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Abstract. We give rigidity and universality theorems for embedded defor-

mations of Lie subgroups. If A' c H c G are Lie groups, with H\K, g/h)
— 0, then for every C* deformation of H, a conjugate of K lies in each

nearby fiber Hs. If H c G with H2(H, g/h) «• 0, then there is a universal

"weak" analytic deformation of H, whose base space is a manifold with

tangent plane canonically identified with Ker S '.

Introduction. This paper extends results of Richardson [4] on analytic

deformations of Lie subgroups, to the C00 case. If K c H c G are Lie

groups, with Hx(K,g/h) = 0, then for every C00 deformation of H, a

conjugate of K lies in each nearby fiber Hs. We also prove a partial converse,

namely that if H c G with H2(H, g/h) = 0, then there is a universal "weak"

analytic deformation of H, whose base space is a manifold with tangent plane

canonically identified with Ker 5 '.

Notation. Throughout, H c G being a Lie subgroup does not imply that H

is topologically closed as a subset of G. Furthermore, the topological (resp.

C00 or analytic) structure on H is that of an abstract Lie group, not the

induced structure as a subset of G.

I. Rigidity. Let S be a C00 (resp. analytic) manifold.

Definition. AC00 (analytic) family of Lie groups parametrized by S is a

C00 (analytic) manifold H together with a surjective submersion it: H -* S, a

section e: 5-»H, and a morphism MiHXjH^H, such that for each

s E S, the fiber ir~x(s) = H, has a Lie group structure given by multiplica-

tion M\HS X H, and identity e(s).

Let (S, s0) be a pointed manifold and H a Lie group.

Definition. An abstract C00 (analytic) deformation of H, parametrized by

S, is a C° (analytic) family of Lie groups H parametrized by S, together

with an isomorphism Hs<¡ -^ H.

Let (S, s0) be a pointed manifold. Let H be a Lie subgroup of a Lie group

G.
Definition. A weak embedded C00 (analytic) deformation of H, para-

metrized by S, consists of an abstract C00 (analytic) deformation H of H,
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parametrized by S, and a C°° (analytic) immersion p: H-> G X S, compa-

tible with it, such that the restriction of p to each fiber H, is a Lie group

homomorphism onto its image 27, c G X [s], an isomorphism if s = Sq, and

27ÍO=27X{ÍO}.

Definition. A strong embedded C°° (analytic) deformation of 27 is a weak

embedded C00 (analytic) deformation of 27 for which p is injective. (Thusp is

a Lie group isomorphism on each fiber.)

Remark. A strong embedded analytic deformation of 27 corresponds to

Richardson's [4] concept of an analytic family of Lie subgroups of G.

Our definition of a weak deformation has the drawback that it is not

symmetric with respect to points in the base space S; thus a weak embedded

deformation of a subgroup 27 = 27io c G is not necessarily a weak embedded

deformation of a nearby fiber 27,,. This is because p must be an isomorphism

on the fiber HJo but only a homomorphism (covering map) on nearby fibers

H,. This asymmetry is unavoidable if we are to prove any sort of universality

theorem.

Recall the definition of Lie group cohomology [3]:

Let Of (A, B) denote the space of C functions from A to B, where r = co

or 03, C" denoting R-analytic as usual. Consider the complex

g/hS-ler(K, g/h) ^ e(K X K, g/h) S-Xer(KXKxK, g/h)...,

where

(0°/)(X) = XO/-/

(8xf)(x,y) = x » f(y) - f(xy) + f(x),

(82f)(x,y,z) = x °f(y,z) -f(xy,z) +f(x,yz) -f(x,y),

and x °/ denotes the adjoint representation (d/dt)x(exp tf)x~l\    . Then

27'(A, g/h) = Kex(8i)/lxn(8'-x). The cohomology space H'(K, g/h) ¡s inde-

pendent of r (the order of differentiability).

We may now state and prove our first result.

