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Abstract. A compact HausdorfF space and a real-valued function on this

space are constructed such that the function is not continuous on any dense

subspace. This solves the Blumberg problem. Some related results are

established.

In 1922 Henry Blumberg proved

Proposition 1 [Bl]. If X is a separable complete metric space andf: X -* R

is any real-valued function on X, then there exists a set D which is dense in X,

such that the restriction off to D is continuous.

Definition. Call a space Blumberg iff for any real-valued function / on X,

there exists a dense subspace D C X such that /1 F> (the restriction of/to D)

is continuous.

Recall that a space X is a Baire space iff no open subset of X is the union

of countably many nowhere dense subsets. In 1960 J. C. Bradford and C.

Goffman improved Blumberg's result, establishing

Proposition 2 [BG]. A metric space is Blumberg iff it is a Baire space.

The question arose: "Which Baire spaces are Blumberg?" and in particular

the Blumberg problem (probably due to Goffman): "Must every compact

Hausdorff space be Blumberg?". Partial answers were given by R. Levy [LI],

[L2], and H. E. White [W2]. In fact, there is a non-Blumberg compact

Hausdorff space. An unusual feature of our example is that it is the disjoint

union of two spaces, one or the other of which fails to be Blumberg, depending

on whether or not the continuum hypothesis holds.

Definition. A function/from a topological space X into a set Y is called a

8-fine function iff for each.y G Y,f~x(y) is nowhere dense in X.
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Lemma 1. Assume 2^> = N,. Suppose X is a topological space in which first

category sets are nowhere dense. Let {fa: X -> [0,1]: a < u>x) be a family ofHx

8-fine functions on X. There exists a 8-fine function g: X -* [0,1] such that for

any a < ux,{x:fa(x) = g(x)} is nowhere dense in X.

Proof. Let {yß: 1 < ß < w,} be a one-to-one enumeration of [0,1]. Define

Eß = U{f~l(yB): a < /?}. Each Eß is first category, hence nowhere dense.

Define g: X -> [0,1] as follows:

g-'Gfe) = ((* - ^) n U{£a: a < iß}) - Ufg-'U): a < /?}.

Clearly g is a well-defined function. We now show that g(x) is defined for

every x £ X.

Claim #1. (Vx E X){3ß < co,)(x E f^).

Proof. If x £ A', let/0(x) = yß. Since ¿S > 1, x E £/8.

Claim #2. (Vx E *)({/? E cox: x E £^1 is unbounded in co,).

Proof. Suppose {ß E ío¡ : x £ £^} is bounded by y < co,. Define a

function tp: ccx - {0} -» to, as follows. If 0 < ß < y, then let </<(/?) = 0. If

/? > y, then x £ Eß = UÍjE,-1^): a < /?}; hence let i|</?) = least a such

that x £ f^l(yß). ip is pressing down (regressive), so by the pressing down

lemma (see [Ju, p. 79]), there exists a0 E co, such that \{ß: t/{ß) = a0)\ = N,.

Thus we have /?, > /?, > y such that ^(/í,) = ao = 'K/^)- That *s> x

e -C Ofc)and x e /«Ô Ofc)so that^a = 4 W = Jfc • This contradicts that
/?, # /?2, since our enumeration of [0, 1] was one-to-one.

By Claim # 1 and Claim #2, for each x E X there exists a least ordinal ßx

such that x £ £« , but x E Ea for some a < ßx. Hence we have x

E (X- Eßx) n  U{£«: a < ßx). Therefore g(x) = yßx.

The function g is a 5-fine function since for each ß < co¡, the set

U {£a : a < /?} is first category and hence nowhere dense. We now show that

for each a < ax, {x E X: fa(x) = g(x)} is nowhere dense. If x E g_1(y^)

then x E X - Eß so x g UÍJJT'Cfy): « < ß)- Therefore if ß > a, then

/«"'Ofr) n g-'(y^) = 0- Let /„ = {y e [o, lU-'OO n g~l(y) * 0). Ia
is countable. For each a < ax, Ia = {y E [0,1]: (3x E X)(fa(x) = g(x)

- y)}. So for any_o < co1; {x £ X:fa(x) = g(x)} ç {* E X: (By E Ia)

(fa(x) — y)} — U{/ '(y):y £ Ia) which is first category and hence no-

where dense.

Lemma 2. Suppose X is an extremally disconnected completely regular Blum-

berg space and g: X -* [0,1] is a 8-fine function. There exists a continuous 8-fine

function f: X -» [0,1] and a set D dense in X such that f\D = g\D.

Proof. Suppose g: X -» [0,1] is a 5-fine function. Since X is Blumberg,

there is a dense subset Z) C X such that g|D is continuous. As is well known

(see [GJ] ), since X is extremally disconnected each dense subspace of X is C*-
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embedded. Hence there exists a continuous function /: X -> [0,1] such that

g|D«/|Z>.
We now show that/is a 5-fine function. Suppose there exists y G [0,1] such

that/-1 (y) is not nowhere dense. Since/is continuous, f~x(y) is closed and

hence contains an open set U Q X. Therefore D n U is a dense subset of U

on which / is constant. This contradicts that f\D — g\D and g is a 5-fine

function.

