DEFORMATIONS OF LIE SUBGROUPS

BY

DON COPPERSMITH

ABSTRACT. We give rigidity and universality theorems for embedded deformations of Lie subgroups. If $K \subset H \subset G$ are Lie groups, with $H^1(K, g/h) = 0$, then for every C^{∞} deformation of H, a conjugate of K lies in each nearby fiber H_s . If $H \subset G$ with $H^2(H, g/h) = 0$, then there is a universal "weak" analytic deformation of H, whose base space is a manifold with tangent plane canonically identified with Ker δ^1 .

Introduction. This paper extends results of Richardson [4] on analytic deformations of Lie subgroups, to the C^{∞} case. If $K \subset H \subset G$ are Lie groups, with $H^1(K, g/h) = 0$, then for every C^{∞} deformation of H, a conjugate of K lies in each nearby fiber H_s . We also prove a partial converse, namely that if $H \subset G$ with $H^2(H, g/h) = 0$, then there is a universal "weak" analytic deformation of H, whose base space is a manifold with tangent plane canonically identified with Ker δ^1 .

Notation. Throughout, $H \subset G$ being a Lie subgroup does not imply that H is topologically closed as a subset of G. Furthermore, the topological (resp. C^{∞} or analytic) structure on H is that of an abstract Lie group, not the induced structure as a subset of G.

I. Rigidity. Let S be a C^{∞} (resp. analytic) manifold.

DEFINITION. A C^{∞} (analytic) family of Lie groups parametrized by S is a C^{∞} (analytic) manifold H together with a surjective submersion $\pi \colon H \to S$, a section $e \colon S \to H$, and a morphism $M \colon H \times_S H \to H$, such that for each $s \in S$, the fiber $\pi^{-1}(s) = H_s$ has a Lie group structure given by multiplication $M|H_s \times H_s$ and identity e(s).

Let (S, s_0) be a pointed manifold and H a Lie group.

DEFINITION. An abstract C^{∞} (analytic) deformation of H, parametrized by S, is a C^{∞} (analytic) family of Lie groups H parametrized by S, together with an isomorphism $H_{s_0} \stackrel{\sim}{\to} H$.

Let (S, s_0) be a pointed manifold. Let H be a Lie subgroup of a Lie group G.

DEFINITION. A weak embedded C^{∞} (analytic) deformation of H, parametrized by S, consists of an abstract C^{∞} (analytic) deformation H of H,

Received by the editors May 21, 1976.

AMS (MOS) subject classifications (1970). Primary 22E15.

parametrized by S, and a C^{∞} (analytic) immersion $p: \mathbf{H} \to G \times S$, compatible with π , such that the restriction of p to each fiber \mathbf{H}_s , is a Lie group homomorphism onto its image $H_s \subset G \times \{s\}$, an isomorphism if $s = s_0$, and $H_{s_0} = H \times \{s_0\}$.

DEFINITION. A strong embedded C^{∞} (analytic) deformation of H is a weak embedded C^{∞} (analytic) deformation of H for which p is injective. (Thus p is a Lie group isomorphism on each fiber.)

REMARK. A strong embedded analytic deformation of H corresponds to Richardson's [4] concept of an analytic family of Lie subgroups of G.

Our definition of a weak deformation has the drawback that it is not symmetric with respect to points in the base space S; thus a weak embedded deformation of a subgroup $H = H_{s_0} \subset G$ is not necessarily a weak embedded deformation of a nearby fiber H_s . This is because p must be an isomorphism on the fiber H_{s_0} but only a homomorphism (covering map) on nearby fibers H_s . This asymmetry is unavoidable if we are to prove any sort of universality theorem.

Recall the definition of Lie group cohomology [3]:

Let $\mathcal{C}^r(A, B)$ denote the space of C^r functions from A to B, where $r = \infty$ or ω , C^{ω} denoting R-analytic as usual. Consider the complex

$$g/h \xrightarrow{\delta^0} \mathcal{C}^r(K, g/h) \xrightarrow{\delta^1} \mathcal{C}^r(K \times K, g/h) \xrightarrow{\delta^2} \mathcal{C}^r(K \times K \times K, g/h) \dots,$$

where

$$(\delta^{0}f)(x) = x \circ f - f,$$

$$(\delta^{1}f)(x, y) = x \circ f(y) - f(xy) + f(x),$$

$$(\delta^{2}f)(x, y, z) = x \circ f(y, z) - f(xy, z) + f(x, yz) - f(x, y),$$

and $x \circ f$ denotes the adjoint representation $(d/dt)x(exp\ tf)x^{-1}|_{t=0}$. Then $H^i(K, g/h) = \text{Ker}(\delta^i)/\text{Im}(\delta^{i-1})$. The cohomology space $H^i(K, g/h)$ is independent of r (the order of differentiability).

We may now state and prove our first result.