Theorem 1. Suppose K c 27 c G are Lie groups. Let (H, S) be a weak

embedded C°° dejormation oj H. Suppose the jactor group K/K° (where K° is

the connected component oj the identity in K) is finitely generated, and suppose

H X(K, g/h) = 0. Then there is an open neighborhood U oj s0 in S and a C°°

map b: U-+ G such that K c b(s)Hsb(s)~l for each s £ U, and b(s0) = e.

(Here g, A, and k denote the Lie algebras of G, 27, and K.)

Proof. The key to extending Richardson's results to the C°° case is in the

use of the finite-dimensional implicit function theorem in place of Artin's

theorem [1].
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Choose Ax a vector subspace of g complementary to A. Define the normal

displacement function "%: U' -» Ax (where U' is a neighborhood of H X {s0}

in H X S) by the properties: For all (x, s) E U',

(a) *(X, Sn) - 0.

(b) (exp ¥(x, s))x E Ht.

(c) The map (x, í)-»p-1((exp ^(jc, í))x, í) is a C00 map of Î/' onto an

open neighborhood of HJo in H, whose derivative at (e, s0) is a linear

isomorphism.

See Richardson [4] for a proof of existence and uniqueness, via the implicit

function theorem.

Since g/h is finite dimensional, so is S°(g/A) = Im ô° c &°"(K, g/A). We

can choose finitely many points y¡, 1 < i < m (noncanonically), and a linear

map Z: (g/h)m -» Im fi°, such that Z is a one-sided inverse to the evaluation

map, in the sense that for/ G g/h, Z«(Ô0/)(y,.)» = fi0/.

Construct a new weak embedded C00 deformation H' of H, parametrized

by G X S, whose abstract fiber is given by H^ = H, while the embedded

fiber is given by H',xs) = xHsx~x, x G G, s G S;p' is p composed with a

conjugation by x. Let "f: T ->AX denote the associated normal displace-

ment function, where T is a neighborhood of K X (e, s0) in K X (G X S).

Define a map/: 7"-» Im 5° by/(x, s) = Z«[*'(y„ (x, s))])), where 71 is a

neighborhood of (e, Sn) in G X S. The partial derivative of/ with respect to G

at (e, 50) is the surjective map g -» g/h ^ Im fi°, and j(e, Sn) = 0. By the

finite-dimensional implicit function theorem, there is a neighborhood U of i0

in S and aC function A: Í/-» G such that/(A(s), 5) = 0 identically in i,

and A^o) = e.

Construct yet another weak embedded C°° deformation H of H, para-

metrized by U, with abstract fiber H, = H, and embedded fiber H3 =

b(s)Hsb(s)~x, so thatp is againp composed with a conjugation by A(s). The

associated normal displacement function $ satisfies Z(([^(y¡, s)])) = 0

identically in s.

We wish to prove that (H, U) is "trivial along K", i.e. K X U c pH. It

suffices to show that A: c A, (the Lie algebra of the fiber Hs), and that for a

finite set {x¡)x<i<p c K generating K/K°, we have x¡ G H,. Defining

äs G Hom(k, hx) by the condition z + âs(z) E hs for each z E k (which

determines às uniquely, after perhaps restricting U), we are in turn reduced to

proving that if a: U^Bom(k,hJ-) X (hxy is defined by a(s) - (âs,

(¥(x¡, s))), then a is identically 0.

Suppose this is not the case. Then there exists {sn}, a sequence of points in

U converging to i0, such that a(sn) ¥= 0. View Hom(k, Ax) X (Axy as R"

with Euclidean norm | |. If e„ = |a(i„)|, then a(s„)/en is a sequence of points

on the (compact) (N — l)-sphere. Choosing a subsequence if necessary, we
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find a(s„)/e„ converges to a point a0 E SN~X c R^, representing (y0, <y,» £

Hom(k, Ax) X (hLy. This a0 will determine an element of the cohomology.

Construction. Define y £ C°°(2C g/h) as follows:

(1) For a E k,

y(exp a) =[(d/dt)(exp(a + ty0(a))exp(-a))\tm0]

(where [ ] denotes class in g/h).

(2) For x, one of the generators of K/K°, y(x¡) = [y,].

