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Abstract. Locally smooth S'-actions on simply connected 4-manifolds are

studied in terms of their weighted orbit spaces. An equivariant classification

theorem is proved, and the weighted orbit space is used to compute the

quadratic form of a given simply connected 4-manifold with S '-action. This

is used to show that a simply connected 4-manifold which admits a locally

smooth 5'-action must be homotopy equivalent to a connected sum of

copies of S4, CP2, - CP2, and S2 x S2.

1. Introduction. In this article we investigate locally smooth actions of the

circle group S ' on simply connected 4-manifolds. Our techniques are essen-

tially geometric and are motivated by the work of P. Orlik and F. Raymond

[9], [10], and H. Seifert [11]. To each locally smooth 5'-action on an oriented

simply connected closed 4-manifold we associate the orbit space "weighted"

with certain isotropy information. §§3-6 are devoted to the equivariant

classification of these actions. Two such actions are orientation-preserving

equivariantly homeomorphic if and only if their weighted orbit spaces are

isomorphic. Furthermore, each legally weighted simply connected 3-manifold

gives rise to an S '-action on a simply connected 4-manifold which is

constructed by means of equivariant plumbing and other pasting techniques.

This gives a complete account of such actions and generalizes results of [4]. In

the case of an action which is free except for a finite fixed point set, these

results follow from work of Church and Lamotke [3].

In §7 we turn to the question of extending S'-actions on simply connected

4-manifolds to Fractions, and it is shown that an 5 '-action extends if and

only if the weighted orbit space has a relatively simple format.

In §8 the information contained in the weighted orbit space is used to give

a recipe for the computation of the quadratic form of a simply connected

4-manifold with given S'-action. The main result of this section is that a

simply connected 4-manifold which admits a locally smooth S '-action is

homotopy equivalent to a connected sum of copies of S4, CP2, —CP2, and

S2 X S2.
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2. Preliminaries. In this section we fix the notation and terminology which

we shall use. Recall that an action of a compact Lie group G on a manifold A^

is called locally smooth if each x E N has a slice which is a disk on which the

action of the isotropy group Gx is equivalent to an orthogonal action. All

group actions which we discuss are assumed to be locally smooth and

effective. See [1] for further terminology.

Throughout this paper M will denote a simply connected oriented 4-mani-

fold with an action of the circle group S '. For any subset X of M, X* denotes

its image in the orbit space M* andp: Af-> M* is the orbit map. Further-

more, if we are given a set A"* in M*, we let X = p ~ '(A"*) when no confusion

is caused by this notation. We let F be the fixed point set of M, E the union

of the exceptional orbits, and P the union of the principal orbits.

All homology and cohomology used in this paper has Z coefficients. We

shall often allow ourselves to confuse a loop in M with the element in 7r,(M)

or HX{M) which the loop represents.

The Orlik-Raymond-Seifert classification of S'-actions on 3-manifolds [9],

[11] will be needed in §§3 and 5. We outline the aspects of the theory which

will be of import there and refer the reader to [9] for further details. An

S '-action on a closed oriented 3-manifold W is determined up to

orientation-preserving equivariant homeomorphism by a collection of

invariants {b; {o, g, h, 0); (ax, ßx), . . . , (an, /?„)} as follows. The orbit space

W* is a surface of genus g with h boundary components each corresponding

to a circle of fixed points in W, and W* is oriented so that followed by the

natural orientation on the orbits the orientation of W is obtained. There are n

exceptional orbits each of which is assigned a pair of integers (a¡, /?,-) called

Seifert invariants.

If E* = {xf, . . ., x*} choose disjoint closed 2-disk neighborhoods Vf of

the xf. If x, E p~~l{xf) there is a closed 2-disk slice S, at x, such that

Sf = Vf. Orient S¡ so that its intersection number with the oriented orbit

p~x{xf) is +1 in the solid torus V¡. On dV¡ let m¡ be an oriented boundary

curve of S¡ and let //, be an oriented orbit. If the isotropy group at x, is Z^ an

oriented section q¡ of the action on dV¡ is specified up to homology by the

homology relation m¡ ~ a¡q¡ + fi¡h¡ where a, and /?,- are relatively prime and

0 < /?, < a¡. The Seifert invariants (a¡, /?,) determine V¡ up to orientation-pre-

serving equivariant homeomorphism. If the orientation on V¡ is reversed, the

Seifert invariants become (a,, a, — /?,) and if q'¡ is the new section, q'¡ ~ — q¡

- h¡. The action of the isotropy group Z„( on 5",- is orientation-preserving

equivariantly homeomorphic to an action of Z^ on D2:

^X{r,0)^lr,9+^).
a, \ a,   j
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The pair [a¡, v¡] are called the orbit invariants of p~x(x*) and satisfy ßivi = 1

(mod a¡).

The integer b is the obstruction to extending the section q{ u • • • U q„

over all of W* - U V*. So if h ¥= 0 we have 6 = 0. If A = 0 let V¿ be a

2-disk in W* disjoint from U "= i V*. If m0 is an oriented meridian on 8 V0 and

q is the restriction to dV0 of the oriented section qx U • • • U q„ extended

over W* — U1=0V* then q~ — m0+ bh, where h is an oriented orbit.

Reversing the orientation of the action on W changes the invariants to

{-« - b; (o, g, h, 0); (a„ a, - /?,), .. ., («„, a„ - /?„)}. Finally, we note

that the free action [b; (o, 0, 0, 0)} is the principal S '-bundle over S2 with

Euler number - b (see [8, p. 25]).

3. The weighted orbit space. In this section we describe the orbit structure of

M\

Proposition (3.1). (a) The orbit space M* is a simply connected 3-manifold

with dM* c F*.

(b) The set F* — dM* is finite, and F* is nonempty.

(c) The closure of E* is a collection of polyhedral arcs and simple closed

curves in M*. The components of F* are open arcs on which orbit types are

constant, and these arcs have closures with distinct endpoints in F* — 3M*.

Proof. If x G F the isotropy group at x is a finite cyclic group which acts

as a group of rotations on some 3-disk slice Sx at x with axis of rotation

F n Sx. Then S* is a neighborhood of x* and the pair (S*, E* n S*) is

homeomorphic to (D2 X /, 0 X /).

If y E F there is a closed 4-disk slice S at y on which the S '-action is the

cone at,y of the action on the boundary 3-sphere dSy. The only S'-actions on

S3 are of the form

{±1; (0,0,0,0)},    {0; (o, 0,1,0)},    {b; (o, 0, 0, 0); (a, ß)}    and

{ -l;(o, 0,0,0); (a, ß ),(«', ß')}.

For these various cases we have (S*, F* u F*, F*) homeomorphic to (Z>3, 0,

0), (D2 x /, D2 x 0, D2 x 0), (D2 x [-1, 1], 0 X [0, 1], (0, 0)), and (D2 x

[- 1, 1], 0 x [- 1, 1], (0, 0)) respectively. In the last case a ¥= a'.