THEOREM 1. Suppose $K \subset H \subset G$ are Lie groups. Let (H, S) be a weak embedded C^{∞} deformation of H. Suppose the factor group K/K^0 (where K^0 is the connected component of the identity in K) is finitely generated, and suppose $H^1(K, g/h) = 0$. Then there is an open neighborhood U of s_0 in S and a C^{∞} map $b: U \to G$ such that $K \subset b(s)H_sb(s)^{-1}$ for each $s \in U$, and $b(s_0) = e$.

(Here g, h, and k denote the Lie algebras of G, H, and K.)

PROOF. The key to extending Richardson's results to the C^{∞} case is in the use of the finite-dimensional implicit function theorem in place of Artin's theorem [1].

Choose h^{\perp} a vector subspace of g complementary to h. Define the normal displacement function $\Psi: U' \to h^{\perp}$ (where U' is a neighborhood of $H \times \{s_0\}$ in $H \times S$) by the properties: For all $(x, s) \in U'$,

- (a) $\Psi(x, s_0) = 0$.
- (b) $(\exp \Psi(x, s))x \in H_s$.
- (c) The map $(x, s) \to p^{-1}((\exp \Psi(x, s))x, s)$ is a C^{∞} map of U' onto an open neighborhood of \mathbf{H}_{s_0} in \mathbf{H} , whose derivative at (e, s_0) is a linear isomorphism.

See Richardson [4] for a proof of existence and uniqueness, via the implicit function theorem.

Since g/h is finite dimensional, so is $\delta^0(g/h) = \text{Im } \delta^0 \subset C^{\infty}(K, g/h)$. We can choose finitely many points y_i , $1 \le i \le m$ (noncanonically), and a linear map $Z: (g/h)^m \to \text{Im } \delta^0$, such that Z is a one-sided inverse to the evaluation map, in the sense that for $f \in g/h$, $Z(\langle (\delta^0 f)(y_i) \rangle) = \delta^0 f$.

Construct a new weak embedded C^{∞} deformation H' of H, parametrized by $G \times S$, whose abstract fiber is given by $\mathbf{H}'_{(x,s)} = \mathbf{H}_s$ while the embedded fiber is given by $H'_{(x,s)} = xH_sx^{-1}$, $x \in G$, $s \in S$; p' is p composed with a conjugation by x. Let $\Psi' \colon T' \to h^{\perp}$ denote the associated normal displacement function, where T' is a neighborhood of $K \times (e, s_0)$ in $K \times (G \times S)$.

Define a map $j: T \to \text{Im } \delta^0$ by $j(x, s) = Z(\langle [\Psi'(y_i, (x, s))] \rangle)$, where T is a neighborhood of (e, s_0) in $G \times S$. The partial derivative of j with respect to G at (e, s_0) is the surjective map $g \to g/h \xrightarrow{\delta^0} \text{Im } \delta^0$, and $j(e, s_0) = 0$. By the finite-dimensional implicit function theorem, there is a neighborhood U of s_0 in S and a C^{∞} function $b: U \to G$ such that j(b(s), s) = 0 identically in s, and $b(s_0) = e$.

Construct yet another weak embedded C^{∞} deformation $\tilde{\mathbf{H}}$ of H, parametrized by U, with abstract fiber $\tilde{\mathbf{H}}_s = \mathbf{H}_s$ and embedded fiber $\tilde{H}_s = b(s)H_sb(s)^{-1}$, so that \tilde{p} is again p composed with a conjugation by b(s). The associated normal displacement function $\tilde{\Psi}$ satisfies $Z(\langle [\tilde{\Psi}(y_i, s)] \rangle) = 0$ identically in s.

We wish to prove that $(\tilde{\mathbf{H}}, U)$ is "trivial along K", i.e. $K \times U \subset \tilde{p}\tilde{\mathbf{H}}$. It suffices to show that $k \subset \tilde{h}_s$ (the Lie algebra of the fiber \tilde{H}_s), and that for a finite set $\{x_i\}_{1 \le i \le p} \subset K$ generating K/K^0 , we have $x_i \in \tilde{H}_s$. Defining $\tilde{\alpha}_s \in \operatorname{Hom}(k, h^{\perp})$ by the condition $z + \tilde{\alpha}_s(z) \in \tilde{h}_s$ for each $z \in k$ (which determines $\tilde{\alpha}_s$ uniquely, after perhaps restricting U), we are in turn reduced to proving that if $\alpha: U \to \operatorname{Hom}(k, h^{\perp}) \times (h^{\perp})^p$ is defined by $\alpha(s) = (\tilde{\alpha}_s, \langle \tilde{\Psi}(x_i, s) \rangle)$, then α is identically 0.