(3) For x,y such that y(x),y(y) axe already defined, y(xy) = y(x)+

[x ° y(y)l
As exp k and {x,} generate K, this defines y on all of K.

Lemma 1. With y so defined, for each x E K we have y(x) =

lim(l/en)[,$,(x, sn)]. In particular, this limit exists.

The proof is a straightforward but tedious computation, and shall be

omitted.

Granting this lemma, we see that y is well defined. By properties (1) and (3)

it is R-analytic; by (3) again y lies in the kernel of Ô ': &°(K, g/h) -» G^A

X K, g/h). So by assumption on vanishing cohomology, y lies in the image

of 5°. But, as Z((^r(y¡, s„)/) = 0 for all n large enough, we have, by the

lemma, Z«y(v,-)>) = 0. By our choice of Z and v(, this means y = 0. This

contradicts a0 =£ 0, proving our theorem.   Q.E.D. Theorem 1.

II. Universality. Let us now consider the case K = 27. We have seen, in the

proof of Theorem 1, that any weak embedded deformation of 27 gives rise,

infinitesimally, to an element of Ker 8 ': G(H, g/h) -» 6(27 X 27, g/h). We

would like to prove a converse, namely, that in the case H2(H, g/h) = 0,

there is a weak embedded deformation (H, S) of 27 whose base space S is a

manifold with tangent plane, at i0, naturally identified with all of Ker 8 '; i.e.

any infinitesimal deformation can be realised as a tangent to a weak deforma-

tion. To this end we must develop some more machinery.

Suppose 27 c G has finitely generated factor group 22/27°, so that exp A

and {x,,..., xp) generate 27. Suppose trx(H°, e) is generated by {p;|7 £ 7},

where each p; is of the form n?_ xexp ai} = e,ai}E A. Suppose the relations

{qm\m E M) generate all relations on 27/22°, where each qm is of the form

LT(x^)     IIexpAj = e,
k-l J\k-l I

with xkm £ {x„ ..., xp), ekm E Z, and bkm £ A. Then, as in the proof of

Theorem 1, any weak embedded deformation (H, S) determines locally (i.e.

after restricting S) a map a: ^-»HomXA, Ax) X (hxy, denoted a(s) =

(«os> («ü». sES, such that for all z E A, z + a^z) £ Af, the Lie algebra of
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the fiber Hs, and (exp c^)*,. G Hs. We claim that such a map a must satisfy

the following four consistency equations:

(1) [A„ h\] c hs   (where h, = {z + a0s(z)\z G A}),

(2) 4 » A, C A,    (where ift = (exp «„)*,),

(3) exp"1    LT exp(a^ + aOs(a0))    E h\,

Eh,

identically in s, where the exp-1 in equations (3) and (4) are chosen to be 0

at s ■ s0.

Equations (1) and (2) are necessary in order that H, be a Lie group at all.

Equations (3) and (4) follow from the existence and uniqueness of the normal

displacement function ^ (see [4]). All these consistency equations are

R-analytic, and thus (by Oka's coherency theorem in the C-analytic case) they

may be replaced locally by a finite set of R-analytic equations R¡.

Lemma 2. Let R¡ denote the first-order (in a0l, aü) terms of the equations R¡.

Then the variety determined by R¡ is naturally identified with

Ker 5•: G(H, g/h) -» G(H X H, g/h).

Proof. As in the proof of Theorem 1, an element of Ker fi ' is determined

by its action on A and on {x¡}. Given a point a E Hom(A, Ax) X (Axy, we

can try to construct y G G (H, g/h) as before. We will succeed if and only if

the construction is self-consistent, i.e. if for each x G H, any two ways of

assigning a value to y(x) give the same result. But a way of assigning a value

to y(x) is equivalent to an expression of x as the product of x/s and

exponentials of Lie algebra elements. The relations R¡ are precisely what is

needed to insure this self-consistency.   Q.E.D. Lemma 2.

The relations R¡ define an analytic subvariety SH of Hom(A, Ax) X (Axy,

and each weak embedded_deformation (H, S) determines a map/ from S to

SH, such that for s E S, Hf{s) c Hs, where //}(J) is the subgroup of G gener-

ated by hf(s) and xm.