It is well known that M* is simply connected. Since an x* E F* certainly

has a 3-disk neighborhood in M*, (a) is proved, and (b) follows from the

formula x(F) = x(-^0 = 2 + rank H2(M). A result of Montgomery and

Yang [7, Lemma 2.3] implies that there is no simple closed curve in F* on

which orbit types are constant. This is proved in [7] for the case M = S4, but

the same proof holds for any simply connected M4. Thus F* consists of a

collection of open arcs each of constant orbit type. Since F is open in M,

F* u F* = M* — P* is compact and (c) follows.   □



150 RONALD FINTUSHEL

We remark that since M* is simply connected, it follows from duality that

the components of dM* are 2-spheres.

(3.2) Since M is oriented, an orientation on M* is determined, so that,

followed by the natural orientation on the orbits, the orientation of M is

obtained. Given an oriented submanifold X* of M* we use the above

convention to orient X. We say that a codimension one submanifold of an

oriented manifold is oriented by some given normal to mean that the

orientation on the submanifold followed by the normal gives the orientation

of the ambient manifold. The boundary of an oriented manifold is to be

oriented by the inward normal unless it is explicitly stated to the contrary.

Now suppose X* c E* u F*. We shall reserve the term "regular neighbor-

hood" of X* for those regular neighborhoods N* of X* which satisfy

N* n {E* u F*) = X*.
(3.3) We assign to M* the following orbit data.

(a) For each boundary component Ff of M * choose a regular neighbor-

hood Ff X [0, 1] and orient Ff X 1 by the normal out of Ff X [0, 1]. The

restriction of the orbit map gives a principal S '-bundle over Ff X 1 and we

assign to Ff the Euler number of this bundle [5]. This is clearly independent

of our choice of collar. We shall call Ff a weighted 2-sphere.

(b) If x* £ F* - (dM* U cl E*) let B* be a polyhedral 3-disk neighbor-

hood of x* with B* — x* c P*. Restriction of the orbit map gives a principal

S '-bundle over dB* with total space a 3-sphere. Orient 32?* by the normal out

of B* and assign to x* the Euler number, ± 1, of the bundle.

(c) Suppose L* is a simple closed curve in E* u F*. To each component of

E* in L* we assign Seifert invariants. First fix an orientation on L*; this

induces an orientation on each component J* of E* in L*. Let y* be an

endpoint of cl J* and let B* be a polyhedral 3-disk neighborhood of y* such

that B* n (E* U F*) = B* n L* is an arc and B* n F* = y*. If dB* is

oriented by the normal with direction J* then dB is an oriented 3-sphere.

Assign to J* the Seifert invariants (a, ß) of the orbit in 32? with image in J*.

The covering homotopy theorem of Palais [1] implies that this definition is

independent of the choices made.

The weights assigned to L* consist of the orientation and the Seifert

invariants. We abbreviate this system of weights by {(a,, /?,),..., (a„, /?„)}

where the order of the (a¡, /?,-) is determined up to a cyclic permuation, and

we call L* a weighted circle. If the orientation of L* is reversed each (a¡, /?,)

becomes (a¡, a,- - /?,) and we regard the resulting weighted circle as equiv-

alent to the first.

(d) If A * is an arc which is a component of E* U F*, we orient A * and

assign Seifert invariants as in (c). If y* is the initial or final point of A* and

B* is a small 3-disk neighborhood of y*, then proceeding as in (c) dB has the
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S'-action {b; (o, 0, 0, 0); (a, /?)}. Assign this integer b toy*. We call A* a

weighted arc and write the weight system as [¿V; (at,, /?,), .. ., (a„, ßn); b"].

Reversing the orientation on A * changes the weight system to [- 1 — b"; (a„,

an — ß„), . . . , (ax, a, — /?,); — 1 — b'\ which we regard as equivalent to the

original weight system on A*.

The oriented orbit space M* together with the above collection of weights

is called a weighted orbit space.

(3.4) An isomorphism of weighted orbit spaces M* and M* is an orienta-

tion-preserving homeomorphism which carries the weights of M* isomorphi-

cally onto the weights of M*.

Lemma (3.5). (a) If(a¡, /?,-) and (a¡+x, /?,+,) are the Seifert invariants assigned

to adjacent arcs in some weighted arc or circle then

(b) // [tV; (a„ /?,), . . ., (a„, /?„); b"] is a weighted arc then b'ax + ßx = ± 1

and b"a„ + ß„= ±1. (So for i = 1 or n, ßt = 1 or a, - 1, and b' and b" can

only take on the values 0 or — 1.)

Proof, (a) If y* E F* belongs to the closure of both arcs involved and if

B* is a small polyhedral 3-disk containing _y* then the action on dB is {-1;

(o, 0, 0, 0); (a,., /?,), (ai+x, a,+1 - /?,+,)}• The result now follows from [9,

Theorem 4]. Similar considerations prove (b).   □

Proposition (3.6). Let W* be a regular neighborhood in M* of a weighted

arc or circle. The weights determine W = p~l(W*) up to orientation-preserving

equivariant homeomorphism.

Proof. We give the proof for the case of a weighted circle; the proof in the

other case is similar. Let F* and F* be isomorphically weighted circles with

weight systems {(a,, /?,),..., (a„, /?„)}, and let U* and W* be the respective

regular neighborhoods. By deforming an orientation-preserving homeomor-

phism we obtain an isomorphism/*: U* -> W*.

In U* let yf E F* be the initial point of the arc with Seifert invariants (a¡,

/?,) and choose xf in the interior of this arc. Let If denote the interval [x,*_,,

xf] of K*. Representing U* as D2 X F* we let Bf = D2 X If. Using the

covering homotopy theorem of Palais along with the fact that the action is

locally smooth, one sees that the action on B¡ is orientation-preserving

equivalent to the cone at y¡ of the action on dB¡, the equivalence being the

identity on 3F,. Similarly the action on /v'(/*(F,*)) is equivalent to the cone

of the action on its boundary.
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Let Vf = D2 X x,. and Yf = f*(Vf) be oriented by K* and L*. Since/* is

a weighted isomorphism there is an orientation-preserving equivariant ho-

meomorphism gx : U V¡ -» U ^-. The induced gf is also orientation-preserv-

ing so there is an orbit-type preserving isotopy of g* tof*\ U Vf. Lifting this

isotopy equivariantly we may suppose that gf = f*.

Let q¡ be the canonical section on dV¡. It follows from the classification of

S '-actions on S3 that on 32?, - int(F(_, u V¡) we have q¡_x-q¡ - h¡

where q[ is the section of dV¡ oriented as a submanifold of 32?,. Thus

<7,_,~ — q[ — h[ ~ q¡, so the section q¡_x u q¡ extends to a section on

32?,. — int(J^_, U V¡). Hence qx U • • • U q„ extends to a section over dU*.

Since gx(q¡) is homologous to the canonical section over dY¡, also gx(qx)

U • • • U gi(ç„) extends to a section over 3W*. Using these sections g,

extends to an orientation-preserving equivariant homeomorphism dU U U^

-»3W7 U U Y¡. We now obtain the desired equivalence g: £/-» W via the

cone structure.   □

(3.7). Addendum. The equivalence g is constructed so that g*\dU* =

f*\du*.

