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Abstract. In the first part we show that the decomposition of a bounded

selfadjoint linear map from a C*-algebra into a given von Neumann algebra

as a difference of two bounded positive linear maps is always possible if and

only if that range algebra is a "strictly finite" von Neumann algebra of type

I. In the second part we define a "polar decomposition" for some bounded

linear maps and show that polar decomposition is possible if and only if the

map satisfies a certain "norm condition". We combine the concepts of polar

and positive decompositions to show that polar decomposition for a selfad-

joint map is equivalent to a strict Hahn-Jordan decomposition (see Theorems

2.2.4 and 2.2.8).

0. Introduction. In this paper we study bounded linear maps between C*-

algebras. We are particularly concerned with decompositions of such maps.

These decompositions are analogues of Hahn-Jordan and polar decomposi-

tions for linear functionals on C*-algebras. The study of positive decomposi-

tion of bounded linear functionals of partially ordered normed linear spaces

may be traced back to M. Kreïn [12] and J. Grosberg [6] around 1939. Later

Z. Takeda [18] worked out the same problem on the C*-algebra setting.

Recently some independent efforts were made to study the positive decompo-

sition for bounded linear maps between two partially ordered normed linear

spaces [20].

The major result in Chapter 1 is that the decomposition of any selfadjoint

linear map as a difference of positive maps into a given von Neumann algebra

is always possible if and only if that algebra is a "strictly finite" von Neumann

algebra of type I (see Theorem 1.4.6). In §1.1 we state and establish some basic

properties needed for the rest of the paper. In §1.2 we prove the sufficient part

of Theorem 1.4.6 in a special case when the range algebra is an abelian von

Neumann algebra (see Lemma 1.2.1). In §1.3 we construct examples to show

that "positive decomposition" is not always possible under varying conditions

of restrictiveness.
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In Chapter 2 we prove that the polar decomposition is possible if and only

if the map satisfies a certain "norm condition" (see Theorem 2.1.4). We give

examples of linear maps, some of which satisfy that condition and some which

do not. In §2.2 we combine the concepts of polar and positive decompositions

to show that polar decomposition for a self adjoint map is equivalent to a strict

Hahn-Jordan decomposition (see Theorems 2.2.4 and 2.2.8).

The author would like to express his sincere gratitude to Professor Richard

Kadison for suggesting the research subject of this paper and kindly giving his

time for advice and discussion on all related subjects. The author would also

like to thank Professor Edward Effros and Professor Shôichirô Sakai for many

valuable conversations and references relevant to this paper.

I. Positive Décomposition of Selfadjoint Bounded Linear Maps

1. Preliminaries. Throughout this chapter the notation is as follows:

&: C*-algebra;

R: von Neumann algebra;

B(&x,&2): the Banach space of all bounded linear maps from <£, into &2;

$, ¥, A,... : the elements in £(£,, $2);

&* : the dual space of #;

cp, 17, to, ... : the elements of &* ;

R+ : the predual space of R;

C(X): the C*-algebra of all complex continuous functions on the compact

Hausdorff space X;

/°° : the C*-algebra of all bounded sequences;

Mn: the C*-algebra of all n x n complex matrices;

Mn ® &: the tensor product of Mn and S,

Unless noted otherwise, all algebras have an identity element. As to the

general theory of von Neumann algebras, we refer to [3].

1.1.1. Definitions. A linear map O from c?, into &2 is called positive if ${A)

is positive in &2 for all positive A in &x. We write 0 > 0. For given $ in

B(&x,&2) we define $* as a map from c?, into &2 by $*(A) = $(A*)*. If

$ = $*, then $ is called selfadjoint.

It is evident that ||$* || = ||3>||, and if $ is positive then it is selfadjoint. The

"*" operation is continuous in the norm topology on B(âx,&2);hence the

subset of all selfadjoint elements in B(&x, &2) is a closed subspace denoted by

Bs&(&x,&2). When <£, = &2 = &, BSA(&) is a (real) closed subalgebra of

B(&). The subset of all positive elements in B(âx,&2) is a closed positive cone

in BSAi(&x,&2) denoted by £(f2,,f22).

Mn® & can be regarded as the algebra of all »X« matrices with their

entries in &. For each <&: &0 -* &x induces $„ = id„ ® $ from Mn

® &0 into Mn ® ¿Ei, where id„ is the identity map of Mn, and for T in

M. ® &. with £ = (TA $JT) = (QiTM
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1.1.2. Definition. A linear map 4> from &Q into &x is called completely

positive if 0„ is positive from Mn ® &0 into Mn ® &x, for all n = 1, 2, 3, ....

Stinespring has characterized completely positive linear maps from &0 into

B(X). We state some theorems below. For their proofs, we refer to [17] and [1].

1.1.3. Theorem (Stinespring). Let $ be a completely positive linear map from

& into B(%). Then there exists a *-homomorphism St* from & into B(%) and

a bounded linear transformation V from % into % such that for A in â,

$(A) = V*-%(A)V,

where % is the completion of pre-Hilbert space Xq& (the algebraic tensor

product) under the inner product norm

Í2 x¡ ® Ait 2 yt ® b)   - 2 W¡ At)xityj).

1.1.4. Theorem. W/zew e/r/W &0 or &x is commutative, then any positive linear

map from &0 into &x is completely positive.

1.1.5. Lemma. //$ > 0 /« fi(r2„ t^) rten ||$|| = ||*(1)||.

Proof. It is proved by Dye and Russo [4] that

11*11 = SuPl/:unitarvinffll|a)(i7)||.

Given any fixed unitary element U in 6E,, $ can be considered from C*( U)

(= the C*-algebra generated by U and U*) into 6B2 and C*(t7) is commuta-

tive. Therefore, $ is completely positive (by 1.1.4) and $(•) = V*"$(-)V

where ^ is a *-homomorphism, F is a bounded linear transformation from

underlying Hubert space Xj of (^ into (%j <8> C*(t7))-completion defined as

V(x) = x 8 1 (by 1.1.3). So

||FWI|2 = (*(1)^^)<II*(1)IIII^I|2.

Hence ||K|| < ||<D(1)||1/2. Thus for A E C*{U),

||*G4)|| = ||K**04)P|| < ||K*|| ||HI |M|| = ||F||2MU < ||*(1)||M||.

Therefore ||$(t/)|| < ||*(1)|| and ||$|| = ||*(1)||.    Q.E.D.
Let Bx, B2 be two Banach spaces, Bx Q F2 the algebraic tensor product of

Bx and B2. Denote by Bx <g>A B2 the projective tensor product of Bx and F2> i.e.,

the completion of F,0 B2 with respect to the norm "A" defined as follows [7,

p. 28]: forxinF! O B2,

IMIa = inf{ 2 IkIIINI x = 2 «,■ ® &„ a,- G Bx, bt E B2\
\.i=l 1=1 J
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1.1.6. Theorem. B(&,R) s (& ®A R*)*. & ®A £+ is the projective tensor

product of & and the predual £# of R. The isomorphism here is also an isometry.

Note. This theorem is very useful and it also gives insight into the structure

of B{â,R). But the positive cone (the (real) subalgebra of all selfadjoint

elements) in {& ®A £+) corresponds to the completely positive cone, instead of

positive cone, in £sa (&,R).

