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ABsTRACT. This paper continues the investigations of this series. Suppose
that G = ANS where S and NS are normal subgroups of G. Suppose that
(|4]), INS]) = 1, S is extraspecial, and S/ Z(S) is a faithful minimal module
for the subgroup AN of G. Assume that k is a field of characteristic prime to
|G| and V is a faithful irreducible k[G]-module. The structure of G is
discussed in the minimal situation where N is cyclic, 4 is nilpotent, and V|,
does not have a regular 4-direct summand.

We shall assume familiarity with the ideas of [3]. Most results needed here
are quoted but familiarity should help.

We study V' by observing that V' = V, ® V* where V, is a certain
canonical 4G-module. Actually, we only investigate X, the character of V).
This character X, is described in §2. It is a fairly well-known entity. In §3 we
give sufficient information to completely determine X, |, where S/Z(S) is a
minimal 4-module. Finally in §4 we determine all exceptions to the state-
ment: “%,|, contains at least three copies of the regular 4-character” under
the hypothesis that S/Z(S) is a minimal AN-module for a nonnilpotent
group AN.

The organization of §4 is similar to that of §2 of [2]. We translate in (4.3)
the question of regular 4-characters in X, |, to questions about 4-orbits upon
N and characters in ¥, |, (v)v- The major portion of that section is devoted to
studying A4-orbits upon N. Combinatorial-number theoretic methods are used
to pin down the bad cases of AN.

One corollary of all the analysis of §4 is:

THEOREM. Assume S/ Z(S) is a faithful minimal AN-module for cyclic N, A
is nilpotent, AN nonnilpotent, and NS = G. Suppose A is L, ~ Z,-free. Then
V|4 contains a copy of the regular A-module.

Putting the results of this paper together with those of [3] we may prove
(the actual topic of [5]) that the answer to our question is “always” under the
hypotheses: (chark, [AG|)=1; A is Z, ~ Z free for all p| |4|; and
Ce(S/Z2(S) < G.
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The major theorems of this paper are much too long to restate here. They
are (3.8) and (4.28).

1. Some estimates. Most proofs of this paper are finished off with combina-
torial arguments. This leads to the necessity for certain elementary estimates
with integers. We list these now with their proofs.

(1.1) Suppose x, n are integers such that x > 2 and n > 3. Then

(x"+ D/ (x+ )< (x"=1)/(x=1).
Putting this another way, we wish to prove that
"+ 1)/ (x"=-)<(x+1)/(x-1).
The function (x + 1)/(x — 1) is decreasing for x > 2. This proves (l.1).

(1.2) If x, n are integers such that x > 2 and n > 3 then (x" + 1)/(x + 1)
> n(4n + 1) except as tabulated below:

x 2 3 4 5 6
n < 10 5 4 3 3

The function f(x, n) = (x" + 1)/(x + 1) — n(4n + 1) is increasing in x >
2. It is increasing in n also unless we have the following values:

x 2 3 4
n < 8 4 4

This is easily checked by taking the derivative with respect to n. Using this,
plug in values for (x, n) finding where f(x, n) is both increasing and positive.
It is positive and increasing for the values tabulated below:

x 2 3 4 5 6 7
n 11 6 5 4 4 3

The lemma follows immediately.
(1.3) Suppose x > 2 and n > 3 are integers. Lete = *1. Then
(x" + )/ (x + &) > f(n)

where f(n) = n, 2n + 1), (4n + 1), n(2n + 1), or n(4n + 1) except as tabu-
lated below:

f(n) x n <

+1 n 2 3
2n +1 2 5

3 3

4n + 1 2 6

3 3

4 3
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n(2n + 1) 2 9
3 4

4 4

5 3

n(4n + 1) 2 10
3 5

4 4

5 3

6 3

-1 2n +1 2 3
4n + 1 2 4

3 3

n2n + 1) 2 6
3 3

4 3

n(dn + 1) 2 8
3 4

4 3

5 3

By (1.1) and (1.2) we need only check the values for x, n tabulated in (1.3).

(1.4) Suppose x > 2 and n > 3 are integers. Lete = + 1. Then
(x"+ &)/ (x + &) = f(n)
where f(n) =n, 2n + 1, 4n + 1, n(2n + 1), or n(4n + 1) only for x, n as
tabulated below:

f(n) x n

+1 n 2 3
2n + 1 2 5

3 3

4n + 1 4 3

n2n + 1) 2 9

5 3

-1 2n+1 2 3
4n + 1 3 3

n(2n+1) 4 3

By (1.3) we need only check the values there.

(1.5) Suppose &, r are primes, n > 1 is an integer and ¢ = *1.
@I "+e ) =1Lthen(r“+e & =1
(b)If £ > 2 and £°||r" + e for s > 1 then £+'||r™ + &.
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(c) If £=2 and 2°||r" + ¢ for s > 1 then 2||r*" + 1 and 2°*!||r2" — |
unless r" = —1 (mod 4), s =1,ande = — 1.

If r = ¢ then (a) is obvious. Suppose r # £ By Fermat’s Little Theorem
r = r" 2 — ¢ (mod §). This proves (a).

Let r* + e = £m where (§, m) =1 and s > 0. Consider (b). Here we
expand by the binomial theorem.

+ (_e)f—lm£:+l + (_8)€+ e = m§s+l (mod 52:+l )

§
ride=(@Em-efte=| 3 (—e)“’m’é‘“’”"(g)]grﬂ

This proves (b).

In (¢) P e=2m—el+e=22m -2 "me+ 1+e If e=1 then
r"+1=2(mod4). If e= —1 then r** — 1 =2*'m (mod 2%). If s > 1
then 2°*!||r?" — 1. So we may assume that s = 1. Now 2||r" — 1 so that
4| + 1 or r" = —1 (mod 4). The proof of (c) is finished.

(1.6) Suppose &, r are primes, n > 1 is an integer,and e = * 1. If
(r+e)/(r"+e)=¢ fors> 1
then

Hé¢=2,n=1Le=-l,and2’=r+ |5 0r
(ii)é=3,n=1,e=1l,andr=2.

By (1.5) we have s = 1 unless § = 2, = —1,and r" = —1 (mod 4). In this
latter case (r2" — 1)/(r" — 1) = r" + 1. Since r" = —1 (mod 4), n is odd. If
2¢|r* + 1 then 2°||r + 1. Therefore 22 =r"+ 1> r+ 1> 2. Son=1and
2°=r+ 1.

We may now assume that s = 1. With x = r" we have (x¢ + ¢)/(x + ¢) =
£ If £ > 2 then by (1.4) we must have r* =2, {=3,e= 1. If £=2 then
e=—land 2= x + 1 = r" + 1. Obviously this has no solution with r > 1.
The proof is complete.

(1.7) Suppose r, p are primes and a, b > 1 are integers. If r? = pb + 1then
r=3p=2a=2>b=3.

This little result is well known.
(1.8) Suppose that r is a prime, n > 1 an integer, and r" — 1 = 2°, 2+ 3,
2.5,2¢-3-5. Then n = 1 unless we have one of the tabulated values below:

r 2 2 3 3 5 7 11 31
n 2 4 2 4 2 2 2 2

rm—-13 3.5 2% 2.5 2.3 2¢.3 25.3.5 26.3.5
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Assume that n > L If r" =1 =2 then by 1.7) r=3, n=2,5s = 3. We
ignore this case now. Let ¢ = 1. Assume that n = 2m. We have the
following possibilities:

r"+ ¢ 2¢.3 2¢.5 2¢.3 2%.3.5
r" — ¢ 26 26 2.5 26

Suppose r™ = § (mod 4) where § = +1. Thenr" + 86 =1,2,3,5,3-5,2

+3,2-5,2-3-5. These give the following values:

rm 0 1222275 3?9 2 3 2 2.3 22 7 11 31
m+48 1 235 3:52-32-52-3:51 2 3 5 3-52-3 25 2:3-5
Mm-8 -1013 13 22 22 27 3 25 7 17 22 223 2

1

s 1 1 11 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

From this table we have the following possibilities:

r 2 2 5 3 7 11 31

m 1 2 1 2 1 1 1

€ 1 -1 1 1 -1 1 -1
rm+e 3 3 2-3 2-5 2-3 22,3 2-3-5
rm —e 1 5 2? 2 2 2-5 2

These values are all tabulated in the result.
Next assume that n = m{ is odd and { is an odd prime. Then
r™-1)/(m=1)=3,53-5
since the power of 2 in r” — 1 is equal to the power of 2 in r” — 1. Since
$23,8Q8+1)> (™ —1)/(r™ — 1). We need only check x = r™, ¢ = n

as in (1.3). None of the values listed there satisfies our equality. The proof is
complete.

2. Characters of extensions. In this section we study how to determine
character values for certain extensions of extraspecial groups. A very general
method is given in a recent paper of Isaacs [10]. The method given here was
found independently but is very similar. Since the method has been around
for some time, we will quote and piece together the necessary results.

Let G be a group and x a character of G in some field. Let % be a

representation of G affording x. We set p(x) = det . Since the determinant
is invariant, ¢ is well defined.

(2.1) THEOREM. Let G be a group with normal subgroup N. Let k be a field of

characteristic O containing the |G|th roots of unity. Assume that \ is an
irreducible character of N and
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(1) A is G-invariant,
(2) p(A) extends to a linear character a of G, and
(3) A(1) and [G: N] are relatively prime.

Then there exists a unique character x of G such that
(2) Xl = A and
®) 900 = a.

This result is quoted in [1], [7]. Various sources of proof are given there.
As a corollary we obtain the following result.

(2.2) PROPOSITION. Suppose G = AR where R is a normal extraspecial
r-subgroup of G, (|A|,r) =1, and Z(R) < Z(AG). Assume that k is a char-
acteristic 0 field containing the |G |th roots of unity. Let X be a nontrivial linear
k-character of Z(R). There is a unique k-character X, = X,(AR) of G lying
over A such that:

(1) X,| z(r) is @ multiple of A;

(2) %, | is irreducible;

(3) 9(X,) is the trivial character on A.

As is well known [9, Kapitel V, Satz 16.14] there is a unique character x of
G which is irreducible on R such that x|z, is a multiple of A. It is not
difficult to show that @(x) is the trivial character of R. Let a be the trivial
character of G. Since x(1) is a power of r and (|4}, r) = 1, (2.1) tells us that X,
exists satisfying the required conditions and uniqueness.

Observe that:

(2.3) PrOPOSITION. In (2.2) if Ay < A then

%)\(AoR) = X\(4R )IAOR'

In other words, if x € A then ZX,(4AR)(x) can be determined as
%, ((x)R)(x). Itis sufficient to determine %, for cyclic extensions.