Recall that a tr-basis % for a space A' is a collection of nonempty open

subsets of X such that if V is any nonempty open subset of X then there exists

U G <$l such that U Q V. The tr-weight of a space X is defined as ir(X)

= N0 • min{ic: there exists a 77-basis % for X and |%| = k}. The cellularity of

a space X is defined as c(X) = N0 • sup{/c: % is a collection of pairwise

disjoint open subsets of X and |<?l| = k}. Let \C(X, Y)\ denote the cardinality

of the set of all continuous functions from X into Y. \C(X)\ represents the

cardinality of the set of all real-valued continuous functions on X. The

following lemma generalizes a result of [CH].

Lemma 3. Let X be any topological space and let Y be a T2 space. \C(X, Y)\

< 77(^)c(Jr)'w(r), where w(Y) is the weight of Y.

Proof. Let c(X) = k. Let <35 be a 77-basis for X of cardinality tt(X). Let G be

the set of all collections of < k elements of %. Let % be a basis for Y of

cardinality w(Y). Let 'S = {9: 9 is a function from^linto S). Define a function

F: C(X, Y) -* fas follows. F(g) is some function 9g: %-» ß such that f?g (t/)

is a maximal collection of pairwise disjoint elements of 'S which are open

subsets of g~X(U). Since c(^) = k, 9g E f for each g G C(X, Y) and so F is

well defined.

We now show that F is one-to-one. Suppose / and g are two distinct

elements of C(X, Y). There exists an x G X such that f(x) # g(x). Since 7

is T2, there is an open U E ^Lsuch that g(x) E U and f(x) G TJ. It follows

that x G U(9 (U)) and x G U (9ÂU)) so that fy # 0 and F is one-to-one.

So we have \C(X, Y)\ < |ff| = ^AO^^.

Corollary [CH]. //X w a regular space, then \C(X)\ < tt(A')c(*).

Theorem I. Assume 2"° = N,. Fer X be a topological space such that

(i) X is completely regular and extremally disconnected,

iii)viX) < Xx,andc(X) = N0,

(Hi) first category subsets ofX are nowhere dense,

(iv) there exists a real-valued 8-fine function on X.

Then X is not Blumberg.

Proof. If X were Blumberg, then by (i), (iv) and Lemma 2, there would

exist a continuous ¿5-fine function/: X -» [0,1]. By Lemma 3 there are at most
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Nj ° = X, of these continuous 5-fine functions. By Lemma 1 there exists a 5-

fine function g: X -» [0,1] such that if/is any continuous ô-fine function from

X into [0, 1], then (x: f(x) = g{x)} is nowhere dense in X. This contradicts

Lemma 2 so A' is not Blumberg.

Let % be the Boolean algebra of Lebesgue measurable subsets of [0, 1], and

let 5 be the ideal of null sets of $. The reduced measure algebra is the complete

Boolean algebra ®/5. Let St ("ft/if) be the Stone space of the reduced measure

algebra. As is shown in [Ha], St (ÇB/if ) is a compact T2, extremally disconnected

space in which first category sets are nowhere dense and which has weight

< 2N° and cellularity K0.

For each B E % let [B] denote the equivalence class of B mod Í. Let m

denote Lebesgue measure. Let $„ = {[B] £ ®/i: m(B) = 1/n). For each

[B] E $/3, let [£]* be the basic open subset of St («6/5 ) associated with [B].

For each / Ê "oi, let N(f) = n{[£]*(n): n < co and [B]f,n) £ \). Let $

= {#(/): / £ "«>}• It is easy to see that |^| = 2*° and Uf = St (<$>/$). Let

{Fa:a< 2*°} enumerate §■ For each a <2*o,let F'a = Fa- U{Fß: ß < a).

If {ya: a < 2N°} is a one-to-one enumeration of [0, 1], then g: St (©/$)

-* [0,1] is a S-fine function, where g"(F'a) = ya- Thus we get the following

corollary to Theorem 1.

Corollary. Assume 2"° = N,. St(®/5) ¿s a compact T2 space which is not

Blumberg.

We now turn our attention to LOTS (linearly ordered topological spaces).

Definition. A collection 6 of open subsets of a space X is oblivious iff there

exists an open subset Vof X such that (Vx £ V)(W Q 6)(x E fifí'implies

(3 open W Q V)(0 * W Q OS'))-

Theorem 2. If X is a Baire LOTS, then X is not Blumberg iff there exists an

open U ç X such that

(i) U is the union of < 2**° nowhere dense sets, and

(ii) every countable collection of open subsets of U is oblivious.

Proof. We shall first show necessity. Let AT be a space and let U be an open

subset of X satisfying (i) and (ii).