This correspondence from weak embedded deformations to maps of S to

SH is unfortunately not one-one. Lack of injectivity arises because connected

components of H which do not intersect the special fiber do not affect the

map into SH; thus a deformation H, with these extra components determines

the same map as another deformation H2 without the extra components.

The correspondence is surjective, as shown by the following.

at. N'

(4) exp" no
>fc=i

■'km \
kmsl II exp(AAm + a0s(bkm))\

,k~\
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Lemma 3. Let H c G and SH be as above. Let (S, s0) be a pointed analytic

manifold, and f: (S, s0) -> (SH, 0) an analytic map. After restricting S to a

neighborhood of s0, there is a weak embedded analytic deformation H of 27,

parametrized by S,for which the above construction yields f: (S, Sq) -» (SH, 0).

Proof. To fix notation, let the composite map

s4V^'Hom(A,Ax) x (Ax)'

sendsEStoia0s,(aisy).

We construct the deformation H, following Douady and Lazard [2]. To

begin with, we consider only 27°, the connected component of the identity in

27. Construct an analytic family of Lie algebras h over S, whose fiber A, over

s E S is isomorphic to the Lie algebra hs — {z + a^iz^z Eh). Let D be a

neighborhood of 0 in h, with each fiber Ds a neighborhood of 0 in A,, such

that exp is 1-1 on Ds. Let D" be the nth fiber product of D with itself, with

fiber/),"-(/>,)"-(/>"),.
Define a map V„: D" -» G by F„(A„ ...,bn;s) = Ü7_,exp b„ where A, £

A, corresponds under the isomorphism to b¡ £ h, considered as a Lie subalge-

bra of g. Let k = dim A. F„ =it{V~xie) is an analytic subvariety of D"; as

such, it is the locally finite union of irreducible components. Let Fn be the

union of those irreducible components of F„ of codimension k — dim A. These

are precisely the components which, when projected to S, map to open

subsets of S. We find that F„ is a manifold, not just a variety. Under the

natural inclusion i: D" -» Dn+l given by i'(A„ ... ,b„; s) = (A,,..., b„, 0;

s), we find that F„ also includes into Fn+X by the same map: iF„ c FB+I. In

fact, F„ = i~xF„+x. Then U„D" has the structure of a family of free groups

over S, and U „F„ is a family of normal subgroups. For each s E S, we have

KJnD"/ U „Fn, a connected Lie group, with Lie algebra isomorphic to A,. Let

H' = U„Dn/\J„F„. According to Douady and Lazard [2], H' will be a

Hausdorff family of groups over S, and thus an abstract deformation in the

present sense, if Fn satisfies two conditions:

(1) Axiom of semicontinuity of relations: For each point (A,,... ,b„;s) E

F„, there are analytic maps b, of a neighborhood of s in S to D, with

(A,(j'),..., bnis'); s') E F„ identically in s' in the neighborhood of s, with

b~i(s) = A,. This is immediate by our choice of F„ as being of codimension k.

(This is where we use the fact that S is a manifold.)

(2) Closure of relations: F„ is closed in D". This is true as Fn is a locally

finite union of analytic subvarieties of D".

By the consistency equations (1) and (3), we find that the fiber of H' over i0

(the special fiber) is in fact isomorphic to 27° and not some covering space
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thereof; relation (3) ensured that (qXJ,..., q^,,, 0; i0) in fact lay in an irreduc-

ible component F' + x of codimension k for each relation (Ii?_ iexp a¡J) in

T,(ff°, e).

The factor group H/H° presents little trouble. In the consistency equation

(4), set

exp
-i

' Nm \ I Ni, \

II (xfti)     LT expiA^ + ctnsfoj)
i*-i /U-i I

Eh„

let q^ be the corresponding element of h,, and let Q^ = exp qm E H's. Then

append to H' a collection of generators {jçjl < i < p,s E S) with analytic

structure given by that of S, with the action Xj, ° A, given by that of jcj, on A,

(see consistency equation (2)), and relations given by

( n(ift&))( nexpAfcJ = eml.
,* = ! ,k-l

The result is a new family of groups H over S. Along with a projection p

from H to G, given byp agreeing with V„ on D", andp^) = xü, we obtain a

weak embedded analytic deformation. Finally we calculate that p, restricted

to the fiber over i0, is an isomorphism onto H, and that p is an embedding

elsewhere. Thus H is the desired deformation.   Q.E.D. Lemma 3.