1.1.7. Lemma. Let & ®r £# be the completion of&QR^ under a given cross

norm "V'.Then there exists a linear map ifrom (& ®r £#) into B(&,R) such

thatf £ (ÉE ®r £.*)* -> i(f) with Hf)\\ < ||/||r.

Proof. Define i(f) by t(/)(x)(y) = /(x ®y) where x E â,y E R+. In

this way, i(f)(x) appears as an element of the dual space of R^, i.e., as an

element of R. Clearly i{f) is a linear map from & into R; and

||t(/)||=       Sup       K/)(*)(y)|<       Sup       ||/||r||x®y||r
IWI<i;W<i IWI<i;W<i

=       Sup       ||/Hr||x||||y|K||/||r.
IWI<i;W<i

Also t is linear and SMI < 1.   Q.E.D.
The notation above is adapted from papers by Lance [13] and by Effros and

Lance [5].

1.1.8. Lemma. There exists a linear map t_1 (it turns out to be the inverse oft

in 1.1.7) from B{&,R) onto (& ®A Rt)* such that \\rl($)\\ < ||$|| for $

£ B(&,R).

Proof. Define t-1 by

for x,- E &, y¡ E R+. We observe that

Hence

Hence  £-1($)  can be  continuously extended  to  (£®A R+, and ||t-1(<I>)||

< ||$||.    Q.E.D.
Proof of the theorem. It is clear that t and t x are inverse to each other;

therefore we have established an isometry between B{tH,R) at (<£®A R*) .

Q.E.D.

< 11*11 2 Wl hi

2 x,9y¡



DECOMPOSITIONS OF LINEAR MAPS 91

1.1.9. Definition. A selfadjoint map $ from (E0 into &x admits a positive

decomposition if there exists a bounded positive linear map 4>+ from &0 into &x

such that $+ - O > 0. In this case, we say that $ is positively decomposable.

1.1.10. Remark. By a nuclear linear map 4>: &x -> (E2 we mean $00

= 2,* j X¡f¡(A)U¡, where/'s are in &* (the dual space of &x), U¡'s are in &2

with || 17,|| = 11/11 = 1 for all i = 1, 2, ..., and 2,°Li l\l = a < oo. If $ is
a selfadjoint nuclear map, $ = 2^™.xXJk®Uk. (We write fkQUk for the map

^/A04)t4.)

* = 2 (Kfk - Kfk') © q? - (4/t + *tt!) © ttf
(2)

+ / i (*Ur + **/*) Q ̂ r + ft*/* - *Uf) © Ig
*=1

where ^k,X'k,fk,fk, ^t» ^4' are ^e rea^ anc* imaginary parts of X¿,.4> t^

respectively. Each of the two summations in (2) is selfadjoint. The selfadjoint-

ness of 4> implies the second summation in (2) is a zero map, and consequently

$ can be expressed as

Î gkoukr- Î bke ul
k=l *-l

where

Bk = (Kfk - Kf¿)>    h = (Kfk + Kfk)

withg* = gk,bl = ^and

2 llg,ll<2 2 \h\,      2 IIM <2 2 |aJ.*=i *=i *=i *=i
Then each of gk, bk, (Ukr, Uk) (k = 1,2,3,...) can be decomposed as the

difference of two positive functionals (elements) and 0 becomes

(* =) 2 gk+ O (Ukr)+ + gk O (UkT - b+k 0 (U¿)+ - b~k O (lg)"
k—\

- ï & © (UD+ + st © (i£T - b~k O (<7<)+ - bt o (ig)"
*=1

By straightforward calculation we see each of the two summations in the

above equation has norm less than 8a. This shows that $ is positively

decomposable.

2. Lemmas. In this section we establish a positive decomposition for

selfadjoint linear maps with certain kinds of range algebras.

1.2.1. Lemma. Fer $ be a selfadjoint bounded linear map from a C*-algebra &
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into an abelian von Neumann algebra C(X): then $ admits a positive decompo-

sition, i.e., $ = $+ - $~, where $+, 4>~ > 0, w/7/i ||3>+|| < ||4>||.

Proof. Let § be the family of all partitions of unity {g(|z G /} on X with

nonredundant supports {V¡} for {g,}, i.e., U¡eI.i^jV, # .Y for any fixed j. We

can pick x,. in U¡ in such a way that g¡(xj) — 8¡j for all i,j E I.

Next, for each I E §, we define a map 7^: C(X) -* linear subspace

generated by {g,|z e /} by it¡(f) = 2,e//(x,)g,. and observe the following:

(i) ttj is a linear map and, for/ > 0 in C(X), 7r;(/) = 2,e//(*,)& > 0.

(ii)^(l) = 2,e/g, = l,so|W|/=l.
(iii) ttj o $ is a selfadjoint linear map with |k ° $|| < ||i>||.

Consider <p,04) = <Sf{A){x¡) for each / G F It is clear that the <p(.'s are self-

adjoint linear functionals of & with ||<p,|| < ||$|| for all / G /, i.e.,

19,04)1 - |$04)i>,.)|< ||*04)||< |*| Ml-

Hence we have <p¡ = <p* — <p~ where <pf, <p~ are positive linear functionals of

£ with ||f>, || = ||ep,+ |l + ||<p-||.

(trj o $){A) = 2 HA)(Xi)êi = 2 <PÎ(A)Si - <cT(A)gi
íe.1 ie.1

for all A G &. We define $/ of & into C(X) by ^ -> 2,e/ <P?(A)g¡. It is

evident that <&/ is a positive linear map; thus

i*; 11 = n*ro)ii =

2II<p,+ II^

2»i+(i)ft
16/

<ll*l 2 s,
16/

= 11*11

and also that $/ > tt¡ o O.

Now consider F(éE, CÍA')), the Banach space of all bounded linear maps

from & into C(X), which is isometrically isomorphic to [(2®A C+(X)] (the

dual of the projective tensor product of 6? and the predual C^.(X) of C(X)).

Compactness of X implies that for any given/in C(X), x0 in X and e > 0, we

can find I0 in % such that x0 lies in a support V¡ of g¡ but not in U,^,- .,e ¿ V¡

and |/(x) - /(x0)| < e for all x in If . Thus we have

K(/)(*o)-/(*o)l 2/(x,)gl(x0)-/(x0)
l'E/0

= I/(^)-/(JCo)I<«.

where x;. G V¡ . Therefore we can select a net {V7|Z G §' C g} convergent to

the identity map on C(X) in B(C(X), C(X)) under the point-weak*-topology.

On the other hand {3>/|/ G S'} is a bounded subset in (& ®A C+(X))*. Hence

it must have a cluster point $+ under the weak*-topology with ||$+|| < ||$||.

Finally we show that 3>+ > 0 and 0+ - $ > 0. For any j4 > 0 in &, x0
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£ X and e > 0 we can find I0 in 3' such that \$+(A)(x0) - $%(A)(x0)\ < e.

This inequality and $]~(A)(x0) > 0 imply that &+(A)(x) > 0. Therefore

3>+ > 0. In addition, $f{A){x) - tt¡ ° ${A){x) > 0 for all A > 0 in ft x E A"
and / E 3'. This implies that $+{A){x) - ®(A)(x) > 0 for all A > 0 in

&, x in A".

1.2.2. Lemma. Let $ be a bounded selfadjoint linear map from a C* -algebra &

into Mn ® C(X) where C(X) is an abelian von Neumann algebra; then $ admits

a positive decomposition.