Suppose this is not the case. Then there exists $\{s_n\}$, a sequence of points in U converging to s_0 , such that $\alpha(s_n) \neq 0$. View $\operatorname{Hom}(k, h^{\perp}) \times (h^{\perp})^p$ as \mathbb{R}^N with Euclidean norm $|\cdot|$. If $\varepsilon_n = |\alpha(s_n)|$, then $\alpha(s_n)/\varepsilon_n$ is a sequence of points on the (compact) (N-1)-sphere. Choosing a subsequence if necessary, we

find $\alpha(s_n)/\varepsilon_n$ converges to a point $\alpha_0 \in S^{N-1} \subset \mathbb{R}^N$, representing $(\gamma_0, \langle \gamma_i \rangle) \in \text{Hom}(k, h^{\perp}) \times (h^{\perp})^p$. This α_0 will determine an element of the cohomology.

Construction. Define $\gamma \in \mathcal{C}^{\infty}(K, g/h)$ as follows:

(1) For $a \in k$,

$$\gamma(\exp a) = \left[(d/dt) \left(\exp(a + t\gamma_0(a)) \exp(-a) \right) \right]_{t=0}$$

(where [] denotes class in g/h).

- (2) For x_i one of the generators of K/K^0 , $\gamma(x_i) = [\gamma_i]$.
- (3) For x, y such that $\gamma(x), \gamma(y)$ are already defined, $\gamma(xy) = \gamma(x) + [x \circ \gamma(y)]$.

As exp k and $\{x_i\}$ generate K, this defines γ on all of K.

LEMMA 1. With γ so defined, for each $x \in K$ we have $\gamma(x) = \lim_{n \to \infty} [1/\epsilon_n] [\tilde{\Psi}(x, s_n)]$. In particular, this limit exists.

The proof is a straightforward but tedious computation, and shall be omitted.

Granting this lemma, we see that γ is well defined. By properties (1) and (3) it is **R**-analytic; by (3) again γ lies in the kernel of δ^1 : $C^{\infty}(K, g/h) \to C^{\infty}(K \times K, g/h)$. So by assumption on vanishing cohomology, γ lies in the image of δ^0 . But, as $Z(\langle \tilde{\Psi}(y_i, s_n) \rangle) = 0$ for all n large enough, we have, by the lemma, $Z(\langle \gamma(y_i) \rangle) = 0$. By our choice of Z and y_i , this means $\gamma = 0$. This contradicts $\alpha_0 \neq 0$, proving our theorem. Q.E.D. THEOREM 1.

II. Universality. Let us now consider the case K = H. We have seen, in the proof of Theorem 1, that any weak embedded deformation of H gives rise, infinitesimally, to an element of Ker δ^1 : $\mathcal{C}(H, g/h) \to \mathcal{C}(H \times H, g/h)$. We would like to prove a converse, namely, that in the case $H^2(H, g/h) = 0$, there is a weak embedded deformation (H, S) of H whose base space S is a manifold with tangent plane, at s_0 , naturally identified with all of Ker δ^1 ; i.e. any infinitesimal deformation can be realised as a tangent to a weak deformation. To this end we must develop some more machinery.

Suppose $H \subset G$ has finitely generated factor group H/H^0 , so that $\exp h$ and $\{x_1, \ldots, x_p\}$ generate H. Suppose $\pi_1(H^0, e)$ is generated by $\{p_j | j \in J\}$, where each p_j is of the form $\prod_{i=1}^n \exp a_{ij} = e$, $a_{ij} \in h$. Suppose the relations $\{q_m | m \in M\}$ generate all relations on H/H^0 , where each q_m is of the form

$$\left(\prod_{k=1}^{N_m} (x_{km}^{e_{km}})\right) \left(\prod_{k=1}^{N_m'} \exp b_{km}\right) = e,$$

with $x_{km} \in \{x_1, \ldots, x_p\}$, $\varepsilon_{km} \in \mathbb{Z}$, and $b_{km} \in h$. Then, as in the proof of Theorem 1, any weak embedded deformation (H, S) determines locally (i.e. after restricting S) a map $\alpha: S \to \operatorname{Hom}(h, h^{\perp}) \times (h^{\perp})^p$, denoted $\alpha(s) = (\alpha_{0s}, \langle \alpha_{is} \rangle), s \in S$, such that for all $z \in h, z + \alpha_{0s}(z) \in \tilde{h}_s$, the Lie algebra of

the fiber H_s , and $(\exp \alpha_{is})x_i \in H_s$. We claim that such a map α must satisfy the following four *consistency equations*:

(1)
$$\left[\tilde{h_s}, \tilde{h_s} \right] \subset \tilde{h_s} \left(\text{where } \tilde{h_s} = \left\{ z + \alpha_{0s}(z) | z \in h \right\} \right),$$

(2)
$$\tilde{x}_{is} \circ \tilde{h}_s \subset \tilde{h}_s$$
 (where $\tilde{x}_{is} = (\exp \alpha_{is})x_i$),

(3)
$$\exp^{-1}\left\{\prod_{i=1}^{n_j}\exp(a_{ij}+\alpha_{0s}(a_{ij}))\right\}\in \tilde{h_s},$$

(4)
$$\exp^{-1}\left\{\left(\prod_{k=1}^{N_m} (\tilde{x}_{kms}^{e_{km}})\right)\left(\prod_{k=1}^{N'_m} \exp(b_{km} + \alpha_{0s}(b_{km}))\right)\right\} \in \tilde{h_s}$$

identically in s, where the \exp^{-1} in equations (3) and (4) are chosen to be 0 at $s = s_0$.