Corollary (3.8). If L* is a weighted circle in M* with regular neighborhood

W* then dW s T3 with the free Sx-action {0; (o, 1, 0, 0)}.

Proof. The orbit map;?: dW -*dW* s T2 is a principal S'-bundle which,

according to the proof of (3.6), admits a cross-section.   □

Proposition (3.9). If A* = [b'; {ax, /?,), . .., (a„, ßn); b") is a weighted arc

in M* with regular neighborhood W*, the Sx-action restricted to dW is

{b" - V; (o, 0, 0, 0)}.

Proof. Let F* = {yf,. .. ,y*+x) and write W* = U Bf where Bf is a

polyhedral 3-disk containing yf, Bf n (E* u F*) is an arc containing no

fixed point other thany,*, and Bf n 2?,*+1 =dBf n 32?,*+1 is a 2-disk meeting

A* at a single point.

Letting q¡ be the section on 3 (2?, n 2?,+1) as in (3.6) we have q¡ ~ q¡+x for

/ = 1, ...,«. On c\{dBx — B2) let m0 be an oriented meridional curve. Since

the S '-action on dBx is {-¿V - 1; {o, 0, 0, 0); (a„ a, - /?,)} we have

mo-Ii - (b' + O^i ~ ?i - ô,/!i ~ 92 - ¿'A2 ~ • • • ~ % - h'K-  The

action on 3Z?fl + 1 is {b"; (o, 0, 0, 0); (an, ßn)} soqn~- m'n+x + b"h'n+x. We

have m0-m'n+\ + (¿" — b')h'n+x. So the action on 3 W is as claimed.   □

(3.10) Since {b; (o, 0, 0, 0)} s L(b, 1), if V = 6" in (3.9) then dW^

L{0, I) = S2 x Sx. It is easily seen using (3.5)(a) that this must be the case

unless some (a¡, ft) = (2, 1). If b1 * b" then dW = L{± 1, 1) = S3.

4. Equivariant plumbing. The equivariant plumbing of 2-disk bundles over

S2 is used in this section to form building blocks which will be used in §5 to
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construct manifolds with 5'-actions and in §7 to construct manifolds with

Fractions. We quickly describe our notation which is borrowed from [8]. See

also [5] and [2].

(4.1) Write S2 = Bx u B2 as the union of its upper and lower hemispheres.

Coordinatize B¡ X D2 (i = 1, 2) using polar coordinates on B¡ and D¡. For

relatively prime integers u, and v¡ define an S'-action by Sx X B¡ x D¡ -» B¡

X D¡, <í> X (r, y, s, 8) ->(r, y + u¡<¡>, s, 8 + v¡(b). Then if u2 = - ux and

v2 = -coM] + vx we obtain Ya = F, x F, uc B2 X D2 by means of the

equivariant pasting G: dBx X Dx-*dB2 X D2, G(\, y, s, 8) = (I,  -y, s,

— coy + 5). The resulting manifold Yu is the F»2-bundle over S2 with Euler

number co; i.e. co is the self-intersection number of the zero section of Ya.

Given Yu and YU2 with u2i — vx2 and v2X = uX2 (or u2X = — vi2 and

©¡¡.i = - «i,2) we may equivariantly plumb together Yu and Y with sign

+ 1 (sign - 1) by identifying B2X X D2X with Bl2 x F»12 by means of the equi-

variant homeomorphism (r, y, s, 8)^>(s, 8, r, y) ((r,y,s,8)->(s,  —8, r,

— y)). The resulting manifold Yu □ YU2 then has an induced S '-action.

Similarly one may define (effective) Fractions on Yu by means of integers

u¡, v¡, w¡, and t¡, where

v¡     t¡

The corresponding Fraction on F, X D¡ is given by (<b, 0) X (r, y, s, 8) -» (r,

y + Uj(b + w¡0, s, 8 + v¡(b + t¡6). The pasting G defined above will be F2-

equivariant if also w2 — - wx and t2 = -cow, + /,. The plumbing Ya □ Yu ,

say with sign + 1, may then be constructed F2-equivariantly if also w2, = r, 2

and t2A = w, 2.

(4.2) For the S '-action on B¡ X D¡ described in (4.1), suppose neither u¡ nor

v¡ is 0. The orbit space (B¡ X /_),)* of the action may be viewed as the

suspension of D2 in R3, i.e. as {(p, 9, z)\z E [- 1, 1], 0 < p < 1 - \z\), with

orbit map p(r, y, s, 8) = (rs, u8 — vy, r — s). The orientation induced on

(F, X D¡)* from the action is just the orientation (B¡ X />,)* inherits as a

submanifold of R3.

Following (3.3) we assign weights to the arc 0 X [-1, 1] in (B¡ X D¡)*. It

will be convenient here to use orbit invariants rather than Seifert invariants.

Orient the arc from — 1 to +1. To compute the invariants on 0 X (0, 1] use

the outward normal to orient 3 (B¡ X D¡)*. This orientation lifts to the

orientation by the inward normal on 3(5, X D¡), and then the slice (1,

0) X D¡ at (1, 0, 0, 0) has orientation (sgn u¡) times the usual orientation on D¡

(so as to have intersection number + 1 with an oriented orbit). It now follows

from the definition that the orbit invariants are [|w,|, (sgn w,)t>,]. Similarly the

orbit invariants assigned to 0 X [-1, 0) are [\v¡\, -(sgn u,)w,]. Note that if
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K, > 2 or v¡ > 2 then changing the sign on exactly one of the w, or u, gives the

opposite orbit invariants.

If instead of p we view the map p'(r, V> J> 5) = ("> UY — "5, r — i) as the

orbit map, then the weighted orbit space (B, X D¡)* is the same as that given

above except that it has the opposite orientation.

(4.3) We now catalogue some fundamental 5 ' and reactions on the disk

bundles Ya. According to (4.1) Sx and reactions on Ya are described by

giving the matrix

lux    u2    wx    w2\

\vx    v2     tx      t2)

which satisfies certain conditions. The weighted orbit space Y* of the Sx-

action may be computed using (4.2) and the descriptions in §2. Throughout,

e = ± 1, n is an arbitrary integer, and pairs (a, ß) consist of relatively prime

integers 0 < ß < a.