LetR = R /Z(R). Then for x € 4, R is an {x)-module with a nonsingu-
lar symplectic form g induced by the commutator map of R and fixed by x. It
is easy to see, using elementary properties of symplectic spaces, that:

(2.4) PROPOSITION. R = R+ + R, where the R, are {x)-modules such
that C(R)) = Couo(T) for every {x)-submodule T # (0) of R; and C(.(R)
# Cio(Ry), i # . Further, each R; is a nonsingular space. In particular,
R; = R,/ Z(R) where R, is an {x)-invariant extraspecial group. And for i # J,
R, is orthogonal to EJ

It is obvious that R is the central product of the extraspecial groups R,.
Using this fact we may further reduce the problem of constructing X,.

(2.5) ProrosiTiON [1, (IV.5)]. Assume that AR is a group with normal
extraspecial r-subgroup R and complement A with (|A|, r) = 1. Suppose R =
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R\R, is a central product of two normal extraspecial subgroups, R, and R,, of
AR. Let x; be an irreducible character of AR; such that x|p is faithful and
irreducible, and x;| z gy is a multiple of \. Form AR, X AR, and let

M = {(z2), 2,)|lz; € Z(R), z;z, = 1}.

There is an isomorphism of AR into (AR, X AR,)/M. Further, x,x, is an
irreducible character of (AR, X AR,)/ M and is irreducible on the image of R
in this group and is a multiple of A on Z(R).

Note that x,(1) and x,(1) are powers of r. If X, and X, are representatives
affording x, and x, respectively then ,; ® X, affords x,x,. Thus @(x,x,) =
(X )*Pp(x ™. In particular, if x, = X,(4R,) and x, = %,(4R,) then

XiX2 = X\(4R).
(2.6) PROPOSITION. If R, = R,/ Z(R) in (2.4) then

E\(4R) = [1%\(4R,).

Now we need only compute X, ((x)R) where C,(y) is the same for all
y#*1L,y€R=R/Z(R).

(2.7) ProrosiTION [1, (IV.8), (IV.9)]. Suppose AR is a group with normal
extraspecial r-subgroup R of order r**!. Suppose Z(R) < Z(AR) and
R/Z(R) is a direct sum of faithful irreducible kK[A]-modules. If A is cyclic,
r™ = (—1) (mod|A|), and X is a nontrivial linear character of Z (R) then

x(x) = r"A(x), x € Z(R),
=(-1)A(z), x~wz,w € A% z € Z(R),
=0, elsewhere,
is an irreducible character of AR. Further,

Xla=ap,s + (—l)tld

where a = [r™ — (—1)1/|A|, p, is the regular, and 1 is the trivial character of
A.

REMARK. Under these hypotheses ¢ = 0, 1 exists with r™ = (— 1) (mod|A])
[1, AV.7)).

Now x|z and X, ({x)>R)| are both the irreducible characters of R lying
over A. Thus [6, (51.7)] there is a linear character p of AR/R =~ A so that
xp = X,. Computing restrictions to 4 we have

L= oX) = o0w) = o) p¥V = g(ap, = 1) p
= 9(0)" w0 = vV, a=[rm = (=1)]/}4],

where » is the alternating character of the regular A-representation. If r = 2
then |4| is odd so that » = 1,. Thus p = 1. If r > 2 then »“ has values *1.

x(1)
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Since (|4|, x(1)) = 1, p has values +1. So X = p. In particular, p = »°.
Therefore, p will be the alternating character of 4 if a is odd, otherwise
p=1,

(2.8) PROPOSITION. Suppose x, A, R are as in (2.7). Then there is a linear
character p. of AR/R = A so that

xu = &(4R).

Further, p. = 1, unless r > 2, |A| is even, and a = [r™ — (= 1)']/|A| is odd. In
this latter case . is the alternating character of the regular representation of A.

Now (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) are sufficient to calculate the
values of X,(4R) for any appropriate 4 and R. By (24) and (2.7) it is
sufficient to know that action of A upon R=R /Z (R) in order to determine
X,(AR)|,. In the next section we shall explicitly compute X, in some cases.

3. Ordinary theory of minimal nilpotent modules.

(3.1) HYPOTHESES. (a) G = AR is a group with normal extraspecial r-sub-
group R of order r*"*! and (r, |4]) = 1. The group 4 is nilpotent, faithful
and irreducible upon R/Z(R), and centralizes Z(R). The A-module
R/Z(R) is a minimal 4-module.

(b) Q is the rational field, & is a primitive |G|th root of unity and k = Q(J).
All characters are k-characters.

A little explanation is in order.

(3.2) DErINITION. Suppose K is a field, H is a group and V is an irreducible
K[H]-module. Assume that there is a nonsingular symplectic form g: V X V
— K fixed by H. We call V a minimal K[H }-module if for any subgroup N
normal in G either V|, is homogeneous or V|, = V, + V, where the V; are
the homogeneous components and are totally isotropic subspaces.

The commutator map on R induces a nonsingular symplectic form upon
R=R /Z (R) fixed by A. If we let K-GF(r) then R is a minimal 4-module.
The group A4 is nilpotent. All nilpotent minimal modules have been classified.
The group A is a subgroup of a larger nilpotent group B which acts upon R
[3, (3.20)].

We describe the structure of these groups B now [3, §2].

Recall that |R| = r?"*!, Let K = GF(r), K = GF(r™), and K = GF(r*").

(3.3) ExaMpLE. B is cyclic of order r™ + 1.
Let R = K* and ¢: € — ¢"", the automorphism of order two of K. Let B be

the multiplicative subgroup of K> of order r™ + 1. Then B acts upon R by
multiplication.
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Let Tr: K > K be the trace map. Choose p € KX so that p® = — p (if
r=2letu=1)and set

g(u, v) = Tr(u(uv® — u%)), u,v € R.

(3.4) EXAMPLE. |B| = 2'*! where 2||r™ + 1,7 > 2, and r™ = —1 (mod 4).

Let R, g be as in (3.3). Le} Q be the 2-Sylow subgroup of B in (3.3). Form
the semidirect product {p)K*. Choose » € K* so that »”"*! = —1. In the
semidirect product set B = {(Q, gv). Then B is quaternion.

(3.5) ExaMPLE. |B| = 2'*! where 2°||r™ — 1, r > 2, and r™ = 1 (mod 4).

Let R be a 2-dimensional K-space with basis e, e,. As a K-space we write
matrices in the basis e, e, to represent linear transformations. Choose
» € KX of order 2 where 2/||r™ — 1. Let

o=l ooy )

If Tr: K- K is the trace map and u = ae, + Be,, v = a’e; + fB’e, where a,
o', B, B € K then set
g(u,v) = Tr(aB” — a’'B).
Here B is quaternion. Let 0 = {(w).
(3.6) EXAMPLE. |B| | 2(r™ = 1), r > 2, m = 2n, and r" = | (mod 4).

Let R be a 2-dimensional K-space with basis e,, e,. Let Q, = {») be the
2-Sylow subgroup of K. Choose 8 of order (" + 1)/2 in K*. Let y: e — &
be the automorphism of order two on K. Using matrices in the basis e, e, to
denote linear transformations set

Q=<w=[” v_.]»b=[-¢ ¢]>
D=<"=[0 e*'])’

The group Q is semidihedral. Let B= QD = Q X D, and C ={w). If
u = ae, + Pe, then yu = %, — ave,. If Tr: K—K is the trace map and
u=ae + fe, v=oa'e + B’e, where a,a’, B, 8" € K then set g(u,v) =
Tr(Ba’ — af’).

In [3, (3.20)] we proved the following.

(3.7) THEOREM. Assume (3.1). Then there is an identification so that A < B
and R = R/Z(R) is given by one of (3.3)~(3.6).

To determine X, = X, (A4R), then, it will suffice to determine X, for 4 = B
since other values may be obtained by restriction (see (2.3)).

and
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(3.8) THEOREM. Assume (3.1). Then R, A< B are given by (3.3)-(3.6).
Further, on B, the values of X, are given below.
(i) B, R as in (3.3).

X (x)=r", x=1,
(a) - 1’ X € (Bz)#’
1, X € B\ B?;
(b) X\lp=ps — 1 wherep =1lp

unless 2| |B| in which case p is the alternating character of the regula

B-representation.
(ii) B, R as in (3.4).

X (x)=rm x =1,
_1’ X € (Qz)#a
(€)) 1, x €0\Q?
-1, x € B\Q,|0|>4,
1, xE€B\Q, |Q|=4
®) Q1=4 Xlz=([r"+1]/|B|=3)s+ 2 x+ lp;
x(D>1
© 10|>4, Flp=([r"+1]/|B|-3)ps+ Z x+u
x()>1
where . is the faithful linear character of B/ Q.
(iii) B, R as in (3.5).
f}\(x) = ’.m’ X = l’
l’ x € (QZ)#’
(a) - ]’ x € Q \ QZ’
1, x € B\Q,|0|>4,
-1, xXEB\Q,|Q|=4

®) |Q|=4’ xAlB=([rm_l]/|BI_%)pB+ 2 x+ 2 UY

x(1)>1 n(1)=1

n*l,
© 101>4, Hlg=([r"-1]/|B|-23)ps+ = x+ 2 0
x(1)>1 ”5119)&:1

where . is the faithful linear character of B/ Q.
(iv) B, R as in (3.6).
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X, (x)=r", x=1,
1, x € (C™D)*,
-1, x €(C\CHD,
@) 1, x €(Q\C)D,x* & D,
-1, x €(Q\C)D* x?€ D,
rm/2, xEQ\C,x*=1;

(b) xx|3=([’m"1]/13|“‘%)93+ 2 X+(IQ+#|)6+F‘2
x()>1

where p, is the linear character of Q with dihedral kernel, p, is the linear
character of Q with quaternion kernel, and 8 is the regular character of D.

The calculation of values is carried out by the methods of §2. We illustrate
the method for one value, possibly the most difficult. In (iv) let x € 0\ C
have order two. Then x is conjugate to bw. So we may take x = bw. Let K; be
the fixed subfield of ¢ in K. If « € K, then

bw(e, + ve,) = e, + ve, and bw(e, — ve,) = — (e, — vey).
Let 1?, = Ky(e, + ve,) + Kyv(e; — ve,) and R, = R{*. These are nonsingular
orthogonal components as in (2.4). Let R,/ Z(R) = R,.
Since bw = x is trivial upon R, we have
E\(CxDRy)(x) = rm/2,
Now we use x of (2.7) for {(x)R,. Thus x(x) = (—1)* where r™/? = (- 1)’
(mod 2) since [{x)| = 2. Since r is odd we may take t = 0. Now
a=(rm?-1)/2
is even, so that
x(x) =1 =%({x>R,)(x)
by (2.8). Finally, by (2.6)
EN(AR)(x) = B\(COR ) (X)E(XDRy)(x) = r™/2+ 1 = rm/2,

If we had chosen ¢ = 1 above then a = (™ + 1)/2, which is odd. So we

obtain, by (2.8),
=x(x) = 1 = Z,(CxDRy )(x).