Proof. Each A in Mn ® C(X) is an nXn matrix (a¡¡) with entries a¡¡

£ C(A"), i,j = 1.n. Let {ex, ..., e„} be the canonical orthonormal basis

for C and w¡j the linear functional on Mn defined by o¡tí(T) = (7e,., e,) = fy

when T = (t¡j) for /,/ = 1, ..., n. Each ukl induces a map $k¡ from A/n

® C(X) into C(X) by

(¿ £ Mn ® C(X))   *w(,l) = $w^ ¿j ty ® «(,)

n

1,7=1

where yl = (a¡j) and {e,y|/,/ = 1,2,...,«} are the usual matrix units of Mn.

Note that 4>w is a linear map from Mn ® C(Ar) into C(X) for all/c, / = 1,...,

« with ||$w|| < ||cow|| < 1. For each x0 in X induces a pure state of C(X) by

¥*„(/) = f(xo) and

l<W(*o)l - l(«« ® <p,0)(^)I < Ii«« ® <P;JI Mil
= KIIII<p,0IIIMII = IUII.

Set

Akl ~

( (l/2)(^ + elk),

ekk>

(l/2i)(elk - ekl),

k<l,

k = l,

k>l,

where ev's are the usual matrix units for A/„ and"¡k

($kl + *lk)(A),

%M) -     { QuriA),

(l/i)(^u-^k)(A),

k<l,

k = l,

k>l.

Since %¡(A) = %k(A*), %, is selfadjoint and \\%¡\\ < 2||*w||. Thus

$00 =2   Au9%(<b{A)).
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By Lemma 1.2.1, %¡($(A)) - *k+t(A) - %¡(A) where <*£, %, are positive

linear maps with ||>i$ || < \\%¡ ° $||. With A in ft let $+(A) be

¿ [AZ®*Ít{A) + A¿Q,*¿{A)]
JU-1

where Akl (Akl) is the positive (negative) part of Akl in Mn. It is easy to see that

$+ is positive, <D+ > 0 and

ll*+ll = ll*+(/)ll <   S  211*11(114,11 + IHüll) < 4«2||$||.      Q.E.D.
k,l=\

1.2.3. Corollary. Every selfadjoint linear map from & into Mn (=ë Mn ® C)

admits a positive decomposition.

1.2.4. Definition. A finite type I von Neumann algebra R is called strictly

finite if R = 2,e/ ©-#,- where i?, is of type In/ and Sup/e/ nt < +oo.

1.2.5. Lemma. If Ris a strictly finite von Neumann algebra of type I, then any

selfadjoint linear map $ from 6? into R admits a positive decomposition.

Proof. Let R = 2,e/ ©-fy wiül R¡ of type l„. and Sup,e/ n¡ = k < +oo

and «j be a projection map of R onto R¡ (i E I). We may assume ||$|| = 1.

Since R¡ = Mn. ® C(X¡), by 1.2.2 tt¡ ° <ï>; being a selfadjoint linear map, is

majorized by a positive linear map $+: @.^>R¡ with ||$*|| < 4«? < 4k2

< +00. Thus 2,e/ ®$f, denoted by $+, is a positive linear map from & into

R and <D+ > $ with [|<ï>+1| < 4Â:2 < +00.   Q.E.D.
In the following we will develop a somewhat more general version of

Lemma 1.2.2 by replacing the range algebra, a commutative von Neumann

algebra, with a commutative A W*-algebra, i.e., C(A"), the C*-algebra of all

continuous functions on a Stonean space X.

1.2.6. Definition. A compact Hausdorff space X is called Stonean if for

every open set U in X the closure V of U is open.

We state basic facts about Stonean spaces needed in this section without

proofs (they can be found in [2, pp. 66-77]). First of all, the most frequently

used example of a Stonean space is the Stone-Cech compactification of a

discrete set D, denoted by ß(D). Let A" be a compact Hausdorff space and Xd

be X with the discrete topology. We can always embed C(X) into C(ß(Xd)) as

a subalgebra with the same unit.

1.2.7. Definition. Let A" be a compact Hausdorff space. C(A") is called

injective if C(A") is an injective object in the category consisting of "objects"

such as C(A")'s, where X is compact Hausdorff and "morphisms" are *-ho-

momorphisms between C^'s.

1.2.8. Theorem. Let X be compact Hausdorff space. Then C(X) is injective if

and only ifX is Stonean.
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Proof. The proof can be found in [2].

1.2.9. Corollary. Let X be Stonean. Then there exists a projection map from

C(ß(Xd)) onto C(X) of norm 1.

Proof. Since C(X) can be embedded into C(ß(Xd)) as a subalgebra with

the same unit, the identity map id can be lifted to C(ß(Xd)). It is illustrated

below:

C(ß(Xd))

i embedding

ax)
Since A is a*-homomorphism and preserves the unit element, A is of norm 1.

Q.E.D.

1.2.10. Corollary. Let $ be a selfadjoint linear map from & into C(X), where

X is Stonean. Then $ admits a positive decomposition.

Proof. We may embed C(X) into Ia* (Xd), the C*-algebra of all bounded

functions on the set X with discrete topology. Again, every element in Ia3 (Xd)

has a unique extension to an element in C(ß(Xd)). Thus we have an

embedding t2: Io0 (Xd) -* C(ß(Xd)). By Lemma 1.2.1, $ = *, - $2,

where <Sfx, $2 are bounded positive linear maps from & into /°° (Xd). By

Corollary 1.2.9 there exists a projection map A of norm 1 from C(ß(Xd)) onto

COY).

Ciß{Xd))

A o $ *,

a

f-1.2

Hence $ = A«0 = Ao$|-A« $2, where A ° $j, A ° 02 are two posi-

tive linear maps from & into COY) with ||A ° $,|| < ||$,||, i = 1, 2.   Q.E.D.

3. Counterexamples. In this section we shall exhibit several examples in

which positive decompositions for certain selfadjoint linear maps with range

algebra other than strictly finite von Neumann algebra of type I fail to exist.

1.3.1. Example I. This is derived from O. Lanford's example. It shows that

if X is a separable infinite dimensional Hilbert space then there exists a
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selfadjoint linear map from B(X) into itself which does not admit any positive

decompositions.

1.3.2. Lemma. For integer n > 1 there exist Ax, ...,An E M2„ such that

il)A, = A*.

(2)AiAj + AjAi = 28ijI2n.
(3) tr(A¡) = 0; tr is the trace function on M2„.

(4) If A E M2„ and A = 2 a¡A„then Mil < 2V2(2 kl)1/2-

Note. These A¡s actually generate a Clifford algebra [14].

Proof. Let

"-(.¡>'-c-.>'-*-c:>
We see H* = H,J* = J, H2 = / = J2, HJ + JH = 0. Let

Ax = H ® / ® • • • ® /,1 «-1

A2 = J®H®I®---®I,

At = J®-"®J®H®I®---®I,       3 < k < n.
k *-l n-k

Hence A* - yi,, ̂ 2 = /, and tr(^,) = 0. If i #y, A¡Aj + AjA¡ = 0. If A

= 2/ a¡A¡,

A*A + AA   = 2 <XjaiA;A¡ + 2 ai^jAiAj
'»7 '»y

= 2 ov^[M + AjA,] - 2 ^(2^y.

Thus

|M||2<|U*^-r-^*||=22k|2   and IMIK 2^(2 klV2.   Q-E.D.

