
TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 2J8, 1977

HALL-HIGMAN TYPE THEOREMS. Ill

BY

T. R. BERGER(')

Abstract. This paper continues the investigations of this series. Suppose

that G = ANS where S and NS are normal subgroups of G. Suppose that

(\A\, \NS\) = 1, S is extraspecial, and S/Z(S) is a faithful minimal module

for the subgroup AN of G. Assume that k is a field of characteristic prime to

\G\ and V is a faithful irreducible k[G]-module. The structure of G is

discussed in the minimal situation where N is cyclic, A is nilpotent, and V\A

does not have a regular A -direct summand.

We shall assume familiarity with the ideas of [3]. Most results needed here

are quoted but familiarity should help.

We study V by observing that V =* Vx 0 V* where Vx is a certain

canonical AG-modu\e. Actually, we only investigate 3EX the character of Vx.

This character 3ix is described in §2. It is a fairly well-known entity. In §3 we

give sufficient information to completely determine £X\A where S/Z(S) is a

minimal A -module. Finally in §4 we determine all exceptions to the state-

ment: "£X\A contains at least three copies of the regular /l-character" under

the hypothesis that S/Z(S) is a minimal /1/V-module for a nonnilpotent

group AN.

The organization of §4 is similar to that of §2 of [2]. We translate in (4.3)

the question of regular A -characters in £X\A to questions about A -orbits upon

N and characters in £x\Ca/n)N' The maJor portion of that section is devoted to

studying A -orbits upon ¿V. Combinatorial-number theoretic methods are used

to pin down the bad cases of AN.

One corollary of all the analysis of §4 is:

Theorem. Assume S/Z(S) is a faithful minimal AN-module for cyclic TV, A

is nilpotent, AN nonnilpotent, and NS = G. Suppose A is Z2 'v Z2-free. Then

V\A contains a copy of the regular A-module.

Putting the results of this paper together with those of [3] we may prove

(the actual topic of [5]) that the answer to our question is "always" under the

hypotheses: (char k, \AG\) = 1; A is Zp ^ Z^-free for all p\ \A\; and

CC(S/Z(S)) < G.
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The major theorems of this paper are much too long to restate here. They

are (3.8) and (4.28).

1. Some estimates. Most proofs of this paper are finished off with combina-

torial arguments. This leads to the necessity for certain elementary estimates

with integers. We list these now with their proofs.

(1.1) Suppose x, n are integers such that x > 2 and n > 3. Then

(xn + \)/(x+ l)<(xn- \)/(x- 1).

Putting this another way, we wish to prove that

(xn + 1)/ (xn - 1) < (x + 1)/ (x - 1).

The function (x + l)/(x - 1) is decreasing for x > 2. This proves (1.1).

(1.2) If x, n are integers such that x > 2 and n > 3 then (xn + \)/(x + 1)

> n(4n + 1) except as tabulated below:

x 2 3 4 5 6

n < 10 5 4 3 3

The function/(x, n) = (xn + \)/(x + 1) - n(4n + 1) is increasing in x >

2. It is increasing in n also unless we have the following values:

x 2 3 4
n < 8 4 4

This is easily checked by taking the derivative with respect to n. Using this,

plug in values for (x, n) finding where/(x, n) is both increasing and positive.

It is positive and increasing for the values tabulated below:

x 2 3 4 5 6 7

n 11 6 5 4 4 3

The lemma follows immediately.

(1.3) Suppose x > 2 and n > 3 are integers. Let e = ± 1. Then

(x" + e)/(x + e)>/(«)

where/(n) = «, (In + 1), (4« + 1), «(2« + 1), or n(4n + 1) except as tabu-

lated below:

e /(«) x n <

+ 1                        «          2 3
2« + 1           2 5

3 3
4n + 1           2 6

3 3
4 3
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«(2« +1) 2 9

3 4
4 4

5 3

«(4« + 1)           2              10

3 5

4 4

5 3

6 3
- 1               2« + 1           2 3

4n + 1 2 4

3 3
«(2« + 1) 2 6

3 3
4 3

«(4« +1)          2 8

3 4

4 3

5 3

By (1.1) and (1.2) we need only check the values for x, n tabulated in (1

(1.4) Suppose x > 2 and n > 3 are integers. Let e = ± 1. Then

(x" + e)/(x + e) = f(n)

where /(«) = n, 2n + 1, 4« + 1, n(2n + 1), or n(4n + 1) only for x, n

tabulated below:

e /(/?) x n

+ 1 « 2 3
2« + 1 2 5

3 3
4« + 1 4 3

«(2« + 1) 2 9

5 3
- 1 2« + 1 2 3

4n + 1 3 3

/i(2n +1) 4 3

By (1.3) we need only check the values there.

(1.5) Suppose £, r are primes, n > 1 is an integer and e = ± 1.

(a) If (rn + e,Q- 1, then (r* + e, 0 = 1.

(b) If £ > 2 and i'\\r* + £ for * > 1 then E^V"* + e.
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(c) If £ = 2 and 2í||r" + e for s > 1 then 2\\r2" + 1 and 2I+1||r2n - 1

unless r" = - 1 (mod 4), s = \, and e = - 1.

If r = £ then (a) is obvious. Suppose r^^. By Fermat's Little Theorem

rní = r" S - e (mod £). This proves (a).

Let r" + e = £*m where (£, w) = 1 and s > 0. Consider (b). Here we

expand by the binomial theorem.

2 (-ef-JmJ^-»-i(t)
1 = 2 \JJ

rni + e = (£Jw - £)*+ e = e
j=2

+ (-e)í_1m£í+1 + (-£)*+ e = m£s+l   (mod?2,+1).

This proves (b).

In (c) r2n + e = (2*m - e)2 + e = 22lw2 - 2i+,me + 1 + e. If e = 1 then

r2" + 1 = 2 (mod 4). If e = -1 then r2n - 1 = 2,+ 1m (mod 221). If s > 1

then 2I+1||/-2n - 1. So we may assume that s «■ 1. Now 2||/-n - 1 so that

4||r" + 1 or r" = -1 (mod 4). The proof of (c) is finished.

(1.6) Suppose |, r are primes, « > 1 is an integer, and £ = ± 1. If

(rni + e)/(r" + e) - {'   forj > 1

then
(i) $ = 2, A! = 1, e = - 1, and 2s = r + 1; or

(ii) £ = 3, « = 1, e = 1, and r — 2.

By (1.5) we have s = 1 unless i = 2, e = -1, and r" = — 1 (mod 4). In this

latter case (r2n - \)/(r" - 1) = r" + 1. Since r" = - 1 (mod 4), n is odd. If

2s\\rn + 1 then 2J||/- + 1. Therefore 2s = r" + 1 > r + 1 > 2*. So n = 1 and

21 = r + 1.

We may now assume that 5=1. With x = r" we have (x* + e)/(x + e) =

£ If | > 2 then by (1.4) we must have r* - 2, £ - 3, e - 1. If £ » 2 then
£ = -1 and 2 = x + l = r'l+l. Obviously this has no solution with r > 1.

The proof is complete.

(1.7) Suppose r,p are primes and a, b > 1 are integers. If r" = pb + 1 then

r = 3, p = 2, a = 2, Z> = 3.

This little result is well known.

(1.8) Suppose that r is a prime, n > 1 an integer, and r" - 1 = 2s, 2s - 3,

2* • 5, 2s - 3 • 5. Then « = 1 unless we have one of the tabulated values below:

r 2233 5 7 11 31

n 2424222 2

r" - 1    3   3-5   23   24 • 5   23 • 3   24 • 3   23 • 3 • 5   26 • 3 • 5
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Assume that n > 1. If r" - 1 = 2s then by (1.7) r = 3, n = 2, j - 3. We

ignore this case now. Let e

following possibilities:

= ±1. Assume that n = 2m. We have the

rm + £

rm - i

2a-3

2"

2". 5

2"

2" -3

2*-5

2" • 3 • 5

2*

Suppose rm = 8 (mod 4) where 8 - ± 1. Then rm + 5 = 1, 2, 3, 5, 3 • 5, 2

3, 2 • 5, 2 • 3 • 5. These give the following values:

r™ 0       1   2   22   2 • 7   5        32      29 2       3       22

r" + Ä   1       235    3-5   2-3   2-5   2-3-5   1       2       3

rm-5    - 1   0   1   3     13       22       23       22-7       3       22      5

2-3   24      7        11       31

5        3-5   2-3   2-5    2-3-5

7        17      23      22-3   25

« 1 1111 1 1 1 1    - 1    - 1    - 1    - 1 1     - 1

From this table we have the following possibilities:

r

m

e

rm + i

rm - e

2

2

3

5

5
1

1

2-3

22

3
2
1

2-5

23

7

1
- 1

2-3

23

11

1

1

22-3

2-5

31

1
- 1

2-3-5

25

These values are all tabulated in the result.

Next assume that n = mf is odd and f is an odd prime. Then

(rmf- \)/(rm - 1) «3,5,3-5

since the power of 2 in r" — 1 is equal to the power of 2 in rm — 1. Since

I > 3, f(2f + 1) > (rmi - \)/(rm - 1). We need only check x = rm, f = n

as in (1.3). None of the values listed there satisfies our equality. The proof is

complete.

2. Characters of extensions. In this section we study how to determine

character values for certain extensions of extraspecial groups. A very general

method is given in a recent paper of Isaacs [10]. The method given here was

found independently but is very similar. Since the method has been around

for some time, we will quote and piece together the necessary results.

Let G be a group and x a character of G in some field. Let x be a

representation of G affording x- We set <p(x) = det x- Since the determinant

is invariant, cp is well defined.

(2.1) Theorem. Let G be a group with normal subgroup N. Let k be afield of

characteristic 0 containing the \G\th roots of unity. Assume that X is an

irreducible character of N and
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(1) X is G-invariant,

(2) <p(\) extends to a linear character a of G, and

(3) À(l) and [G: N] are relatively prime.

Then there exists a unique character xof G such that

(a) x\N = A and

(b) cp(x) = a.

This result is quoted in [1], [7]. Various sources of proof are given there.

As a corollary we obtain the following result.

(2.2) Proposition. Suppose G = AR where R is a normal extraspecial

r-subgroup of G, (\A\, r) = 1, and Z(R) < Z(AG). Assume that k is a char-

acteristic 0 field containing the \G\th roots of unity. Let X be a nontrivial linear

k-character of Z{R). There is a unique k-character £x = £X(AR) of G lying

over X such that:

(1) £x\z(R) ¡s a multiple ofX;

(2) £X\R is irreducible;

(3) <p(3EA) is the trivial character on A.

As is well known [9, Kapitel V, Satz 16.14] there is a unique character x of

G which is irreducible on R such that x\z(R) ™ a multiple of X. It is not

difficult to show that <p(x) is the trivial character of R. Let a be the trivial

character of G. Since x(l) is a power of r and (\A |, r) = 1, (2.1) tells us that £x

exists satisfying the required conditions and uniqueness.

Observe that:

(2.3) Proposition. In (2.2) if A0 < A then

Xx(A0R) = UAR)\aor-

In other words, if x E A then Xx(AR)(x) can be determined as

£x((x)R)(x).  It is sufficient to determine £x for cyclic extensions.