Equations (1) and (2) are necessary in order that H_s be a Lie group at all. Equations (3) and (4) follow from the existence and uniqueness of the normal displacement function $\tilde{\Psi}$ (see [4]). All these consistency equations are **R**-analytic, and thus (by Oka's coherency theorem in the **C**-analytic case) they may be replaced locally by a finite set of **R**-analytic equations R_s .

LEMMA 2. Let $\overline{R_i}$ denote the first-order (in α_{0s} , α_{is}) terms of the equations R_i . Then the variety determined by $\overline{R_i}$ is naturally identified with Ker δ^1 : $\mathcal{C}(H, g/h) \to \mathcal{C}(H \times H, g/h)$.

PROOF. As in the proof of Theorem 1, an element of Ker δ^1 is determined by its action on h and on $\{x_i\}$. Given a point $\alpha \in \text{Hom}(h, h^{\perp}) \times (h^{\perp})^p$, we can try to construct $\gamma \in \mathcal{C}(H, g/h)$ as before. We will succeed if and only if the construction is self-consistent, i.e. if for each $x \in H$, any two ways of assigning a value to $\gamma(x)$ give the same result. But a way of assigning a value to $\gamma(x)$ is equivalent to an expression of x as the product of x_i 's and exponentials of Lie algebra elements. The relations $\overline{R_i}$ are precisely what is needed to insure this self-consistency. Q.E.D. LEMMA 2.

The relations R_i define an analytic subvariety S_H of $\operatorname{Hom}(h, h^{\perp}) \times (h^{\perp})^p$, and each weak embedded deformation (H, S) determines a map f from S to S_H , such that for $s \in S$, $\overline{H}_{f(s)} \subset H_s$, where $\overline{H}_{f(s)}$ is the subgroup of G generated by $\tilde{h}_{f(s)}$ and $\tilde{x}_{if(s)}$.

This correspondence from weak embedded deformations to maps of S to S_H is unfortunately not one-one. Lack of injectivity arises because connected components of H which do not intersect the special fiber do not affect the map into S_H ; thus a deformation H_1 with these extra components determines the same map as another deformation H_2 without the extra components.

The correspondence is surjective, as shown by the following.

LEMMA 3. Let $H \subset G$ and S_H be as above. Let (S, s_0) be a pointed analytic manifold, and $f: (S, s_0) \to (S_H, 0)$ an analytic map. After restricting S to a neighborhood of s_0 , there is a weak embedded analytic deformation H of H, parametrized by S, for which the above construction yields $f: (S, s_0) \to (S_H, 0)$.

PROOF. To fix notation, let the composite map

$$S \xrightarrow{f} S_H \xrightarrow{\text{incl.}} \text{Hom}(h, h^{\perp}) \times (h^{\perp})^p$$

send $s \in S$ to $(a_{0s}, \langle a_{is} \rangle)$.

We construct the deformation H, following Douady and Lazard [2]. To begin with, we consider only H^0 , the connected component of the identity in H. Construct an analytic family of Lie algebras h over S, whose fiber h_s over $s \in S$ is isomorphic to the Lie algebra $h_s = \{z + a_{0s}(z) | z \in h\}$. Let D be a neighborhood of 0 in h, with each fiber D_s a neighborhood of 0 in h_s , such that exp is 1-1 on D_s . Let D^n be the nth fiber product of D with itself, with fiber $D_s^n = (D_s)^n = (D^n)_s$.

Define a map $V_n: D^n \to G$ by $V_n(\underline{b}_1, \ldots, \underline{b}_n; s) = \prod_{i=1}^n \exp b_i$, where $\underline{b}_i \in \underline{h}_s$ corresponds under the isomorphism to $b_i \in \underline{h}_s$ considered as a Lie subalgebra of g. Let $k = \dim h$. $\overline{F}_n = {}_{\operatorname{def}} V_n^{-1}(e)$ is an analytic subvariety of D^n ; as such, it is the locally finite union of irreducible components. Let F_n be the union of those irreducible components of \overline{F}_n of codimension $k = \dim h$. These are precisely the components which, when projected to S, map to open subsets of S. We find that F_n is a manifold, not just a variety. Under the natural inclusion $i: D^n \to D^{n+1}$ given by $i(\underline{b}_1, \ldots, \underline{b}_n; s) = (\underline{b}_1, \ldots, \underline{b}_n, \underline{0}; s)$, we find that F_n also includes into F_{n+1} by the same map: $iF_n \subset F_{n+1}$. In fact, $F_n = i^{-1}F_{n+1}$. Then $\bigcup_n D^n$ has the structure of a family of free groups over S, and $\bigcup_n F_n$ is a family of normal subgroups. For each $s \in S$, we have $\bigcup_n D_s^n / \bigcup_n F_n$, a connected Lie group, with Lie algebra isomorphic to h_s . Let $H' = \bigcup_n D^n / \bigcup_n F_n$. According to Douady and Lazard [2], H' will be a Hausdorff family of groups over S, and thus an abstract deformation in the present sense, if F_n satisfies two conditions:

- (1) Axiom of semicontinuity of relations: For each point $(\underline{b}_1, \ldots, \underline{b}_n; s) \in F_n$, there are analytic maps \tilde{b}_i of a neighborhood of s in S to D, with $(\tilde{b}_1(s'), \ldots, \tilde{b}_n(s'); s') \in F_n$ identically in s' in the neighborhood of s, with $\tilde{b}_i(s) = \underline{b}_i$. This is immediate by our choice of F_n as being of codimension k. (This is where we use the fact that S is a manifold.)
- (2) Closure of relations: F_n is closed in D^n . This is true as F_n is a locally finite union of analytic subvarieties of D^n .

By the consistency equations (1) and (3), we find that the fiber of H' over s_0 (the special fiber) is in fact isomorphic to H^0 and not some covering space

thereof; relation (3) ensured that $(\underline{a}_{1j}, \ldots, \underline{a}_{n,j}, \underline{0}; s_0)$ in fact lay in an irreducible component F'_{n_j+1} of codimension k for each relation $(\prod_{i=1}^n \exp a_{ij})$ in $\pi_1(H^0, e)$.

The factor group H/H^0 presents little trouble. In the consistency equation (4), set

$$q_{ms} = \exp^{-1} \left\{ \left(\prod_{k=1}^{N_m} (\tilde{x}_{kms}^{e_{km}}) \right) \left(\prod_{k=1}^{N_m'} \exp(b_{km} + \alpha_{0s}(b_{km})) \right) \right\} \in h_s,$$

let \underline{q}_{ms} be the corresponding element of \underline{h}_s , and let $\underline{Q}_{ms} = \exp \underline{q}_{ms} \in \mathbf{H}'_s$. Then append to \mathbf{H}' a collection of generators $\{\underline{x}_{is}|1 \leq i \leq p, s \in S\}$ with analytic structure given by that of S, with the action $\underline{x}_{is} \circ \underline{h}_s$ given by that of \tilde{x}_{is} on h_s (see consistency equation (2)), and relations given by

$$\left(\prod_{k=1}^{N_m} \left(\underline{x}_{kms}^{e_{km}}\right)\right) \left(\prod_{k=1}^{N_m'} \exp \underline{b}_{kms}\right) = \underline{Q}_{ms}.$$

The result is a new family of groups H over S. Along with a projection p from H to G, given by p agreeing with V_n on D^n , and $p(\underline{x}_{is}) = \tilde{x}_{is}$, we obtain a weak embedded analytic deformation. Finally we calculate that p, restricted to the fiber over s_0 , is an isomorphism onto H, and that p is an embedding elsewhere. Thus H is the desired deformation. Q.E.D. Lemma 3.

In general, S_H itself is not the base space of a weak embedded analytic deformation, as S_H is only a variety and not a manifold. Even if we were to expand the definitions to allow deformations to be parametrized by varieties, we would still be unable to build a weak deformation parametrized by S_H , as the following example (based on one by Douady and Lazard [2, IV.5]) indicates.

Example. Let $G = GL(4, \mathbb{R})$, and $H = \mathbb{R}^3$, embedded as

$$\left\{ \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{bmatrix} \middle| x, y, z \in \mathbb{R} \right\}.$$

Let $S = \{(a, b, c, d) \in \mathbb{R}^4 | cd = 0\}$. Let $\tilde{h}_{(a,b,c,d)}$ be generated by

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & d & -a & 0 \\ 0 & b & d & 0 \\ -ab & 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \\ -b & 0 & 0 & 0 \\ 0 & -bc & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & -c & 0 & 0 \\ a & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -ac & 0 \end{bmatrix}.$$

We cannot build a Hausdorff fiber product H corresponding to this map from S to S_H . Reason: for a, b, d > 0, the fiber over (a, b, 0, d) is of

necessity simply connected. As d approaches 0, the fiber approaches the universal cover of E^2 ; thus the fiber over (a, b, 0, 0) must also be simply connected. On the other hand, for a, b, c > 0, the fiber over (a, b, c, 0) is either S^3 or SO^3 , and if we exponentiate $4\pi/ab$ times the first Lie algebra generator, we must return to e in the fiber over (a, b, c, 0). Letting e approach 0; the same must hold true for the fiber over (a, b, 0, 0), an impossibility.