By (i) we can assume that U is the union of k pairwise disjoint nowhere

dense sets, where <c < 2N°; let U = U{£a: a < /c}.Let {ya: a < k) enumer-

ate some distinct elements of R - {0}. Define /: X -* R as follows: if

x E X - U,f(x) = 0; if x £ Ea,f(x) = ya.
We now show that X is not Blumberg by showing that / is not continuous

on any dense subset of AT. Suppose Z) ç lis dense and f\D is continuous. Let

ê be the usual countable basis for R. Let <& = {/-1(G) D D: G E §). Since

/ is continuous on D, % is a countable open cover of D; hence for each

f~l(G) n D E %, there exists VG open in X such that VG n D =f~l(G)
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n D. {VG: G E §} is a countable collection of open subsets of X, so let

Q = {vG n U: G E §} be a countable collection of open subsets of U.

By (ii) S is oblivious on U, hence there is an open U' Q U such that if

x G U' D D and Q' — {VG n {/: /(x) £(?}, then there is a nonempty open

IF £ U' such that JF C DS'. Thus

iyn z> ç ne' n z> = n{^ nun D:f(x) e g)

= un n{vG n D:f(x) G G}

= un n{rx(G) n D-.f(x) g g)

= unDn n{/_1(G):/(x) g g}

= unDnrx({f(x))).

Now since x G U' C U, x G Ea for some a < k: thus f~x({f(x)}) = Fa

which is nowhere dense. We have W n D Q Ea which is a contradiction since

W n D is not nowhere dense.

We now prove the sufficiency.

Claim #1. It suffices to prove: "if U is an open subspace of X with no

isolated points and there exists a countable collection of open subsets of U

which is not oblivious, then U is Blumberg".

Proof. We shall assume that X is a Baire LOTS such that no open subset

U Q X possesses both properties (i) and (ii), and show that X is Blumberg,

using the hypothesis in Claim # 1.

We let/: X -» R and show that there exists a dense subset D Q X such that

f\D is continuous. Proceed by induction, defining open subsets Ua and Va of

X and points ya of R. At stage 0, let U0 = X.

At stage a + 1, suppose Ua is a nonempty open subset of X and Ua is not

the union of < 2X° nowhere dense sets. Thus, there exists y E R such that

Ua n f~Xiy) is not nowhere dense. Let.ya = y. Let Va = int if~xiya)) D Ua.

Leti/a+1 = C/a-^.

At stage a if lim (a) (i.e. a is a limit ordinal), suppose that for all ß < a, Uß

is an open subset of X. Let Ua = int (D {Uß: ß < a}).

This induction can stop in only one of two ways. Let case # 1 be that for

some ordinal a, int (D{c^: ß < a}) = 0. Let case #2 be that for some

ordinal a, Ua is the union of < 2N° nowhere dense sets.

In case #1 we have \J{X- Uß: ß < a} dense in X. This means

U {Uß - Uß+X : ß < a) is dense in X, hence U {1^ : ß < a} is dense in X. So

we have U{Vß: ß <a) dense in A". Note that if we let Do = Vß n /_1(>^)

then £>g is dense in Vß, hence if we let D = U{Dß: ß <. a], D is dense in A.

Also note that the sets DB are pairwise disjoint and open in D. Hence f\D is

continuous since/is constant on each DB.
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In case #2, since Ua cannot possess both property (i) and property (ii), there

exists a countable collection of open subsets of Ua which is not oblivious. U

has no isolated points since it is the union of nowhere dense sets. Hence we

may, but the hypothesis of the claim, assume that Ua is Blumberg. That is,

there exists a dense set Dx Q Ua such that / ¡ Z>, is continuous. By an argument

similar to case # 1 we can conclude that there is a dense D2 Q X — Va such

that f\D2 is continuous. Thus £>, U D2 is dense in X and f\(Dx U D2) is

continuous.

Claim #2. Suppose U is a Baire LOTS with no isolated points and there

exists a countable collection 6 of open subsets of U such that for all open

V Q U there exist z E V and ß' Q ß such that z E D ß' and D ß' contains

no nonempty open set. Then U is Blumberg.

Proof. Let U and ß be as above. Let 6 = {Cn: n < u>). Each C„ is the

disjoint union of open intervals; Cn = U{lnß: ß < Xn). Let Q* = {I„y. ß

< Xn; n < u>). Let 6* = {nonempty finite intersections of elements of ß }.

We now prove that ßf is a- 7r-basis for U. Let (x, y) be a nonempty open

interval in U. It suffices to show that there exists I E ßf such that I Q (x,y).

Since U contains no isolated points there exist points p, q, a, b, and c in U

such that x<a<p<6<c7<c<y. By hypothesis we can let z £ (p, q)

such that there exists {lm: m < ci} Q Q* such that z E D{Im: m < to} and

H {Im : m < to} contains no nonempty open set. Without loss of generality we

can assume that for each m < a, Im+X C Im.