In general, SH itself is not the base space of a weak embedded analytic

deformation, as SH is only a variety and not a manifold. Even if we were to

expand the definitions to allow deformations to be parametrized by varieties,

we would still be unable to build a weak deformation parametrized by SH, as

the following example (based on one by Douady and Lazard [2, IV.5])

indicates.

Example. Let G = GL(4, R), and H = R3, embedded as

1 0 0 x
0 1 0 y

0 0 1 z
0 0 0 1

x,y,z G R

Let 5 = {(a, b, c, d) G R4\cd = 0}. Let A(a6f(/) be generated by

0 0 0 1
0 d -a 0
0 A d 0

-ab 0 0 0J

0
0

-b
0

0 c 0
0 0 1
0 0 0

-Ac 0 0

0    -c
a     0
0     0
0     0

0 0
0 0
0 1

-ac 0

We cannot build a Hausdorff fiber product H corresponding to this map

from S to SH. Reason: for a,b,d> 0, the fiber over (a, b, 0, d) is of
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necessity simply connected. As d approaches 0, the fiber approaches the

universal cover of E2; thus the fiber over (a, A, 0, 0) must also be simply

connected. On the other hand, for a, A, c > 0, the fiber over (a, A, e, 0) is

either S3 or SO3, and if we exponentiate 4m¡'ab times the first Lie algebra

generator, we must return to e in the fiber over (a, A, c, 0). Letting c approach

0; the same must hold true for the fiber over (a, A, 0, 0), an impossibility.

In spite of these difficulties, the equations 2?, retain enough of the structure

of weak deformations to suit our purposes.

We may now state and prove our second major result.

Theorem 2 (Embedded Universality). Let H c G be Lie groups such that

H2(H, g/h) = 0, and the factor group H/H° is finitely generated (so that

V = deSKex 8X: e(H, g/h)-> 6(H X H, g/h) is finite dimensional). Then

there is a weak embedded R-analytic dejormation (H, S) of H such that:

(1) S is an open neighborhood ofO in V = Ker 8 '.

(2) The normal displacement function ^f agrees with the inclusion map

i: S -» Ker 5 ' to first order.

(3) Any other deformation (H', S') of H is locally equivalent to one obtained

by pullback of a map f: S' -» S, in the sense that 77;(j) c 27,' jor all s near 0 in

S'.

Proof. We construct a formal power series map from V into SH which will

give rise, by Artin's lemma, to an analytic map from S a neighborhood of 0 in

V into SH, whose derivative is nonsingular at the origin. Thus SH will contain

a manifold of dimension equal to that of Ker fi1; by Lemma 2, SH will itself

be a manifold of the right dimension. Applying Lemma 3 to the identity map

on SH, we will obtain the desired deformation.

Let V = Ker 8 '; let Ax be the previously chosen complement of A in g, and

letpAj. denote the inverse of the natural projection Ax -+g/h;ph± will also

denote the composition of this inverse with the projection g -» g/h.

We construct F¡: H X V-*g,f: H XV->G, and A,: H x H X V-* A,
sequences of R-analytic maps, such that:

(1) F¡ and A¡ axe polynomials of degree /' in the V variables;

(2) F¡ agrees with FJ_, up through terms of degree i - 1 in the V variables,

as does A, with A,_x;

(3)/(x, s) = (exp F¡(x, i))x;

i4)Aiie, *, *) = A,(*, e, *) = A,(*, *, 0) = F,(e, *) = F,i*, 0) = 0;
(5) [fix, s)\x E H) is closed under group multiplication to ith order, that

is,

exp-'^sUiy^Uixy^y'fiexpA^y^)^)} = 0(s'+1).