(a) Suppose

e =
a'     ß'

a      ß
1,

a       ß

a"     ß'
-±1,

and

Then

a'      ß'

a"     ß"

' sa        —ea e(b + na) —e(ß

ee'a'     -ee"a"     ee'(ß' + na')      -ee"(ß

describes actions on Y,. with Y* s D3:

+ na)        \

8" + na")j

\(a,ß')         (a,ß)           (a",ß")
H-•->-•-

(b) Suppose

e   =

and

a      ß

a"     ß'
= ±1,       ba + ß= ±1,

E   —

w = e e

1     \b\
a     ß

1      \b\
a"      ß"



CIRCLE ACTIONS ON SIMPLY CONNECTED 4-MANIFOLDS 155

Then

lea     -ea e(ß + na)      -e(ß + na)

\ee'     -te" a"    ee'(\b\ + n)      -Ee"(ß" + na")

describes actions on Yu with Y* s Z)3:

(a, ß)    Ja", ß")
->—•-

(C)lf

b'a + ß=±l,       b"a + ß=±l,      e' =

,   and   co = e'e"

1     |6'|

a      ß

B     =
a       ß

1    \b"\

1     \b'\

1    \b"\

then

(ea     -ea     e(b + na)       —e(b + na)

ee'     -ee"    ee'(|6'| + n)      -ee"(|ô"| + n) (

defines actions on Y_ with Y* = D2:

/»'

("■P)

(d) Let e', e" = ± 1 and co-e' - e". Then

C-
— £    en

■ee'    ee"      — ee'(n + e')    ee

defines actions on Y.,; Y* es D3:

en \

"(n-e"))

\

e'      e"

(e)If

e   =

b"a" + ß" = ±1,       e'=±l,

1      |¿"|

a"      /?"
,   and   co = e"a" - e'

then
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(£ — £ £71 — En

— Ee'        —£e"(X"        —££'(« + £') — ££

defines actions on Y„ with Y* = D3:

"(ß" + (n-\b"\)a"))

i   •      •->
I    e' b"

(a\ ßl

(f) Suppose

b'a' + ß'=±l,       b"a" + ß" = ± 1,       e' =

,    and   co = e'ol' + s"a"

a'     ß'

1      \b'\

£     = 1     \b"
a"     ß'

Then

It -e e(\b'\ + n) -E(\b'\ + n)

LeV     -££"«"    EE'(ß' + na')      -£E"(ß"+ (n+\b'\-\b"\)a")

defines actions on Y,. with Y* s D3:

\{a, ß') (oc", ß")
-J—>—•      •—>—

;       b'   b"

a'     ß'

1     \b'\
,   and   co = e'o:'.

(g) Suppose

b'a' + ß' = ±1,       £' =

Then

le -£    E(\b'\ + n) -E(\b'\ + nY

[ee'u'    0       ee'{ß' + na')      -e

defines actions on Yu, and Y* = D3:

' \ (a\ ß')
-i->—

(h) Let e' = ± 1 and co = - e'. Then

( - ££'       0

£       £
- ££'(/!  +  £')

— £/7\

-£ j
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describes actions on Y„ with Y* s D3:

157

\
I •
/   e'

(i) The matrix

te     —e    n     — «\

\0      0      5      8  )

for 5 = ±1 defines actions on Yn with Y* ^ D3:

(j) For to arbitrary and 5 = ± 1 actions on Yu are defined by

(0    0    8 -8
\ e     e     n     — coS +

and y* as 52 X / with F* U F* = F* = S2 X 0 with weight co.

„)■

Lemma (4.4). Let L* be the weighted circle {(ax, /3,), . . . , (an, /?„)} in M*,

and for i = 1, . . . , n let

co, =
«i-i    A-

Äa,

*/-i

-v+i

A-,
A+i

A
«i+i    A+i

(identifying -1 = « W «+1=0). T/ie« a« equivariant plumbing according

to the graph

yields a 4-manifold W with Sl-action and weighted orbit space D2 X 5' and

E* U F* = 0 X S1 isomorphic to L*. Furthermore, this Sl-action extends to a

T2-action. Each plumbing, except perhaps for the last, Yu □ Yu may be chosen

to have sign +1.

Proof. This follows immediately from (4.3)(a). Note that in this instance

we may always choose « = 0 in (4.3)(a); so all the plumbings may be

constructed F2-equivariantly.   □

Lemma (4.5). For the W constructed in (4.4), F u F is a strong deformation

retract of W.
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Proof. It is a general fact that the resultant manifold of a plumbing strong

deformation retracts onto the union of the zero sections. See [2, V.2.2.].   □

(4.6) Let Sx,..., Sf be the collection of all the weighted sets of M* other

than the weighted circles. If there are any weighted boundary components of

M* we list these at the end. For each / = 1, .. ., t — 1 let yf be an arc in M*

running from Sf to Sf+, such that the interior of the arc lies in P* and such

that if Sf is a weighted arc, yf begins at the endpoint of Sf, and if Sf+X is a

weighted arc, yf ends at the initial point of Sf+X.

Let R* be a regular neighborhood of U Sf u U yf- The following lemma

is a direct result of the constructions in (4.3).

Lemma (4.7). By means of an equivariant linear plumbing (with each plumb-

ing of sign + 1) there may be constructed a 4-manifold W with Sx-action and

weighted orbit space isomorphic to R*. Furthermore, this action extends to a

T2-action on W.   □

5. Constructions. Let N* be a regular neighborhood of E* u F* in M* and

let M* — cl(M* — N*). For a boundary component 77 of M* denote by e¡

the Euler number of the principal 5'-bundle T¡ -» Tf. If 77 is the boundary

of a regular neighborhood of a weighted sphere or point then e, is just that

weight. Corollary (3.8) implies that each Tf bounding a regular neighborhood

of a weighted circle has e¡ = 0. Finally, if Tf bounds a regular neighborhood

of a weighted arc [b'; (a„ /?,),..., (a„, /?„); b"] it follows from (3.9) that the

S'-action on T¡ is {V - b"; (0, 0, 0, 0)}; so e,. = b" - b'.

Lemma (5.1). 2<?, = 0.

Proof. Let | £ H2(M*) be the Euler class of the principal S'-bundle

M -* M*, and let p E H3(M*, dM*) and p¡ E H2(Tf) be the generators

corresponding to the orientation. We have the exact sequence H2(M*)

->' 222(U 7?)-»* H\M*, dM*). Now 2/2((J Tf) = © H\Tf) and 0 =

5p(9 = 8(expx,..., e„n„) = (2e,)u; so 2e¡ = 0.   □
(5.2) We define a legally weighted simply connected 3-manifold to be an

oriented simply connected compact 3-manifold X* along with the data:

(a) an integer a¡ assigned to each boundary component of X*,

(b) a finite collection of points in int X* with each assigned an integer

b¡ = ± 1, and
(c) a collection of weighted arcs and circles in int X* as in (3.3) and

satisfying the criteria of Lemma (3.5). To each weighted arc Af = [/>'; (a,,

/?,).(an, ßn); b"] the integer c¡ = b" - b' is assigned.

Furthermore, at least one of the above collections must be nonempty, and

we require 2 a, + 26, + 2 c, = 0.
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The definition of isomorphism carries over from the class of weighted orbit

spaces to the class of legally weighted simply connected 3-manifolds. It

follows from (3.1) and (5.1) that the weighted orbit space M* of an S'-action

on a simply connected M4 is legally weighted.

Now fix a legally weighted simply connected X*. We shall construct a

simply connected 4-manifold M with S '-action such that M* is isomorphic to

X*.
Construction (5.3). In analogy with (4.6) connect all the weighted points,

spheres, and arcs of X* with arcs and take a regular neighborhood R*. If

each boundary component of X* is capped off with a 3-disk then X* becomes

a homotopy 3-sphere, and the union of F* with these disks is a 3-disk. Thus

Xf - cli** - R*) is a homotopy 3-disk and dXx* = 3F* - dX* is a 2-sphere.