Let R = R/Z(R). Then for x G A, R is an <x>-module with a nonsingu-

lar symplectic form g induced by the commutator map of R and fixed by x. It

is easy to see, using elementary properties of symplectic spaces, that:

(2.4) Proposition. R = Rx + • • • 4- R, where the R¡ are (x}-modules such

that C^R;) = C<X>(T) for every {x}-submodule T * (0) of R¡ and C<X>(R¡)

=£ C<xy(Rj), i ¥= j. Further, each R¡ is a nonsingular space. In particular,

R¡ = RJZ(R) where R¡ is an (x)-invariant extraspecial group. And for i #/,

R¡ is orthogonal to Rj.

It is obvious that R is the central product of the extraspecial groups R¡.

Using this fact we may further reduce the problem of constructing 36A.

(2.5) Proposition [1, (IV.5)]. Assume that AR is a group with normal

extraspecial r-subgroup R and complement A with (\A\, r) = 1. Suppose R =
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RXR2 is a central product of two normal extraspecial subgroups, Rx and R2, of

AR. Let x¡ be an irreducible character of AR¡ such that x¡\r is faithful and

irreducible, and x¡\z(R) /ä a multiple ofX. Form ARX X AR2 and let

M= {(zx,z2)\ziEZ(R),zxz2= 1}.

There is an isomorphism of AR into (ARX X AR2)/M. Further, X1X2 's an

irreducible character of (ARX X AR2)/M and is irreducible on the image of R

in this group and is a multiple ofX on Z(R).

Note that Xi(l) and X2O) are powers of r. If X\ and x.2 are representatives

affording Xi and X2 respectively then Xi ® X2 affords XiX2- Thus <p(xiX2) =

<P(Xi)X2(1)<P(x2)x,(1)- In particular, if x, = *¿ARX) and x2 = *x(ARJ then

X1X2 " %\(AR)-

(2.6) Proposition. If R, - RJZ(R) in (2.4) then

UAR)-UU*R,)-
i

Now we need only compute 3EA«x>#) where C^x>(y) is the same for all

y¥-l,yER-R/Z(R).

(2.7) Proposition [1, (IV.8), (IV.9)]. Suppose AR is a group with normal

extraspecial r-subgroup R of order r2m+x. Suppose Z(R) < Z(AR) and

R/Z(R) is a direct sum of faithful irreducible V[A\-modules. If A is cyclic,

rm = (— 1)' (mod|yl|), and X is a nontrivial linear character of Z(R) then

X(x) = rmX(x), xEZ(R),

= (-l)'X(z),    x~wz,wEA*,zEZ(R),

= 0, elsewhere,

is an irreducible character of AR. Further,

X\A -apA + {-l)'\A

where a = [rm — (— l)']/\A\, pA is the regular, and \A is the trivial character of

A.

Remark. Under these hypotheses r = 0, 1 exists with rm = (-1)' (mod|A|)

[1, (IV.7)].
Now x\r and Xx((x/R)\R are both the irreducible characters of R lying

over X. Thus [6, (51.7)] there is a linear character p oí AR/R ^ A so that

Xjti = £A. Computing restrictions to A we have

Ia = f(h) = <P(XM) = <P(X)/*X(1) = <p(«Pa ± xa)hxW

= ¥>(A,)V(,) = "V0),       «-[/•"- (-l)']/\¿\>

where v is the alternating character of the regular A -representation. If r = 2

then \A\ is odd so that v = lA. Thus p = lA. If r > 2 then v" has values ± 1.
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Since (\A\, x(l)) = 1, M has values ± 1. So jux<1) = ¡i. In particular, ju, = v".

Therefore, ¡i will be the alternating character of A if a is odd, otherwise

P- Li-

(2.8) Proposition. Suppose x, A, R are as in (2.7). Then there is a linear

character \i of AR/ R =» A so that

xii = UAR).

Further, ¡i = \A unless r > 2, \A\ is even, and a = [rm - (- l)']/\A\ is odd. In

this latter case (i is the alternating character of the regular representation of A.

Now (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) are sufficient to calculate the

values of £X(AR) for any appropriate A and R. By (2.4) and (2.7) it is

sufficient to know that action of A upon R = R/Z(R) in order to determine

£X(AR)\A. In the next section we shall explicitly compute 3¿x in some cases.

3. Ordinary theory of minimal nilpotent modules.

(3.1) Hypotheses, (a) G = AR is a group with normal extraspecial r-sub-

group R of order r2m+i and (r, \A\) — 1. The group A is nilpotent, faithful

and irreducible upon R/Z(R), and centralizes Z(R). The ^-module

R/Z(R) is a minimal A -module.

(b) Q is the rational field, 8 is a primitive |C|th root of unity and k = Q(8).

All characters are k-characters.

A little explanation is in order.

(3.2) Definition. Suppose K is a field, H is a group and V is an irreducible

K[//]-module. Assume that there is a nonsingular symplectic form g: V X V

-*K fixed by H. We call V a minimal K[//]-module if for any subgroup N

normal in G either V\N is homogeneous or V\N = Vx 4- V2 where the V¡ are

the homogeneous components and are totally isotropic subspaces.

The commutator map on R induces a nonsingular symplectic form upon

R = R/Z(R) fixed by A. If we let K-GF(r) then R is a minimal ̂ -module.

The group A is nilpotent. All nilpotent minimal modules have been classified.

The group A is a subgroup of a larger nilpotent group B which acts upon R

[3, (3.20)].
We describe the structure of these groups B now [3, §2].

Recall that \R\ = r2m+1. Let K = GF(r), K = GF(rm), and K = GF(r2m).

(3.3) Example. B is cyclic of order rm + 1.

Let R = K+ and <p: £ -» £r", the automorphism of order two of K. Let B be

the multiplicative subgroup of Kx of order rm + 1. Then B acts upon R by

multiplication.
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Let Tr: K-»K be the trace map. Choose p G Kx so that pv = - p (if

r = 2 let p = 1) and set

g(u, v) = Tr( p^v* - uvv)),       u, v E R.

(3.4) Example. |5| = 2'+1 where 2'\\rm + 1, r > 2, and rm = - 1 (mod 4).

Let R, g be as in (3.3). Let Q be the 2-Sylow subgroup of B in (3.3). Form

the semidirect product <<p>Kx. Choose v G K* so that j»r"+I = -1. In the

semidirect product set B = (Q, <pv}. Then B is quaternion.

(3.5) Example. \B\ = 2'+1 where 2'||rm - 1, r > 2, and /-m = 1 (mod 4).

Let Rbç a 2-dimensional K-space with basis ex, e2. As a K-space we write

matrices in the basis ex, e2 to represent linear transformations. Choose

v G Kx of order 2' where 2l\\rm - 1. Let

v~

If Tr: K -> K is the trace map and u = aex + ße2, v = a'ex + ß'e2 where a,

a',ß,ß'EK then set

g(u,v) = Tv(aß'-a'ß).

Here B is quaternion. Let Q = <w>.

(3.6) Example. \B\ \ 2(rm - 1), r > 2, m = 2«, and r" = 1 (mod 4).

Let R be a 2-dimensional K-space with basis ex, e2. Let (2o = ('') he the

2-Sylow subgroup of Kx. Choose 0 of order (r" + l)/2 in Kx. Let i^: e -* tr"

be the automorphism of order two on K. Using matrices in the basis ex, e2 to

denote linear transformations set

B = ( w = ,6 =

Q = w =

and

D= (c =

,b =

9

The group Q is semidihedral. Let ß = QD = g X D, and C = <». If

u = aex + ße2 then >>w = ß*ex - a^e2. If Tr: K-»K is the trace map and

u = aex + ße2, v = a'ex + ß'e2 where a, a', ß, ß' G K then set g(u, v) =

Tr(ßa' - aß').

In [3, (3.20)] we proved the following.

(3.7) Theorem. Assume (3.1). Then there is an identification so that A < B

and R = R/Z(R) is given by one o/(3.3)-(3.6).

To determine dcx = £X(AR), then, it will suffice to determine $A for A = B

since other values may be obtained by restriction (see (2.3)).



56 T. R. BERGER

(3.8) Theorem. Assume (3.1).  Then R, A < B are given by (3.3)-(3.6).

Further, on B, the values of £x are given below.

(i) B, Ras in (3.3).

Xx(x) = rm, x= 1,

(a) -1, xE(B2)*,

.1, xEB\B2;

(b) XX\B = pB - n   where /i = \B

unless 2\\B\  in which case ¡i is the alternating character of the régulai

B- represen tat ion.

(ii) B, Ras in (3.4).

Xx(x) = rm, x = 1,

-1, xE(Q2)*,

(a) 1, x E Q \ Q2,

-1, *G#\ß, |ß|>4,

1, x E B \ Q, \Q\= 4;

(b) [ö|= 4,   Zx\B = {[rm+\]/\B\-\)pB+    2   X+xb-,
x(i)>i

(c) |ß|>4,   Xx\B = {[rm + l]/\B\-\)pB +    2   x + M
x(i)>i

where ¡x is the faithful linear character of B/Q.

(iii) B, Ras in (3.5).

£A(x) = rm, x= 1,

1, *G(ß2)*,

(a) -1, xEQ\Q2,

1, xEB\Q, \Q\>4,
-1, xEB\Q, |ß|=4;

<M        lßl-4,   Xx\B = ([rm-l]/\B\-2-)pB +    2   x+    2   t»;
X(1)>1 i)(l)-l

(<0        |ß|>4,   h\B = {[rm-l]/\B\-^pB+    2   X+    2   il
X(1)>1 r,(l)=l

wAere /x is the faithful linear character of B/Q.

(iv) B, R as in (3.6).
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x G (C2D)#,

xE(C\ C2)D,

xE(Q\ C)D, x2 g D,

xE(Q\C)D*,x2ED,

x E Q \ C,x2 = I;

(b) *x\B-{[rm-l]/\B\-l)pB+    2   X + (Ie + Mi)« + M2
x(D>i

where px is the linear character of Q with dihedral kernel, p2 is the linear

character of Q with quaternion kernel, and 8 is the regular character of D.

The calculation of values is carried out by the methods of §2. We illustrate

the method for one value, possibly the most difficult. In (iv) let x G Q \ C

have order two. Then x is conjugate to bw. So we may take x = bw. Let K0 be

the fixed subfield of \¡/ in K. If a G K0 then

bw(ex + ve2) = ex + ve2   and   bw(ex — ve2) = —(ex — ve2).

Let Rx = Kr/ej + ve2) + K0u(ex — ve2) and R2= Rxx. These are nonsingular

orthogonal components as in (2.4). Let RJZ(R) = R¡.

Since bw = x is trivial upon Rx we have

3ex«x>JR,)(x) = r'"/2.

Now we use x of (2.7) for (x}R2. Thus xW = (-1)' where rm/2 = (-1)'

(mod 2) since |<x>| = 2. Since r is odd we may take / = 0. Now

a = (r»/2 _ i)/2

is even, so that

X(x)=l=Xx«x>Ä2)(x)

by (2.8). Finally, by (2.6)

UAR)(x) = 3E,«x>/?,)(x)X,«x>JR2)(x) = rm'2■ 1 = rml2.

If we had chosen / = 1 above then a = (rm + l)/2, which is odd. So we

obtain, by (2.8),

-x(*)-l-3Ex«x>/?2)(x).

Other character values are obtained this same way.

The characters are decomposed upon B by means of inner products. We

illustrate this only for (iv)(b). In this case, B = Q X D and C is cyclic of

index two in Q. The group Q is semidihedral. Let D* be the maximal dihedral

and Q* the maximal quaternion subgroups of Q. Then T = D* \ C2 is the set

of noncentral involutions of Q; and F = Q* \ C2 is the set of elements of

order four in Q but not in C. Set E = C \ C2.