In spite of these difficulties, the equations R_i retain enough of the structure of weak deformations to suit our purposes.

We may now state and prove our second major result.

THEOREM 2 (EMBEDDED UNIVERSALITY). Let $H \subset G$ be Lie groups such that $H^2(H, g/h) = 0$, and the factor group H/H^0 is finitely generated (so that $V =_{\text{def}} \text{Ker } \delta^1$: $\mathcal{C}(H, g/h) \to \mathcal{C}(H \times H, g/h)$ is finite dimensional). Then there is a weak embedded R-analytic deformation (H, S) of H such that:

- (1) S is an open neighborhood of 0 in $V = \text{Ker } \delta^1$.
- (2) The normal displacement function Ψ agrees with the inclusion map $i: S \to \text{Ker } \delta^1$ to first order.
- (3) Any other deformation (H', S') of H is locally equivalent to one obtained by pullback of a map $f: S' \to S$, in the sense that $H_{f(s)} \subset H'_s$ for all s near 0 in S'.

PROOF. We construct a formal power series map from V into S_H which will give rise, by Artin's lemma, to an analytic map from S a neighborhood of 0 in V into S_H , whose derivative is nonsingular at the origin. Thus S_H will contain a manifold of dimension equal to that of Ker δ^1 ; by Lemma 2, S_H will itself be a manifold of the right dimension. Applying Lemma 3 to the identity map on S_H , we will obtain the desired deformation.

Let $V = \text{Ker } \delta^1$; let h^{\perp} be the previously chosen complement of h in g, and let $p_{h^{\perp}}$ denote the inverse of the natural projection $h^{\perp} \to g/h$; $p_{h^{\perp}}$ will also denote the composition of this inverse with the projection $g \to g/h$.

We construct $F_i: H \times V \to g$, $f_i: H \times V \to G$, and $A_i: H \times H \times V \to h$, sequences of **R**-analytic maps, such that:

- (1) F_i and A_i are polynomials of degree i in the V variables;
- (2) F_i agrees with F_{i-1} up through terms of degree i-1 in the V variables, as does A_i with A_{i-1} ;
 - $(3) f_i(x, s) = (\exp F_i(x, s))x;$
 - (4) $A_i(e, *, *) = A_i(*, e, *) = A_i(*, *, 0) = F_i(e, *) = F_i(*, 0) = 0;$
- (5) $\{f_i(x,s)|x\in H\}$ is closed under group multiplication to ith order, that is,

$$\exp^{-1}\left\{f_i(x,s)f_i(y,s)f_i(xy,s)^{-1}f_i(\exp A_i(x,y,s),s)\right\} = O(s^{i+1}).$$

Let $F_1(x,s) = p_{h^{\perp}}(s(x))$, considering $s \in \operatorname{Ker} \delta^1 \subset \mathcal{C}(H,g/h)$ as a map

from H to g/h. Let $f_1 = (\exp F_1(x, s))x$. Set

$$A_1(x, y, s) = -(I - p_{h^{\perp}})(x \circ p_{h^{\perp}}s(y) - p_{h^{\perp}}s(xy) + p_{h^{\perp}}s(x))$$

= -(I - p_{h^{\perp}})(x \cdot p_{h^{\perp}}s(y)) = -p_h(x \cdot p_{h^{\perp}}s(y)),

where p_h denotes the projection $g \to h$ induced by $g = h + h^{\perp}$, and I is the identity.

Then F_1 , f_1 , A_1 satisfy the inductive hypotheses.

Suppose F_i , f_i , A_i satisfy the inductive hypotheses. Defining \underline{B} : $H \times H \times V \rightarrow G$ by

$$\underline{B}(x, y; s) = f_i(x, s) f_i(y, s) f_i(xy, s)^{-1} f_i(\exp A_i(x, y, s), s),$$

we have B analytic and vanishing to order i in the V variables, i.e.

$$\exp^{-1}\underline{B}(x,y;s) = B'(x,y;s) + B''(x,y;s),$$

where B' and B'' are again **R**-analytic, B' is homogeneous of degree i + 1 in the V variables, and B'' is of order at least i + 2 in the V variables. Let B(x, y; s) denote the class of B'(x, y; s) in g/h.