1.3.3. Let tpx.<p„ be positive linear normal functionals on B(X) with

orthogonal supports and ||(p,|| = «~1/2. We define $n: F(%) -> Af2„ by

9„(A) = 2 9i(A)Ai,       A G F(3C).
i=i

Then

||ft„0OI| < 21/2(|i Itp,.^)!2)1 2 < 2,/2(|i m"llAt) 2 » 21/2H||.

So í>n is selfadjoint with ||$n|| < fö. Now we construct a counterexample by

setting
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oo

%(A) =  2  © $n(A)       (A E B(%)).

Then ||O0|| = Supn ||i>n|| < ^/2. Next we show that there is no positive

element $ in B(B(%)) such that $ - $0 > 0.

Suppose $> is a positive linear map from 5(3Q into itself such that

$ - $0 > 0. We can find a family of orthogonal projections {Pn: n = 1,2,

3,...} in 5(50 whose range spaces are {3C2„ : « = 1,2,3,...} respectively with

dimension 2". We may suppose that M2„ operates on %2„. Let

oo

v(a) - 2 © WK>    ^ e *(x).
»=1

Since^O = 2„°Li© *„(•) and J»*'(-)5 > P„$0(-)P„ - *„(•), $' > *0- We
may assume the range of $ is in 2^=i ©M2„.

For a fixed n, let 2s,- be the support of cp,-, / = 1,..., n; then P„$(-)Pn

(denoted   by   *„(•)) > $„(•)  and  *„(2s,) > <*„(£,) =  || <p,. IK- for all
/ = 1.n. For each i = 1.n we can choose an orthonormal basis for

%2„ as the set of unit eigenvectors of A¡ such that the diagonal of A¡ has half

of its entries +1, and half of them — 1. (Note that if rand S are n x n matrices

and T > 0 then each diagonal entry of T is real and nonnegative, and that if

T > S each diagonal entry of T is not less than the corresponding diagonal

entry of S.) But %(E¡) > ||cp,M,- and the positivity of *„(2s,) implies that

tr(%(E¡)) > 2""1 ||cp,|| + 2""1 • 0, where ||cp,|| terms arise from +1 eigenvalues

of A¡, and 0 terms arise from -1 eigenvalues of A¡. Hence

tr(*„(l)) > tr (*„( 2 2s,-)) = 2 tr(*„(2s,-))

n n
> 2 2"-1||<p,|| = 2 2"~x ■ n-1'2 = 2n-xnx'2.

:=1 1=1

So

||*„(1)|| > (1/2") tr(*„(l)) > (2"-1/2"W/2 = (1/2)«*/2.

But

||ft|| = Sup \\%\\ = Sup ||*„(1)|| > Sup\nx'2 = oo.
n n n

Therefore $ is unbounded.

1.3.4. Example II. In this second example we exhibit a selfadjoint linear

map with its range algebra an abelian C*-algebra, but not a von Neumann

algebra, which fails to admit a positive decomposition. This shows that in

order to have all selfadjoint maps from & into C(A) admitting a positive

decomposition, X cannot be any arbitrary Hausdorff compact space, and it
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seems that X being Stonean is necessary. This example is a modification of one

which is due to Samuel Kaplan and Ulrich Krengel [11].

(1) Let Xq be the one-point compactification of the set of natural numbers

and C0Yo) be the Banach space of all real continuous functions on X0. Define

$: C(X0) -> C(X0) as follows: for each/ G COY0)

(*/)(«) =/(«)-/(«+1),

(4>/)(co) = 0       (co is the point at infinity).

For / > 0 in COY0) and fixed n0, we consider fn (n) = f(n) for all n in XQ

except fn («0 + 1) = 0. Hence/, < / For any positive linear map ^ of C(X0)

into itself if ^ > $ we have

*(/)(«<>) > *(4)(«o) > *(4)K)

= /«0("o)-/«„("o+l)=/(»o)-

So we have *(/)(n) > /(«) for all «.

(2) Let 0Y„) (n = 1,2,... ) be a sequence of copies of X0,

Xn — {xnX,xn2,...,xnm,...,xflu)      (n = i,¿,... ),

2„ A^ be their topological sum and let X be the 1-point compactification of

2„ Xn. We may picture X as follows:

Xu

X —   xnX   xn2

n\   xi2 x-,

xxx    xx2    •••    xXm   xXu

Let {Yn) (n — 1,2,... ) be a sequence of copies of N,

y,-{^»i.jw-"} (« = i,2,...),

2„ Yn, be their topological sum and Y be the 1-point compactification of

2„ Y„. Define $: C(A-) -» C(y) as follows: for each/ G COY),

(*/)UJ =/KJ -/(*/.,m+l).

(*/)(^) = o.

To see that $/ is continuous of Y, that is, that it is continuous at yu, let a

positive e be given. Then there is an n0 such that, for n > nQ, |/(xnm) -/(xw)|
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< e/2 for all m. Thus |/(x„m) -/(*„,„,+] )| < e for all m and n > «o- Also

we may choose mQ such that, for « = 1,..., n0 and m > m0, |/(x„m)

-f(xn,J\ < £/2> whence |/(x„m) -/(x„im+1)| < e. Thus, for allynm outside

the finite set {y„>m|« = 1,... ,«0,m = 1,..., m0], \{$f){y„im)\ < e.

Finally suppose there is ty > 0 and ¥ - <E> > 0. Let en be the characteristic

function of the subset Xn of X. From (1) we have ^(en)(yu) > 1. Therefore

*(i)U) = *(J1 e„)u) > ( Jt *(*„))(yu)

-  2 *(en)(yu) > k
n=l

for any positive ingeger k. This shows the unboundedness of ^.

4. Main theorem.

1.4.1. Definition. A von Neumann algebra is called positively decomposable

as a range if every selfadjoint element in B(â,R) admits a positive decompo-

sition.

In §2 we proved that all strictly finite type I von Neumann algebras are

positively decomposable as a range. We show in this section that these are the

only positively decomposable von Neumann algebras as a range. We state a

theorem proved by W. Arveson [1] without giving the proof.

1.4.2. Theorem (Arveson). Let %be a separable Hilbert space and 0 -> &0

-^-» &x be an exact sequence, where $ is completely positive. Then any completely

positive linear map 90 from &0 into B(%) can be lifted to a completely positive

map ^ of&x, i.e., the following diagram commutes:

B(X)

*o
\N*.

X

* X
0—Ö0-*-*,

where all maps in the above diagram are completely positive.

Note. A C*-algebra & satisfying the condition that for any given exact

sequence 0->ft)-»¿£,, where $ is completely positive, and a completely
positive linear map % from (£<, into ($,, % can always be lifted to a

completely positive linear map <kx on 6?, such that t0 = i', « $, is called

injective.

1.4.3. Definition. If E and F are projections in a von Neumann algebra R,

we write 2s ~ F when there is an element U in R such that U* U = E, UU*

= F. We write 2s < F(E =< F) when there is a projection FQ in R such that

E~F0andF0<F(F0<F).
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Infinite case. Let R be an infinite von Neumann algebra. In this case there

is a proper subprojection F0 of / such that / ~ F0, i.e., there is a partial

isometry U in R such that U* U = 1, UU = F0, and / - F0 = F, # 0.