Xx(x) = r",

1,
-1,

1,
-1,

m/2
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Let x be an irreducible character of B. How many times does x appear in

£X\B7 That is, what is the value of (£X\B, x)/j?

First assume that xO) > 1- Then x = v\B for some linear character r/ of

CD non trivial upon C2. Using part (i)(b) which follows directly from (2.7)

and (2.8) we have

XxIcd = (rm - l)/\CD\pCD + ¡i

where /i is the alternating character of the regular representation for CD. So

(*aI*,X)b= foie*!)»- ('" - l)/|CZ>|-2([r« - \]/\B\-{) + 1.

This shows, since x(l) = 2, that the count of x in £X\B is correct in (iv)(b).

Next assume that tj = vp. where v is linear upon D and /i is linear upon Q.

Thus ker p. > C2. In fact, the kernel of p is one of ß, C, ß*, Z)*. But then

|*|(3Ex|Ä,T,)-/■"■+      2      "(*)
*e(C2Z>)*

- 2 ?(*) *»(*) + 2 "(*)m(jc)
jera xœfd

- 2   *(*)/*(*)+ '",/2 2 nO)
x(=TD* xBT

= rm- \+\C2\ 2 »W
xeo

+ ( 2 *(*))( 2 mOO - 2 nOO - 2 M>o)

+ (rm'2 + 1) 2   MOO-

Let 5, = 0 if v i= \D and 1 if v = lD. Observe that p is constant with value

± 1 upon the sets F, E, and T. Let wy = ±1 be the value of p on the set

J-F,E, T. Recall that 2'| |rm/2 - 1. Then |C2| - |F| = |£| = |7*| = 2'.

Since \D\ = (rm/2 + l)/2 our equality has the following form.

|*|(*xUl) - r" - 1 +\C2D\(\ + HF-te- lLr)8,t + \CD\pr.

The values of p are easily determined. If /i = \Q then tif = /% = pT = 1. If

jn =5^= lß then ii is +1 on one and -1 on the other two of F, E, T. We

tabulate the value of 1 + pF - nE — iir below.

1 + ¡iF - pE - pT = 0, ker p = Q,

4, ker p = Q*,
0, ker ii = D*,

0, ker ii = C.

Let S^Q, = 0 if ker p ¥* Q* and 1 if ker p. = Q*. Then our equality can be

stated as below.
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1*1(3*1*. U) - r" - 1 +\B\pT/2 +\B\8^Q.

or

(*x\b>v) = ([*■" - l]/|*h ï) + (1 + Hr)/2 + 5,5^..

The value /ir = -1 unless ker w = Q or £>*. The (1 + pT)/2 accounts for the

expression (\Q + px)S in (iv)(b). The expression 8„8uQ. accounts for p2. The

proof of (iv)(b) is now complete. Other parts of (3.8) are proved in the same

manner.

4. Other minimal cases. In the previous section we gave sufficient informa-

tion to answer the following question. If G satisfies (3.1) then when does £X\A

contain copies of the regular A -character pAl In this section we consider this

same question in a more general setting. Actually we wish to prove the

analogue to [2, (4.2)].

(4.1) Hypothesis, (a) Suppose H = AN is not nilpotent where NAH is

cyclic, A is nilpotent, and A n N = 1. Let r be a prime not dividing \H\, and

G = HR where R is a normal extraspecial /--group Z(R) < Z(G), and

R/Z(R) is a faithful minimal //-module.

(b) Let k be a finite extension of the rational field containing all |C7|th roots

of unity. Let X be a nontrivial linear character of Z(R) in k and £X(G) - XA

the unique character of (2.2).

The group H acts upon the module V = R/Z(R) fixing the form g given

by the commutator map of R. So it is meaningful to assume that F is a

minimal K[7i"]-module where K = GF(r).

We wish to determine how many times pA, the regular A -character, is

contained in £\\A. We shall first prove a theorem which is the basis of our

computations.

(4.2) Hypotheses. Condition (A): H = H/CH(N) has at least a regular

orbits in its action upon the elements of N.

Condition (B): 3£a|c (Ar) contains bp(l) copies of pv for every irreducible

character ju of CA(N) and every linear character v of N with order greater

than two.

Since CH(N) = CA(N) x N, Condition (B) is meaningful. We may prove

the following theorem.

(4.3) Theorem. Suppose (4.1) and (4.2) hold. Then £X\A contains at least ab

copies of pA, the regular A-character.

The proof is a straightforward computation with inner products. Observe

that for v, a linear character of N, x G TV, yCH(N) G H the formula

vy(x) = v(xy")
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gives an action for H upon the linear characters of N dual to the action of H

upon N. Condition (A) tells us that H permutes the linear characters of N

with at least a regular orbits. Let ^ be a complete set of distinct orbit

representations for a regular //-orbits upon the linear characters of N.

By (4-1) (a) H is not nilpotent so that \H\ > 1. The characters of N form a

cyclic group of order \N\. Therefore, for y E H and v G ^D, v* is a power of

v. In particular, v must have order greater than two. By Condition (B) we

know that Zx\ChiN) contains bp(\) copies of pv for every irreducible character

p of CA(N).

We are now ready to compute. Let x be any irreducible character of A. It is

sufficient to prove that (£X\A, x) > ^xO)- Restricting to A0 = CA(N)

XL0= c(px + • " + ¡id)

where the p¡ are distinct irreducible characters of A0. Form the characters p¡v

of CH(N) = A0 X N where v E ®0> and 1 < /' < d. Since v generates a

regular //-orbit, CH(N) is the stabilizer in H of v. Therefore CH(N) is the

stabilizer in H of pp. Induction gives x,> = M/H"» a_collection of irreducible

characters of H. Since the y's belong to distinct //-orbits, the x¡„'s are all

distinct irreducible characters of H. As remarked earlier, £x\ClltN) contains

bp¡(l) copies of p¡v for each p¡ and v. We may calculate

fôj»> X,>)#" &!<:,(#)> Mr")c.(Ar) > ^í1) = 6x(l)A¿

Therefore ZX\H contains b(x(i)/cd)^iPXi„-

Next we compute

(x¡,\a>X)a= Mh\a>x)a

= (rVlcwWn^'X)^ (ft"N0,c(ii, + • • • + ft,))^

= (/»!>*( 11, +   •  *  *   + N))ä  =  C-

We know now that x¡v\a contains ex- That is, £X\A contains b(x(\)/cd)Zx¡v\A

which contains b(x(l)/cd)"2ipcx = ¿l^lxi^X = a^x(')x- We conclude that

3¿X\A contains abpA. The proof of (4.3) is complete.

1. Condition A. Our attention must turn now to Conditions (A) and (B).

Next we carry out an extensive analysis_of Condition (A). We wish to

determine partially the order of TV and of //. Since H acts faithfully upon N

we may consider H < Aut(A0. This is a fairly nice situation since N is cyclic.

We shall be concerned with the case where a < 3 in Condition (A). Since

Aut(/Y) is regular upon generators of N, this forces [Aut(/V): H] < 3.

We shall describe H more thoroughly later, but for our purposes now we

need only know that H is either cyclic or H =* Z2 X F where F is cyclic of

even order. This allows us to fix the following hypotheses.
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(4.4) Hypothesis. Suppose that L is a cyclic group, K < Aut(L)

[Aut(L): K] < 2, and K is cyclic or K = Z2 X F where F is cyclic of even

order.

(4.5) Proposition. Assume (4.4).

(1) If K is cyclic then Aut(/_) is cyclic or Aut(L) » Z2 X F0 where F0 is

cyclic of even order.

(2) If K=* Z2 X F then Aut(L) Aas one of the following types: (a) Z2 X F0;

(b) Z2 X Z2 X F0; or (c) Z4 X Fx where F0 is cyclic of even order and Fx is

cyclic such that 4| \FX\.

The invariants of the 2-Sylow subgroup of K are (2') or (2, 2') as K is cyclic

or not. Since [Aut(L): A'] < 2 the possible invariants for a 2-Sylow subgroup

of Aut(L) are:

(1) if A- has (2') then Aut(L) has (2'), (2'+ '), or (2, 2');

(2) if K has (2, 2') then Aut(L) has (2, 2'), (2, 2'+1), (2, 2, 2'), or (4, 2').

These invariants cover all cases listed above.

This result implies certain facts about the structure of L.

(4.6) Proposition. Assume (4.4). Suppose f > 1.

(1) 7/(2') is the 2-invariant o/Aut(L) then L has order 1, 2, 4,p', or 2p" for

an odd prime p.

(2) If (2, 2') are the 2-invariants of Aut(L) then L has order 2s for s > 2,

4pe, peqf, or 2peqf where p, q are distinct odd primes such that 2| \q — 1 and

(p'-\p-\),qf-\q-\))-2.
(3) If (2, 2, 2') are the 2-invariants of Aut(L) then L has order %pe, 2,+2qf,

4p'qf, peqfrg, or 2peqfr8 where p, q, r are distinct odd primes such that

2\\q-\,2\\r- I, and

(p°-x(p - \),qf~x(q - 1)) = (p'~x(p - l),r*-'(r - 1))

- (qf-x(q - 1), r*~x(r - 1)) - 2.

(4) If (4, 2'+ ') are the 2-invariants of Aut(L) then L has order p'qs or 2p'qf

where p and q are distinct odd primes such that 4\p — 1, 4| \q — 1 and

(p'-\p-\),qf-\q-\)) = 4.

Write L » C0 X C, X • • • x C„ where C0 is cyclic of order 2m and

IQI = /'i'' I°r e/ > 0 an(I Pi an odd prime. Then

Aut(L) at  Aut(C0) x Aut(C, ) x • • • x Aut(CJ.

Further Aut(C0) is of order 2m_1. If m > 2 then Aut(C0) » Z2 X Z2„-2. Each

Aut(Q is cyclic of orderpte'~x(p¡ - 1). The 2-rank of Aut(L) is n if m = 0, 1;

n + 1 if m = 2; and n + 2 if m > 2. For an odd prime p* the />*-rank of

Aut(L) is i* wherep*\p'1 ~x(p¡ — 1) for exactly /* values of i. Since t* = 1 we

conclude that (p¡e'~x(p¡ - l),pfJ~x(Pj - 1)) is a power of 2 for all i =t j.
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The rest of the proof involves checking invariants. We complete the proof

only for (3). Assume m > 2. Then n + 2 = 3son = 1. That is, \L\ = 2mpe. If

2*| \p - 1 then Aut(L) has 2-invariants (2, 2m_2, 2X). So m - 3 or x = 1.

Therefore \L\ = 2t+2pe, 2\ \p — 1 or &pe. Assume m = 2. Then « + 1 = 3 so

that n = 2. Here 2x\\p - 1 and 2-v| |ç - 1 and L has order 4/>V- The

2-invariants of Aut(L) are (2, 2X, 2y). So .y = 1. Assume m = 0, 1. Then

« = 3. The order of L is 2/>"qfrg or /> VK If 2X\ \p - 1, 2-v| \q - 1, and

22| \r - 1 then the 2-invariants of Aut(L) are (2X, 2y, 2Z). Therefore^ = z —

1. Part (3) follows from these considerations. Other cases have similar proofs.

This result, (4.6), gives strong conditions upon the number of primes which

may divide \L\. In our specific application, we may also limit the exponent

upon these primes. To carry our such an argument, however, we need

information about our particular group.