Other character values are obtained this same way.

The characters are decomposed upon B by means of inner products. We
illustrate this only for (iv)(b). In this case, B = Q X D and C is cyclic of
index two in Q. The group Q is semidihedral. Let D* be the maximal dihedral
and Q* the maximal quaternion subgroups of Q. Then T = D*\ C? is the set

of noncentral involutions of Q; and F = Q*\ C? is the set of elements of
order four in Q but not in C. Set E = C \ C%
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Let x be an irreducible character of B. How many times does x appear in
X,|p? That is, what is the value of (%, |5, X)5?

First assume that x(1) > 1. Then x = 7|® for some linear character 1 of
CD nontrivial upon C2. Using part (i)(b) which follows directly from (2.7)
and (2.8) we have

E\lcp = (r™ = 1)/|CDlpcp +
where p is the alternating character of the regular representation for CD. So
Els X) 5= Enlcos M ep= (r™ — 1)/|CD|= 2(["’” - l]/|B|_ %) + L
This shows, since x(1) = 2, that the count of x in %,|, is correct in (iv)(b).

Next assume that n = yu where » is linear upon D and p is linear upon Q.
Thus ker p > C2 In fact, the kernel of p is one of Q, C, Q*, D*. But then

BElpm)=r"+ X »(x)

xe(cw)®
- 2 r(x)ux)+ X r(x)p(x)
x€ED x€FD
- 2 r(px)+ Y u(x)
x€ETD* x€T
=r"—1+|CY X »(x)
xX€D
+( 2 P(X))( 2 -2 -2 u(y))
x€D YEF yEE YET

(1) T op(y).
yET
Let 8, = 0if » # 1, and | if » = 1,,. Observe that p is constant with value

+1 upon the sets F, E, and 7. Let u, = =1 be the value of p on the set
J = F, E, T. Recall that 2’| |r™/?> — 1. Then |C? =|F|=|E|=|T|=2"
Since |D| = (r™/? + 1)/2 our equality has the following form.

|B|(%Alsm) = r™ — 1 +|C2D|(l + ur — #g — p7)8,, +|CD| pr.

The values of p are easily determined. If g = 1, then pp = pg = pr = L If
p# 1y then p is +1 on one and —1 on the other two of F, E, T. We
tabulate the value of 1 + pr — pz — py below.

T+ pr—pe—pr=0 kerp = 0Q,
4, ker p = Q%,
0, ker p = D*,
0, kerp = C.

Let 8,5, = 0 if ker p # Q* and 1 if ker p = Q*. Then our equality can be
stated as below.
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|B|(®Algsm) = r™ — 1 +|B| pup/2 +|B|3, 8,0+
or

(EAlpsm) = ([’m - 1]/|B|- %) +(1+ pr)/2 + 8, 8,00
The value p = —1 unless ker p = Q or D*. The (1 + p;)/2 accounts for the
expression (1, + ;)8 in (iv)(b). The expression §, 8,5 accounts for p,. The
proof of (iv)(b) is now complete. Other parts of (3.8) are proved in the same
manner.

4. Other minimal cases. In the previous section we gave sufficient informa-
tion to answer the following question. If G satisfies (3.1) then when does %, |,
contain copies of the regular A-character p,? In this section we consider this
same question in a more general setting. Actually we wish to prove the
analogue to [2, (4.2)].

(4.1) HypoTHESIS. (a) Suppose H = AN is not nilpotent where NAH is
cyclic, A4 is nilpotent, and 4 N N = 1. Let r be a prime not dividing |H|, and
G = HR where R is a normal extraspecial r-group Z(R) < Z(G), and
R/Z(R) is a faithful minimal H-module.

(b) Let k be a finite extension of the rational field containing all |G|th roots
of unity. Let A be a nontrivial linear character of Z(R) in k and X,(G) = X,
the unique character of (2.2).

The group H acts upon the module ¥ = R/Z(R) fixing the form g given
by the commutator map of R. So it is meaningful to assume that V is a
minimal K[H ]-module where K = GF(r).

We wish to determine how many times p,, the regular A-character, is
contained in ¥%,|,. We shall first prove a theorem which is the basis of our
computations.

(4.2) HYPOTHESES. CONDITION (A): H=H /Cy(N) has at least a regular
orbits in its action upon the elements of N.

ConpiTioN (B): %‘lc”(,,,) contains bu(1) copies of uv for every irreducible
character p of C,(N) and every linear character » of N with order greater
than two.

Since C,;(N) = C,(N) X N, Condition (B) is meaningful. We may prove
the following theorem.

(4.3) THEOREM. Suppose (4.1) and (4.2) hold. Then X, |, contains at least ab
copies of p4, the regular A-character.

The proof is a straightforward computation with inner products. Observe
that for », a linear character of N, x € N, yC,(N) € H the formula

v (x) = p(x*")
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gives an action for H upon the linear characters of N dual to the action of H
upon N. Condition (A) tells us that H permutes the linear characters of N
with at least a regular orbits. Let ) be a complete set of distinct orbit
representations for a regular H-orbits upon the linear characters of N.

By (4.1) (a) H is not nilpotent so that |17 | > 1. The characters of N form a
cyclic group of order |N|. Therefore, for 5 € H and » € 9, »” is a power of
v. In particular, » must have order greater than two. By Condition (B) we
know that X, |, v, contains bu(1) copies of uwv for every irreducible character
p of C,(N).

We are now ready to compute. Let x be any irreducible character of 4. It is
sufficient to prove that (%,|,, x) > abx(1). Restricting to 4, = C,(N)

Xag=c(mt -+ 1)

where the p; are distinct irreducible characters of 4, Form the characters p»
of Cy(N)= Ay X N where » €% and 1 < i< d. Since v generates a
regular H-orbit, Cy(N) is the stabilizer in H of ». Therefore Cy;(N) is the
stabilizer in H of . Induction gives x,, = w»|", a collection of irreducible
characters of H. Since the »’s belong to distinct H-orbits, the x,’s are all
distinct irreducible characters of H. As remarked earlier, %,|c, (v, contains
by, (1) copies of p» for each g, and ». We may calculate

GElas x) = (Enlc, v 1¥) ¢, wy > bi(1) = bx(1)/ cd.

Therefore %, |, contains b(x(1)/cd)Z; X,
Next we compute

(Xl 4> X)A= (Hi”l”'m X)A
= (“iplc,,,(N)nAlA’ X)A= (W’l,«o’ c(py+---+ p'd)),qo
=(me(p+---+ p‘d))Ao= c.

We know now that x,,|, contains cx. That is, %, |, contains b(x(1)/ cd)Zx,,| 4
which contains b(x(1)/cd)Z;,cx = b|D|x(1)x = abx(1)x. We conclude that
X,| 4 contains abp,. The proof of (4.3) is complete.

1. ConDITION A. Our attention must turn now to Conditions (A) and (B).
Next we carry out an extensive analysis of Condition (A). We wish to
determine partially the order of N and of H. Since H acts faithfully upon N
we may consider H < Aut(N). This is a fairly nice situation since N is cyclic.
We shall be concerned with the case where a < 3 in Condition (A). Since
Aut(N) is regular upon generators of N, this forces [Aut(N): H] < 3.

We shall describe H 1 more thoroughly later, but for our purposes now we
need only know that H is either cyclic or H ~ Z, X F where F is cyclic of
even order. This allows us to fix the following hypotheses.
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(4.4) HyrotHEsis. Suppose that L is a cyclic group, K < Aut(L)
[Aut(L): K] < 2, and KX is cyclic or K=~ Z, X F where F is cyclic of even
order.

(4.5) PROPOSITION. Assume (4.4).

(1) If K is cyclic then Aut(L) is cyclic or Aut(L) = Z, X F, where F; is
cyclic of even order.

(2) If K= Z, X F then Aut(L) has one of the following types: (a) Z, X Fy;
(b) Z, X Z, X Fy; or (c) Z, X F, where F is cyclic of even order and F, is
cyclic such that 4| |F,|.

The invariants of the 2-Sylow subgroup of K are (2°) or (2, 2°) as K is cyclic
or not. Since [Aut(L): K] < 2 the possible invariants for a 2-Sylow subgroup
of Aut(L) are:

(1) if K has (2°) then Aut(L) has (2), ‘"), or (2, 2);

(2) if K has (2, 2) then Aut(L) has (2, 2), (2, 2'*}), (2, 2, 2", or (4, 2").

These invariants cover all cases listed above.

This result implies certain facts about the structure of L.

(4.6) PROPOSITION. Assume (4.4). Suppose t > 1.

(1) If (2') is the 2-invariant of Aut(L) then L has order 1, 2, 4, p*, or 2p° for
an odd prime p.

2) If (2,2") are the 2-invariants of Aut(L) then L has order 2° for s > 2,
4p°, pq’, or 2p°q’ where p, q are distinct odd primes such that 2| |q — 1 and
e Np-1D.¢ W (g-1)=2

(3) If 2, 2,2") are the 2-invariants of Aut(L) then L has order 8p¢, 2'*%q/,
4p°q’, p°q’r®, or 2p°q’r® where p, q, r are distinct odd primes such that
2llg - L2||r—1,and

(P =1, ¢ g=-D)=(p"(p = 1), r2 ' (r = 1))

=(¢ "(g-1. I (r-1) =2

(4) If (4, 2'*") are the 2-invariants of Aut(L) then L has order pq’ or 2p%q’
where p and q are distinct odd primes such that 4|p — 1, 4||q — 1 and
(e -1.¢7g-1)=4

Write L= Cy X C; X -+ X C, where C, is cyclic of order 2" and
|C;] = pf for ¢, > 0 and p; an odd prime. Then

Aut(L) = Aut(Cy) X Aut(C,) X - - - X Aut(C,).