Using Lemma (4.7) we obtain a 4-manifold F with S'-action and weighted

orbit space which we identify with R*. If e is the Euler number of the

principal S'-bundle 3F -»3F* - dX* obtained by restricting the action, then

the argument of (5.1) shows e + 2a, + 26,- + 2c, = 0; so e = 0 since X* is

legally weighted. Thus 3F -h»3F* - dX* is a trivial S'-bundle.

Let L*, . . ., F * be the weighted circles of X* and let Qf be a regular

neighborhood of Lf in X*. Let X* = cl(A7 - U Qf) and equip X2 = X* X
Sx with the S'-action by translation in the second factor and orbit map it:

X2^> X*. There is an orientation-reversing equivariant homeomorphism o:

3F -» tt~'(F* n -X-*) with o* = id. It is easily seen that o is unique up to

vertical equivariant isotopy, i.e. equivariant isotopy over the identity, so the

4-manifold F u „ X is well defined up to orientation-preserving equivariant

homeomorphism.

We view Lf u • • • u F* as a link in the simply connected 3-manifold X*

and 77,(^2*) as the group of this link. Let s be the section s: X* -» X* X 0 c

X2. If F* is empty then 7r,(F U0 A^) = s#trx(X*) X vt,(5'1). If F* is non-

empty then it follows from Van Kampen's Theorem that irx(R UaX¿) =

s#itx(X¡), for F is the result of a linear plumbing and thus is simply

connected [2, V.2.10] and F n F =j= 0. In particular, if there are no weighted

circles, v7,(F ua X) « -n^Xf) = 1.

Using Lemma (4.4) construct for each Lf a 4-manifold Q¡ with S '-action

and weighted orbit space identified with Qf. Let />,: Q¡ -> ß* be the orbit

map. It follows from (3.8) that there is an orientation-reversing equivariant

homeomorphism t,\ 3Q,->77_'(3¡2*) with t¿* = id. The maps t, are not

unique and a choice must be made here. Let M be the 4-manifold obtained

by pasting each Q¡ to R UaX via t,.

We now describe the possibilities. On each dQf choose a meridional curve

mf and a longitudinal curve If (If bounds in Xf - Lf) both passing through

some point zf. Orient If and mf so that If followed by mf gives the
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orientation of dQf as a boundary component of X*. Let z,' = s(zf) and

z, E t,~'(z,'). Then 7r,(3(2,, z,) = <<7,-> X </,.> x <A,> where q¡ is a section over

mf, l¡ is a section over If, and A, is an oriented orbit containing z¡. Also

^i(^-1(3c2*), z[) = <m/> X <//> x <A/> where m\ « j«), // = s(lf), and

A/ is the orbit through z,'. The attaching t, is determined up to vertical

equivariant isotopy by the relations t, (A,) = A,', r¡ (l¡) - l¡h¡r', and t, (<7,) =

m,'A,'íf for integers ri and 5,. Actually, t, is determined by the corresponding

homology relations.

Next we show that trx{M) = 1. This has already been done in the case

where M = R \ja X2. Recall that 77,(2? u„ X¿) is generated by s#irx{X*) and

an oriented orbit, and by Lemma (4.5), irx{Qx, z,) = </:,> « Z. The inclusion

induced /#: 7r,(3<2i, z,) -> 7r,(f2i> z,) satisfies /#(A,) = 1 and /#(/,) = /e,. Now

m* bounds a disk in Q* which meets Lf in one point, say in the open arc

with weight (a, ß). So 1 = i#{qx)ai#{hxy = i#{qx)a. Since it has finite order

in trx(Qx, z,), i#(qx) = 1.

Van Kampen's Theorem yields the relations h\ = A, = 1, 1 = qx = amjA'^1

= m\, and kx = lx = l[h'{> = l[ Ej#vx(X*, z*) in V,(Ä U„ X2 uT, (9„ r,)

where/ is j composed with the inclusion into R \j„ X2 \j Qx. Let G, be the

subgroup of trx(X*, z*) generated by the meridians on Qf. Since

j#(m*) = m\ = 1,

it follows easily that/#(G,) = 1. Thus trx(R UB A2 UT| Qx, z,) is w,(A*, zf)

modulo the normal closure of Gx.

The link group ttx{X*) is generated by the meridians lying on the dQf and

sewing in Q* kills those meridians lying on dQf; so we finally obtain

77](M) = 1. Thus M is a simply connected 4-manifold with S'-action and

weighted orbit space isomorphic to A"*. In (5.6) we show that M is indepen-

dent of the choices involved in attaching the Q¡.

Lemma (5.4). Given any integer n, there is an equivariant homeomorphism cp:

Q¡ -» Q¡ w¡th $* = id such that $(a,) ~ q¡ and $(/,) ~ lthf.

Proof. Identify Qf with D2 X Lf and in L* choose a closed interval 7*

which does not meet F*. The covering homotopy theorem of Palais implies

that there is an equivariant homeomorphism

/:p,-'(2)2Xy*) X I^p~x{D2 X J*)

with f{p~x{D2 X y*) X 0) = p~\D2 X y*) where y* is the initial point of

J*. The desired homeomorphism is

ix, x £/>,-'(2) 2X./*),

W      \ (2™/) -x,     x = f(v, t).        D

Lemma (5.5). For i, k = 1, . . . , m let Eki be the linking number of Lf and Lf
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in Xf. Iff: WfiQ? -» Sl satisfies

deg(j]lf)=^£kldeg(j]mf)
k

for each i then f may be extended to a map X* -* Sl.

Proof. Let f e H3(X*, dX*) be the fundamental class and let X and ¡u be

the inclusions U 3(2,* -*X dX* -^'I*. Since dX* is a 2-sphere we have

isomorphisms s and t such that

HX(X\)Hx(X*,bX*x)

Hx(óX*, bX*) ——>Hx(oX%)

commutes.

The elements mf and If form a basis for Hx(dX^). (We shall tacitly denote

the isomorphism At by equality.) Let {mf} and {If) denote the elements of

the dual basis for Hl(dX-[). Since X\ is the complement of a regular

neighborhood of the link U Lf in the homotopy 3-disk X*, HX(X*) is free

abelian with basis consisting of the /x+mf. Let [ ¡xtmf] denote the elements of

the dual basis for H\X*).

By [12, 5.6.20] we have the commutative diagram:

HX(X*,M*)
If

n?

F2(X|,U9ßf)

-^Hx(oX^,dX*)

— Hx(\JöQf)

F'(9X|)

Hx(oX$)

Thus  S^-'^/«,*] n{)= t^s'Kii^mf] n3£ = i"*[m*™*] n 3<T.  Also  we
have {m,*} n 3<T = (* and {^*} n 3f = - w*.