LEMMA 4. B(x, y; s) satisfies the cocycle relation

$$x \circ B(y, z; s) - B(xy, z; s) + B(x, yz; s) - B(x, y; s) = 0.$$

Proof. We have

$$\underline{B}(x, y; s) f_i(\exp A_i(x, y, s), s)^{-1} = f_i(x, s) f_i(y, s) f_i(xy, s)^{-1}.$$

So

$$\underline{B}(x, y; s) f_i(\exp A_i(x, y, s), s)^{-1} \underline{B}(xy, z; s) f_i(\exp A_i(xy, z, s), s)^{-1}$$

$$= f_i(x, s) f_i(y, s) f_i(z, s) f_i(xyz, s)^{-1}$$

$$= \left\{ f_i(x, s) \left(\underline{B}(y, z; s) f_i(\exp A_i(y, z, s), s)^{-1} \right) f_i(x, s)^{-1} \right\}$$

$$\times \underline{B}(x, yz; s) f_i(\exp A_i(x, yz, s), s)^{-1}.$$

Now $\exp^{-1}\underline{B}(*, *; s) = O(s^{i+1}), A_i(*, *, s) = O(s), \exp^{-1}f_i(\exp A_i(*, *, s), s)$ = O(s), and $f_i(x, s) = \exp F_i(x, s)x$, where $F_i(x, s) = O(s)$. So the commutator of $\underline{B}(*, *; s)$ with either $\exp F_i(x, s)$ or $f_i(\exp A_i(*, *, s), s)$ is of order $O(s^{i+2})$. Thus we may rewrite the above equation as

$$\underline{\underline{B}}(x, y; s)\underline{\underline{B}}(xy, z; s)\underline{\underline{B}}(x, yz; s)^{-1} \left\{ x\underline{\underline{B}}(y, z; s)x^{-1} \right\}^{-1}$$

$$= \left\{ f_i(x, s)f_i(\exp A_i(y, z, s), s)^{-1}f_i(x, s)^{-1} \right\} f_i(\exp A_i(x, yz, s), s)^{-1}$$

$$\times f_i(\exp A_i(xy, z, s), s)f_i(\exp A_i(x, y, s), s)\exp O(s^{i+2}).$$

By repeated application of the "group closure of f_i to ith order" (point (5) of

the inductive hypotheses), the smallness of $A_i(\exp r, \exp t, s) = O(rts)$, and the fact that the bracketed expression on the right-hand side of the equation is the conjugate of $f_i(\exp A_i(y, z, s), s)^{-1}$ by $f_i(x, s)$, we get

right-hand side =
$$f_i(w(x, y, z, s), s) \exp O(s^{i+2})$$
,

with $w: H \times H \times H \times V \to H$ an analytic function, $\exp^{-1}w(x, y, z, s) = O(s)$. So

$$\underline{B}(x, y; s)\underline{B}(xy, z; s)\underline{B}(x, yz; s)^{-1} \{x\underline{B}(y, z; s)x^{-1}\}^{-1}$$

$$= f_i(w(x, y, z, s), s) \exp O(s^{i+2}).$$

Taking exp^{-1} of both sides,

$$- \left\{ x \circ B'(y, z; s) - B'(xy, z; s) + B'(x, yz; s) - B'(x, y; s) \right\}$$

$$= \exp^{-1} f_i(w(x, y, z, s), s) + O(s^{i+2}).$$

Then $\exp^{-1}w(x, y, z, s) = O(s^{i+1})$ and $F_i(w(x, y, z, s), s) = O(s^{i+2})$. Finally, breaking our last equation (*) into h and h^{\perp} components, we obtain the desired result. Q.E.D. LEMMA 4.

We may view B as an element of $C^{\omega}(H \times H, g/h) \otimes P^{i+1}(V)$, where $P^{i+1}(V)$ denotes the space of (i+1)st-degree homogeneous polynomials in $\{s_i\}$ (a basis of V). By the foregoing lemma, and by the assumption $H^2(H, g/h) = 0$, we have an analytic function $C \in C^{\omega}(H, g/h) \otimes P^{i+1}(V)$ such that $B = \delta^1 C$, that is,

$$B(x, y; s) = x \circ C(y; s) - C(xy; s) + C(x; s).$$

Let F_{i+1} be defined by $F_{i+1}(x, s) = F_i(x, s) - p_{h^{\perp}}C(x; s)$, with $p_{h^{\perp}}$ as defined above. Let $f_{i+1}(x, s) = \exp F_{i+1}(x, s)x$. Defining $D: H \times H \times V \to g$ by

$$D(x, y, s) = \exp^{-1} \{ f_{i+1}(x, s) f_{i+1}(y, s) f_{i+1}(xy, s)^{-1} \}$$

$$\times f_{i+1}(\exp A_i(x, y, s), s)$$

we find, by our construction, that D(x, y, s) = D'(x, y, s) + D''(x, y, s), where $D' \in \mathcal{C}^{\omega}(H \times H, h) \otimes P^{i+1}(V)$ and $D''(x, y, s) = O(s^{i+2})$. Let $A_{i+1}(x, y, s) = A_i(x, y, s) - D'(x, y, s)$.