Further Aut(C,) is of order 2™~1, If m > 2 then Aut(Co) = Z, X Z,n-». Each
Aut(C)) is cyclic of order p#~!(p;, — 1). The 2-rank of Aut(L)isnif m =0, 1;
n+1if m=2;and n+ 2 if m > 2. For an odd prime p* the p*-rank of
Aut(L) is t* where p*|p~'(p; — 1) for exactly ¢* values of i. Since 1* = 1 we
conclude that (p%~'(p; — 1), p%~'(p; — 1)) is a power of 2 for all i # ;.
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The rest of the proof involves checking invariants. We complete the proof
only for (3). Assume m > 2. Thenn + 2 = 3son = 1. That is, |L| = 2"p*. If
2%||p — 1 then Aut(L) has 2-invariants (2,2"7%2%). So m=3 or x = 1.
Therefore |L| = 2*%%, 2| |p — 1 or 8p°. Assume m = 2. Thenn + 1 =3 s0
that n =2. Here 2*||p — 1 and 2’| |¢ — | and L has order 4p%’. The
2-invariants of Aut(L) are (2,2%,2”). So y = 1. Assume m =0, 1. Then
n =3, The order of L is 2p°q/r® or p°g’rs. 1f 2*||p — 1, 2’| |¢ — 1, and
27| |r — 1 then the 2-invariants of Aut(L) are (2%, 27, 27). Therefore y = z =
1. Part (3) follows from these considerations. Other cases have similar proofs.

This result, (4.6), gives strong conditions upon the number of primes which
may divide |L|. In our specific application, we may also limit the exponent
upon these primes. To carry our such an argument, however, we need
information about our particular group.

Recall the group H and the module ¥ = R/Z(R). Checking hypothesis
(4.1) shows that [3, (3.1)] is a valid hypothesis. In particular, we may quote the
following properties of H from [3].

(4.7) LemMA [3, (3.2)]. If L A H is abelian then L is cyclic.

(4.8) LeMMA [3, (3.3)]. H contains a cyclic self-centralizing normal subgroup
M > N. Further,

(@ Cy(N)=C,(N)XN;

®) (C,NL IND =15

() M = Cy(N) or [Cy(N): M1 =2 and an S,-subgroup of Cy(N) is
quaternion, dihedral, or semidihedral.

We may actually give canonical forms for H and V. First we must
introduce the canonical groups and modules.

For an extension K, of K = GF(r) let § = §(K,/K) be the Galois group
of K, over K. Form the semidirect product J(Ko/K) = § - Ky where K¢ is
the multiplicative group of K, We shall use this group in our constructions.
The additive group K is naturally a 9(K,/K)-module by

(0x) v = o(xv) = (xv)°”'

where 0 € §, x €K, and v € K{.

Observe that we have set § = §(K,/K) when there is no confusion. We
shall use other notational conventions in the following.

Let K = GF(r*"), K = GF(r™), and @: e > ¢"" for ¢ € K. Fix p € K so
that p? = — p (let p = 1 if r = 2). Let Tr: K — K be the trace map.

( .
(4.9) ExampLE. The group J, = F*K/K).
Foru,v € V, = K* set
£1(, v) = Tr( p(u% — uo®)).
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We let 5*(K/K) be the subgroup of §(K/K) fixing the form g,. We set
9 = KX n 9*(K/K). This subgroup has order »” + 1. The index is [T,: 9]
=2m. If P is a p-Sylow subgroup of 7, then P splits over P N 99 unless
p = 2. When p = 2, P is cyclic unless 4|r™ + 1 in which case P is generalized
quaternion.

We shall prove these last facts now.

Let 8 = §(K/K). Then ¥, is a subgroup of § - K*. In fact [3, (3.9)]

F,/9% ~ 8 since J,K" = § - K*. If p is an odd prime then 59 contains the

p-Sylow subgroup of K*. Therefore, an odd p-Sylow subgroup of &, is a
p-Sylow subgroup of I (K/ K). These latter Sylow subgroups split over K*.
So P splits over P N 99 for odd primes p.

Suppose p = 2 and 2/| |r™ + 1 where ¢ > 2. Choose » € K* of order 2*!,
Then v fixes g,. Further, if Py= P N 9] then {gv, Py) is a 2-Sylow
subgroup of 9, and is generalized quaternion. Finally suppose p = 2 and
2'| |[r™ — 1 where t > 2. Choose 6 € § of order 2° where 2°| |2m. A 2-Sylow
subgroup of J; will have order 2°*!. By [3, 3.9)] o» € J, for » € K* will fix
g, if and only if p%u =% = 1. We may choose » to satlsfy this identity. What
is the order of o»? Computing (ov)* ' = (pl!o where yy = pltot i
This element fixes g, so that 1 = p% ™ 'y, = — »@, Therefore, v =
— v5'!. We conclude that (ov)* = (pry)> = —1; and ov has order 25+
Therefore, a 2-Sylow subgroup of J, is cyclic in this case.

(4.10) ExampLE. The group 9, = J(K/K).

Recall that K = GF(r™). Let e,, e, be a K-basis for a 2-dimensional vector
space V,. For u = ae; + Be,, v = a’e; + B’e, where a, o', B, B’ € K set

8 (u,v) = Tr(a’B — af’).
We write semilinear transformations as matrices in the basis e, e,.
o 1 ov ~ ~

7, = ®&/K) = (r =[ B H e }|o & 6(k/K),» € K*).

Then
T ([ fpew)- v

has order r™ — 1. This group fixes the form g,. Let 7 be the inversion
automorphism of K*. Then 7 commutes with §(K/K) upon K*. Therefore:

(4.11) LemMa. 9, = (K7 X §(K/K)) - K*; and 99 = K*.

If P is a p-Sylow subgroup of 9, then the isomorphism of (4.11) where
99 =~ K> makes it clear that P splits over P N 90,

We reference the full description of ,, i = 1, 2, just by (4.9) and (4.10). In
using (4.11) we shall reference it directly.
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Using these two group-module pairs we have the following theorem by [3,
(3.10), (3.17)).

(4.12) THEOREM. Assume (4.1). If M is a normal cyclic self-centralizing
subgroup of H containing N then we may identify H, M, V, g respectively with
Hy, My, V,, g; where Hy < 3, and My < I for i = 1 or 2 where dim V; = 2m.
Ifi=2 then H, (via (4.11)) does not lie in § (K/K) - K*.

Using our comments about Sylow subgroups of 9, we may say the
following.

(4.13) LEMMA. If p is a prime and N contains a p-Sylow subgroup of 9° then a
p-Sylow subgroup P of H splits over P N N. In fact, for an approprzate
conjugate of P, P = (P N A)YP N N).

We always get splitting unless i = 1 and p = 2. We need more than this.
The group P may be chosen so that P < A(P n N) since AN = H and
PANAH ThusPN[A(P N N)]=(P nA)P n N). Since (P N 4) N
(P N N)< An N =1, we get the desired splitting.

The hypotheses of (4.13) are not difficult to satisfy.

(4.14) LemMA. If 7 = @(C(N)) is the set of prime divisors of |C,(N)| then
for purposes of computing X,|, we may assume that N is a Hall n'-subgroup of
90,

Observe that the extension (JH)R exists. The group I°H has order prime
to r so that %,(9°HR) exists. Thus %,|, = %,(5'HR)|,. Let N, be a Hall
w'-subgroup of J9. Consider the group NoH. With Hy = NoH = AN, (since
N, > N by (4.8)(b)) H, satisfies the hypothesis (4.1). So (4.14) holds.

Actually, for computing %, |, the extension (3?H)R need not be known to
exist. As shown in §2, the values of X,|, depend only upon H, V, and g.
Therefore, we may define %, formally upon H, and observe that %, |, remains
unchanged.

ReMARK. For the rest of this section we assume that N is a Hall #’-sub-
group of 9°.

Recall that H=H / Cy(N). We now prove that hypothesis (4.4) holds if H
has fewer than three regular orbits upon N.

(4.15) Lemma. If H has fewer than three regular orbits upon N then (4.4)
holds with H = K and N = L.

Observe that H < Aut(N). Since Aut(N) is regular upon generators of N
we must have [Aut(N): H] < 2. Now 3, /9° is isomorphic to SK/K)ifi =1
and Z, X 8(K/K) if i = 2; The group Ii/M H3%/9° is a subgroup of
one of these. Since [Cy(N): M]= 1,2, H= F or Z, X F where F is cyclic.
Therefore, (4.4) holds.
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At this point (4.6) tells us something about the order of N. We now wish to
bound the exponents of prime powers there. This is done by observing that H
acts upon N like most of Aut(N). In particular, if p¢| |N| for large e then
p| |H|. This double divisibility of primes is hard to carry off. So the expo-
nents are limited.

(4.16) LEMMA. Assume (4.1). Suppose p is a prime, ¢ € A has order p, T is a
p-Sylow subgroup of N of order p® where e > 0, and [0, N)< T. Thenp = 2
and P = {o, T) is dihedral, semidihedral, or quaternion.

Set 4 = A, X A, where 4, is a p-group and 4, is a p’-group. Write
N =T X N, where N, is a p’-group. Now o centralizes 4, and N,. Thus
e, 45, N contains <o, C,(N)N)> = {0, M) and is nilpotent. It is also
normal in H since H/M is abelian. The group P = (o, T) is a p-Sylow
subgroup of <o, M). Therefore P is normal in H. The group P is a split
extension of T by (o). Assume that if p 2 then P is not dihedral,
semidihedral or quaternion. Then P, = (¢, 3!(T)) is a characteristic abelian
subgroup of P. In particular, it is normal in H. By (4.7) it is cyclic. Therefore,
O!(T) = 1. But now {0, T> must be abelian. Again (4.7) applies to tell us that
it is cyclic. So T'= 1. But |T| = p® and e > 0. This contradiction concludes
the proof of (4.16).

(4.17) LeMMA. Assume (4.1). Suppose H has fewer than three regular orbits
upon N. If p®| | |N| thene =0,10orp=2ande=0,1,2, 3.

Suppose the lemma is false. Recall that by (4.15), hypothesis (4.4) holds. In
particular, [Aut(N): H] < 2. Let T be a p-Sylow subgroup of N. We may
assume that |T| = p® where e > 1, 0r e > 3if p = 2. If p is odd than Aut(N)
contains a cyclic group of order p*~!(p — 1). In particular, H contains an
element o of order p. If p = 2 then Aut(N) contains a copy of Zy, X Zye-2. In
this case e > 3 so that H will contain a copy of Z,-s where e — 3 > 0. That
is, we may choose 7 € Aut(N) so that 72 = ¢ € H has order 2. Further, 7
acts with order four upon T and ¢ acts with order p upon T.

By (4.13) we may choose a p-element ¢ € 4 so that 6Cy(N) = 5. Now o”
centralizes N and is in 4. Therefore ¢” € C,(N). By (4.8)(b) we conclude
that o? = 1.