We now show that for some m < a, Im Q (x,y). Suppose that for all

m < a, Im D (U — (x,y)) ¥= 0. Since z E D {Im : m < u), for each m < co,

Im n (x>y) ^ 0- Thus, since {Im : m < to) is a nested sequence of intervals,

either (Vw < co)(y E Im) or (Vw < co)(x £ Im). Without loss of generality

assume (Vm < ui)(y £ /„,). Therefore, since each Im is an interval, we have

[z,y] £ n{/m: m < u}.   Since   z E (/?,<?), 0 * (q,y) Q [z,y] C (~){Im: m

< a}, which contradicts our choice of {Im: m < u>).

Now, for each finite subset F Q u, let "S^ = {/: I is the intersection of

exactly one open interval from each C„ such that n £ £}. Since each Cn

consists of parwise disjoint intervals, the ©¿.'s are pairwise disjoint, and

6* = U {$£■: £ is a finite subset of u). Hence S* is a a-disjoint 77-basis for U

and hence U satisfies the criterion in [Wl] for being a Blumberg space (i.e. U

is Baire and has a a-disjoint w-basis).

By combining Claim # 1 and Claim #2 we have that X is Blumberg.

A compact LOTS will be constructed which, assuming 2**° > N2, w^ satisfy

(i) and (ii) of Theorem 2. To begin, the classical construction of K-Aronszajn

trees (see [Je]) is modified. Recall that a tree, <£, <j-), is a well-founded

partial order such that for each x E T, x = {t E T: t <r x) is well-ordered.

If a is an ordinal, Ta = {x £ T: x is order-isomorphic to a}. If a is an ordinal
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and k is a cardinal then F is a (a, ic)-tree iff T = U {7^ : ß < a) and for all

ß < a, \Tß\ < K.

Lemma 4. There exists an (co2, (2N°) )-tree T, such that ifb is a maximal chain

in T and if ß is the least ordinal such that b (1 7¿ = 0, then the cofinality of ß

is COj.

Proof. Recall that an r\x-set is a linearly ordered set (X, <) such that if A

and B are countable subsets of X and (Va G A)(Vb E B)(a < b) then there

exists x G X such that (Va G A)(Vb E B)(a < x < b). Let <£>, -<> be the

canonical 77,-set constructed in [GJ] and <F, -<> be its Dedekind completion

with endpoints 0R and 1^. The same argument as for Lemma B in [Ju, p. 122]

shows that neither co2 nor co* can be order-embedded in F and hence in Q. As

is shown in [GJ], |(2| = 2N°. Let C = {x E R: x is the supremum of a

countable strictly increasing sequence from Q}. Let S = {0R) U Q U C.

\S\ = 2*o.

The tree T will be constructed from well-ordered sequences of elements of

S which have endpoints. The order relation will be set inclusion, written <r.

If a is a sequence with endpoint q, let o* — q. Let o\a + 1 be the sequence

consisting of the first a + 1 elements of a.

The basic idea behind the construction of T is that we construct the tree

level by level, extending all subbranches at levels indexed by successor

ordinals or limit ordinals of countable cofinality. However, at levels indexed

by limit ordinals of cofinality co¡, we only extend enough subbranches to keep

the tree "growing"; thus we keep the cardinality of each level at 2"°.

We will proceed by induction on the levels of T using the inductive

hypothesis IH(j8): suppose for every y < ß and for every o E Ty,

(i) if cf (ß) = co and {yn : 0 < n < co} is an increasing sequence of ordinals

cofinal with ß such that y0 = y, and for each n < u there exists on E T such

that on+x \yn + 1 = on with a0 = a, then there exists t G T such that for all

n < co, 7-|yn + 1 = or, and t* = sup{o* : n < co} G C.

(ii) if cf (/?) # co and q G Q and o* < q, then there exists r E F such that

t* = q and 7-|y + 1 = o.

Let T0 = {0R).

In order to construct Ta+X assume IH(ß) for all ß < a. Let Ta+X = {t: t has

length a + 2 and (3a G Ta)(r\a + 1 = a and r* E Q and o* < t*)}.

Claim. IH (a + 1).

Proof. Let y < a + I and o E Ty. Let q E Q such that o* < q.

If y = a, then IH (a + 1) follows immediately from the construction of

If y < a and cf (a) ¥= co, let p G Q such that 0* < p < q. By IH(a) there

exists p E Ta such that p* = p and p|y + 1 = o. By the construction of Ta+X
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there exists t E Ta+X such that t* = q and t|o¡ + 1 = p. Hence r\a + 1 = o

and we have IH (a + 1) in this case.

If y < a and cf (a) = co, pick [yn : n < co} as a strictly increasing sequence

of ordinals such that y0 = y and for each « > 1, yn is a successor ordinal and

sup{y„: w < co} = a. Pick {pn: 1 < « < co} ç Q such that, for all « < co,

Pn+\ "^ /'n+2 "^ 9- Let Po ~ a* • L,et a0 = CT- Since we have IH(jS) for all

ß < a, for each « > 1 pick aM G T such that a* = pn and an|yn_, + 1

= on_x. By IH(a), there exists p G Ta such that for all n < co, p|% + 1 = o-„

and p* = {suppn: n < co} G C. Since g is an ty-set, p* -< ¿7. From the

construction of Ta+X there exists t E Ta+X such that t* = q and r|a + 1 = p.