It is straightforward to verify that $F_{i+1}, f_{i+1}, A_{i+1}$ satisfy the inductive hypotheses.

In this manner we obtain formal power series $\hat{F} \in C^{\omega}(H, h^{\perp})[[s_i]]$ and $\hat{A} \in C^{\omega}(H \times H, h)[[s_i]]$; defining $\hat{f}(x, s) = \exp \hat{F}(x, s)x$, we have (from inductive hypothesis (5)) that $\{\hat{f}(x, s)|x \in H\}$ is formally closed under group multiplication, that is

$$\hat{f}(x, s)\hat{f}(y, s)\hat{f}(xy, s)^{-1}\hat{f}(\exp \hat{A}(x, y, s), s) = e$$

formally, with (by hypothesis (4))

$$\hat{A}(x, y, 0) = \hat{A}(x, e, s) = \hat{A}(e, y, s) = 0.$$

From \hat{F} we may obtain a formal power series map from V into $\text{Hom}(h, h^{\perp})$ $\times (h^{\perp})^p$, with the image of s being denoted $(\hat{a}_{0s}, \langle \hat{a}_{is} \rangle)$, by setting $\hat{a}_{is} =$ $\hat{F}(x_i, s)$ and $\hat{a}_{0s}(z) = \lim_{t\to 0} (\hat{F}(\exp tz, s))/t$. By the formal group closure, we get that $(\hat{a}_{0s}, \langle \hat{a}_{is} \rangle)$ formally satisfies the relations R_i ; thus we have a formal map from V to S_H whose derivative (i.e. first-order term) is nonsingular at 0. Now we use Artin's Lemma [1], which assures us, in this situation, of an analytic map α from S (a neighborhood of 0 in V) to S_H which agrees with our formal power series map to first order. In particular, S_H contains a manifold of the dimension of Ker δ^1 , in fact an analytic nonsingular image of a neighborhood of 0 in Ker δ^1 . By Lemma 2, S_H is also contained in an analytic manifold of dimension equal to that of Ker δ^1 . Namely, Ker δ^1 is the intersection of the tangent planes to the equations R_i ; choose just enough such equations $\overline{R'_i}$ to exactly determine Ker δ^1 , and then the variety determined by the analogous R_i will be a manifold, containing S_H , with tangent plane equal to Ker δ^1 . Therefore S_H itself must be a manifold, of the right dimension. In fact, the derivative of α at 0 reflects the identity of $S \subset \text{Ker } \delta^1$ with the tangent plane to S_H , as may be verified.

Applying Lemma 3 to the map $\alpha: S \to S_H$ we obtain the desired deformation H, parametrized by S. (Alternatively, we could have built a deformation H_H , parametrized by S_H , by applying Lemma 3 to the identity map on S_H .) The conclusions of the theorem are now straightforward. Q.E.D. THEOREM 2.

REMARK. It was necessary, in this section, to restrict our attention to the case $K = H \subset G$, since the analogous theorem for $K \subset H \subset G$ is false, as the following example shows.

EXAMPLE. Let G be the universal cover of E^2 , namely the semidirect product of \mathbb{R} with \mathbb{R}^2 , given by $(\theta, x)(\theta', x') = (\theta + \theta', R_{\theta'}x + x')$, with $\theta, \theta' \in \mathbb{R}$, $x, x' \in \mathbb{R}^2$. Let $H = \mathbb{R}$, embedded as $\{(\theta, 0)|\theta \in \mathbb{R}\}$, and let $K = \mathbb{Z}$, embedded as $\{(2\pi m, 0)|m \in \mathbb{Z}\}$. Then $H^2(H, g/h) = H^2(K, g/h) = 0$, while $H^1(K, g/h) \cong g/h \neq 0$. We can calculate that for any nearby fiber H_s of a deformation of $H, K \subset H_s$, and so to first-order K does not move in the g/h direction. This contradicts our notion of what a universality theorem would say in the $K \subset H \subset G$ case, so we conclude there can be no such theorem.

ACKNOWLEDGEMENTS. I would like to thank Professor John Hubbard who suggested the problem, and whose infections enthusiasm greatly encouraged my research. I am also grateful to Professor Shlomo Sternberg for helpful discussions.

BIBLIOGRAPHY

- 1. M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-291. MR 38 # 344.
- 2. A. Douady and M. Lazard, Espaces fibrés en algèbres de Lie et en groupes, Invent. Math. 1 (1966), 133-151. MR 33 #5787.
- 3. G. Hochschild and G. D. Mostow, Cohomology of Lie groups, Illinois J. Math. 6 (1962), 367-401. MR 26 #5092.
- 4. R. W. Richardson, Jr., Deformations of Lie subgroups and the variation of isotropy subgroups, Acta Math. 129 (1972), 35-73. MR 45 #8771.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138

Current address: Department of Mathematics, IBM Research, P.O. Box 218, Yorktown Heights, New York 10598