Next we prove that [0, N] < T. Fix a prime ¢ such that ¢ # p and ¢’ | IN]
where f > 0. Suppose o is nontrivial upon a g-Sylow subgroup N, of N. That
is, the image of o in Aut(N,) has order p. We now have plg = 1. That is,
Z, X Z, is a subgroup of Aut(T) X Aut(N,) which, in 1 turn, is a subgroup of
Aut(N ) Assume that p > 2. Then Z, X Z, resides in H since [Aut(N): H 1<
2. But by (4.4) the odd part of H is cychc This contradiction proves that
[0, No] = 1. Since ¢ was arbitrary, we conclude that [0, N] < T if p is odd.
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We may now assume that p = 2. Since |T| = 2° and e > 3, Au(T) = Z,
X Z,-2 where 2°~2 > 4. Further, Aut(N) contains Aut(T) X Aut(Ny). Now
Aut(N) must contain Z, X Z, X Z,. From (4.5)(2) we find that Aut(N) = Z,
X Z, X Fy where Fy is cyclic of even order. From (4.6)(3) we discover that
|N| = 2%/ where 2| |g — 1. At this point we are in trouble. Restricting 7 to
Ny, 7 will have 2-power order. Since 2| |¢ — 1, it has order one or two upon
N,. Therefore, 72 = g is trivial upon Ny. Even when p = 2 we may conclude
that [0, Ny} = 1. So [0, N] < T for all possible p.

We have now satisfied the hypotheses of (4.16). In particular, p = 2 and
P = {0, T) is dihedral, semidihedral, or quaternion. That is, ¢ acts upon T as
x—=x~1 or x— x¥ '~L. Neither of these automorphisms is a square in
Aut(T). But restricting 7 to T gives an element of order four in Aut(7) whose
square is o restricted to T. That is, ¢ is both a square and a nonsquare on T.
This final contradiction completes the proof of (4.17).

The two results (4.16) and (4.17) may be combined to yield the following:

(4.18) LEMMA. Assume (4.1). Suppose H has at most two regular orbits upon
N. Below are tabulated possible structures for N and H. The following notations
are used: c-cyclic; n—noncyclic; p,q,t-distinct odd primes. Further,

(p-Lg-D=(p-Lt-1)=@-1Lt-1)=2,4

H Aut(N) [Aut(N): H] IN|

c c 1, 2 D 2p

c n 2 4p, pq, 2pq

n n 1 4p, pq, 2pq

n n 2 4p, 8p, pq, 2pq, 4pq, pqt, 2pqt

This table is derived from (4.5), (4.6), and (4.17). First observe that N is not
a 2-group. Let A4, be the 2-Sylow subgroup of 4 and A4, the 2-complement. If
N is a cyclic 2-group then AN = A4, X (A,N) is nilpotent. This violates (4.1).
By (4.17) if p>2 and p||N| then p|| |N|. If p=2 and 2| |N| then
16 4 |N|. Combining this information with (4.5) and (4.6) yields the above
table.

We may make one more remark.

(4.19) LEMMA. Assume (4.1). If 2| |N| then |C,(N)| is odd and Cy(N) is
cyclic.

By (4.8)(b) |C,(N)| is odd. Since N is cyclic and Cy(N) = C,(N)N,
(4.8)(b), (c) imply that C,(N) is cyclic.

We turn our attention now to the order of H/M. Recall that by (4.9),
(4.10), and (4.11) we may view 3? as a subgroup of the multiplicative group of
the field K or K. Further, H/M acts upon 9? as a subgroup of {7» X §
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where § is the Galois group of the field and 7 inverts the multiplicative group
of the field. When i = 1 H/M acts as a subgroup of §. So if 6 € H/M then
@ or a7 acts as an automorphism of the field. This fact will play a large role in
our computations. We wish to limit the number of primes dividing [H: M]
and their exponents. First we need information about the structure of 47°.

(4.20) LEMMA. Assume (4.1). Suppose H has at most two regular orbits upon
N. Let m = #(C,(N)) be the set of prime divisors of |C,(N)|. If M, is a Hall
7-subgroup of 9°, and if 6 € H/M has order £° for a prime ¢ and exponent
e > 0then 3 = M, X N, AM, is nilpotent, and [T): Cge(3)] = £°[N: Cy(3)]
for some s.

By (4.14) N is a Hall #"-subgroup of 9°. Therefore, the cyclic group S°
equals M, X N. Suppose p € 7 and S is a p-Sylow subgroup of 9%. Then
S; =8 N A #1 since p € n. Further, we may choose ¢ € 4 so that in
H/M, eM = ¢ where ¢ has &-power order. Thus (g, S,) is contained in 4
and, therefore, is nilpotent. If p # £ then o must centralize S,. That is, ¢ must
centralize S. This holds for all p € = and £|[H: M]. We now know that AM,
is nilpotent. But, in this case, [M,: Cy, (0)] = §* is a power of £. Since M, and
N have relatively prime order and since M = M, X N we conclude that
[M: Cy(0)] = [M,: Cpy (DIIN: Cy(0)] = §°[N: Cy(0)]. The proof is com-
plete.

(4.21) LEMMA. Assume (4.1). Suppose H has at most two regular orbits upon
N. Assume that ¢ € H/ M has order §¢ for a prime & and exponent e > 0.

@IfE>2thene = 1.

(b) If H is a subgroup of T, and & = 2 then || = 2°|N| and e = 1 unless
IN| = |D0| = 2q or 2|N| = || = 2q for an odd prime q.

(c) If H is a subgroup of 9,, £ = 2, and |N| has exactly v odd prime divisors
thenv < 3ande < v + 1.

Suppose e > 1. By our previous remarks, ¢ or o7 acts as a field automor-
phism. Further, we need only consider 67 in part (c). Let ¢¢" ' = o, J =
0,...,e. If we are in part (c) and o7 is the field automorphism we set
o, = o7. Let K; be the fixed field of g, Now K is a subfield of KorKasi=1
or 2. Let 3(? PN K;. For this mtersectxon we are v1ewmg 99 as in K orK
(as in (4.1 l)). Observe that f}C is the centralizer of g; in Therefore (4.20)
applies to tell us that

[9: %] = ¢4 ¥: Cu (3)]
for some s;.
Turn now to (4.18). Suppose |[N| = 2%, ...q, where» < 3and q,,...,q,
are odd primes. Then for @ # B8 (g, — 1, gg — 1) = 2, 4. By (4.5) and (4.6)
the value of (g, — 1, g3 — 1) = 4 can only occur when H < ¥, and » = 2.



68 T. R. BERGER

Consider (a). Here g;, j > 0, is trivial on all but one (g3 = q) g-Sylow

subgroup of N. Thus [N: Cy(q))] = g’ where f = 0, 1. Therefore,
[97: 9] = &+,

But then [9°: 9(,] = ¢° for some s. Taking e = +1if i=1and e = —1 if
i =2; and m = £ we have |3(| = |90 = r"* + &. But then

[90:9C] = (P + &)/ (r"" + &) = £,

i

If e > 1 and £ is odd, this equation has no solution. We must have £ = 2.
Consider (c). Assume now that e > » + 1. In this case I = K. Now
[99: 9C,_ 1 = IL[K*: K Joverj=0,...,e— 1 Set [KX*: K] = p;. Then
[Kx: K:‘_,] = o0 - - Peea = ["33 ng(c?z)]
divides 2%, ...q, by (4.20) since |[N|=2%,...q, and £ =2. There are

e — 1 > v values of p,. So at least one p; is a power of 2. Since [K*| = r"*”
— 1 where m = n2¢,

7 =)/ T -y =28

By (1.6) n2¢™/=D = I so thate = j + 1. Butj < e — 2 or e > j + 1 since p;
has j < e — 2. This contradiction proves (c).

Finally we look at (b). The element ¢ is an automorphism in this case.
Further, ¢, has order two. Thus g, is the automorphism of K = GF(r*") of
order two. But that automorphism sends x — x"". Here x € 99 so that
x"*'=1lorx™" = x% = x~1. So g, inverts I°. Recalling (4.20), I9 = M, X
N and (o, M, is nilpotent where oM =0 and 0 € 4 is a 2-element.
Therefore, M, is a 2-group, and |99| = 2°|N|. By (4.5), (4.6) and (4.18),
|N| = 2% p, 2p, 4p, pq, or 2pq. Suppose e > 1. Then 2m = 21 so that 2|m. In
particular, |99| = r™ + 1 is twice an odd number. So |9| = 2p, 2pq. There-
fore, |N| = p, 2p, pq, 2pq. By (4.6)(a), (b) if pq| [N| then (p — 1,4 — 1) = 2.
Suppose 2| |p — 1. So 62 centralizes the p-Sylow subgroup of N. But 5*'
inverts N. Since e > 1 we conclude that pgf|N|. So if e>1 then
[N| =2p = |9 or 2|N| = 2p = |T}| for an odd prime p. The proof of (4.21)
is complete.

We have limited the exponents of primes dividing [H: M]. Next we limit
the number of prime divisors in [H: M] in terms of the number of prime

divisors of |N|.

(4.22) LEMMA. Assume (4.1). Suppose H has at most two regular orbits upon
N. Suppose p| |N| is an odd prime, and N, is the p-Sylow subgroup of N. Let
H, = H/Cy(N,) be the restriction of H/M to N,.

@) If my = m(N) is the set of odd primes dividing |N| and p € m, then H, is
regular upon the elements of Np# with one possible exceptional p. For that one
exception H, has exactly two regular orbits upon the elements of Np#.
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(b) If H is a subgroup of T, then |H,| = 2% for a > O and § =1 or §is an
odd prime.

(c) If H is a subgroup of T, then |H,| = 2§, or 2§ where § is an odd prime.
If |Hy| = 2€ then H,, contains an element inverting N,.

By (4.18) we know that |[N| = 2%, ...q, where » < 3. Let S, be the
2-Sylow and S; the g;-Sylow subgroup of N. Then

Aut(N) = Aut(S,) X Aut(S;) X - -+ X Aut(S,).

Now [Aut(N): H 1< 2. Let __170, cees 17, be the projections of H into
Aut(Sy), . .., Aut(S,). Then H < Hy X - - - X H,. So H, = Aut(S,) for all
but possibly one value of i.

If p = g; then N, = S;. Therefore H, = Aut(S)) except for i if i > 0. If
P =g, i >0, then [Aut(S)): H,] = 2. Since Aut(S)), j > 0, is regular upon
S;¥, part (a) follows.

For the next part, suppose y > & are two distinct prime divisors of |H,|.
Now |N,| = p is of prime order by (4.18). We have |H,| = v?8% - u where
(u, ¥6) = 1 and a, b > 0. Choose o, € H, of order y and 6, € H, of order §
(or 8% if 8§ =2).