Recall the group H and the module V = R/Z(R). Checking hypothesis

(4.1) shows that [3, (3.1)] is a valid hypothesis. In particular, we may quote the

following properties of H from [3].

(4.7) Lemma [3, (3.2)]. // L A H is abelian then L is cyclic.

(4.8) Lemma [3, (3.3)]. H contains a cyclic self-centralizing normal subgroup

M > N. Further,

(a) CH(N) = CA(N) X N;

(Jo)(\CA(N)\,\N\)=l;
(c) M = C„(A0 or [CH(N): M] = 2 and an S2-subgroup of CH(N) is

quaternion, dihedral, or semidihedral.

We may actually give canonical forms for H and V. First we must

introduce the canonical groups and modules.

For an extension K0 of K = GF(r) let § = § (Kq/K) be the Galois group

of Kq over K. Form the semidirect product ?T(K0/K) = § • K£ where K£ is

the multiplicative group of K0. We shall use this group in our constructions.

The additive group K^" is naturally a ?T(K0/K)-module by

(ax) • v = a(xv) = (xv)°

where a E §, x E K^, and ceKJ.

Observe that we have set 3 = §(K0/K) when there is no confusion. We

shall use other notational conventions in the following.

Let K = GF(r2m), K = GF(rm), and 9: e ̂  er" for £ G K. Fix p E K so

that p* = - p (let p = 1 if r = 2). Let Tr: K -► K be the trace map.

(4.9) Example. The group ?T, = S"*(K/K).

For «, v G F, = K+ set

gx(u,v) = Tr(p(u*v-uv*)).



HALL-HIGMAN TYPE THEOREMS. Ill 63

We let 9*(K/K) be the subgroup of fi(K/K) fixing the form g,. We set

fi, = Kx n 9*(K/K). This subgroup has order rm + 1. The index is [9,: <5°x]

= 2m. If P is a /7-Sylow subgroup of íi", then P splits over Pn^ unless

p = 2. When;? = 2, P is cyclic unless 4\rm + 1 in which case P is generalized

quaternion.

We shall prove these last facts now.

Let S = g(K/K). Then % is a subgroup of § ■ Kx. In fact [3, (3.9)]

?T,/g° s* g since 5^KX = ê • Kx. If ;? is an odd prime then 5? contains the

/7-Sylow subgroup of Kx. Therefore, an odd ;?-Sylow subgroup of fT, is a

/?-Sylow subgroup of ?T(K/K). These latter Sylow subgroups split over Kx.

So P splits over P n ^\ for odd primes;?.

Suppose;? = 2 and 2'| |rm + 1 where t > 2. Choose j» G Kx of order 2'+1.

Then <pv fixes g,. Further, if P0 = P n 9? then <<pj<, P0> is a 2-Sylow

subgroup of ?T[ and is generalized quaternion. Finally suppose p = 2 and

2'| |rm - 1 where t > 2. Choose a G g of order 2s where 2J| |2w. A 2-Sylow

subgroup of 9, will have order 2,+l. By [3, (3.9)] ov E 9, for v G Kx will fix

g, if and only if p"p~xv'f'v = 1. We may choose v to satisfy this identity. What

is the order of avl Computing (av)2' = rjw0 where p0 = p1"1"0"1" " +a2' "'.

This element fixes g, so that 1 = p'pp~xv^p0= - ¡>¡fvQ. Therefore, vg =

- PqX. We conclude that (av)2s = (<pv0)2 = -1; and en» has order 2i+1.

Therefore, a 2-Sylow subgroup of 9, is cyclic in this case.

(4.10) Example. The group 92 = 9(K/K).

Recall that K = GF(rm). Let ex, e2 be a K-basis for a 2-dimensional vector

space V2. For u = aex + /te2, c = a'ex + /?'e2 where a, a', /?, /3' G K set

g2(M, t?) = Tr(a'/? - aß').

We write semilinear transformations as matrices in the basis ex, e2.

92 = 9t(K/K) = (r=[_1     l},[aV    ai>_,]|aGS(K/K),,GKx).

Then

6T0 _
J2 - k£KxU   K

has order rm - I. This group fixes the form g2. Let f be the inversion

automorphism of Kx. Then t commutes with S(K/K) upon Kx. Therefore:

(4.11) Lemma. 92 =* «f> x g(K/K)) • Kx; and ^ ^ Kx.

If P is a ;?-Sylow subgroup of 92 then the isomorphism of (4.11) where

9^ at  ¿x makes it clear that P splits over P n %

We reference the full description of 9,, / «- 1, 2, just by (4.9) and (4.10). In

using (4.11) we shall reference it directly.
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Using these two group-module pairs we have the following theorem by [3,

(3.10), (3.17)].

(4.12) Theorem. Assume (4.1). // M is a normal cyclic self-centralizing

subgroup of H containing N then we may identify H, M, V, g respectively with

H0, M0, V¡, g¡ where H0 < % and M0 < S? for i = 1 or 2 where dim V, - 2m.

If i = 2 then HQ (via (4.11)) does not lie in g(K/K) • K\

Using our comments about Sylow subgroups of % we may say the

following.

(4.13) Lemma. Ifp is aprime and N contains ap-Sylow subgroup of *5? then a

p-Sylow subgroup P of H splits over P n N. In fact, for an appropriate

conjugate of P, P = (P n A)(P n N).

We always get splitting unless / = 1 and p — 2. We need more than this.

The group P may be chosen so that P < A(P n N) since AN = H and

P n N AH. Thus P n [A(P n N)] »(in A)(P n N). Since (P n A) n
(P n JV) < >4 n /V = 1, we get the desired splitting.

The hypotheses of (4.13) are not difficult to satisfy.

(4.14) Lemma. If it = ir(CA(N)) is the set of prime divisors of \CA(N)\ then

for purposes of computing £X\A we may assume that N is a Hall tt'-subgroup of
<5TO

Observe that the extension (5?//)/? exists. The group S?// has order prime

to r so that £A(9?//fl) exists. Thus £X\A = dix(^HR)\A. Let N0 be a Hall

w'-subgroup of S?. Consider the group N0H. With H0 = N0H = AN0 (since

N0> Nby (4.8)(b)) H0 satisfies the hypothesis (4.1). So (4.14) holds.

Actually, for computing £X\A the extension (S?//)/? need not be known to

exist. As shown in §2, the values of XA|W depend only upon H, V, and g.

Therefore, we may define 3EA formally upon H0 and observe that 3LX\A remains

unchanged.

Remark. For the rest of this section we assume that N is a Hall n-'-sub-

groupof5?. _
Recall that H = H/CH(N). We now prove that hypothesis (4.4) holds if H

has fewer than three regular orbits upon N.

(4.15) Lemma. // H has fewer than three regular orbits upon N then (4.4)

holds with H= KandN = L.

Observe that H < Aut(N). Since Aut(/V) is regular upon generators of N

we must have [Aut(JV): H] < 2. Now %/^¡ is isomorphic to g(K/K) if / = 1

and Z2 X g(K/K) if i = 2; The group H/M = /f 9?/S? is a subgroup of

one of these. Since [CH(N): M] = 1, 2, H « F or Z2 X F where F is cyclic.

Therefore, (4.4) holds.
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At this point (4.6) tells us something about the order of TV. We now wish to

bound the exponents of prime powers there. This is done by observing that H

acts upon N like most of Aut(TV). In particular, if pe\ \N\ for large e then

p\ \H\. This double divisibility of primes is hard to carry off. So the expo-

nents are limited.

(4.16) Lemma. Assume (4.1). Suppose p is aprime, a E A has order p, T is a

p-Sylow subgroup of N of order pe where e > 0, and [a, N] < T. Then p = 2

and P = <o, J> is dihedral, semidihedral, or quaternion.

Set A = Ax X A2 where Ax is a ;?-group and A2 is a ;?'-group. Write

N = T X N2 where 7V2 is a p'-group. Now a centralizes A2 and N2. Thus

(o,A2,N} contains (a, CA(N)N} = (a, M) and is nilpotent. It is also

normal in H since H/M is abelian. The group P = (a, T} is a ;?-Sylow

subgroup of <a, M >. Therefore P is normal in H. The group P is a split

extension of T by <a>. Assume that if p = 2 then P is not dihedral,

semidihedral or quaternion. Then P0 = <ct, Î5'(r)> is a characteristic abelian

subgroup of P. In particular, it is normal in H. By (4.7) it is cyclic. Therefore,

ÜX(T) = 1. But now (a, T> must be abelian. Again (4.7) applies to tell us that

it is cyclic. So T = I. But \T\ = pe and e > 0. This contradiction concludes

the proof of (4.16).

(4.17) Lemma. Assume (4.1). Suppose H has fewer than three regular orbits

upon N. Ifpe\ | \N\ then e = 0, 1 or p = 2 and e = 0, 1, 2, 3.

Suppose the lemma is false. Recall that by (4.15), hypothesis (4.4) holds. In

particular, [Au^/V): H] < 2. Let T be a ;?-Sylow subgroup of N. We may

assume that \T\ = p' where e > 1, or e > 3 ifp = 2. If/? is odd than Aut(A0

contains a cyclic group of order p'~x(p — 1). In particular, H contains an

element 0 of order p. If ;?_ = 2 then Aut(A/) contains a copy of Z2 X Z2,-2. In

this case e > 3 so that 77 will contain a copy of Z2.-j where e — 3 > 0. That

is, we may choose f G Aut(TV) so that f2 = rJ G 7/ has order 2. Further, t

acts with order four upon T and J acts with order p upon T.

By (4.13) we may choose a ̂ -element a E A so that aCH(N) = ¿\ Now o^

centralizes TV and is in A. Therefore ap E CA(N). By (4.8)(b) we conclude

that or' « 1.

Next we prove that [a, N] < T. Fix a prime a such that q ¥= p and a^l \N\

where/ > 0. Suppose a is nontrivial upon a a-Sylow subgroup N0 of N. That

is, the image of a in Aut(7V0) has order p. We now have p\q - 1. That is,

Z X Zp is a subgroup of Aut(7) X Aut(7V0) which, injurn, is a subgroup of

Aut(/V). Assume that;? > 2. ThenZ^ X Zp resides in H since [Aut(A/): H] <

2. But by (4.4) the odd part of H is cyclic. This contradiction proves that

[a, N0] = 1. Since q was arbitrary, we conclude that [a, N] < T if p is odd.
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We may now assume that/? = 2. Since \T\ = 2e and e > 3, Aut(T) » Z2

x Z2«-2 where 2*~2 > 4. Further, Aut(N) contains Aut(F) x Aut(N0). Now

Aat(N) must contain Z2 X Z2 x Z4. From (4.5)(2) we find that Aut(N) =* Z2

X Z2 X F0 where F0 is cyclic of even order. From (4.6)(3) we discover that

\N\ = 2eqf where 2| \q — 1. At this point we are in trouble. Restricting f to

N0, f will have 2-power order. Since 2| \q — 1, it has order one or two upon

N0. Therefore, f2 = ä is trivial upon N0. Even when /? = 2 we may conclude

that [a, 7Y0] = 1. So [a, N] < 7* for all possible/?.

We have now satisfied the hypotheses of (4.16). In particular, p = 2 and

P = (ct, F) is dihedral, semidihedral, or quaternion. That is, a acts upon T as

x-»x-1 or x-*x2' "'. Neither of these automorphisms is a square in

Aut(T). But restricting f to T gives an element of order four in Aut(F) whose

square is a restricted to T. That is, a is both a square and a nonsquare on T.