Consider F2 = (¿VF^i/F,)* which is equivalent to (UEX)*(UEX)

= Ex U* UE = Ex and Ex, E2 are orthogonal since F2 < F0 and Ex, F0 are

orthogonal. Let

F3 be (UE2)(UE2)* ~ (UE2)*(UE2) = E2,

Ekbe(UEk_x)(UEk_x)* ~(UEk_xy(UEk_x) = F,_„

Observe that Fj ~ F2 ~ F3 ~ • • • ~ Ek ~ • • • and {F(-|i =

1,. .. ,k, ...) are mutually orthogonal.

Let R be the strong-operator closed *-algebra generated by (F,, F2,...,

Ek,..., UEX) by F,. Observe that F, is ""-isomorphic to B(%) where % is

a separable Hubert space having E¡ as a 1-dimensional projection. We show

that F is not positively decomposable as a range. We may assume that

B(%) Ç R. Suppose F is positively decomposable as a range. Suppose that $ •

is a selfadjoint map from â into B (%) that is not positively decomposable

(see 1.3.1, Example I). Then $ is a map from éB into R and 0 = $+ — 3>~

where <I>+, $- are positive bounded linear maps from ¿B into F. By Theorem

1.4.2 there is a completely positive linear map ¥ from F onto F(X)

extending the identity embedding of B(%) into F. Hence

<p  =  <¡r o dj>  = ^($+ — <J>~) = ^ o $+ — ^ o $"",

where % ° $+ and ^ o $~ are bounded positive linear maps from â into

F(%). This contradicts the choice of $. Therefore F is not positively

decomposable as a range.

Fype II j case.

1.4.4. Lemma. 2£Li ©A/2„ ca« ¿e embedded into any given type Ux von

Neumann algebra R.

Proof. Each type IIj von Neumann algebra contains a hyperfinite factor.

We can decompose the identity projection / as sum of countably many

orthogoanl projections {Pn\n = 1,2,...} with each Pn the sum of 2" orthogonal

equivalent subprojections {F„J/ = 1,..., 2"). The *-subalgebra generated

by {En,\i = 1,..., 2"} and those partial isometries among them is ♦-isomor-

phic to M2n. Hence we have an ultraweakly closed *-subalgebra *-isomorphic

to1,^x®M2..   Q.E.D.
It is not difficult to see that 2„=i ©M2„ is injective. However, this will

follow from the following more general lemma.
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1.4.5. Lemma. If{âx: X £ A} is a family of C*-algebras, then 2xeA © ®\ is

injective if and only if each &A is injective.

Proof. Assume that {&x : X £ A} are all injective. Given

reo*
xeA

*,

4»

(all maps are completely positive linear maps). Let 2\ be the projection of

2xeA © ®\ on % Tnen>for eacn A'

•.1
-Oo

*
■fll

2\ o ^0 can be lifted to ^ on &v and 2xeA © ^x is a lifting of ^ on 6?,.

Conversely assume that 2xeA® ^-x ls injective. Given a completely positive

map % of &0 into c?v

ox xeA u    \

*„

fl

*,

0 a, $

X       \
\*,

-fll 0

0

CP

\
\

¥0 can be regarded as a map from £E0 into 2xeA © ^x- ^s sucn> ̂  can De

lifted to ¥, on &x. Hence 2>x ° % lifts *0 (with range in %).   Q.E.D.

Now we show any type II] von Neumann algebra 2? is not positively

decomposable as a range. Suppose the contrary, and let $ be a selfadjoint

linear map from & into 2„=i © Af2„ that is not positively decomposable. As $

maps into R, $ = <D+ - 4>~ where 4>+, $" are two positive bounded linear

maps from â into R. Let ^ be a completely positive linear map from R onto

2„=i ®M2n extending the identity embedding of 2„=i ®M2n into R (by 1.4.3

and 1.4.4). Then $ = ^ ° $ = ^($+ - $_) = ¥ o $+ - ^ o $_ where

^ o $+, ^ « <5~ are bounded positive linear maps from & into 2„=i ©Af2„.

This contradicts the choice of $. Therefore R is not positively decomposable

as a range.
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1.4.6. Theorem. A von Neumann algebra R is positively decomposable as a

range if and only if R is strictly finite of type I.

Proof. Because of Lemma 1.2.5 and two case studies in this section it is

sufficient to show the following to complete this proof:

If F is of finite type I, but not strictly finite, we can embed 2^!=i M2n into

F. But this follows from the definition of nonstrictly finite type I of R. Then

we can have a selfadjoint linear map $ from & into 2^=i M2* that is not

positively decomposable, and subsequently that is not positively decomposa-

ble as a map with range F.   Q.E.D.

1.4.7. Concluding remark. As to the question "What are those selfadjoint

positively decomposable linear maps from ÉEinto an infinite or continuous type

of von Neumann algebra?", it is still not completely answered. Consider R to

be a hyperfinite factor containing an increasing sequence of type I„ factors Mp

with np < +00 (p = 1,2,3,...) containing the identity of F such that the

strong-operator closure of \JfL x M is R. Let % be a completely positive linear

map from F onto M extending the identity embedding of M into R. For any

given selfadjoint linear map $ from & into F it is clear that % ° $ is positively

decomposable, i.e., $oO = $+-$". But ||$^"|| may increase to infinity as

p gets large. If [\\<S>p \\: p = 1,2,...} is bounded, there is a cluster point $+ of

{<3>,+ : p = 1,2,...}, under the point-weak*-topology on B(â,R). It yields the

desired positive decomposition for $, i.e., $+ > $ with

ll*+ll<   sup   |*;|.
p-1,2,...

As an example of this, the nuclear selfadjoint linear map can be viewed as one

linear map with a uniform boundedness condition on {||^||: n — 1,2,...}.

Although we know that the subspace of the nuclear selfadjoint linear maps

is dense in BSA(&,R) under point-weak* topology [16], we suspect that the set

of selfadjoint linear maps with a uniform bounded condition is far from

encompassing all selfadjoint positively decomposable maps. Studying the

closure of all selfadjoint nuclear maps under some topology finer than point-

weak* topology may shed light on what constitutes the family of all positively

decomposable selfadjoint maps.

II. Polar Decomposition

1. A theorem of polar decomposition. In this chapter, the notation of Chapter

I applies.

2.1.1. Lemma. Let $ be a bounded linear map from &0 into &x. Then $ is

positive if and only if <p ° $(1) == Sup^^ |tp ° $(A)\ for all pure states <p of âx.
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Proof. Suppose that cp o cj(i) = Sup^^, |cp o <!>(A)\ for all pure states cp

of (£,. This implies that ||cp ° $|| = |cp ° ¿(1)1 and cp o $ is a positive linear

functional on ft,. Since this is true for all pure states cp of 6£,, $ is positive.

Conversely, suppose that $ is positive; then cp o $ is a positive linear

functional of c?0 for all pure states cp of <£,. Hence cp ° $(1) = ||c¡> o $|| for all

<p, i.e., cp o $(1) = Suppig, |cp » ${A)\ for all pure states cp. Q.E.D.

Note. In the above lemma when (£, is one dimensional, we have the known

necessary and sufficient condition for $ to be positive. That is, "$(1) = ||cp||".

2.1.2. Definition. Let O be a positive linear map from &0 into &x. The left

kernel of $ is the set = {A E &0\<!>(A*A) = 0} denoted by ker$ .

Note that A is in ker$ if and only if A is in the left kernel of cp o $ for each

state cp of 6Bj. Thus ker$ is a norm-closed left ideal in &0, the intersection of

left kernels of positive linear functionals cp ° $ on &0 where <p runs through

states of (£,.