Each longitude /f spans a Seifert surface S, in Xf, and by general position

we may suppose 5, n Q* consists of a finite number of disjoint 2-disks. It

follows that in HX(X%) we have n^lf = 2/,-,^/«*. The homomorphism ju* is

the transpose of /z„, so u^u*/«,*] = {mf} + 2keki{lf}. Thus ¡i*[ii*mf] n 3f

■ (f - 2k£kim*-
The obstruction to extending / is 8f*(i) E H2(X*, dQf) where í is a

generator of Hl(Sl) [12, 8.1.12]. Computing the Kronecker index we have



162 RONALD FINTUSHEL

(8f*(i),s-x[^mf] n S) = (r(i),*(s-x[p.mf] n S))

- (/*(*)» ? -1%<} - («./•(? - 2%f»»tf)\

= deg(i]/*)-2e*,deg(J]<),

and the obstruction 8f*{i) vanishes if and only if (8f*(i), s~x[ ¡i^mf] n{)=0

for each i, since the s~x[p+mf] n £ form a basis for H2(X2, U 9£?f).   D

Theorem (5.6). Construction (5.3) is independent of the choice of attaching

maps.

Proof. Let t, and t2 be equivariant embeddings: \Jf=xdQ¡-^dX2 with

t* = t* = id. Say that Tk(l¡) ~ /,' + r;A.A,' and rk{q¡) <— m,' + ilArA,' for /c = 1, 2.

Choose a section A" over U 3ßf oriented so that K' n p~'(/,*) ~ /, + a,A,.

and K' n prXimf) ~ ¿7, + 2>A for some integers a, and ¿,. Using Lemma

(5.4) choose an equivariant homeomorphism Sh U ß, -> U ß, such that

ty* = id and for each /,

*(<?,)-a,,   and   *(/,)-/,-
j

Then 2C = ¥(7y') is a section over U dQf with

T1(/í)nír-1«)~m; + (6< + í/1)A;

and

t,(/q n *-l{if)~i; + (Sfcto + ̂ i))*;-

Let/: U 32* -» 5' be the map such that (x*,/(x*)) E rx(K) dX-1 = X*

X S'.Then

deg(i](*) = 2'jt(bj + 'ji) = ^eßdeg(f\m*),

and by Lemma (5.5) / extends, defining a section Kx over X* which extends

T,(/Q.
Now in a similar fashion choose an equivariant homeomorphism $:

U2,-> U 2/ such that $* = id and for each i,

*(?,-)-?,   and   *(/,)-/,+ fal - »a) + 2 *ji(Sjl - Sjl) h.

Then <P(7Q is a section over U 3 Of and t2${K) extends to a section K2 over

all of A-J.
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Let F: X2 -* X2 be the equivariant homeomorphism such that F* = id and

F(KX) = F2. Then F and 4> combine to give an equivariant homeomorphism

( U Qi) U T X2 -> ( U ô,) U T2 A'j which is orientation-preserving since it is the

identity on the orbit spaces. We have already seen that up to vertical

equivariant isotopy there is just one way to attach F to X2. This completes the

proof.   □

6. Equivariant classification. In this section we show that the weighted orbit

space M* characterizes M up to orientation-preserving equivariant homeo-

morphism.

Lemma (6.1). Let Sx act freely on the 3-manifald A with orbit space

A/Sx s* S2, and let f: A-+A be an equivariant homeomorphism satisfying

f* = id. Then there is a vertical equivariant isotopy of f with the identity of A.

Proof. Define $: A -^ S ' by $(z) • z = f(z). Then $ is continuous and for

9 E S\ ®(9-z) ■ (9-z)=f(9-z) = 9-f(z) - 9- ($(z) • z) = $(z) • (9■ z).

Since the action is free, <&(9 • z) = $(z); so $ is constant on orbits. Now

77,04) is cyclic, generated by an oriented orbit, so $#(t7,(/1)) = 1. Thus <E> lifts

to a map <l> to the universal cover:

Then H,(z) = e(t<&(z)) • z is the desired equivariant isotopy.   □

Theorem (6.2). Let Mx and M2 be oriented simply connected closed 4-mani-

folds with Sl-actions. If the weighted orbit spaces of these actions are

isomorphic, Mx and M2 are orientation-preserving equivariantly homeomorphic.

Proof. Identify M* and M\ by means of the given isomorphism, and let/?,:

M¡ -» M* be the orbit maps. Fix regular neighborhoods Qf of the weighted

circles Lf of M*, and choose a regular neighborhood N* of (E* u F*) -

U Lf. We let

A-* = cl(Af* - U Qf ),    Y* = cl(M* - A*),

and

z* = ci(y* - uQf).

Since Y* is obtained from M* by removing a collar of 3Af* and a finite

number of disjoint 3-disks, 77^7*) = 1.
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Consider the principal S '-bundlesp\Z¡ —> Z*. It follows from (3.8) that the

restriction of p¡ to each dQj is a trivial S '-bundle projection which may be

extended over Qf. We obtain in this manner principal S '-bundles/?,': Y'¡ -»

Y* which restrict over Z* to p¡\Z¡-+ Zf. Let £,. be the Euler class of p¡:

y/-» Y*. We have the exact sequence H2(Y*, 37*)-^ F2(7*)-»p H2(dY*)

and H2(Y*, 37*) « HX(Y*) = 0, so p is injective. Now

F2(37*) = ®H2(B*)

where the Bf are the components of 37*, and they'th coordinate of p£, is Tjtt,

the Euler class of the restriction of/7,' to /?,*. The t]ik are determined from the

weighting of Mf, so t]Xk = r¡2k for each k, and p£, = p£2. Thus £, = £2 and

there is an S'-bundle equivalence Y[-* Y2 over Y*. This restricts to an

equivalence Z, -h> Z2 over Z*.

The action on M¡ over a collar of dM* is obtained essentially by spreading

out the principal orbit bundles and collapsing orbits over 3M* to points. (See

[1, V.10.1].) The action over a regular neighborhood of a weighted point is

just the cone of the action over the boundary of that neighborhood. These

facts, along with (3.6), (3.9), and (6.1) imply that the equivalence ZX^>Z2

gives rise to an orientation-preserving equivariant homeomorphism fx: Xx -»

X2.

Also (3.6) provides an orientation-preserving equivariant homeomorphism

fq- Upx~l(Qf)^> Up2l(Qf) such that f$\dQf = id for each j. The map
t = fxXfQ: U/>f l(bQf)-*dXx is an equivariant homeomorphism with t* =

id. Define h by h\ U Q¡ = Íq, h\Xx = fx. Then h is an orientation-preserving

equivariant homeomorphism U Q,■ UT Xx -» M2. But by (5.6) U Ô, UT A', is

orientation-preserving equivariantly homeomorphic to A/,.   □

Corollary (6.3). Orientation-preserving equivariant homeomorphism classes

of Sx-actions on oriented simply connected closed 4-manifolds are in bijective

correspondence with isomorphism classes of legally weighted simply connected

3-manifolds.   □

7. Torus actions.

Theorem (7.1). Let Sl act on the simply connected 4-manifold M. The action

extends to an action of T2 = S1 X Sl if and only if

(i) M* is not a counterexample to the Poincaré conjecture, and

(ii) if M* contains a weighted circle L*, then M* =s S3, L* = F* u F*, and

L* is unknotted in M*.