This final contradiction completes the proof of (4.17).

The two results (4.16) and (4.17) may be combined to yield the following:

(4.18) Lemma. Assume (4.1). Suppose H has at most two regular orbits upon

N. Below are tabulated possible structures for N and H. The following notations

are used: c-cyclic; n-noncyclic; p,q,t-distinct odd primes. Further,

(p - I, q - 1) = (p - I, t - I) = (q - \, t - I) = 2,4.

H Aut(/V) [Aut(AT): H] \N\

c c 1,2 p,2p

c n 2 4p,pq, 2pq

n n 1 4p,pq,2pq

n n 2 4p, 8/?, pq, 2pq, 4pq, pqt, 2pqt

This table is derived from (4.5), (4.6), and (4.17). First observe that N is not

a 2-group. Let Ax be the 2-Sylow subgroup of A and A2 the 2-complement. If

A7 is a cyclic 2-group then AN = A2X (A XN) is nilpotent. This violates (4.1).

By (4.17) if p > 2 and p\ \N\ then p\ \ \N\. If p = 2 and 2| \N\ then
16 \ | N |. Combining this information with (4.5) and (4.6) yields the above

table.

We may make one more remark.

(4.19) Lemma. Assume (4.1). // 2| \N\ then \CA(N)\ is odd and CH(N) is

cyclic.

By (4.8)(b) \CA(N)\ is odd. Since N is cyclic and CH(N) = CA(N)N,

(4.8)(b), (c) imply that CH(N) is cyclic.

We turn our attention now to the order of H/M. Recall that by (4.9),

(4.10), and (4.11) we may view 5? as a subgroup of the multiplicative group of

the field K or K. Further, H/M acts upon S? as a subgroup of <f> x S
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where § is the Galois group of the field and f inverts the multiplicative group

of the field. When i'- 1 77/ M acts as a subgroup of §. So if ö G H/M then

à~ or rjf acts as an automorphism of the field. This fact will play a large role in

our computations. We wish to limit the number of primes dividing [77: M]

and their exponents. First we need information about the structure of A 9?.

(4.20) Lemma. Assume (4.1). Suppose 77 Aas at most two regular orbits upon

N. Let m = ir(CA(N)) be the set of prime divisors of \CA(N)\. If M„ is a Hall

•n-subgroup of 9?, and if a G 77/M Aas order £e for a prime £ and exponent

e > 0 then 9? = M„ X N, AM„ is nilpotent, and [9?: Cgo(rJ)] = ?[N: CN(5)]

for some s.

By (4.14) TV is a Hall w'-subgroup of 99. Therefore, the cyclic group 9°

equals Mn X N. Suppose p E it and S is a ^-Sylow subgroup of 9?. Then

Sx = S n A =£ 1 since p Em. Further, we may choose a E A so that in

H/M, oM = 5 where a has £-power order. Thus {a, Sx} is contained in A

and, therefore, is nilpotent. If p + £ then a must centralize Sx. That is, a must

centralize 5. This holds for all;? G m and £|[/7: A/]. We now know that AMW

is nilpotent. But, in this case, [Mv: CM (âj\ = £s is a power of £. Since A/„ and

A/ have relatively prime order and since M = M„ X N we conclude that

[M: CM(t)] = [M„: CK(r7)][/V: C„(r7)] = V[N: CN(5)]. The proof is com-

plete.

(4.21) Lemma. Assume (4.1). Suppose H has at most two regular orbits upon

N. Assume that o~ E H/M has order £e for a prime £ and exponent e > 0.

(a)If£ > 2 then e = 1.

(b) If H is a subgroup of 9, and £ = 2 then |9?| = 2b\N\ and e - 1 unless

\N\ = |9°| = 2a o/- 2^1 = |9?| = 2a/or an odd prime a.

(c) 7/7/ « a subgroup of 92, £ = 2, a«a" |A/| Aas exactly v odd prime divisors

then v < 3 a«a* e? < y + I.

Suppose e > 1. By our previous remarks, ä or of acts as a field automor-

phism. Further, we need only consider or in part (c). Let ö*' = ô,, y" =

0,..., e. If we are in part (c) and or is the field automorphism we set

b~e = of. Let Kj be the fixed field of 5,. Now Ky is a subfield of K or K as / = 1

or 2. Let %¡ = 9? n Ky. For this intersection we are viewing 9? as in K or K

(as in (4.11)). Observe that %¡ is the centralizer of 5j in 9?. Therefore (4.20)

applies to tell us that

[fl?:^]-«»[JV:Cw(^)]

for some Sj.

Turn now to (4.18). Suppose |7V| = 2fla, . .. q„ where v < 3 and qx, . . . ,q„

are odd primes. Then for a ¥= ß (qa - 1, fy - 1) = 2, 4. By (4.5) and (4.6)

the value of (qa - 1, qß - 1) = 4 can only occur when 7/ < 92 and p = 2.
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Consider (a). Here aJt j > 0, is trivial on all but one (qß = q) <y-Sylow

subgroup of N. Thus [N: CN(âj)] = qs where /= 0, 1. Therefore,

[S?: %,] = «v
But then [9?: %,] = g* for some s. Taking £ = +1 if / = 1 and £ = -1 if

i = 2; and m = £'n we have |0Q,| = |3?| = r"5' + £. But then

[9?: %] - (r"«* + £)/ (/•"«"' + e) = *'.

If e > 1 and I is odd, this equation has no solution. We must have £ = 2.

Consider (c). Assume now that e > v 4- 1. In this case %j = Kj*. Now

1% %-i] = n;[K/: K*,] over/ = 0,..., e - 1. Set [K/: K/+1] = p,. Then

[Kx:K,x_I]-pöPl...p._2-«[il2:C9,(öa)]

divides 26g, . . . qv by (4.20) since \N\ - 2"qx . . . qv and i-2. There are

e — I > v values of p,. So at least one p, is a power of 2. Since |K*| = rn2"J

— 1 where m = «2e,

(r"2"' - 1)/ (r«2"-'-" - 1) = 2C.

By (1.6) n2(e~J~l) = 1 so that e = j + I. But/ <e-2ore>/+l since p,.

has/ < e — 2. This contradiction proves (c).

Finally we look at (b). The element 5 is an automorphism in this case.

Further, ax has order two. Thus i, is the automorphism of K = GF(r2m) of

order two. But that automorphism sends x -» xr". Here x E 5^ so that

xr"+l = 1 or x'm = xs' = x~\ So ö, inverts 5?. Recalling (4.20), 5? = M, x

A^ and <a, A/w> is nilpotent where aM = a and a E A is a 2-element.

Therefore, M, is a 2-group, and |9?| = 2b\N\. By (4.5), (4.6) and (4.18),

|A| = 2s,p, 2p, 4p,pq, or 2pq. Suppose e > 1. Then 2m = 2en so that 2|m. In

particular, |S?| = rm + 1 is twice an odd number. So |5?| = 2/?, 2pq. There-

fore, \N\ = p, 2p,pq, 2pq. By (4.6)(a), (b) if pq\ \N\ then (p - 1, a - 1) -2.
Suppose 2j 1/7 — 1. So a2 centralizes the /?-Sylow subgroup of N. But a1'

inverts N. Since e > 1 we conclude that /^||/V|. So if e> 1 then

|JV| = 2p = |S?| or 2|/V| = 2/? = |S?| for an odd prime/?. The proof of (4.21)

is complete.

We have limited the exponents of primes dividing [//: M\. Next we limit

the number of prime divisors in [H: M] in terms of the number of prime

divisors of |A^|.

(4.22) Lemma. Assume (4.1). Suppose H has at most two regular orbits upon

N. Suppose p\ \N\ is an odd prime, and Np is the p-Sylow subgroup of N. Let

Hp = H/CH(Np) be the restriction of H/M to Np.

(a) If ir0= ir(N) is the set of odd primes dividing \N\ and p E tr0 then Hp is

regular upon the elements of N* with one possible exceptional p. For that one

exception Hp has exactly two regular orbits upon the elements of Np#.



HALL-HIGMAN TYPE THEOREMS. Ill 69

(b) If 77 is a subgroup of % then \Hp\ = 2a£for a > 0 and £ = 1 or £ is an

odd prime.

(c) If H is a subgroup of 92 then \Hp\ = 2", £, or 2£ where £ is an odd prime.

7/ |//pi = 2£ then Hp contains an element inverting Np.

By (4.18) we know that \N\ = 2sqx ... q, where v < 3. Let S0 be the

2-Sylow and S¡ the a,-Sylow subgroup of N. Then

Aut(N) = Aut(50) X Aut(S,) X • • • X Aut(5„).

Now [Aut(/V): 77] < 2. Let _/70, ._L>, 77„ be the projections of H into

Aut(50),..., Aut(Sv). Then H < H0X • • • X //„. So 77, = Aut(5,) for all

but possibly one value of /.

If p = qj then Np = Sr Therefore 77, = Aut(5}) except for i if i > 0. If

p = q¡, i > 0, then [Aut(5,): Hp] = 2. Since Aut(S,), / > 0, is regular upon

Sj*, part (a) follows.

For the next part, suppose y > 8 are two distinct prime divisors of \Hp\.

Now \Np\ = p is of prime order by (4.18). We have \Hp\ = y"8b ■ u where

(u, yô) = 1 and a, b > 0. Choose ax E Hp of order y and a2 G Hp of order 8

(or Sb if 5 = 2).

By (4.18) (qa - 1, qß - 1) = 2, 4 for a ¥= ß where \N\ = 2sqx ... q, and

the qj are odd primes. Thus CN(a¡) contains all but one 0,-Sylow subgroup if a¡

has odd order. In particular,

[N: Cn(a,)] = P = %   for some/0.

Suppose 5 > 2. Then [N: CN(a2)] = p also. By (4.20) we have

[9?: Cgy(o,)] = y°¡r? if/ = 1   or   ô"p if/ = 2.

Let Ky be the fixed field of a, (recall that ay now acts as an automorphism of

the underlying field). Set %¡ = Ky. n 9°. Then %, = C^af). Therefore p

divides both [9?: SCy] for/ = 1, 2. So ;? divides [9?: %x%]. In particular,

[O^DCj: OCJ = yM is a power of y. But then [^X^ %x] = [%: 3C, n XJ =
y". Let e = 1 if / = 1 and e = -1 if i = 2. Then |9g = |K2 n 9?| = rm'& +

e and \%x n %\ = |K, n K2 n 9?| = rm/1's + e. So

(r"T + e)/ (rn + e) = yu

where « = m/yS. By (1.6) we must have yw = 3, e = 1, n = 1, and r = 2. By

the same argument with 5 in place of y we obtain

[%x: %x n %] = S" = (/■"» + e)/(/-n + e)

where « = m/yó\ By (1.6) we have S*1 = 3 = y. But y > 8. This proves that

\Hp\ has at most one odd prime divisor.

Next we assume that 5 = 2. We now consider (c) since (b) holds. Further,

we may assume that 177^1 = 26y where ¿? > 0. Since Hp < Aut(Np), it is cyclic.

By (4.21) we know that y" = y.
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Since H < Aut(A) and \N\ = 2sqx . . . q„ where (qa — 1, qß - 1) = 2, 4 for

a =7= /? we must have y| | |//|. So we may choose a, G ///A/ of order y so

that ô, = o, in if . Further, we may choose ct2 G Aut(A) of 2-power order so

that a2 is a2 in Hp. If b ¥= 1 we may choose ö2 not inverting A^. Let ô2 be a2 or

o~2t whichever is a field automorphism. Then a'2 is nontrivial upon Np and acts

upon Np with order 2b.