When $ is a positive linear map from a von Neumann algebra into a C*-

algebra ft continuous in the ultraweak topology in R and norm topology in ft

ker$ is a ultraweakly closed left ideal in R. There is a unique projection P' in

R such that RP' = ker$ . We call (P =) 1 - 2" the support of <f. We have

<b(AP) = $(A) for all A in R. $ is said to he faithful if ker$ = 0.

If $ is a map of <£, into &2, we write 3>. U for the map A -* ${UA), where

U is an element in &x, V. $ for the map A -» $(,4 j/) and V. $. [/ for the map

^ -»$((7,4.10.
2.1.3. Definition. Let $ be a bounded linear map from a von Neumann

algebra R into a C*-algebra &. 3> is said to admit a polar decomposition if there

exists a partial isometry U in 2? with U* U = E, UU* = F such that <i>. Î/ is

a positive linear map (denoted by |<I>|) with its support E and |i>|. U* = $.

When £ = S, we have the usual polar decomposition for all ultraweakly

continuous linear functionals (see §1.14 in [15]). In the following we exhibit a

necessary and sufficient condition for a linear map $ from R into & continuous

under the ultraweak topology in R and norm topology in & to admit a polar

decomposition.

2.1.4. Theorem. Let $ be an ultraweak-norm continuous map from R into ft

Then <D admits a polar decomposition if and only if there is an element V in (R)x

(the unit ball of 2?) such that 9 ° $(F) = Sup^^ |cp ° $(A)\ for all pure states

<p of (L In the following proof we refer to this condition as the "norm-condition"

and say that V is "norming" for $.

Proof. Suppose that $ admits a polar decomposition. Then there is a

partial isometry U in R such that 0. U (= l^l) is positive. By Lemma 2.1.1

this implies that cp ° |$|(1) = Sup^n^, |cp »I^K/OI for all pure states cp of ft

Hence
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9 ° 4(1/) =   Sup   |ç> o *(í//l)| >   Sup  |<p o *(í/[/*F)|
MIKi HBlKi

=   Sup  \tp o\Q\{U*B)\ =   Sup  |tp°*(F)|
IWKi IIBIK1

>   <p  »   *([/).

This establishes the norm-condition for *.

The proof of the sufficiency of the norm-condition is of the same spirit as

the proof of the polar decomposition for ultraweakly continuous linear

functionals.

Let S be the subset of (R)x consisting of all elements V in (R)x that are

norming for *. Then S is nonnull and ultraweakly closed, hence, ultraweakly

compact. Moreover 5 is convex. By the Kreïn-Milman theorem [19, p. 362], 5

has an extreme point UQ. We claim that U0 is also an extreme point in (R)x. If

U0 = \{VX + V2), Vu V2 E (R)lt then *(t/0) = i(*(K,) + *(Kj)), and for

all pure states <p of &,

aT = r ®(u0) = ¿(v ° *W + v ° ®(vi))-

By the norm-condition a > |<p ° *(í¿)| for / = 1,2, and all pure states <p of

&Thus

<V < K!«P ° *(»i)l + I?» ° *C5)I) < K«, + a9> = V

Hence a = <p « *(i/) for i — 1, 2 and all pure states <p of & Therefore

V¡ E S, i = 1, 2, and, since UQ is extreme in S, we have t/0 = Vx = !£. Hence

1¿ is extreme in (F)j and V§ is a partial isometry [8].

Now we define |*|00 = $(U0A) and verify that |*| > 0. In fact, for any

pure state <p of &,

<p o |*|(1) = cp o $(f/) =   Sup  |tp o *04)| >   Sup  |tp » *(íFi4)|
IHIKi IHK i

=   Sup   \<p °|*|0l)| > |<p o|*|(l)|.
IMIKi

Hence <p ° |*|(1) = Sup^^ |<p °|*|04)|, and |*| is positive by Lemma 2.1.1.

Suppose |*| has support F. If E' = U* U0 and F = UQ U*, then

|*|(1 - E') = |*|(1) - |*|(F') = *(i/0) - S>(t70F')

= *(£/„) - *(t/0) - 0.

Hence 1 — F' < 1 — F and F < F' by the definition of support F of |*|. Let

U be U0E; then f/*f/ - Ft70* U0E = FF'F = F, and *(t/) = *(170F)

- |*|(F) = |*|(1) = *(i/0). Thus U is norming for *. Note that *.¿V
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= <D.Ï/02s = |<p|.2s = |$|. Thus <J>.i/ = |<D| and the support of |<5| is the

initial space of the partial isometry U.

Finally we prove |$|. U* = $. The proof here is a modification of a proof

given by Kadison [10] in establishing the polar decomposition theorem for

ultraweakly linear functionals. It is sufficient to show that cp o |$|. ¿y*

= cp o $ for all pure states <p of ft For a projection 2s in R acting on a Hubert

space % let CE be a projection onto a closed subspace of % spanned by

{Ax\A £ R,E{x) = x}. Clearly CE commutes with all elements in R. It also

commutes with all elements in the commutant R' of R. Hence CE is in the

center of R, and 2s < CE. CE is called the central carrier of 2s in 2?. Let Q be

I - Cj_E « 2s) and F = UU*. Then

Q = QEQ = QU*UQ = (UQ)*(UQ).

Since Cj_FCj_E = 0 (see [9, Theorem 1]) we have I - F < 2 - C¡_E

= Q and I - Q < F. Hence,

(U(I - Q))(U(I - Q)f = (2 - Q)UU*(I -Q) = (I- Q)F(I - Q)

= l-Q-

Set V - UQ + (I - Q) and W = J7*(2 - Q) + Q. We observe that V* V
= 2 = W* W and W* V = U. Define ij0(i4) to be <p o $(^*^ v). Note that

ij0(l) = cp o $(W* V) = cpo $((7) =   sup  \<p o $(A)\
Ml<i

> sup i<p°<K^*>im = ho ii.
IWKi

This implies that 770 is a positive normal linear functional on R. Let 2? acting

on % be the universal normal representation of R (the direct sum of all

representations induced by the normal states of R), and let tj0/||7?0 || be coz R

with z a unit vector in %, where wz\R(A) = (Az, z) for all yl E R. Note that

cp o $(yj) = cp o cb(^* w^K* K) = T/0(WaK*) = ||iJoll(i4K*z, W*z).

So we have

ho\\ = <P ° HU) = h0\\(UV*z,W*z).

Since ||F*z|| < 1, we have, by Schwarz's inequality,

1< ||f7K*2||||^*z||<||F*z||||»r*z|| <1.

Thus ||K*z|| = ||VT*z|| = 1. Furthermore, we consider r¡(A) = cp ° |<E>|(^)

which is also a positive normal linear functional of R. Hence we have
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9 ° (|*|. U*)(A) - (9 » |*|)(Í7*^) = ((p o $)(UU*A)

= (9 o *)(E4) = ||t,0||04K*z,ÍW*z)

for all A in F. In particular,

||t70 ||(í/F* z,F!F*z) = 9 o (|*|.[/*)(í/) = 9 » |*|(t/*í/)

= 9o|*|(£) = 9o*((7) = ||tío||.