By (4.18) (¢, — 1,45 — 1) = 2,4 for a 5 B where |[N| =2%,...q, and
the g; are odd primes. Thus Cy(o;) contains all but one g;-Sylow subgroup if o;
has odd order. In particular,

[N:Cy(0))] =p =g, forsomejp,
Suppose 8 > 2. Then [N: Cy(0,)] = p also. By (4.20) we have
[: Co(0) ] =vP ifi=1 or 85 ifj=2.
Let K; be the fixed field of o; (recall that g; now acts as an automorphism of
the underlying field). Set 3, = K, n 97. Then I, = Cgp(0;). Therefore p
divides both [T]: I(] for j = 1,2. So p divides [97: I, IC,). In particular,
[9C,9G,: IC,] = v is a power of y. But then [3(,3G,: 3,1 = [3G: I, n IG] =
y*.Lete=1ifi=1ande= —1if i = 2. Then |G| = [K, n I0| = r™/® +
eand |3, N IG| = K, N K, N T = rm/¥ + ¢. So
(r"+e)/(r"+e)=7y"
where n = m/y8. By (1.6) we must have y* =3,e=1,n =1, and r = 2. By
the same argument with § in place of y we obtain
[%l: SCI N %] = §F = (r"“ + e)/(r" + 8)

where n = m/y8. By (1.6) we have §* = 3 = y. But y > §. This proves that
|H,| has at most one odd prime divisor.

Next we assume that § = 2. We now consider (c) since (b) holds. Further,

we may assume that |H,| = 25y where b > 0. Since H, < Aut(N,), it is cyclic.
By (4.21) we know that y* = y.
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Since H < Aut(N) and |[N| = 2%, ... q, where (g, — 1,5 — 1) = 2,4 for
a # 8 we must have y| | |H|. So we may choose 6, € H/M of order y so
that 6, = o, in H,. Further, we may choose a, € Aut(N) of 2-power order so
that 6, is o, in H,. If b # 1 we may choose d, not inverting N,. Let a; be o, or
0,7 whichever is a field automorphism. Then 4, is nontrivial upon N, and acts
upon N, with order 2°.

Let K, and K, respectively be the fixed fields of 6, and 65. Now p divides
[K" K] for j = 1,2. Thus [K*: KXK)] is divisible by p. But then since
[K>: lel = [33: Cy(0))] = v°p we have

[KFK: K] =[K K n K] =
Now [K): KX n K)X] = (r™ — 1)/(r" — 1) = y* where m = ny2°. By (1.6)
this cannot occur. Therefore |H,| = 2y and o, inverts N,. This completes the
proof of (c), and hence all of (4.22).
We may now complete the case where H < ;.

(4.23)THEOREM. Assume (4.1). Suppose H has at most two regular orbits upon
N,and H < 9,. Then H = H/ M and we have the following tabulated values:

r m |H| IN|  @#(4 N M)  # regorbits
¢)) 2 1 2 3 g 1
¥)) 2 2 2 5 g 2
3) 2 2 4 5 g 1
C)) 2 4 8 17 2 2
®) 2 5 5 11 3 2
(6) 3 2 2 5 2 2
) 3 2 4 5 2 1
® 3 3 3 7 2 2
) 3 3 6 7 2 1
(10) 5 3 3 7 23 2
an 2.3-1 1 2 3 2 1(>0
(12) 2-5-1 1 2 5 2 2(s>0

By (4.18), | N| is divisible by an odd prime. Further, an involution of H/M
must invert 99 by (4.9). Thus by (4.8)(c) C4(N) =

Since H < J,, H/M is cyclic and acts as field automorphisms of K. By
(4.18) we have |N| = p, 2p, 4p, pq, 2pq. Now [Aut(N): H] < 2. Therefore we
may compute the order of H. The possibilities |N| = 2p, |H| = (p — -1)/2
and |N| = 2pq, |H| (p — 1)(¢ — 1)/2 do not occur. In both cases, H has
two regular orbits upon the Hall 2’-subgroup of N. The involution of N
multiplied by orbit generators gives two more regular orbits. So there are four
regular orbits. We therefore have the following table:
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If‘il p p 2p 4p Pq
|H (p—-1/2 (p=1) (p=1D (p=1 (p-1)g—-1)/2

Since H is cyclic, when |N| = pg we may assume that 2| |g — 1. By (4.22) we
know that if ¢| |N| is an odd prime then |H,| = 2°¢ where £ = 1 or is an odd
prime. Thus ¢ =2f¢ + 1 where B =a or a + 1. For p and ¢ we may
therefore write p = 28¢ + 1, ¢ = 2¢ + 1 where £, ¢ = 1 or are odd primes.

First assume that |N| is divisible by a prime of the form ¢ = 2§ + 1 where
£ > 1. This will certainly occur for |N| = pq unless ¢ = 2 + 1 = 3. Choose
& € H of order ¢ By (4.20) [99: Co(0)] = £t = £°(2€ + 1). Since § is odd
[90: Co(@)] = (r™ + 1)/(r" + 1) where m = n{. Thus

(r+ D)/ (r"+ 1) =¢ 26+ 1).

By (1.5) we know that s = 0, 1 since £ is odd. But then by (1.4) we must have
n =1 and:

(*)

r 2 3 5
¢ 5 3 3
)/ 11 7 7

Since ]i{— | divides 2m we have II_f | = & 2¢. This will lead to entries (5), (8),
(9), and (10) of the table. _ _

At this point we have 2m = 2¢ and |H| divides this number. If |H| = 2¢
then H contains an element of order two inverting 5. Thus N contains the
Hall 2’-subgroup of 9°. By (4.9) a Sylow 2-subgroup of 9, does not split over
90 unless r = 2. So if 2| |H| then N is the Hall 2’-subgroup of 39. Assume
that 2| |H|. From this we obtain the values

r 2 3 5
m 5 3 3
|H| 10 6 6
|N| 33 7 63

Since 63 = 32 X 7 and |N| is not divisible by an odd square, the case r = 5
does not occur. With » = 2, |H| = 10, |[N| = 33, H has three regular orbits
upon N. The remaining case with 7 = 3 is listed as (9).

Next suppose that |[H| = £ So |N| = p and |H| = (p — 1)/2 by (+). This
leads to entries (5), (8), (10) of the table.

We now assume |N| is not divisible by a prime ¢ = 2¢£ + 1 where £ > 1, i.e.
B > 1and { = 1. We have actually limited the remaining cases quite a bit.
By (4.21)(b) we know that p = 2¢{ + 1 and ¢ = 3 if |N| = pg since |H| =
p_— 1 and H is cyclic. This rules out the possibility that |[N| = pq. Further, if
|H| = ¢ is odd then by () §¢ = (p — 1)/2 or p = 2¢ + 1. Again this case is
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ruled out. In particular, |N| = p, 2p, 4p and |H| is even. By (4.21)(b),
|59 = 2¢|N|. Thus N = 5% or |[N| = p and |F9| = 2%, b > 0. Since |H| is
even and since the 2-Sylow subgroup of J, is not split over 99 we conclude
that 2| |C,(N)| and |N| = p is odd.

Now |99| = 2% and |N| = p. Note that |H| = (p — 1) or (p — 1)/2. By
(421)(b) |H| = 2°¢ where £ =1 or £ is an odd prime. Thus p = 28¢ + 1
where 8 = a or a + 1. We have already discussed the case where 8 = 1. So
we know that 8 > 1. _

Suppose £ > 1. Choose 6 € H of order £ By (4.20) [GJ:?_: Co()] = .
Since £ is odd and |9?| = 2% we conclude that s = 0. Now |H| divides 2m so
that m = n¢. In particular,

[9: Ce(8)] =p = (" + 1)/ (" + 1)

Therefore 7" + 1 = 25, This equation forces r to be odd and n = 1 by (1.7).

Note that 2m = 2£. Since |H| is even, we conclude that |H| = 2¢. But
(p — 1)/2 = 28~ '¢ divides |H|, thus |H| = 2P¢ or 28~ ¢ = 2£. Since the case
B =1 has already been discussed we conclude that 8 = 2. Therefore, p =
4t + 1. Thus (r™ + 1)/(r* + 1) = 4¢ + 1. By (1.4) there are no solutions to
this equation for r a prime and § odd. We conclude that § = 1.

Now p = 28 + 1. Suppose 4| |H|. Then since |H| divides 2m we have 2|m.
If 2 divides 7™ + 1 then 2| |[r™ + 1 since miseven.Sor™ + 1 = |} =2p =
228 + 1) or r™ = 28*! + 1. By (1.7) the only solution to this equation is
r=23,m=2,8 =2.In this case p = 5. Further 2m = 4. Thus |I7| = 4. This
all leads to entry (7) of the table. Suppose 2 does not divide ™ + 1. That is,
r=2.Now2"+1=p=28 '+ 1. In particular, p is a Fermat prime and
m = B is a power of 2. Now |H| = (p — 1) or (p — 1)/2 so that |ITI-| = 2" or
2m-1, But |H| divides 2m. Therefore 2™~! < 2m or 2™ < 2m. The only
powers of 2 which will work for m are m = 2 or m = 4. Thatis,r =2, m = 2,
|H| =4,|N|=50rr=2,m=4,|H|=8,p = 17. These account for entries
(3) and (4) of the table. _

We may now assume that 2| |H|. Since |H| = (p — 1) or (p — 1)/2 =2F
or 28-1 we conclude that 8 = 1, 2. Thatis,p = 3, 5. Thus r™ + 1 = 3, 5, 25+
3,2%. 5 where b > 0. From r™ + 1 = 3, 5 we obtain entries (1) and (2). We
are left with r™+1=2°-3,2°-5 for b>0. Now p=3,5 and |H|=
(p=1Nor(p—1)/2.5 |H|=2.

Suppose an odd integer £ > 1 divides m. Then J, /99 contains an automor-
phism & of order ¢ Clearly G centralizes all elements of order 3 or 5 in J9.
Thus [9): Cge(@)] = (™ + 1)/(r" + 1) = 2° where n{ = m. Note that r™ + 1
= 2% so that r is odd. By (1.6) we must have £ = 3 and r = 2 since £ is odd.
We conclude that m is a power of 2. If m is even then when r”™ + 1 =2p
since 2| |r™ + 1. Now r” + 1 = 6, 10 so that r” = 5,9 and m > 1 is even.
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This forces r = 3, m = 2, p = 5. This gives entry (6). We conclude that m = 1
so that » = 2b- p — 1. This leads to entries (11) and (12). The proof of (4.23)
is complete.

We may turn now to the case where H < ¥,. Recall that 9 ~ K* and
H/ M is isomorphic to a subgroup of {r) X § where 7 inverts KX and § is
the Galois group of K. Further, § 99 is reducible upon V. Therefore, H/M
contains an element 7o for some ¢ € §.