Let K, and K2 respectively be the fixed fields of ö, and rJ2. Now p divides

[Kx: K/] for/ = 1, 2. Thus [Kx: KXKX] is divisible by /?. But then since

[Kx: Kx] = [%: C^fâx)] = y°p we have

[K1xK2x:K1x]=[Kx:K1xnKx] = Y".

Now [K2X: Kx n K2X] = (r"* - \)/(rn - 1) - ya where m = ny2b. By (1.6)

this cannot occur. Therefore \Hp\ = 2y and a2 inverts A^. This completes the

proof of (c), and hence all of (4.22).

We may now complete the case where H < fi",.

(4.23)Theorem. Assume (4.1). Suppose H has at most two regular orbits upon

N, and H < <SX. Then H = H/M and we have the following tabulated values:

r m \H\ \N\       tt(A n M) # reg.orbits

(1) 2 12 3 0 1
(2) 2 2 2 5 0 2
(3) 2 2 4 5 0 1

(4) 2 4 8 17 0 2
(5) 2 5 5 11 3 2

(6) 3 2 2 5 2 2
(7) 3 2 4 5 2 1
(8) 3 3 3 7 2 2
(9) 3 3 6 7 2 1

(10) 5 3 3 7 2,3 2
(11) 2*-3-l       1 2 3 2       1(j>0)
(12) 2s ■ 5 - 1        1 2 5 2       2 (s > 0)

By (4.18), |TV| is divisible by an odd prime. Further, an involution of H/M

must invert ^ by (4.9). Thus by (4.8)(c) CH(N) = M.

Since H < ?T,, H/M is cyclic and acts as field automorphisms of K. By

(4.18) we have |A| = p, 2/?, 4p,pq, 2pq. Now [Aut(A): H] < 2. Therefore we

may compute the_order of H. The possibilities \N\ = 2p, \H\ = (/? —__l)/2

and \N\ = 2pq, \H\ = (p — l)(q — l)/2 do not occur. In both cases, H has

two regular orbits upon the Hall 2'-subgroup of TV. The involution of A'

multiplied by orbit generators gives two more regular orbits. So there are four

regular orbits. We therefore have the following table:
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|W| P P 2p 4p pq

W     |77|    (p - l)/2   (p - 1)   (p- 1)    (p - 1)   (p - \)(q - l)/2

Since 77 is cyclic, when \N\ = pq we may assume that 2| \q - 1. By (4.22) we

know that if t\ \N\ is an odd prime then |77,| = 2a£ where £ = 1 or is an odd

prime. Thus t = 2ß£ + 1 where ß = a or a + 1. For p and a we may

therefore write/? = 2ß£ + 1, q = 2f + 1 where |, f = 1 or are odd primes.

First assume that \N\ is divisible by a prime of the form t = 2£ + 1 where

£ > 1. This will certainly occur for \N\ = pq unless q = 2 + 1 = 3. Choose

¿F G H of order & By (4.20) [9?: Cgo(J)] = £st = ¿*(2| + 1). Since £ is odd

[9?: Cgc(rJ)] = (rn£ + l)/(/-n + 1) where m = n£. Thus

(rni+ \)/(r" + \) = £s(2£+ 1).

By (1.5) we know that s = 0, 1 since £ is odd. But then by (1.4) we must have

« = 1 and:

r 2 3 5

£ 5 3 3
;? 11 7 7

Since 1771 divides 2m we have |77| = £, 2£. This will lead to entries (5), (8),

(9), and (10) of the table.

At this point we have 2m = 2£ and \H\ divides this number. If \H\ = 2£

then 77 contains an element of order two inverting ¡t\°x. Thus N contains the

Hall 2'-subgroup of 9?. By (4.9) a Sylow 2-subgroup of 9, does not split over

9? unless_r = 2. So if 2| |77| then N is the Hall 2'-subgroup of 9?. Assume

that 2| \H\. From this we obtain the values

r 2 3 5

m 5 3 3

|77| 10 6 6
|A/| 33 7 63

Since 63 = 32 X 7 and | N \ is not divisible by an odd square, the case r = 5

does not occur. With r = 2, |7/| = 10, |/V| = 33, // has three regular orbits

upon N. The remaining case with r = 3 is listed as (9).

Next suppose that \H\ = £. So \N\ = p and |7?| = (p - l)/2 by (*). This
leads to entries (5), (8), (10) of the table.

We now assume \N\ is not divisible by a prime / = 2£ + 1 where £ > 1, i.e.

iß > 1 and f = 1. We have actually limited the remaining cases quite a bit.

By (4.21)(b)_we know that p = 2£ + 1 and q = 3 if \N\ = pq since |77| =

pj^ 1 and H is cyclic. This rules out the possibility that \N\ = pq. Further, if

1771 = £ is odd then by (*) £ = (p - l)/2 or p = 2£ + 1. Again this case is
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ruled out. In particular, \N\ = p, 2p, 4/? and \H\ is even. By (4.20(b),

\<5¡\ = 2b\N\. Thus N = S? or |/V| = /? and |Sfl = 26/?, ¿? > 0. Since \H\ is
even and since the 2-Sylow subgroup of % is not split over 5? we conclude

that 2| \CA(N)\ and |/V| = /? is odd.

Now |S?J_= 26/? and \N\ = /?. Note that \H\ = (/> - 1) or (/? - l)/2. By
(4.21)(b) \H\ = 2a£ where £ = 1 or £ is an odd prime. Thus /? - 2ß£ + 1

where /? = a or a + 1. We have already discussed the case where ß = 1. So

we know that ß > 1.

Suppose | > 1. Choose à E H of order £. By (4.20) [9?: Cgo(ö)] = £*/>.

Since £ is odd and |^| = 2bp we conclude that 5 = 0. Now \H\ divides 2m so

that m = ni. In particular,

[^:C^(5)]=p = (r"i+l)/(r"+l).

Therefore r" + Ï = 2b. This equation forces r to be odd and n = 1 by (1.7).

Note that 2w = 2£. Since_J//| is even, we conclude that |//| = 2£. But

(/? - l)/2 = 2/?_I£ divides |/7|, thus \H\ = 2^£ or 2"-'£ = 2|. Since the case

/? = 1 has already been discussed we conclude that ß = 2. Therefore, p =

4£ + 1. Thus (rni + 1)/V + 1) = 4£ + 1. By (1.4) there are no solutions to

this equation for r a prime and £ odd. We conclude that £ = 1.

Now/? = 2^+1. Suppose 4| |//|. Then since |Z/| divides 2m we have 2|m.

If 2 divides rm + 1 then 2| \rm + 1 since m is even. So rm + 1 = 1^1 = 2/? =

2(2^ + 1) or r"1 = 2^+1 + 1. By (1.7) the only solution to this_equation is

r = 3, m = 2, ß = 2. In this case/? = 5. Further 2am = 4. Thus |//| = 4. This

all leads to entry (7) of the table. Suppose 2 does not divide rm + 1. That is,

r = 2. Now 2m + 1 = p = 2^ + 1. In particular, /? is a Fermât prime and

m = ß is a power of 2. Now |¿T| = (/? - 1) or (p - l)/2 so that \H\ = 2m or

2m_1. But \H\ divides 2m. Therefore 2m_1 < 2m or 2m < 2m. The only

powers of 2 which will work for m are m = 2 or m = 4. That is, r = 2, m = 2,

|//| = 4, |/Y| = 5 or r = 2, m = 4, |//| = 8,/? = 17. These account for entries

(3) and (4) of the table.

We may now assume that 2| \H\. Since \H\ = (p - 1) or (/? - l)/2 = 2P

or 2^-1 we conclude that ß - 1, 2. That is,/? = 3, 5. Thus rm + 1 = 3, 5, 2* •

3, 2* • 5 where ¿> > 0. From rm + 1 = 3, 5 we obtain entries (1) and ^We

are left with rm + 1 = 2*j_3, 2* • 5 for b > 0. Now p = 3, 5 and |//| =

(/? - 1) or (p - l)/2. So \H\ = 2.
Suppose an odd integer £ > 1 divides m. Then ?Ti/S? contains an automor-

phism a of order £. Clearly ö centralizes all elements of order 3 or 5 in 5^.

Thus [S?: CgoirT)] = (rn( + \)/(rn + 1) = 2C where n£ = m. Note that rm + 1

= 2bp so that r is odd. By (1.6) we must have | = 3 and r = 2 since £ is odd.

We conclude that m is a power of 2. If m is even then when rm + 1 = 2/?

since 2| |rm + 1. Now rm + 1 = 6, 10 so that rm = 5, 9 and m > 1 is even.
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This forces r — 3, m — 2, p = 5. This gives entry (6). We conclude that m = 1

so that r = 2b -p - 1. This leads to entries (11) and (12). The proof of (4.23)

is complete.

We may turn now to the case where 77 < 92. Recall that 9^ » Kx and

H/M is isomorphic to a subgroup of <t> X § where t inverts Kx and § is

the Galois group of K. Further, S 92 is reducible upon V. Therefore, H/M

contains an element ra for some a G §.

(4.23') Theorem. Assume (4.1). Suppose H < 92 ana" 77 Aas a/ was? two

regular orbits upon N. Then we must have the following values. In the last

column c means H/M must be cyclic, and if t is an integer then tr(t) are the

prime divisors of t.

r m   \H\ [77: M]    \N\    tt(A n M)   # reg. orb.    *

(1) 2 2     2 2 3             0 1 c
(2) 2 3      6 6 7            0 1 c
(3) 2 4     2 2 3             5 1 c

(4) 2 44 43-5          0 2

(5) 2 48 83-5          0 1
(6) 2 4     4 4 5             3 3 \c
(7) 2 6     6 6 7             3 1 c
(8) 3 3      6 6 13            2 2 c
(9) 34225             2 2 c

(10) 3 4     2 4 5             2 2 -
(11) 3 4     4 4 5             2 1 c

(12) 3 4     4 8 5              2 1 -
(13) 3822 5 2,41 2 c

(14) 5 2     2 2 3             2 1 c

(15) 5 2      2 4 3              2 1 -
(16) 5 4     2 2 3 2, 13 1 c

(17) 7 12 22-3           0 2 c
(18) 7 2      2 2 3             2 1 c

(19) 7 2     2 4 3             2 1 -
(20) 7422 3 2,5 1 c

(21) 11 2     4 4        3-5           2 2
(22) 31 24 43-5          2 2
(23) 2' -3 + 112 2 3             2 1 c
(24) 2s • 3 + 1   2     2 2 3 w(r + 1) 1 c

(25) 2* • 5 + 1    1      2 2 5              2 2 c
(26) 2s ■ 5 + 1   2      2 2 5 w(r + 1) 2 c

Suppose |TV| = 2*a, . .. a„ where the ^ are odd primes and v < 3. This

follows from (4.18). Set a0 = 2. Let TV,- be the ^-Sylow subgroup of TV and 77y
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the restriction of H to Nr Suppose/ > 0. By (4.22)(a) there is at most one/

such that the restriction H} of H to Nj is smaller than Aut(7V.). If such a/

exists set that j — p. We may now determine the qfs. For / > 0 we have

qj - 1 - \Hj\ if/ * p and |77J = (a, - l)/2. By (4.22)(c), |/7,.| = 2\ £}, or 2£}
where £} is an odd prime. By (4.21)(c), since A\xi(Nf) is cyclic we have

Oj < v + 1 < 4. We arrive at the following possibilities.

qj = 3, 5, 17, 2£j + 1    if/ ^ p

and

a„ = 3, 5, 17, 4£M + 1.