This implies that (UV*z,FW*z) = 1. And by Schwarz's inequality we have

1 < \\UV*z\\ \\FW*z\\ < \\FW*z\\ < 1. Hence \\FW*z\\ = \\W*z\\ = 1.
Because F is a projection we have FW*z = W*z. Therefore

9 ° m.U*)(A) = h0\\(AV*z,FrV*z) = ||t,0||04F*z,r>z) = (9 o *)(^)

for all A E R. This is true for all pure states 9 of 6L Hence |*|. U* = *.

Q.E.D.
Let * be as in Theorem 2.1.4. For each pure state 9 of 6B, 9 ° * is an

ultraweakly linear functional on F. Since (R)x is ultraweakly compact, the set

Sç of elements F in (F), such that (9 ° *)(F) = H9 o *|| is nonnull. The

norm-condition says fL^ # 0 for all pure states 9 of (L This condition is

not easily satisfied, as some examples will show.

We give several examples of bounded linear maps, some which admit polar

decompositions and some which do not.

2.1.5. Examples, (i) Let * be an ultraweak-norm continuous linear map

from F into (L If there is a Fin (R\ such that *(F) = ||*||/2, where /2 is the

identity element in &, then, by straightforward computation, the norm-

condition is satisfied (and V is norming for *). Hence such a * admits a polar

decomposition. In particular, if * is a linear isometry of F onto itself, there is

an element F (in (R)x) such that *(K) = I.

(ii) We construct a bounded linear map * from M4 into C({1,2}) for which

the image of (M4\ does not contain ||*||/2, where /2 is the identity function on

{1,2}. Nevertheless * admits a polar decomposition.

Let {x1,x2,x3,x4} be an orthonormal basis for (34. Let B2 (F54) be the

projection in Af4 with range space generated by {x1, x2} ({x3, x4}) and P¡ be the

projection in A/4 with range space generated by x,, 1* = 1, 2, 3, 4. We define

two partial isometries Ux (U2) as follows:

Ux =

0

10
0 1

u, =
0

1 0

0 0

with   initial   space    U* Ux = B2(U* U2 = R)   and   final   space   Ux U*

= F;4 (U2 U* = Fj). Let 9 be the positive linear functional on M4 defined by
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<p{A) = tr(Px2APx2), where tr is the trace function on A/4. Let (Px.y.R){A) be

(¡¡(RAP) and define r¡x, i}2 by

r,x=<p.Ux*,       r,2 = (Px.<p.Px).U2*.

It is clear that {cp, Ux) ({R.y.R, U2}) is a polar decompsotion for rj, (tj2),

and ||iji || = 2, ||tj2 || = 1. We define a linear map $ from M4 into C({1,2}) by

$(A)(l) = Vx(A),       $(A)(2) = V2(A),

and observe that ||$|| = max{||77, ||, ||rj2||} = 2. For A £ M4,

$.Ux(A)(l) = r,x{UxA) = cp(A),

$.UX(A)(2) = 7,2(C/^) = (Px.<p.Px)(U2*UxA)

= (Px.cp.Px)(U2*U2A) = tf.cp.^).

Hence 4». ¿7, is positive and it has U* Ux as support. Also note ($. Ux). U*

= Í». Suppose that there exists a F in (A/4), such that $(V) = 2I2;

then \®\(UX*V) = 272. Let IF be £/,* F(E (M4),), and let rbe

(W + W*)/2. Then 222 = |*|(»") < |*|(7). But

\ty(I)(2) = -rl2(Ux) = (Px.<p.R)(I) = l,

222(2) = m{W'){2) = 2.

Thus no such V exists.

(iii) An example in which the norm-condition is not satisfied.

If A" is a set consisting of a finite number of points, say, 10 points

(x,,... ,x10}, /j~ is a commutative von Neumann algebra. Since /,* is finite

dimensional, the weak-operator topology on /j* is identical with the norm

topology. Let $ be a map from /j* into itself defined by

*(/)(!) =/0),

*(/)(«) =/(«)-/(»-1),       2<n<10.

Then $ is linear and ||<3>|| =2.

We show next that for any fixed / in 1% with ||/|| < 1, there exist an

integer n¡ with 1 < nf < 10 and an element gf in Z," with || gf\\ < 1, such that

$(/)(«/) ? |$(g/)(«/)| (so that/is not norming for $). We observe that

/(10) = i>(/)(10)+/(9)

/(9) = <S(/)(9)+/(8)

/(2) = $(/)(2)+/(l);
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hence

10

/(10)= 2 *(/)(»)+/(1).

Since 11/11 < 1 and -1 < |/(10)| < 1, there must be an integer nf, 2 < nf <
10, such that $(/)(«,) £ 2. We define gs by

g/(«/-l) = -l,

8f(n}) - 1,

gj(n) = 0,       «y - 1 # « # «y, 1 < n < 10.

Since

*(*/)(«/) = £/(«/) - */«/- 1) - 1 - (-1) - 2,

it follows that

*(/)(«/) * <%)("/) - 2.

2.1.6. Corolary. Fer R be a von Neumann algebra acting on a Hilbert space

Xx and $ be a bounded linear map from R into B(X2). If * admits a polar

decomposition with |*| completely positive, then there exists a norm preserving

extension of * to B(XX) into B(X2), i.e., there exists a A mapping

B(XX) into B(X2) with ||A|| = ||*|| and A\R = *.

Proof. Let (|*|, U) be a polar decomposition for *, and assume that |*| is

completely positive. By 1.4.2, |*| extends to a completely positive linear map

A' on B(XX). We claim that ||A'|| = || |*| ||. Choose ¥ and V as in Theorem

1.1.3 such that A'(A) = V**(A)V,A E B(XX). Then ||A'|| < ||F*||||F||
- ||V* V\\ = \\A'(IX)\\. Since Ix E R it follows that ||A'|| < || |*| ||. If we let

A = A'.U*, then A|F = *sinceA|F = |*|.t/*. Moreover ||A|| < ||A'||
= |||*||| = ||*||.   Q.E.D.

2. Uniqueness of polar decomposition. The norm condition says that the

existence of a polar decomposition is guaranteed by the existence of a partial

isometry U which is a common partial isometry in the polar decomposition for

all ultraweakly continuous linear functionals 9 ° * (9 a pure state of 6E). This

makes it plausible that the polar decomposition, if it exists, is unique. We

prove this in Theorem 2.2.2. A lemma is needed. Let * be an ultraweak-norm

continuous linear map from F into 6B.

2.2.1. Lemma. Let * = *. U, * > 0, \\U\\ < 1, and \\<p o *|| = ||7 o *||

for all pure states 9 of (L If there exists a  V in (R)x such that *.K

> 0 and H9 0 *. V\\ = H9 ° >H for all pure states 9 of&, then *. V = ^.

Proof. It suffices to show 9 ° *. V = 9 o ^ for all pure states 9 of &. Let
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R acting on % be the universal normal representation of R. Then cp o <¡r(A)

= |[qp ° ¥|| (Ax,x) for all A in R, where x is a unit vector in X (Note that if

0 = ||cp o <k\\ = ||cp o $11, then <p°$.V = <p°<ir = 0. We may assume that

||cp o ¥|| # 0.) Hence,

II? » *||(cVKx,x) - cp o y(UV) = <p » cp(K)

= cpo($.F)(l) = \\<po<b.V\\,

since (cp o $. V) is a positive linear functional. Thus (x, V* U*x) — {UVx,x)

= 1. By Schwarz's inequality we have x = V* U*x. Thus, for A E R,

(cp o $. v)(A) - cp o $(t^) = (ç, o ^. t/)(K4) = (cp o <¡Sí)(UVA)

= ||cp o *\\{Ax, V* U*x) = ||cp » *\\{Ax,x) = (cp o *){A).   Q.E.D.