Proof. Suppose that the action extends to a Fraction. Applying an

automorphism of F2, if necessary, we may suppose that the given S '-action is

the action of the subgroup 0 X 5' of F2. Then S'xO acts effectively on

A//(0 X S ') = M*. This implies (i). If points of M lie in the same T2-orbit
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they have the same isotropy groups under the induced Ox S '-action. It

follows that Sx XO pointwise fixes (E* U F*) - dM*.

Let p': M* -> M*/{SX X 0) = M/T2 and it: M^>M/T2 be the orbit

maps. Then M/ T2 is a 2-disk whose boundary consists of the T2-orbits of M

with nontrivial isotropy [10]; sop'{E* U F*) = m{E u F) cd{M/T2). This

proves (ii).

Conversely, suppose that conditons (i) and (ii) are satisfied. If M* contains

no weighted circle let R* be the neighborhood of E* u F* which was

described in (4.6). By (4.7) there is a 4-manifold W with 72-action whose

weighted orbit space under the induced 0 x S'-action is isomorphic to R*.

The action of 0 x S' on dW is free, and it follows from (5.3) that dW =

S2 x S]. Any reaction on S2 x Sx has exactly two nonprincipal orbits

each of which has a circle group as isotropy group. So both nontrivial

isotropy groups on 3 W must be 5 ' x 0.

By condition (i), X* = cl{M* — R*) = D3, so there is an obvious compo-

nentwise action of T2 on X* X Sx. Again the nontrivial isotropy groups on

3 (A* X S ') are each Sx X 0. If we are careful in the choice of orientation of

the ¿''-action on X*, there is an orientation-reversing r2-equivariant

homeomorphism A: dW->3(A"* x Sx). Now W uA {X* X Sx) is easily seen

to be a simply connected r2-manifold, and the induced 0x5 '-action has

weighted orbit space isomorphic to M*. So M is S'-equivariantly

homeomorphic to If uÄ (A"* X Sx), and the S '-action on M extends to a

7"2-action via this homeomorphism.

If L* is a weighted circle in M* choose a regular neighborhood Q* of L*.

By (4.4) there is a 4-manifold W with reaction whose weighted orbit space

under the induced 0 X S'-action is isomorphic to Q*, and the reaction

restricted to dW as T3 is free. Conditions (i) and (ii) imply that

X* = c\{M* - ß*)s D2x Sx.

Letting Sx act freely on A"* induces a free reaction on X* x Sx. Again with

careful choice there is an orientation-reversing 72-equivariant

homeomorphism g: dW-*3{X* X Sx), and we form the 72-manifold W

Ug{X* X Sx). The orbit space W Uy {X* x Sx)/T2 is a 2-disk and the

action is free over the interior of the disk. It follows from [10] that W \j {X*

X S ') is a simply connected 4-manifold which as above is S'-equivariantly

homeomorphic with M. This extends the action on M.   □

8. Quadratic forms and homotopy type. Let 5 ' act on the simply connected

4-manifold M. We shall compute the quadratic form of M using the informa-

tion contained in the weighted orbit space M*, and this, in turn, will be used

to show that M is homotopy equivalent to a connected sum of copies of S4,

CP2, -CP2, and S2 X S2.
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(8.1) Let R* be the set described in (4.6); so R* is a neighborhood of

(E* u F*) — U Lf where the Lf are the weighted circles of M*. Using (3.6)

and (4.7) we identify R with the resultant 4-manifold of an equivariant linear

plumbing

If dM* has m components and (F* — dM*) ni?* contains / points then

t = 2m + I - 1.

The matrix 2?0 of this plumbing is the t X t matrix with yth entry

«i.    i = J>
(*oV=|l,      i=J±h

. 0,     otherwise,

since each plumbing involved has sign + 1. Now if <J>: Z'->Z' is the linear

map with matrix 2?0 then 22,(32?) « coker c> [5, 8.2]. But it was shown in (5.3)

that 32? = S2 X Sx; so det 2?0 = 0.

If 2? is a square matrix we shall denote by 2? ~ the matrix obtained from 2?

by striking out the last row and column. If t > 2, then 2?0_ is the matrix of the

equivariant linear plumbing

whose   resultant   manifold   we   call   V.   According   to   [5,   8.6],   32?   is

homeomorphic to the lens space L{p, q) where

(-'. ;)-(:>' :)-C? ;)-(:"' iX-', i>
and dV = L{p', q'). We have p = 0 since dR = S2 X Sx; so q' = -u>j>'.

Each matrix in the above product has determinant 1, hence p'{b' — co,a') =

p'b' + a'q' = 1, and />' = ±1. Thus dV = L{± I, q') a S3. Using [5, 8.2]

once more we see that |det 2?0_| is the order of 22,(3 V), and so det 2?0- = ± 1.

The zero sections Sx,..., S,_x of Yu,..., Ya have intersection matrix

2?0-; so considered as elements of H2{M), Sx,..., S,_x are independent. If

there are no weighted circles in M* then x{F) = 2m + /; so rk H2{M) = 2m

+ I — 2 = t — 1. In this case Sx, ..., S,_x also generate H2{M), and 2?o~ is

the matrix of the quadratic form of M.

Now 32?* —dM* s S2, and attaching a 3-disk to 2?* along this 2-sphere

we obtain a simply connected 3-manifold which we weight by the weights of

R*. There is a simply connected 4-manifold Y with S '-action and Y* = R*

U D3. Since Y* satisfies the hypotheses of (7.1) the 5'-action on Y extends to
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an action of T2. It now follows that 7 is a connected sum of copies of S4,

CP2, -CP2, and S2 X S2 since any simply connected 4-manifold with

Fraction admits such a connected sum decomposition [10]. The matrix F0~

of the quadratic form of 7 must then be congruent over Z to a direct sum of

copies of matrices (1), (-1), and (? ¿) [6].

(8.2) Let Ff,..., F* be the weighted circles of M* with regular neighbor-

hoods Q*,..., Qf:Fixj and suppose Lf = {(a„ /?,),..., (aq, ßq)). We may

identify Qj with the resultant manifold of an equivariant plumbing according

to the graph

CO|

where each plumbing except perhaps for Yu fj Ya has sign + 1. Index the co,.

so that the exceptional orbits lying in the zero section 5,- of Yu¡ are of type Z^.

A legally weighted simply connected 3-manifold X*, is obtained by embed-

ding Qf in S3 as an unknotted solid torus, and taking E* u F* = Lf. There

is a simply connected 4-manifold X with 5 '-action and weighted orbit space

X*, and since X has q fixed points, rk H2(X) = q - 2. Thus Sx,..., Sg_x are

linearly dependent when considered as elements of H2(X); so their inter-

section matrix B has determinant 0. But B is the matrix of the linear

plumbing

•-•-•

The boundary plumbing yields S2 X Sl [5, 8.2], and as in (8.1) det B ~ = ± 1

if q — 1 > 2. Again (7.1) applies to X, so the action extends to a Fraction,

and B~, the matrix of the quadratic form of X, is congruent over Z to a

direct sum of copies of matrices (1), (-1), and (( ¿). Note that if F* u F* =

Lf (k = 1), then B ~ is the matrix of the quadratic form of M.