First we settle the case where £, occurs. That is, suppose p = qj for / > 0

and;? = 2-^+1 where/ = 1, 2 and £ is an odd prime. Choose a E H/M of

order £. Since (qa - 1, qß - 1) = 1, 2, 4 for a ^ ß by (4.18), o will centralize

all TV, except the one of order q¡ = p. Therefore, [N: CN(a)] = p. By (4.20) we

then have

[9S:Cgj,(0)]-^-(/-a«-l)/(r--l)

where m = n£ since 9^ =  Kx = GF(/-m)x, and since a acts as an automor-

phism of K. By (1.5) s = 0, 1. That is,

<rm _ ,)/ {rn _l) = (2£ + 1}) (4¿ + ,} m + 1); or £(4£ + 1}

By (1.4) we must have the following values:

r 2 3 2

n 1 1 2

£333
;? 7 13 7

The number |/7|/2 divides m. Therefore |Aut(/V)|/4 (or |Aut(/V)|/2 if this

is not an integer) divides m. Now m = n£ so that n = 1, 2 as tabulated above.

Now |Aut(/V)| = 26-'(2/£)(a2 - 1) ... (a, - 1) where ;? = 2'£ + 1 = a,.

Since £ = 3 we have ^ = 3, 5, 17, 7, / =£ u, and a^ = 3, 5, 17, 13. Running

through the |Aut(/V)| values (£ = 3, n = 1, 2) we have: |Aut(A0| = 6, 12, 24.

We must now have:

\N\= 7,2 -7,4-7,3 -7,2 -3 -7, 13,2- 13,8-7,
4 • 13, 3 • 13, 2 • 3 • 13, 5 • 7, 2 • 5 • 7.

Now r = 2, 3, 17/1 divides rm - 1, and by (4.14) (rm - 1, (rm - \)/\N\) = 1.

We must therefore have:

r 2 2 3 3

m 3 6 3 3

\N\ 7 7 13 2-13.
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Let g vbe the Galois group of K. Suppose r = 2, m = 3. Then t is in H/M

so that H/M = H= <t> X g. Since \N\ = 7 and 23 - 1 = 7, |/1 n M\ =
1. This is entry (2). Suppose r = 2, m = 6. Then g = <a,, o2> where a, has

order three and a2 has order two. Here, again |A| = 7. Since N is in the fixed

field of a2, a2 centralizes N. But A is a Hall subgroup of Kx so that

3 G tt(A n M) by (4.14). The group of order nine in Kx is inverted by a2.

Now A is nilpotent and t, a2 both invert A n M. Therefore t, a2 £. H/M.

That is, H/M = H = (ja2y X <a,>. This gives entry (7). Finally, consider

the case where_r = 3, m = 3. Here |A| = 13, 2 • 13. Further t G H/M so

that H/M = H » <t> X g. If \N\ = 2 • 13 then H has four regular orbits

upon N. We conclude that \N\ = 13 and ir(A n M) = 2. This gives (8).

We may now assume that q¡ = 3, 5, 17 for all/. Since [Aut(A): //] < 2 and

H is cyclic or H =* Zi X F where F is cyclic we conclude that {q\, ._L. ,qp)

= {3}, {5}, {17}, {3, 5}, {3, 17}, (5, 17}. By (4.21) the exponent of H, since
H is now a 2-group, is less than or equal to 2"+1 < 23 = 8. This fact with

H=*  Z2 X F and [Aut(A): #]_< 2 excludes the set {5, 17}.

At this point we know that H is a 2-group. Since ///A/ is a subgroup of

<t> X g we know that there is a 2-power automorphism a G g of order 22

such that H/M = <t> X (a) or <ra>. Let a0 = a2' ' and suppose a > 1. In

particular, a0 G ///A/. Note that 2"|m so m = 2n where n is even. Since rr0

may be trivial in #(4.8), (4.14), and (4.20) tell us that

[g5:Cgs(a0)] = (r2"-l)/(r"-1) = r"+l

= 2s, 2s - 3, 2s ■ 5, 2s - 3 • 5, 2s ■ 3 • 17.

Since r is even (1.7) tells us that 2s ¥= r" + 1. Further, by (1.5) j = 0, 1. These

values give rise to the following table:

r n r" + 1 rm - 1

2 2 5 3-5

3 2 2-5 24-5

In both cases m = 2" = 4.

Suppose r = 2. In t G ///A/Jhen t inverts the 3-elements of Kx so by

(4.14) |A| = 3 • 5 and H/M = H has order 8. This is entry (5). The element

a inverts the 3-elements of Kx. Thus or centralizes them. So \N\ = 5 is

possible when H/M = (ot). If |A| = 3 • 5 there are three regular orbits for

H = H/M upon N. This gives entry (6).

Suppose r = 3. Since A is a Hall subgroup, |A| = 5 or 24- 5. The latter

case has too many regular orbits since <t> x <o> acts as the full automor-

phism group on the 2-Sylow subgroup of Kx. Therefore |A| = 5. If H/M =

<to> then H = H/M. If H/M = <t> X <a> then to-2 centralizes N. If T is a



76 T. R. BERGER

2-Sylow subgroup of Kx then <t<j2, 7) is semidihedral. These two possibili-

ties lead to entries (11) and (12).

After the preceding, we may assume that a = 0, 1. Suppose t G H/M.

Since t inverts Kx we must have |9$| = rm - I = 2S\N\. That is, rm - 1 = 2s

• 3, 2s • 5, 2s • 3 • 5. Since a = 0, 1; 17 cannot be a factor of |7v"|. Suppose

t G H/M. Then 7//A/ = <ra> where o has order two. In particular, m = 2/j.

Let K' be the fixed field of a. Then tcx inverts K'x so that K'x/K'x n N is a

2-group. Therefore, r" — 1 = 2', 2' • 3, 2' • 5. The value 2' • 3 • 5 cannot occur

since \H\ = 2. In either case r" - 1 = 2*, 2* • 3, 2s • 5,2* -3-5 where m = n

or 2«. By (1.8) we must have the following values if n > 1:

r n r" - 1 r2" - 1

2 2 3                      3-5
2 4 3-5 3-5-17

3 2 23                     24-5

3 4 24-5 25• 5 • 41

5 2 23-3 24-3-13

7 2 24-3 25-3-52

11 2 23-3-5 24-3-5-61

31 2 26-3-5 27-33-5-19

Assume that H = 7//A/ = <tct>. Then m-2n and |7/| = 2. In particular

3 -5\\N\. Further, if 5| |7V| then2||A|, and if 3| \N\ then4||/V|. If x G Kx
order /•" + 1 then to centralizes x. Since to does not centralize the odd part

of N, we conclude that \N n K'| is divisible by 3 or 5. Inspecting our table we

have the following possibilities with « > 1 :

r   m   \H\ [77: M] \N\ m(A n M) # reg.orb. *
2 4     2 2 3 5 1 c

3 8 2 2 5 2,41 2 c
5 4 2 2 3 2, 13 1 c
742          2 3          2,5                1 c

These entries lead to (3), (13), (16), and (20).

We conclude that n = 1. As remarked above, to centralizes the elements of

order dividing r + 1. Thus \N\ = 3, 5, 2 • 3 and the odd part of \N\ divides

r-\. That is, r - 1 = 2' • 3, 2' • 5. Now TV is a Hall subgroup and 4|r2 - 1

= rm - 1 so that \N\ = 3, 5. These considerations lead to the following:

r m   \H\   [77: M]   \N\   m(A n M)   # reg.orb.    *

2* • 3 + 1    2      2 2 3       -n(r + 1) 1 c
2* • 5 + 1    2     2 2 5       7T(r + 1) 1 c

These give entries (24) and (26).



HALL-HIGMAN TYPE THEOREMS. Ill 77

We now assume that t G H/M and m > 1. With m = n in our table we

obtain:

r    m   \H\   [H: M] \N\ m(A n M) # reg.orb.    •

(1)      2    2     2          2 3            0 1 c

(4)      244          4 3-5          0 2
(9) 3422          5             2 2 c

(10) 3     4      2          4           5              2 2
(14) 5    2     2 2 3 2 1 c

(15) 5    2     2 4 3 2 1 -
(18) 7    2     2 2 3 2 1 c

(19) 7    2     2 4 3 2 1 -
(21) 11    24 43-5 2 2
(22) 31    24 43-5 2 2

The corresponding entries are noted at the left of the table. In entry (1), ro-

cen tralizes H. The irreducibility of H forces a E H/M.

We are now reduced to m = 1, a = 0, and H/M = H = <t>. But then

| A | = 2 • 3, 3, 5 and r - 1 = 2s • 3, 2s - 5. We must have the following list.

r m   \H\ [H: M]    \N\ ir(A n M) # reg.orb. •

(17) 7 12 22-3 0 2 c
(23)   2s -3+112 2 3 2 1 c

(25)   2* -5-1-112 2 5 2 2 c

The proof of (4.23) is complete.

II. Condition B. Look back at (4.2). We have found all exceptions to

Condition (A). We turn our attention to Condition (B) now. We must

determine the structure of CH(N) = CA(N) X N. In particular, where is

[CH(N): M] = 2?

(4.24) Lemma. Assume (4.1). Also assume that (4.14) holds. Suppose that

[CH(N): M] = 2. Then H < %; K = GF^2"); and

(1) r - 3, n - 2, a«¿ |A| = 5;

(2) r - 1 = 2s, n = 1, awo1 |A| = (r + l)/2; i?r

(3) r + 1 = 2J, n = 1, ana1 |A/| = (r - l)/2.

Suppose H < ÍT,. Suppose a E H/M has order two and centralizes A.

Now A/ < S? and cr inverts % Thus |A| = 1, 2. But H is not nilpotent. We

conclude that H < 5"2.

Since t inverts Kx, if there is an element of order two in H/M centralizing

N it must be a or to where a is an automorphism of order two upon K.

Assume that to centralizes N. That is, a inverts N. But this means |A|

\r" + 1 where m = 2n. But to inverts GF(r")x. That is, r" - 1 = 2s. So we
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have « = 1 or r = 3, n = 2, and s = 3. Since A7 is a Hall subgroup \N\ = 5 if

n > 1. This proves (1). Assume that n = 1. Then r - 1 = 2s. Now 7/ is a Hall

subgroup so that |7V| must be the odd part of r + 1. That is, | TV | = (r + l)/2.

This proves (2). In both cases, the 2-Sylow subgroup of C$(N) is semidi-

hedral.

Assume that a centralizes N. That is, \N\ \r" - 1 where m = 2n. But a

inverts the elements of order dividing r" + 1 in Kx so that 2s = r" + 1. In

particular, n = 1. As before, \N\ = (r - l)/2 and the 2-Sylow subgroup of

C<$(N) is semidihedral. The proof of (3) is complete.

We turn now to the character theory of 3ix(HR)\c {JV) as required by

Condition (B).

(4.25) Lemma. Assume (4.1). Suppose that CA(N) < M. Then Xx(HR)\Ci/(N)

satisfies Condition (B) o/(4.2) with b > 2 except as tabulated below:

i 112 2

[9°: M] 1 2 1 2
b 12 12

Note that in this case, CH(N) = M < 9? is cyclic. If / = 1 then (3.8)(i)(b)

applies to B = 9?. Thus

XA(9?/?)|3? = p-Ju

where p is the regular 9?-character and p is a character of order 1 or 2.