(4.23") THEOREM. Assume (4.1). Suppose H < 9, and H has at most two
regular orbits upon N. Then we must have the following values. In the last
column ¢ means H/M must be cyclic, and if t is an integer then n(t) are the
prime divisors of t.

| [H:M] |N| =(4Nn M) # reg. orb.
0))
)
3)
C))
©)
©
)
®
&)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17
(18)
19
(20)
2n 11
(22) 31
23) 2°-3+1
(4) 2°-3+1
(25) 2°-5+1
(26) 2° -5 +1

W W2
6o 6 0

WK W

w W

—
o N wn o

—

I & | & &6 o6 7

(8]
= NN LR LWLRR VYRR
I & o

W W W LWL L L WA
Y]
| &6 6 6

N N9 NN UMM WwWWWLwWLWWLWWLWNDNDNDNDDDNDND Y

(2

a(r+1)
2
a(r+ 1)

N'-'N'—‘NNANN'—‘#NNW&A&AWO\A&A&WNS
NN EBEBNNRAENODMNNNODMENNOAE RN DOORAENON
—_—

DO N = e DO N st et it DD et b e N = e DD R DD e D et N et et e

wm W w .
0 606 6

Suppose |N| = 2%, ...q, where the g; are odd primes and » < 3. This
follows from (4.18). Set g, = 2. Let N; be the g-Sylow subgroup of N and H;
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the restriction of H to N;. Suppose j > 0. By (4.22)(a) there is at most one j
such that the restriction H; of H to N, is smaller than Aut(N)). If such a j
exists set that j = u. We may now determine the g¢’s. For j > 0 we have
g — 1 =|H]|ifj+# pand |H,| = (g, — 1)/2. By (422)(c), |H| = 2% §;, or 2;
where § is an odd prime. By (4.21)(c), since Aut(N)) is cyclic we have
a; < » + 1 < 4. We arrive at the following possibilities.
g =35172+1 ifj#p
and
q,=3,517,4§ + 1.

First we settle the case where § occurs. That is, suppose p = g; for j > 0
and p = 2/£ + 1 where f = 1, 2 and ¢ is an odd prime. Choose 6 € H/M of
order £ Since (¢, — 1, g5 — 1) = 1, 2, 4 for a # B by (4.18), ¢ will centralize
all N; except the one of order ¢; = p. Therefore, [N: Cy(0)] = p. By (4.20) we
then have

[92: Cog(0)] = £ = (" = 1)/ (" = 1)

where m = n¢ since 99 =~ K* = GF(r™)*, and since ¢ acts as an automor-
phism of K. By (1.5) s = 0, 1. That is,

=1/ ("= 1) =+ 1), (4 + 1), £t + 1), or £4¢ + 1).
By (1.4) we must have the following values:
2

W W == W
N W NN

1
3
7

NNy S Yy

1

The number |H|/2 divides m. Therefore |Aut(N)|/4 (or |Aut(N)|/2 if this
is not an integer) divides m. Now m = n£ so that n = 1, 2 as tabulated above.
Now |Aut(N)| = 20-'(2%¢)(g, — 1) ... (g, — 1) where p=2(+1=gq,
Since § = 3 we have ¢; = 3,5 17,7, j # p, and g, = 3,5, 17, 13. Running
through the |Aut(N)| values (¢ = 3, n = 1, 2) we have: |Aut(N)| = 6, 12, 24.
We must now have:

|N|=7,2-7,4-7,3-7,2'3-7, 13,213,817,
4-13,3-13,2-3-13,5-7,2-5-1.
Now r = 2, 3, |N| divides r™ — 1, and by (4.14) (*" = 1, (r" — 1)/|N]) = L.
We must therefore have:
r 2 2 3 3

m
IN| 7 7 13 2-13.

w
(=)}
w
w
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Let 8 'be the Galois group of K. Suppose r = 2, m = 3. Then 7 is in H /M
sothat H/M = H= (1) x 8. Since [N|=7and 2> —1=7,|4 N M| =
1. This is entry (2). Suppose r = 2, m = 6. Then § = {g,, 0,> where ¢, has
order three and o, has order two. Here, again |[N| = 7. Since N is in the fixed
field of o, o, centralizes N. But N is a Hall subgroup of K* so that
3 € n(A N M) by (4.14). The group of order nine in K* is inverted by g,
Now 4 is nilpotent and 7, o, both invert A N M. Therefore 7,0, € H/M.
That is, H/M = H= {r6,) X {0,). This gives entry (7). Finally, consider
the case where r =3, m = 3. Here |N| = 13,2 - 13. Further r € H/M so
that H/M = H =~ () X 8. 1f [N| = 2 - 13 then H has four regular orbits
upon N. We conclude that |[N| = 13 and #(4 N M) = 2. This gives (3).

__We may now assume that g; = 3, 5, 17 for all j. Since [Aut(N): H ] < 2and
H is cyclic or H =~ Z, X F where F is cyclic we conclude that {qi, ..., ¢}

= {3}, {5}, {17}, {3, 5}, {3, 17}, {5, 17}. By (4.21) the exponent of H, since
H is now a 2-group, is less than or equal to 2°*! < 23 = 8. This fact with
H=~ Z, X F and [Aut(N): H] < 2 excludes the set {5, 17}.

At this point we know that H is a 2-group. Since H/M is a subgroup of
{t) X § we know that there is a 2-power automorphism ¢ € § of order 22
such that H/M = {r) X {a) or {ro). Let 6, = ¢ and suppose a > 1. In
particular, 6, € H/M. Note that 2%|m so m = 2n where n is even. Since o,
may be trivial in H (4.8), (4.14), and (4.20) tell us that

[92: Coy(o)] = (™ = 1)/ (") = r" 1
=2,2.3,2.512-.3-52-3-17.

Since r is even (1.7) tells us that 2° % r" + 1. Further, by (1.5) s = 0, 1. These
values give rise to the following table:

r n r+1 rm—1
2 2 5 3.5
3 2 2:5 2%.5

In both cases m = 2* = 4,

Suppose r = 2. In 7 € H/M then 7 inverts the 3-elements of KX so by
(414)[N| =3 -5and H/M = H has order 8. This is entry (5). The element
o inverts the 3-elements of K*. Thus or centralizes them. So |N |=51is
possible when H/M = (o). If [N| = 3 - 5 there are three regular orbits for

= H/M upon N. This gives entry (6).

Suppose r = 3. Since N is a Hall subgroup, [N| =5 or 2*- 5. The latter
case has too many regular orbits since <'r> X (o) acts as the full automor-
phism group on the 2-Sylow subgroup of K*. Therefore IN|=5.1f H/M =
(ro) then H = H /M. If H/M = () X {a) then 70 centralizes N. If T'is a
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2-Sylow subgroup of K* then {r¢%, T is semidihedral. These two possibili-
ties lead to entries (11) and (12).

After the preceding, we may assume that a« =0, 1. Suppose 7 € H/M.
Since r inverts K* we must have |99| = r™ — | = 2°|N|. Thatis, r™ — 1 = 2°
+3,2°.5,2°-3-5. Since a =0, 1; 17 cannot be a factor of |N|. Suppose
v & H/M. Then H/M = {r0) where o has order two. In particular, m = 2n.
Let K’ be the fixed field of 6. Then 70 inverts K'* so that K'*/K'* N Nisa
2-group. Therefore, r” — 1 = 2,2 3,2'- 5. The value 2+ 3 - 5 cannot occur
since |H| = 2. In either case r" — 1 =2%,2-3,2°-52°-3-5 where m = n
or 2n. By (1.8) we must have the following values if n > 1:

r n =1 rn—1

2 2 3 3.5

2 4 3.5 3.5-17
3 2 23 245

3 4 2%.5 25.5.41
5 2 23.3 24.3.13
7 2 24.3 2%5.3.52
11 2 2%.3.5 24.3.5.61
31 2 26.3.5 27.33.5.19

Assume that H = H/M = {r0). Then m-2n and |H| = 2. In particular
3 - 5}|N|. Further, if 5| |N| then 2} |N|, and if 3| |[N| then 4} |N|]. If x € K*
order r" + 1 then 7o centralizes x. Since 76 does not centralize the odd part
of N, we conclude that [N N K’| is divisible by 3 or 5. Inspecting our table we
have the following possibilities with n > 1:

r m |H| [H:M] |N| w(AN M) # regorb. =
2 4 2 2 3 5 1 ¢
38 2 2 5 2,41 2 ¢
5 4 2 2 3 2,13 1 ¢
7 4 2 2 3 2,5 1 ¢

These entries lead to (3), (13), (16), and (20).

We conclude that n = 1. As remarked above, 7o centralizes the elements of
order dividing r + 1. Thus |[N| =3, 5,2 - 3 and the odd part of |N| divides
r— 1. Thatis, r — 1 =2'-3,2"- 5, Now N is a Hall subgroup and 4|2 — 1
= r” — 1 so that |[N| = 3, 5. These considerations lead to the following:

r m |H| [H:M] |N| n(ANn M) #regorb. =
23+1 2 2 2 3 a@r+1) 1 P
2-5+1 2 2 2 5 a(r+1) 1 c

These give entries (24) and (26).
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We now assume that + € H/M and m > 1. With m = n in our table we
obtain:

|H| [H:M] |N| a@(4An M) # regorb.
3 1

3-5

o *

(D

Q)

)

(10)
(14)
(15)
(18)
(19)
@n
22

()

I o |

NNV WWLWNNN Y
[

W W W Wwunk wn

H|
2
4
2
2
2
2
2
2
4

3-5
3-S5

(SR NI SIS I ST SR N O N S
N S S I N SR N S N )
[SIE NI ST SIS I S I SRS SN o)
RN = = NN

LU'S I

4

The corresponding entries are noted at the left of the table. In entry (1), 70
centralizes H. The irreducibility of H forces 6 & H/ M.

We are now reduced to m =1, « = 0, and H/M = H = {(r). But then
IN|=2-3,3,5and r — 1 =2+ 3,2°. 5. We must have the following list.

r m |H| [H:M] |N| w(An M) # regorb.

*
an 7 1 2 2 2.3 o 2 ¢
(3 2-3+1 1 2 2 3 2 1 p
(5 2-5+1 1 2 2 5 2 2 ¢

The proof of (4.23) is complete.

II. ConpITION B. Look back at (4.2). We have found all exceptions to
Condition (A). We turn our attention to Condition (B) now. We must
determine the structure of Cu(N)= C,(N) X N. In particular, where is
[Cy(N): M] =

(4.24) LEMMA. Assume (4.1). A{so assume that (4.14) holds. Suppose that
[Cy(N): M] = 2. Then H < J,; K = GF(r*"); and

()r=3,n=2and |N|=5;

@Qr-1=2,n=1,and |[N|=(r+ 1)/2; or

B)r+1=2,n=1and |N|=(r-1)/2

Suppose H < 9. Suppose ¢ € H/M has order two and centralizes N.
Now M < 9? and o inverts 9. Thus |N| = 1, 2. But H is not nilpotent. We
conclude that H < 9,.