2.2.2. Uniqueness Theorem of Polar Decomposition. Let $ be an

ultraweak-norm continuous linear map from R into ft 7/0. U = ^, ¥. U* = <D,

and Í». F = A, A. V* = 0, w/zeve Sir anc/ A are positive and have supports

E = U*U,E'= V* V respectively, then * = A and U = V.

Proof. For any pure states cp of &

||? » i,||   =  fly o *.£/* ||<   Hep o *||   =  ||,,o*.i/|K   |hpo*||;

hence ||<p ° $|| = ||cp o ^||. For the same reason ||cp o $|| = ||cp o A||. By

Lemma 2.2.1, ^ = A because ||cp o $. u\\ = ||cp o A||. Consequently, E

= 2s', i.e., U* U - V* V.

Next, we show that U = V. Let W = U* V. Since the initial projection of

U and V is E, we have 2s WE = W.

*(W) = -*(U*V) = *.U*(V) = 9{V) = $.F(1) = A(l) = *(1) > 0,

^r(Jf^) = *(jf )* = *(!)* = *(i),

*(»* fp) = *(t/* r/r/* v) = *. V*(UU* V) = $(UU* V)

= $.U(U*V) = ¥(£/*K) = *{W) = *(1).

So,

*{{W-E)*{W-E)) = *(W*W- W*E- EW+ E)

- *{W*W) - *(W*E) - *{EW) + *{E)

= ¥(1) - *{W*) - -%(W) + *(2s)

= *(1) - *(1) - *(1) + *(1) = 0.

Since * is faithful on 2s2?2s, we have W - E = 0 and W = 2s = U* V.
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V is an isometry on the range of F, so is U. Since F = U* V, V = U.

Q.E.D.
Let * be in B(&x,&2) and Ux, U2 be in &x. If * > 0, then U.Q.U* > 0.

2.2.3. Corollary. // {|*|, U) is the polar decomposition of *, then |**|

= U. |*|. f/* ana" |** | = **. U* with support UU*.

Proof. For A G F,

**04) = *04*)* = [|*|.i/*04*)f = m(U*A*)*

= \$\(AU) = \$\(U*UAU) = t/.|*|.i/*(rF4).

Let F be UU*, the final projection of U. Since t/.|*|.I/* > 0 and

í/.|*|.t/*(F) = |*|(t/*F(7) = |$|(f/*í/) = í/.|*|.í/*(l), hence F>

support of U. |*| .Í/*. If F' < F (F" is a projection), then

i/Vl/ < U*FU = U*U = E

and

£/.|*|.í/*(F') = |*|(î/*F'î/) < |*|(F) = t/.|*|.i/*(l)

since * is faithful on ERE. Thus F = support of (U. |*|. U*) from unique-

ness of the polar decomposition, |**| = i/.|*|.t/*, and ** = |**|.t/.

Moreover, **.[/* = |** |. UU* = |** |. F = |** |.   Q.E.D.
We can combine the polar decomposition with positive decomposition to

obtain

2.2.4. Theorem. Let * G Fsa (R,&). If $ admits a polar decomposition, then

$ is positively decomposable, i.e., * = *j — *2, where *¡, *2 are positive linear

maps. Furthermore, *j and *2 have orthogonal supports and |*| = *j + *2;

II«! ||< ||$|| ontf ||*21| < ||*||.

As a part of the proof we derive a lemma of independent interest.

2.2.5. Lemma. If $ is a selfadjoint linear map admitting a polar decomposition,

then the partial isometry U in the polar decomposition is also selfadjoint.

Proof. By 2.2.2 and 2.2.3, since |** | = |*|, * = |*|. U* and *

= |** |. U, we have U* = U.   Q.E.D.
Proof of Theorem 2.2.4. Let {|*|, U) be the polar decomposition for *.

Since f/2 = U*U = UU* = F, the spectrum of U is contained in {-1,0,1}

so that U = Ex - E2 where Ex, F2 are two orthogonal projections. Note that

if the spectrum of U = {0,1} (or {-1,0}), then U (or -U) is F, the support of

|*|; and * is positive (or negative). By 2.2.3 we have

(1) |*| = |** | = U. |*|. U = (Ex - E2). |*|. (F, - F2).
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But U2 = (Ex - E2f = Ex + E2 is the support of |*|; thus

(2) m = (Ex+E2).\$\.(Ex+E2).

Equalities (1) and (2) imply that

Fi.|*|.F2 + F2.|*|.F1 =0   and   |*| = Ex.\<i>\.Ex + F2.|*|.F2.

Hence

Ex. |*| =F1.(F1.|*|.F,) + F1.(F2.|*|.F2) = F1. |*|.F, = |*|.F,.

Similarly

F2.|*|=F2.|*|.F2=|*|.F2.

Hence

$ = |$|. u « |$| ,(EX - E2) = Ex. |*| .Ex - E2. |*| .F2,

where F1.|*|.F1 and F2.|*|.F2 are positive linear maps with orthogonal

supports F], F2 respectively. Also ||F,-. |*| .F,|| < || |*| || = ||*|| for / = 1, 2.

The proof is complete.   Q.E.D.

2.2.6. Definition. Let * G 5sa (F,<£).* is said to be Hahn-Jordan decom-

posable (or to admit a Hahn-Jordan decomposition), if there exists two bounded

positive linear maps *p *2 in Bsi(R,&) with orthogonal supports such that

* = *j - *2.

2.2.7. Theorem. //* G Fsa (R,&) and$ is Hahn-Jordan decomposable, then

* admits a polar decomposition. Furthermore, if Ex and E2 are the pair of

orthogonal supports in the decomposition, then |*| has support Ex + E2 and

* = |*|.(Fj - F2) is the polar decomposition for *. With *j = <b.Ex and *2

= -*.F2, * = *j - *2 is the Hahn-Jordan decomposition o/*.

Proof. Let *j — *2 be a Hahn-Jordan decomposition for * with orthogo-

nal supports Ex, F2 for *j, *2 respectively. For a projection F in F we have

(*, + *2)(F) = 0 if and only if *](F) = 0 = *2(F), i.e., PEX = PE2 = 0.

Hence <S>X + *2 has support Ex + E2. In addition, Ex - F2 is a partial

isometry with initial and final projection (Ex - E2)  = Ex + F2. We have

*!. Ex - *2. F2 = *, - *2 = *,

(*! - *2).(F, - F2) = *!.F! + *2.F2

*, + *2.

Equalities (1) and (2) imply that {*¡ + *2,F¡ - F2} is the polar decomposi-

tion of *. Finally,

*.F! = (*! - *2).F! = Íj.Fj = $!

(1) (*1 + *2).(F1-F2) =

$.(F,-F2) =

(2)
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and

-3>.2s2 = (-«I»! + cp2).£2 = <¡>2.E2 = %.   Q.E.D.

2.2.8. Corollary. 7/$ £ 2fsa (2?, &) and $ admits a Hahn-Jordan decompo-

sition, then 4> admits a unique such decomposition.

Proof. From 2.2.7, |3>| = $, + $2 and $==$,- $2. Hence $,, $2 are

uniquely determined by $ and |$| which is, in turn, uniquely determined by

$.   Q.E.D.
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