Thus r|y + 1 = p|y + 1 = p|y0 + 1 = a0 = a, and IH (a + 1) also holds in

this case.

In order to construct 2^ where cf (X) = co assume IH(j8) for all ß < X. Let

b be a branch (i.e. a maximal chain) cofinal in U [Ta : a < À} and let

{an: n < co} be a sequence of ordinals cofinal with X. Let p = sup (a*: a

G b n 7¿ ;« < co}. Thus p G C and for all o E b, a* < p. Hence each

branch cofinal in U {Ta : a < X} can be extended in a unique way. Let

3^ = {t: t has length X + 1 and there exists a cofinal branch

b E D{Ta: a < X) such that for all a < X, a G b n F,

implies t|o£ + 1 = a and t* = sup{a*: a G b n 7¿;a < X}}.

Clearly this satisfies IH(X).

In order to construct Ts for cf (5) = coj assume IH(/J) for all ß < 5. We first

describe the construction of the sequence r(a,a,a). Let a < 5 and o E Ta.

Let a G (2 such that o* < a. Let {qv+x : v < coj be an increasing sequence of

elements of (?, greater than a* which converge to q. Let {ay+1 : r < oix) be an

increasing sequence of successor ordinals converging to 5.

Inductively define a chain of elements {oy : v < coj } such that ay G Ta and

a* < qv+x as follows. Let o0 = a and a0 = a.

Suppose c?, G Fj has been defined and o* < qv+x. By IH (ap+x) there exists

<Vh g 2«h.1 such that CT*+i ™ av+\ and ^+ila. + 1 - ^. Since qv+x < qv+2,

°*+i "^ iv+2* Suppose Oy G T  has been defined for all v < n and cf (r/)

= co. Pick a   — sup{ay: y < tj}. By IH (av) there exists o^ G Ta such that

for all v < n, o-,j|a„ + 1 = ct, and a* = sup{a* : v < tj}. Since Q is an 77,-set,

Let r(a, ct, q) be that sequence t such that t has length 5+1, r|a, + 1 = o„

for all p < co,, and t* = «7. Let 3¿ = {T(a,o,q): a < 8, o E Ta, and ¿7 G (2

such that a* -< q). Clearly this satisfies IH(5).

Let F = U {2; : a < co2}. F is a «orma/ tree [De]. That is:

0) |r0| = 1,
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(ii) (Va < co2)(Va £ £J(3t,,t2 E Ta+X)(TX ¥= t2&o <ttx&o <tt2),

(iii) (Va < ß < co2)(Va E Ta)(3r £ Tß)(a <Tr),

(iv) (Va < co2)(if lim(a) then (Va,r E 7;)(â = f implies a = t)).

By induction on a < co2 it can be shown that (Va < <o2)(|TJ < 2*°). So

clearly T is an {u2,{2><0) )-tree. No branch of T "ends" at an ordianl with

cofinality u (i.e. if b is a branch of T and ß is the least ordinal such that

¿? n Tß = 0, then cf (/?) # co). Also, if £has a cofinal branch ¿>, of length co2,

then {o*: a E b) would determine an embedding of co2 into S, which is

impossible. Hence, if b is a branch of T and ß is the least ordinal such that

Tß n b = 0, then cf (ß) = co,, and the lemma is proved.

Using Lemma 4 and modifying the "Souslin tree yields Souslin line"

construction in [MI], we have

Lemma 5. There exists a linear order (L, <} such that

(i) neither co2 nor u* is order-embeddable in L,

(ii) if {am: m < u>) and {bn: n < co} are subsets of L such that {\fm < u)

(V« < u>){am =4 am+\ < bn+x =< bn), then there exists three points x,y, z of L

such that (Vm < co)(V« < (S){am < x < y < z < bn),

(iii) L is the union of an increasing chian of N2 proper subsets each of which is

nowhere dense in the order topology.

Proof. Let T be the tree constructed in Lemma 4. For each t £ T,

let S{t) = {a: a is an immediate successor of t}. For each t £ T, S{r) = 2s*0,

so we can impose a linear order <T on S{t) to make 5(t) order-isomorphic to

the Tj,-set Q in Lemma 4.

If b is a branch of T and a < co2, denote the element of b n 7^, if it exists,

by ba. Define a linear order -< on the branches of T as follows, b < c iff the

following condition holds: a is the greatest ordinal such that b D c C\ Ta ¥= 0

and b i~) c t~) Ta = {t} and Z?a+1 <T ca+1. The next claim shows that ■< is

well defined.

Claim # 1. If b ¥= c are branches of T, then there exists a maximal ordinal

a such that b D c n Ta =£ 0.