Let F,(x, s) = ph±(s(x)), considering s £ Ker 8x c (2(22, g/h) as a map
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from H to g/A. Let/, = (exp Fx(x, s))x. Set

Ai(x,y, s)= -(I- phi){x °ph±s(y) - ph±s(xy) + ph±s(x))

= -(J-/V)(* °Ph^(y)) = -Ph{x °Ph^(y)),

where ph denotes the projection g -» A induced by g = A + Ax, and / is the

identity.

Then Fx,fx,Ax satisfy the inductive hypotheses.

Suppose Fj,f¡,Aj satisfy the inductive hypotheses. Defining B: H X H X

V-+Gby

B (x, y ; s) = / (x, s)f¡ (y, s)f¡ (xy, s)~xf¡ (exp A¡(x, y, s), s),

we have B analytic and vanishing to order /' in the V variables, i.e.

exp-'^x.y; s) = B'(x,y; s) + B"(x,y; s),

where B' and B" are again R-analytic, B' is homogeneous of degree i + 1 in

the V variables, and B" is of order at least i + 2 in the V variables. Let

B(x,y; s) denote the class of B'(x,y; s) ing/A.

Lemma 4. B(x,y; s) satisfies the cocycle relation

x ° B(y,z;s) - B(xy,z;s) + B(x,yz;s) - B(x,y; s) = 0.

Proof. We have

â(x,y, s)f¡(exp A,(x,y, s), s)~X=f¡(x, s)f (y, s)f¡(xy, s)~x.

So

ä(x,y; s)/(exp A¡(x,y, s), s)~lB(xy, z; s)f¡(exp A¡(xy, z, s), s)~l

- f¡(x, s)f¡(y, s)f¡(z, s)f¡(xyz, s)~l

= {/(*, s)(B(y, z; j)/(exp At(y, z, s), i)"!)/((x, s)~x)

XB(x,yz;s)fi(expA¡(x,yz,s),s)~\

Now exp-'5(*, *; s) = 0(si+x), A,(*, *, s) = 0(s), exp-^expAf, *, s), s)

■ 0(s), and f¡(x, s) = exp F¡(x, s)x, where F¡(x, s) = 0(s). So the

commutator of B(*, *; s) with either exp F¡(x, s) or/(exp A¡(*, *, s), s) is of

order 0(s'+2). Thus we may rewrite the above equation as

B(x,y; s)B(xy, z; s)B(x,yz; s)~x{xB(y, z; i^"1}-'

■ {//(*> s)f¡(exp A¡(y, z, s), s)~lf¡(x, syx}f¡(expA¡(x,yz, s), s)~l

X f¡ (exp A¡(xy, z, s), s)f (exp A¡(x,y, s), s)exp O (si+2).

By repeated application of the "group closure of/ to ith order" (point (5) of
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the inductive hypotheses), the smallness of .4, (exp r, exp t, s) — 0(rts), and

the fact that the bracketed expression on the right-hand side of the equation

is the conjugate of/(exp A¡(y, z, s), s)~x by/(x, s), we get

right-hand side = j¡(w(x,y, z, s), s)exp 0(s'+2),

with w: H X H X H X V-* H an analytic function, exp_,w(x, y, z, s) =

0(î).So

7j(x, y; s)B(xy, z; s)B(x,yz; s)~x{xB(y, z; s)x~x)

- J¡ (w(x, y, z, s), s)exp O is'+2).

Taking exp-1 of both sides,

,        - {x o B'iy, z; s) - B\xy, z; s) + B\x,yz; s) - B\x,y; s)}

= exp-!/;.(>v(x, y,z, s), s) + 0(si+2).

Then exp_1w(x, y, z, s) = 0(si+x) and F¡(w(x,y,z,s),s) = 0(si+2). Fi-

nally, breaking our last equation (*) into A and Ax components, we obtain the

desired result.   Q.E.D. Lemma 4.