(8.3) Let Lf be as given in (8.2) and suppose that we have Lf+X = {(a'x,

/?,'),..., (a'r, /?,')}. As before we view QJ+X as the resultant manifold of an

equivariant plumbing with zero sections S¡,..., 5/. In M we let x E Sq_x n

Sq c Lj and y E 5/ n S'x c LJ+X. Choose an arc If in M* which has
endpoints x* and y* and such that Tf — {x*, y*} c F*. Then Tj is a

2-sphere in M. There is a 4-disk D which is a linear slice to the action at x,

and we may suppose BD n 1} is a single orbit. The intersection number

Tj • Sq_x is the linking number in 3F of the principal orbit Tj n 3-D with the

Z^-orbit Sq_x n 3F. Thus r, • Sq_x = 5a? for 5 = ± 1. Also T, • S, = ea?_„
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£ = ± 1. Similar considerations show that y, = T, • Tj = ± oiq_xaq ± a'ra\.

This determines yj modulo 2 which is all that will be needed. We let \¿ be

TyS'v
Since aq_x and aq are relatively prime we may choose integers m and n

with Emaq_x + 8naq = 1. If we let Tj be the 2-cycle nSq_x + mSq on Q, then

Tj • Tj = 1. The intersection matrix 2?7 of 5,,..., 5?_2, 7)- has determinant 0

since these elements are dependent in H2{X), and if q > 3 the {s — t)th entry

of Bj is

coJ(   s = t < q - 2,

m2uq + «2co?_, + 2nm,   s = t = q — 1,

1,   (i, /) = {s, s ± 1) and s¥=q-l,t¥=q-l,

±m,    {s,t) = {l,q - l)or{q - 1, 1),

n,   (5, t) = (q -2,q - I) or {q - l,q - 2),

0,   otherwise.

If q = 2 then 2?, = (0), and if q = 3 then

(co, n ± m

n ± m     m to3 + /; co2 + 2««i

Now 2? ~ is the matrix B ~ of (8.2); so 2?y~ is congruent over Z to a direct sum

of matrices (1), (- 1), and (° ¿).

(8.4) Suppose that R* ¥= 0 and that 5,,_, S, are the zero sections as in

(8.1). Further suppose that we have L* = {{a\, /?,'), . . . , (a'r, /?/)} with zero

sections S¡. Let x E (S, - 5,_,) n F and 7 E 5/ n S'x. If T* is an arc in M*

with endpoints x* and^* such that T* - {x*,.y*} c P* then T0 is a 2-sphere

in M. We have ro • S, = 1 and y0 = T0 • T0 - ± a ± a'ra\ where S, has orbits

of type Za. (We let a = 0 if S, c F and a = 1 if 5, n P ¥= 0.) Finally, let

(8.5) We now have 2?0, an intersection matrix of 2-cycles in 2?, and

2?,, . . . , 2?^, intersection matrices of 2-cycles in Qx,.. ., Qk. For each /' =

0, . . . , k let d¡ denote the dimension of the matrix B¡. Define the matrix

C/ = 2?,. © (y) © 2?,+ , © • • • © 2?A_, © (y*.,) © Bk, for i = 0, . . . , k - 1

(/ = 1, . . . , k - 1 if R* = 0) where (y,) is the 1 X 1 matrix with entry y¡.

Further for 1 - 0,. .., k - 1 define C," = O, © 2/,- © O,;, © • • • © 0*11

© 2/A._, © Ok   where 2/^. is the 3 X 3 matrix

0 1     0"
1 0     Xj

0    A,.    0

V   7 /i(
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and Oj is the (dj - 1) X (ci - 1) zero matrix. Also let C'k = Bk   and C'k =

Ok. The square matrices C[ and C," have the same dimension so we may form

c,. = c; + ct".
Define C = C0 if R* =t 0 and C = Cx if fl* = 0. Then C is the intersec-

tion matrix of 2-cycles examined in (8.1)—(8.4). It is easy to check that C has

rk H2(M) rows and columns.

Theorem (8.6). The quadratic form of M has matrix C.

Theorem (8.7). M is homotopy equivalent to a connected sum of copies of S4,

CP2, - CP2, and S2 X S2.

Proof. We prove both theorems by showing that C is congruent over Z to

a direct sum of matrices (1), (- 1), and (°x ¿). This implies that det C = ± 1, so

H2(M) is generated by the 2-cycles for which C is the intersection matrix.

This proves (8.6) and then (8.7) follows from the homotopy type classification

of simply connected 4-manifolds [6].

Our proof proceeds by induction on n(C), where n(C) = k + 1 if R* ¥= 0

and n(C) = k if R* = 0. If n(C) = 1 then (8.1)-(8.3) prove that C is

congruent over Z to a direct sum of matrices (1), (- 1), and (°x ¿).

So suppose n(C) > 1, and let e = 0 if R* ^ 0 and e = 1 if R* = 0. The

operation of adding an integral constant times row i to row y and then that

constant times column i to column j preserves the congruence class over Z of

an integral matrix. Let us call this an elementary operation. In (8.1) and (8.2)

we saw that det Bt = 0. So if de, the dimension of Bc, is 1 then Bc = (0). In

this case C has the form

1

7c

0
~\

0    X.

L0I* y
where the lower right-hand corner matrix is  C£ + 1. The elementary row

operation —Xe times the first added to the third yields the matrix

'0     1

c.+i

which is thus congruent to C.

If de > 2 and d = de — 1 there is a a" X a" integral invertible matrix F such

that E'B~E is a direct sum of matrices (1), (-1), and (° ¿). Let F be the

matrix F © / where / is the identity matrix so that E @ I has the same

dimension as C. Then
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F'CF

-11

v£/l

x\d    z\

Xdd     Zd

i   y*

>

*

where the lower right-hand corner matrix is C£+1 and xtj is the r/th entry of

E'B'E.
The rows (and columns) of E'B'E are linearly independent, and each

consists of d - 1 zeros and one 1. Thus a sequence of elementary operations

may be performed on F'CG to yield the congruent matrix

¿i =

■il

V.

xid

xdl '    ' xdd

C'      1

X,

*

where the lower right-hand corner is still Ce+1.

If G = F © (1) then

G'F.G =

*rfi

*!</      Zl

Vd

Performing the same elementary operations on G'BCG that were performed

on F'CF results in the matrix E'B'E © (c'), which is congruent over Z to 5e.

Thus 0 = det Be = c' det (E'B'E) = ± c'.
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Now the elementary operation -\ times the deth added to the {dt + 2)nd

performed on A, yields the congruent matrix

A2 = E%-E@[^X     yJ©C£+1.

Note that {°x xy ) is congruent to (°x ¿) if ye is even and to (1) © (- 1) if yc is odd.

There is clearly a simply connected 4-manifold with S '-action whose matrix

associated by (8.5) is Ce+1. Since n(Ce+x) < n{C), the induction is completed.

D
(8.8) There are easily constructed examples of S '-actions on simply con-

nected 4-manifolds which are not equivariant connected sums of homotopy

CP2,s, - C2>2's, and S2 X S2's. The weighted orbit space S3 with three

weighted circles each linking the other two results in such an example.
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