Proof. It suffices to show that if lim(a) and for all ß < a, b n c D 7^

# 0, then ¿? n c n Ta ¥= 0. For all ß < a, bß = c13 ; since 6 # c we must

have 0#inrs = {¿"} and 0 ^ c n Ta = {ca}. We have lim(a) and

Sa = ca, hence since £ is normal, ba = ca and ¿? n c n £, = {Z?a} # 0.

It is now clear that -< is an antisymmetric total order on the set of branches

of T. A straightforward argument shows that < is transitive. Thus let L be the

set of branches of T so that -< is a linear order on L.

Claim #2. Condition (i) holds for (L, -<).

Proof. Suppose {by: a < co2} embeds co2 into L. We will inductively define

a branch d Ç T such that for each a < co2, |{y: by n d n Ta = 0}| < N,.
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Let 4, = {y: by n d f) Ta = 0} = {y: da <2 by).
Let d° be the element of 7¿.

Suppose da is defined and \Aa\ < N,. We shall define da+1 as follows. Let

B = fr E S{da): (3y < co2)(t E by)). Since |co2 - Aa\ = H2, \B\ > 1.

Suppose \B\ = N2. Since (£y: y < to2} is well-ordered by «<, £ is well-

ordered by <.da ■ Hence B gives rise to an embedding of u2 into S(da); but

this is impossible since S(da) is order-isomorphic to Q.

We must have |£| < N,. Since MJ < N,, |{y: </a E by)\ = N2, so we have

|{y: (3t E S(da)){T £ by)}\ = N2. Since |£| < K,, there exists t £ S(¿a)

such that |{y: t £ Z?y}| = H2.

We claim that r is unique. Suppose there exist t, , t2 E S(cia) such that

t, <¿a t2 and |{y: rx E ¿y}| = K2 = |{y: t2 £ by)\. If y0 E {y: t2 £ ¿y}, then

for all a E {y: t, E by), by < by¡). Since \{y: tx E by}\ = H2 this contradicts

the fact that {by : y < co(} is a well-ordered sequence of type co2.

Since t is unique, we let d = t, and we have \Aa+x\ < N, since

¿a+\= U{Aa:ß<a}U{y:da+x £ by).

Suppose lim(a) and for all ß < a, d1* is defined and |^| < N,. Since

a < u>2, | U{Aß: ß < a}I < N, ; hence |{y: (V/Î < a)(by n 7¿ = {d^))}\
= N2. Thus, there must exist t £ Ta such that f = {dß: ß < a}. Since T is

normal, t is unique; hence we can let da = t and then

KJ = IU{^,:£<a}KX,.

We have defined an co2-branch d of £, which contradicts Lemma 4, so to2 is

not embeddable in (L, «<>. The case for co| is similar.

Claim #3. Condition (ii) holds for <L, -<>.

Proof. Let A = {am: m < to} be a nondecreasing subset of L; let B

= {/?„:«< to} be a nonincreasing subset of L such that (Vm < co)(V/? < co)

(am < bn). For each n < co, let a,, be the greatest ordinal such that

«„ni„n Tan * 0 and let {r„) = an n /?„ n £„„.

We now show that for all /i < co, rn <r t„+1 . We first show that t„ E an+x.

Suppose rn £ an+x. Let ß be the greatest ordinal such that an n an+, n Tß

¥= 0. Since t„ E a„ n 7¿ , we must have ß < an. Let on n a +x D £ = {o}.

Since a < a„+„ ajf+1 < a^,1. Since ß < a„, b£+ ' - aj?+1 so that c/f

<0 a% . Therefore bn < an+x which is a contradiction. Similarly, rn E bn+x,

so that Tn E a„+1 n bn+x. Hence, by the definition of Tn+X, t„ ^Trn+X.

Let a = sup{an: n < to}. Suppose for some n < co, a = an. Since

(V« < co)(t„ <rT„+1), we have (V« < co)(a„ < an+x). Thus, in this case, we

have {Vj>n){aj = an and r¡ = rn). Let ¿' « {o^+1 : j > n) and £'

= {b]n+X:j > n). We have A' U £' C S(T||), and for all p £ A' and a £ £',

p <T a. Since S{rn) is a 17,-set, there exists ttx, tt2, tt3 £ S{rn) such that for all

j > «" aj"+1 <Tn ttx <Tn w2 <Tn 773 <Tn ¿?j*',+1. So by picking branches x, y, z of
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T through 77,, 772,773 respectively we have that for all m, n < co, am < x < y

<z<bn.

Now suppose a G [an: n < co}. Since cf (a) = co, there exists t G Ta such

that for all n < co, t„ <Tr. Let ^" = {p G S(t): (3/j < co)(p G an)). Let

5" = {o E S(t): (3n < co)(a G bn)). A" and F" may be empty, but in any

case for all p G A" and 0 G B", p <T a. Hence we can pick elements 77,, t72,

ttj of 5(t) such that for all p E A" and a G F" we have p <T 77, <T t72 <t tt3

<T a. By picking branches x, y, z of T through 77,, 772,773 respectively, we have

that for all m, n < co, am < x < y < z < b„.