Since 7 inverts K*, if there is an element of order two in H /M centralizing
N it must be o or ro where ¢ is an automorphism of order two upon K.

Assume that 7o centralizes N. That is, ¢ inverts N. But this means |N|
|r" + 1 where m = 2n. But 7o inverts GF(r")*. That is, #" — 1 = 2°. So we
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haven = 1orr =3,n =2, and s = 3. Since N is a Hall subgroup |N| = 5 if
n > 1. This proves (1). Assume that n = 1. Then r — 1 = 2°, Now N is a Hall
subgroup so that |N| must be the odd part of r + 1. That is, |[N| = (r + 1)/2.
This proves (2). In both cases, the 2-Sylow subgroup of Cg(N) is semidi-
hedral.

Assume that o centralizes N. That is, |N| |r" — 1 where m = 2n. But o
inverts the elements of order dividing r” + 1 in KX so that 2 = r” + 1. In
particular, n = 1. As before, |[N| = (r — 1)/2 and the 2-Sylow subgroup of
Cg(N) is semidihedral. The proof of (3) is complete.

We turn now to the character theory of X,(HR)| c,(vy as required by
Condition (B).

(4.25) LEMMA. Assume (4.1). Suppose that C,(N) < M. Then X\(HR)|c,(n)
satisfies Condition (B) of (4.2) with b > 2 except as tabulated below:

i 1 1 2 2
[9°: M] 1 2 1 2
b 1 2 1 2

Note that in this case, C,,(N) = M < 9? is cyclic. If i = 1 then (3.8)(i)(b)

applies to B = 9°. Thus

%\(@?R )|5? =p—
where p is the regular J9-character and p is a character of order 1 or 2.
Looking back at Condition (B) we see that p — p|,, satisfies it if and only if
p|s does also. But p|,, = [97: M]p,,. From this, the tabulated values for
i = 1 follow immediately.

If i = 2 then 99 fixes ¥, = Ke, of (4.10), a maximal isotropic subspace of
V. Let R, be the inverse image in R of V. Then R, = V| X Z(R). Extend A
from Z (R) to (99¥,) X Z(R) by making it trivial upon 93 ¥,. The extended
character A* induces %, (J2R)» for some linear character » of order 1 or 2.
Thus

B(TR)|gg= 7" EN|(qpyxzary eyl

where the sum is over all 99 X (33¥, X Z(R)) double cosets in R. Since
99 ~ K* and since R/R; = K* we have

x,\(":ng)|gg= v (lg+p)=r""+p

where p is the regular 99-character. Since »~! has order 1 or 2 the argument is
exactly as for i = 1. The proof of (4.25) is now complete.

We turn next to the case where C,(N) € M. That is, we assume the
hypotheses of (4.24) hold.



HALL-HIGMAN TYPE THEOREMS. III 79

(4.26) LEMMA. Assume that the hypotheses and conclusion (1) or (2) of (4.24)
hold. Then Condition (B) of (4.2) with b > 2 holds except as tabulated below:
[99: M] 1 2 2 4 4
b 0 0 1 1 2
C,(N) semidihedral dihedral quaternion dihedral quaternion

Let O, be the 2-Sylow subgroup of 3. Since |[N| =35 or (r + 1)/2,
NQ, = "3‘2’; Because [C,(N): M] =2, 70 € H/M where o is an automor-
phism of K of order two and r inverts KX. But C,(N)Q, = C,(N) so that

o M ol=[-e “Jecme

Looking back at (3.6) we see that C,(N)J = B = Q X D. Choosing a
conjugate of 4 in H, if necessary, we may assume that C,(N)Q, = Q of
(3.6). From here (3.8)(iv)(b) applies to give:
xx|3= 2 x+ (]Q + )8+ p,
x(1)>1
where p; has dihedral and p, has quaternion kernel upon Q. Let p be the
regular character of N and p; the regular character of a group 7. Then
%= P[%(PQ —lg—m—p) 1+ l‘x] + u

where p, is nontrivial upon Q and has cyclic kernel.

Let Q, be a maximal dihedral subgroup of Q. Let y; be the linear character
of Q, with cyclic kernel. Let B, = Q,N. Then

E\ls,= p[pg, + 1, — m] + 15
Suppose Q, is a maximal dihedral subgroup of Q, and pj is linear with cyclic
kernel. Let B, = NQ, so that

|5, = p[20, + 1o, = 15 ] + 15
Clearly, restricting further to subgroups of Q, will give rise to at least

3-regular characters.
Let Q; be a maximal quaternion subgroup of Q. Let »} be a linear character

with cyclic kernel upon Q,. Then with By = Q;N,

x)\|33= PPg, + ]Qs'
The pattern for further restrictions is obvious here. Thus we have sufficient
information to prove (4.26).

(4.27) LEMMA. Assume that the hypotheses and conclusion (3) of (4.24) hold.
Then Condition (B) of (4.2) with b > 2 holds except as tabulated below:
[9,: M] 1 2 2 4 4
b 0 0 1 1 2
C,(N) semidihedral dihedral quaternion dihedral quaternion
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Again let Q, be the 2-Sylow subgroup of 9%. Now I3 = NQ,. Further,
6 € H/M where ¢ is an automorphism of K of order two. But now, looking
back at (4.10) we have

M= (" o}[" - ]rek).

In particular, B = C,(N)Q, fixes the subspace V, = Ke,. In R, the inverse
image in BR of B and V, takes the form (BV;) X Z(R). Extending A to this
group by making it trivial upon BV, gives a character A*. We then have
X, u = A\*|BR where p has order one or two. Then

x)\|3= ""(IB + 1(0))IB
=uo(3(pp = log === k) + g+ ) +p
where Q = {[°,], Qp», p is regular upon N, p, is regular upon Q, p, has
dihedral kernel, p, has quaternion kernel, and p, has cyclic kernel. This
character looks exactly like the one arising in (4.26). From here, the analysis
and answers are the same.
II1. THE FINAL RESULT. We are not in a position to apply (4.3). We shall

tabulate exceptional numbers. For purposes of clarity, we restate the hypothe-
ses of this section.

(4.1) HypoTHEsIs. (a) Suppose H = AN is not nilpotent where NAH is
cyclic, A is nilpotent, and 4 N N = 1. Let r be a prime not dividing |H|, and
G = HR where R is a normal extraspecial r-group, Z(R) < Z(G), and
R/Z(R) is a faithful minimal H-module.

(b) Let k be a finite extension of the rational field containing all |G|th roots
of unity. Let A be a nontrivial linear character of Z(R) in k and X, (G) = %,,
the unique character of (2.2).

Recall that |R| = r*! and H embeds in one of the groups of (4.9) or
(4.10). In our theorem i denotes H < ¥;; S, denotes the 2-Sylow subgroup of
C,(N); = denotes A/C,(N); and # reg. denotes a lower bound for the
number of copies of the regular 4-character in %,|,. We have used letters as
follows: c—cyclic, n-noncyclic, d-dihedral, s-semidihedral, and g—quaternion.

(4.28) THEOREM. Assume (4.1) where |R| = r*™*!. Suppose %,|, does not
contain at least three copies of the regular A-character. We then have the
following tabulated data. The exponent s > 0:

r m |CN)| S, [A:C,(N)] * |N| i # reg
an 3 4 B s - - - 2 0
@ 3 4 2 d - - - 2 0
G 2+1 2 2% - - - 2 0
@ 2+1 2 2t 4 - - - 2 0
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(46) 5 4 8-13 ¢ 2 c 3 2 2
47 7 1 1 c 2 c 6 2 2
(48) 7 2 8 c 2 c 3 2 2
(49) 7 2 8 q 2 ¢c 3 2 2
(50) 7 4 16:-25 ¢ 2 c 3 2 2
(6&))) 11 2 8 c 4 n 15 2 2
(52) 31 2 64 c 4 n 15 2 2
(53)2-3-11 21 c 2 c 3 1 2
(54 2°-5-11 2 c 2 c 5 1 2
G¢5H2-3+11 22-1 ¢ 2 c 3 2 2
G6)2-3+1227r+1) ¢ 2 c 3 2 2
GH2r-5+11 > c 2 c 5 2 2
G8)2-5+12 2°(r+1) ¢ 2 c 5 2 2

These tables are produced by using (4.3). From (4.23) and (4.24) we obtain
a number a giving the cases where a < 2 and H = H/Cy(N) = A/C,(N)
has exactly a regular orbits in its action upon N. From (4.24), (4.25), (4.26),
and (4.27) we obtain the number b < 2 used in Condition (B) of (4.2). We
itemize all cases where ba < 2. A few remarks are in order. In (4.14) we
assumed that N was a Hall subgroup of 99. So the results described above
yield an upper bound for |N|. But H must be faithful upon N. In all but case
(47) this forces the order |N| to be equal to the upper bound. The other
possible situations corresponding to |N| = 6 in (47) are catalogued as (28)
and (55) with s = 1.

Further, [9%: M] is bounded by (4.25), (4.26), and (4.27). These bounds
allow us to determine |C,(N)| when C,(N) < M. In all other cases
[C,N):A4N M]=2sothat[H: M] = 2|H|. That is, (10), (12), (15), (19) of
(4.23) hold if b > 0. These entries with (4.26) and (4.27) lead to table entries
(18), (19), (21), (24), (25), (39), (40), (42), and (49) giving the order and
structure of C,(N).

Finally, (4.24), (4.26), (4.27) give all the information available when b = 0.

The table has not been checked to see whether “# reg.” gives exactly the
number of regular 4-characters in X,|,. The number “# reg.” is a lower
bound. This is more than enough for most applications.

We now prove some corollaries.

(4.28) COROLLARY. Assume (4.1). Let t be the number of regular A-characters
contained in %,| ,.

@ IfAisZ, ~ Z,free thent > 1.

(b) If |A| is odd then t > 3 unless t = 2, |R| = 2", [N| = 11, |C,(N)| = 3,
and [A: C,(N)] = 5.
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For (a) we need only check the entries of (4.27) for which “# reg.” is 0.
But in all these C,(N) is dihedral or semidihedral. Therefore 4 involves Z,~
Z, in these cases.

In (b) |C,(N)| is even if “# reg.” is 0. Further, [4: C,(N)] is even except
for entries (32), (35), and (45). In all these |C,(N)] is even except for entry
(32). This entry gives the only case where ¢ = 2. Direct computation shows
that ¢ = 2 is the correct answer in this exceptional case.
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