B, ({) = O for all m. In the first case

CE+ KD = (B4 - 4B)(§ +[8])

for some A and B in @B,. Here § is the strong radical. Hence C is not a
nonzero scalar multiple of the identity modulo § + [{]. In the second case we
have that
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IcG+ kDI < [o(1 - 2 gl > m)D]| < 20m + 1

and so C(% + [{]) = 0. Now suppose C = AB — BA for A, B in & We may
assume that [|4]| < 1. This means that ||mBE, || > m?. This is impossible. So
C is not a commutator.

In contradistinction to factors we show that not every commutator is similar
to a selfadjoint commutator when the center is sufficiently large.

PROPOSITION 3.14. Let A be an operator of class (F) in a properly infinite von
Neumann algebra @; then there is a sequence { B} of strictly positive numbers and
a sequence {P} of orthogonal central projections of sum 1 such that 3, B, AP,
converges in the strong topology to a commutator in Q.

PROOF. Let ¢ be the strong radical of @ and let B = cg(A). There is a

sequence {P.|n > 1} of orthogonal central projections of sum 1 — B such that
l4@ + [¢]DIl > »n~! for every { in the spectrum of the center of @B, [12, 3.1].
Therefore, the operators AP, (n > 1) are of class (F’) in @ B,. There is B, and
C, in @B, with

AP = B,C,- C,B,

foralln > 0[10]. Setting B, equal to the inverse of ||B, || |C, || + 1, we see that
> B,AP, converges in the strong topology and that it is a commutator in @.
Q.E.D.

ExaMPLE 3.15. Let @ be a properly infinite von Neumann algebra. Suppose
there is a sequence {P,} of nonzero orthogonal central projections of sum 1. Let
E, be a projection in @ P, such that E, ~ P, — E, ~ P, and let

A=3@"'P+n2E).

Then A4 is in class (F) and so there is a sequence {B,} of strictly positive
numbers and a sequence {Q,} of orthogonal central projections of sum 1 such
that B = X B,AQ, is a commutator in @ (Proposition 3.14). There is no state
¢ in @™ and invertible C in @ with $(¢) = (0) and $(CBC™!) = 0; otherwise,
the state ¢ would vanish on CAC ™! or equivalently K(CAC ~1) would contain
0. This is known to be impossible (cf. [11, p. 63f.]). Hence, the operator B is
not similar to a selfadjoint commutator.
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