Claim #4. Condition (iii) holds in <F, -<).

Proof. For t G F, let UT = {branches b E L: t E b). We will show that

each UT is open in the order-induced topology on L. Suppose b E UT, and r

G F,. Since Fis normal, 0 =¡¿ b n S(t) = {6a+1}. Pick p, a G S(t) such that

p <T ba+x <T a; pick branches a, c through p, o respectively, a < b

< c and (a, c) C UT so ¿7T is open.

Let % = {t/T : t G F}. We will show that % is a basis for the order topology

on L. Let b E (a, c) Q L. Pick t G F such that r E b,r E a, and t G c.

Thus 6 G t7 ç (a,c).

For each a < co2, let Ga denote the open set U [Ur: r G F,}. We will show

that Ga is a dense subset of F. Let i/T be a basic open subset of L. If t G F,

for some ß > a, then i/T ç G. If t G 7¿ for some /? < a, then since F is

normal there exists a G Ta such that t <ro. Hence tVa £ £/T, so UT D G0

9e 0. Thus Ga is dense in L.

For each a < co2, let Ea = {b G F: 6 n Ta = 0}. If a < /3, then Fa

Ç Fo. Since F has no branches of length co2, L = U{Fa: a < u2}. Each Fa

is nowhere dense since Ga is an open dense subset of F and Ea = L — Ga.

Theorem 3. There exists a compact LOTS with the following properties:
(a) it is the union of N2 nowhere dense subsets,

(b) any countable collection of open subsets of it is oblivious.

Proof. Let £ be the Dedekind completion of the line L in Lemma 5. L is

a compact LOTS.

In order to show that £ has property (a), note that as in Lemma 5,

L = U{Fa: a < co2}. Since each Ea is nowhere dense in F it is nowhere

dense in L, hence each Fa is nowhere dense in £. Also if a < ß, then Ea

Q Eß. Each x G £ is the supremum (or infimum) of Nj elements of F, since

otherwise co2 (or co*) would be embeddable in F, contradicting Lemma 5.

Thus, for each x E £, there exists a < co2 such that x E Ea. Therefore

£ = U {Fa : a < u2}, the union of H2 nowhere dense sets.

In order to show that £ has property (b), let S be a countable collection of

open subsets of F and show S is oblivious. Suppose x E £ and {Cn : n < co} is

a subcollection of G such that x E D [Cn : n < co}. Since F is dense in £, for
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all n < co there exist an,bnE L such that x E (an,bn) Q C\{Cy.j < n), and

an < an+x, and bn+x < bn. Thus for all m, n < co, am < am+x < bn+x < bn.

By Lemma 5 there exist w,y,zEL such that for all m, n < co, am < w < y

<z<b„. Thus 0 # (w,z) C f]{(an,bn): n < co} Q n{C„: « < co}.

Therefore G is oblivious and the theorem is proved.

If 2N° > N2, the compact LOTS in Theorem 3 satisfies conditions (i) and (ii)

of Theorem 2. Hence the following corollary.

Corollary. Assume 2**° > H2. The space £ in Theorem 3 is a compact LOTS

which is not Blumberg.

Theorem 4. There exists a compact Hausdorff space which is not Blumberg.

Proof. Let X be the disjoint union of St^/á) and £. If X is Blumberg,

then clearly both St(®/i ) and F must be Blumberg. However, by the corollar-

ies to Theorem 1 and Theorem 3, regardless of the value of 2*°, St(6J/i) and £

cannot both be Blumberg.

We shall now relate some miscellaneous results regarding Blumberg spaces.

Theorem 2 gives necessary and sufficient conditions for a Baire LOTS to be

Blumberg. By examining the proof, we notice that the following were proved.

Theorem 5. If X is a space such that

(i) X is the union of < 2S° nowhere dense subsets, and

(ii) every countable collection of open subsets of X is oblivious

then X is not Blumberg.

Proposition 3. // X is a space such that no open subset of X is the union of

< 2N° nowhere dense subsets, then X is Blumberg.

Proposition 3 appears in [Wl] and it, together with Theorem 5, enables us

to tell whether some spaces are Blumberg. For example, consider the compact

LOTS £ constructed previously. It is straightforward to show that nonempty

G^s of F have nonempty interiors, and hence that F is not the union of < Hx

nowhere dense subsets. Thus, by Proposition 3 and Theorem 3, we conclude

£ is Blumberg iff 2K° = tix. The following theorem was proved by White in

[W2], using the additional assumption: 2N° = K,.

Theorem 6. A Souslin space (i.e. a nonseparable LOTS with cellularity Ng) is

not Blumberg.

Proof. As shown in [Ju], a LOTS with cellularity N0 has cardinality < 2*°.