Looking back at Condition (B) we see that p - p\M satisfies <t if and only if

p\u does also. But p\M = [9?: M]pM. From this, the tabulated values for

/' = 1 follow immediately.

If / = 2 then 9^ fixes Vx = Kex of (4.10), a maximal isotropic subspace of

V. Let Rx be the inverse image in R of Vx. Then /?,=; Vxx Z(R). Extend X

from Z(R) to (^V) x Z(R) by making it trivial upon ^2VX. The extended

character À* induces dix(^R)v for some linear character v of order 1 or 2.

Thus

ïa(52-r)|îîS= ,'~12A*x|(92i',xz(Ä))x-,nS2|J2

where the sum is over all 9^ x (%VX X Z(R)) double cosets in R. Since

95 «  Kx and since R/Rx =  K+ we have

^(^)|gc=""1(lg? + p) = I'", + P

where p is the regular 95-character. Since v ~ ' has order 1 or 2 the argument is

exactly as for /' = 1. The proof of (4.25) is now complete.

We turn next to the case where CA(N) £ M. That is, we assume the

hypotheses of (4.24) hold.
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(4.26) Lemma. Assume that the hypotheses and conclusion (1) or (2) of (4.24)

hold. Then Condition (B) of (4.2) with b > 2 holds except as tabulated below:

[<5°2:M] 1 2 2 4 4
6 0 0 112

CA(N)    semidihedral   dihedral   quaternion   dihedral   quaternion

Let ß0 be the 2-Sylow subgroup of % Since |A| = 5 or (r + l)/2,

Aß0 = (32. Because [CA(N): M] = 2, ta E H/M where a is an automor-

phism of K of order two and t inverts Kx. But CA(N)Q0 = CA(N) so that

- 1 [a    o-H-a    °}zCA(Ny. ero
2-

Looking back at (3.6) we see that CA(N)^l = B - ß x D. Choosing a

conjugate of A in H, if necessary, we may assume that CA(N)Q0 = ß of

(3.6). From here (3.8)(iv)(b) applies to give:

¿Ab- 2 x + (iß + ^i)s + /*2
x(i»i

where px has dihedral and p2 has quaternion kernel upon Q. Let p be the

regular character of N and pT the regular character of a group 7". Then

Xa|ä= p[Ï(Pq - lQ - H- H) + •e + Mi] + M2

where ju3 is nontrivial upon ß and has cyclic kernel.

Let ß, be a maximal dihedral subgroup of Q. Let /Xj be the linear character

of ß, with cyclic kernel. Let Bx = QXN. Then

Xa|b,= f>[Pe, + 1e, ~ M3] + Ma-

Suppose ß2 is a maximal dihedral subgroup of ß, and p'3' is linear with cyclic

kernel. Let B2 = Aß2 so that

*\\b = p[2Pq2 + 1q2- M3] + f*3-

Clearly, restricting further to subgroups of ß2 will give rise to at least

3-regular characters.

Let ß3 be a maximal quaternion subgroup of Q. Let v'3 be a linear character

with cyclic kernel upon ß3. Then with B3 = Q3N,

The pattern for further restrictions is obvious here. Thus we have sufficient

information to prove (4.26).

(4.27) Lemma. Assume that the hypotheses and conclusion (3) of (4.24) hold.

Then Condition (B) o/(4.2) with b > 2 holds except as tabulated below:

[%: M] 1 2 2 4 4
6 0 0 112

CA(N)    semidihedral   dihedral   quaternion   dihedral   quaternion
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Again let Q0 be the 2-Sylow subgroup of 9$. Now 9$ = NQ0. Further,

a E H/M where a is an automorphism of K of order two. But now, looking

back at (4.10) we have

CH(N)Qo={[°    „].['    r,]|^Kx).

In particular, B = CH(N)Q0 fixes the subspace Vx = Kex. In R, the inverse

image in BR of B and Vx takes the form (BVX) X Z(R). Extending X to this

group by making it trivial upon BVX gives a character X*. We then have

£xp = X*\BR where p has order one or two. Then

h\B= Kh + k°X
= W>(ï(Pc? - lg - Mi - M2 - Ms) + lß + Mi) + M

where (2 = <["„]> ôo)> P ls regular upon N, pQ is regular upon Q, px has

dihedral kernel, p2 has quaternion kernel, and p3 has cyclic kernel. This

character looks exactly like the one arising in (4.26). From here, the analysis

and answers are the same.

III. The Final Result. We are not in a position to apply (4.3). We shall

tabulate exceptional numbers. For purposes of clarity, we restate the hypothe-

ses of this section.

(4.1) Hypothesis, (a) Suppose H = AN is not nilpotent where N A H is

cyclic, A is nilpotent, and A n N = 1. Let r be a prime not dividing \H\, and

G = HR where R is a normal extraspecial /--group, Z(R) < Z(G), and

R/Z(R) is a faithful minimal 7/-module.

(b) Let k be a finite extension of the rational field containing all |G|th roots

of unity. Let X be a nontrivial linear character of Z(R) in k and XA(G) = 3EA,

the unique character of (2.2).

Recall that \R\ = r2m+x and 77 embeds in one of the groups of (4.9) or

(4.10). In our theorem i denotes 77 < 9); S2 denotes the 2-Sylow subgroup of

CA(N); * denotes A/CA(N); and # reg. denotes a lower bound for the

number of copies of the regular .4-character in 3cx\A. We have used letters as

follows: c-cyclic, n-noncyclic, ¿-dihedral, s-semidihedral, and a-quaternion.

(4.28) Theorem. Assume (4.1) where \R\ = r2m+x. Suppose dcx\A does not

contain at least three copies of the regular A-character. We then have the

following tabulated data. The exponent s > 0:

r       m   \CA(N)\   S2   [A: CA(N)]   *     \N\     i    # reg.

(1) 3        4        25 s - -     -     2       0

(2) 3        4        24        d - -     -     2       0

(3) 2s + 1    2      2J+2       s - -     -     2       0

(4) 2s + 1    2      2S+X       d - -     -     2       0
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(5) 2s - 1 2 2f + 2

(6) 2s - 1 2 2Î+1

(7) 2 1 1
(8) 2 2 1

(9) 2 2 1

(10) 2 3 1
(11) 2 4 5

(12) 2 4 1
(13) 2 4 3
(14) 2 6 9
(15) 3 2 2
(16) 3 3 4

(17) 3 4 16

(18) 3 4 8
(19) 3 4 16
(20) 5 2 8

(21) 5 2 8
(22) 5 4 16 • 13

(23) 7 2 16
(24) 7 2 8
(25) 7 2 16
(26) 7 4 32-25
(27) 2s - 3 - 1 1 2s

(28) 2s ■ 3 + 1 1 2s

(29) 2 2 1

(30) 2 4 1

(31) 2 4 1

(32) 2 5 3

(33) 3 2 2
(34) 3 2 1
(35) 3 3 4

(36) 3 3 2
(37) 3 3 2
(38) 3 4 16

(39) 3 4 8
(40) 3 4 16

(41) 3 4 8

(42) 3 4 8
(43) 3 8 32-41
(44) 5 2 4
(45) 5 3 2-9

s - --20

d - --20
c 2 c 3 1 1

c 2 c 3 2 1

c 4 c 5 1 1

c 6 c 1 2 1

c 2 c 3 2 1

c 8 «3-5 2 1
c 4 c 5 2 1

c 6 c 7 2 1

c 4 c 5 1 1

c 6 c 7 1 1

c 4 c 5 2 1

a" 4 c 5 2 1

a 4 c 5 2 1

c 2 c 3 2 1

a 2 c 3 2 1

c 2 c 3 2 1

c 2 c 3 2 1

a* 2 c 3 2 1

a 2 c 3 2 1

c 2 c 3 2 1

c 2 c 3 1 1

c 2 c 3 2 1

c 2 c 5 1 2

c 4 h 3-5 2 2

c 8 c 17 1 2

c 5 c 11 1 2

c 2 c 5 1 2

c 4 c 5 1 2

c 3 c 7 1 2

c 6 c 13 2 2

c 6 c 7 1 2

c 2 c 5 2 2

d 2 c 5 2 2

a 2 c 5 2 2

c 4 c 5 2 2

a 4 c 5 2 2

c 2 c 5 2 2

c 2 c 3 2 2

c 3 c 7 1 2
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(46) 5        4 8 ■ 13      c 2 c32 2

(47) 7        1 1          c 2 c      6      2 2

(48) 72 8          c 2 c      3      2 2
(49) 72 8         a 2 c      3      2 2
(50) 7        4 16-25     c 2 c32 2
(51) 112 8         c 4 n     15     2 2
(52) 31       2 64        c 4 h     15     2 2
(53) 2*-3 - 1 1 2s~l       c 2 c      3      1 2

(54) 2*-5-11 2"         c 2 c5      1 2

(55) 2í-3 + 112í-lc 2 c32 2

(56) 2* • 3 + 1 2 2î-'(r+ 1) c 2 c      3      2 2

(57) 2* • 5 + 1 1 25         c 2 c      5      2 2

(58) 2* • 5 + 1 2 2*(r +l)c 2 c52 2

These tables are produced by using (4.3). From (4.23) and (4.24) we obtain

a number a giving the cases where a < 2 and // = H/CH(N) » A/CA(N)

has exactly a regular orbits in its action upon A. From (4.24), (4.25), (4.26),

and (4.27) we obtain the number b < 2 used in Condition (B) of (4.2). We

itemize all cases where ba < 2. A few remarks are in order. In (4.14) we

assumed that N was a Hall subgrojup of 5°. So the results described above

yield an upper bound for \N\. But H must be faithful upon A. In all but case

(47) this forces the order |A| to be equal to the upper bound. The other

possible situations corresponding to |A| = 6 in (47) are catalogued as (28)

and (55) with s = 1.

Further, [9?: M] is bounded by (4.25), (4.26), and (4.27). These bounds

allow us to determine |C^(A)| when Cj(N) < M. In all other cases

[CA(N): A n M] = 2 so that [H: M] = 2|//|. That is, (10), (12), (15), (19) of

(4.23) hold if b > 0. These entries with (4.26) and (4.27) lead to table entries

(18), (19), (21), (24), (25), (39), (40), (42), and (49) giving the order and

structure of CA(N).

Finally, (4.24), (4.26), (4.27) give all the information available when 6 = 0.

The table has not been checked to see whether "# reg." gives exactly the

number of regular /I-characters in £X\A. The number "# reg." is a lower

bound. This is more than enough for most applications.

We now prove some corollaries.

(4.28) Corollary. Assume (4.1). Let t be the number of regular A-characters

contained in £X\A.

(a) If A is Z2 ^  Z2free then t > 1.

(b) // \A\ is odd then t > 3 unless t = 2, \R\ = 2", \N\ - 11, \CA(N)\ = 3,
and [A: CA(N)] = 5.
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For (a) we need only check the entries of (4.27) for which "# reg." is 0.

But in all these CA(N) is dihedral or semidihedral. Therefore A involves Z-¡y

Z2 in these cases.

In (b) \CA(N)\ is even if "# reg." is 0. Further, [A: CA(N)] is even except

for entries (32), (35), and (45). In all these | C^, (TV)| is even except for entry

(32). This entry gives the only case where / = 2. Direct computation shows

that r = 2 is the correct answer in this exceptional case.
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