We may view B as an element of &(H X H,g/h)<8> Pi+x(V), where

P,+X(V) denotes the space of (i + l)st-degree homogeneous polynomials in

{j,} (a basis of V). By the foregoing lemma, and by the assumption

272(27, g/h) = 0, we have an analytic function C £ (2"(27, g/h) ® Pi+x(V)

such that B = 8 XC, that is,

B(x,y; s) = x ° C(y; s) - C(xy; s) + C(x; s).

Let Fi+X be defined by Fi+X(x, s) = F¡(x, s) — ph±C(x; s), withpAx as defined

above. Let/+,(x, s) = exp Fi+X(x, s)x. Defining D: H X H X V-*ghy

D(x,y,s) = exp-l{ji+x(x,s)Ji+x(y,s)Ji+x(xy,s)~l

X^+i(exp^,(x,y,i),Ä)),

we find, by our construction, that D(x,y, s) = D'(x,y, s) + D"(x,y, s),

where D' E&(H X 27, A) ® Pi+x(V) and D"(x,y, s) = 0(si+2). Let

Ai+i(x,y, s) = A¡(x,y, s) - D'(x,y, s).

It is straightforward to verify that Fi+x,Ji+x,Ai+x satisfy the inductive

hypotheses.
In this manner we obtain formal power series F £ ß"(27, Ax)[[s,]] and

A E &(H X 77, h)[[s¡]]; defining/(x, s) = exp F(x, s)x, we have (from in-

ductive hypothesis (5)) that {/(x, s)|x £ 27} is formally closed under group

multiplication, that is

/ (x, s)J ( v, s)J (xy, s)~xJ (exp i(x, y, s), s) = e
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formally, with (by hypothesis (4))

A (x,y, 0) = A (x, e, s) = À(e,y, s) = 0.

From F we may obtain a formal power series map from V into Hom(A, Ax)

X (hxy, with the image of s being denoted (an,, <â0», by setting a¡, =

F(x¡, s) and â0,(z) = tim,_0(F(exp tz, s))/1. By the formal group closure, we

get that (an,, <aü» formally satisfies the relations R¡; thus we have a formal

map from V to SH whose derivative (i.e. first-order term) is nonsingular at 0.

Now we use Artin's Lemma [1], which assures us, in this situation, of an

analytic map a from S (a neighborhood of 0 in V) to SH which agrees with

our formal power series map to first order. In particular, SH contains a

manifold of the dimension of Ker fi ', in fact an analytic nonsingular image of

a neighborhood of 0 in Ker fi '. By Lemma 2, SH is also contained in an

analytic manifold of dimension equal to that of KerS1. Namely, Ker fi1 is

the intersection of_the tangent planes to the equations R¡; choose just enough

such equations R¡ to exactly determine Kerfi1, and then the variety de-

termined by the analogous R¡ will be a manifold, containing SH, with tangent

plane equal to Ker fi '. Therefore SH itself must be a manifold, of the right

dimension. In fact, the derivative of a at 0 reflects the identity of S c Ker 5 '

with the tangent plane to SH, as may be verified.

Applying Lemma 3 to the map a: S-* SHv/e obtain the desired deforma-

tion H, parametrized by S. (Alternatively, we could have built a deformation

HH, parametrized by SH, by applying Lemma 3 to the identity map on SH.)

The conclusions of the theorem are now straightforward. Q.E.D. Theorem

2.
Remark. It was necessary, in this section, to restrict our attention to the

case K = H c G, since the analogous theorem for K c H c G is false, as

the following example shows.

Example. Let G be the universal cover of E2, namely the semidirect

product of R with R2, given by (9, x)(9', x') = (9 + 9', Rg,x + x1), with 9, 9'

E R, x, x' E R2. Let H = R, embedded as {(0, O)|0 G R}, and let K = Z,

embedded as {(2trm, 0)|m G Z}. Then H2(H, g/h) = H2(K, g/h) = 0,
while HX(K, g/h) at g/h ^ 0. We can calculate that for any nearby fiber H,

of a deformation of H, K c H„ and so to first-order K does not move in the

g/h direction. This contradicts our notion of what a universality theorem

would say in the K c H c G case, so we conclude there can be no such

theorem.
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