We can assume without loss of generality that the Souslin space, X, has no

isolated points. Thus by Theorem 5, it suffices to show that if S is a countable

collection of open subsets of X, then G is oblivious. To this end, let

G = {Cn: n < co} where each C„ is open. Since c(X) — N0, each

C„ = U{4":A:<co}
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where each l£ is an open interval. Let 3 = (4" : k < co, n < <S}. Let 3 = {finite

intersections of elements of 3}. Thus |3| = N0.

Since X has uncountable w-weight, there exist elements a, b, c, d of X such

that a < b < c < d and (6, c) =£ 0 and no element of S is included in (a, d).

Let x £ (2?, c). Since elements of 3 are intervals, if G £ S and x E G, then

either a E G or d E G. Since 3 is closed under finite intersections, either

(VG E 3)(x E G -implies a E G) or (VG E S)(x £ G implies ¿ EG).

Hence, either a E (~){G £ 3: x £ G} and (a,x) £ D{G £ 3: x E G}, or

¿ E n{G E§:x E G)and(x,d) Q C\{G E 3: x £ G}.
Thus, if ß' Q ß and x is an element of the nonempty open set (b, c) such

that x £ fie', then either 0 ^ (a,x) C f*l{G £ 3: x E G} ç DC or 0
# (x,¿) Ç H {G E 3: x E G} C D ß'. Therefore Sis oblivious and X is not

Blumberg.

The next theorem was proved by Levy in [L2], using the stronger assump-

tion: 2*° = 2*1.

Theorem 7. Assume cf^*0) > ux. The Dedekind completion Q of the

canonical tj,-se/ Q in [GJ] is not Blumberg.

Proof. Since the 11,-set Q is dense in Q, a straightforward argument shows

that every countable collection of open subsets of Q is oblivious. Thus, by

Theorem 5, it only remains to show that Q is the union of < 2*° nowhere

dense subsets.

As is shown in [Ju], neither co2 nor u* is embeddable in Q; hence every

element of Q — Q is the supremum or infimum of at most N, elements of Q.

Since Ig] = 2*°, we will enumerate Q as {qa: a < 2*°}. For each ß < 2K°,

let Eß = {qa : a < ß}. Thus 6 = 0= U {Eß: ß < 2*°} since cf(2*°) > û?, .

We now show that each Eß is nowhere dense. Suppose Eß is dense in some

open interval (a,b) Q Q. Therefore {qa: a < ß} is dense in (a,b); hence

{qa: a < ß} is dense in Q n (a,b). Therefore {qa: a < ß} is an 17,-set.

However, as is shown in [GJ], every Tj,-set has cardinality at least 21*0, which

gives a contradiction since ß < 2N°.

Theorem 8. 7/2"° = K,, then ßN - N is Blumberg. If 2*° > N,, then it is

consistent with the usual axioms of set theory that ßN - N be Blumberg. If

2X° > N,, it is also consistent with the usual axioms of set theory that ßN — N

be not Blumberg.

Proof. The first statement was proved in [Wl], using Proposition 3. The

second statement is also proved using Proposition 3 and noting that Martin's

Axiom implies that no open subset of ß./V — N is the union of < 2**° nowhere

dense subsets; see e.g. [Ta].

The third statement is proved using Theorem 5. We note that since

nonempty Gfi's of ßiV - N have nonempty interiors, every countable collec-
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tion of open subsets of ßN — N is oblivious. There are models of set theory

constructed in [He], in which 2N° > N, and ßN - N is the union of < 2*°

nowhere dense subsets.

Although Theorem 2 characterizes LOTS which are Blumberg spaces, it is

not a characterization of all Blumberg spaces. In [Wl] it is shown, using

2X° = Rx, that the density topology on the real line is a Baire space which is

not Blumberg. However it is the union of 2N° nowhere dense subsets, namely

the singleton sets. As well, it has a countable collection of open sets which is

not oblivious, since the density topology is finer than the usual topology on

the real line.

Theorem 9. The Blumberg property is not preserved under perfect maps.

Proof. Let X be the compact T2 non-Blumberg space constructed previous-

ly. Let d(X) = k. Let Y be the discrete space of cardinality k and ßY its

Stone-Cech compactification. Since y is discrete, ßY is clearly Blumberg, so it

just remains to show that there exists a perfect map from Y onto X.

Let D be a dense subset of X of cardinality k. Let/be a function mapping

Y onto D. Since Y is discrete / is continuous and thus has a continuous

extension F to ßY. It is now straightforward to show that F: ßY-+ X is a,

perfect map.

Several open problems immediately suggest themselves:

Question 1. Is it consistent with the usual axioms of set theory that St(®/5)

be Blumberg?

Question 2. Are the uncountable products of the closed unit interval

Blumberg? In particular is [0, l]Hl Blumberg?

Question 3. If D is the two-point discrete space and k > co, is DK Blumberg?

Question 4. Is the Blumberg property preserved under continuous open

surjections?

Question 5. If X X Y is a Blumberg space, must both X and Y be Blumberg?
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