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REPRESENTATIONS OF GROUP EXTENSIONS^)
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FLOYD L. WILLIAMS

Abstract. A functional-analytic approach to the study of the topological

irreducibility of certain nonunitary induced representations is set forth. The

methods contrast, and in some sense, encompass those first initiated by E.

Thieleker in [4], and are amenable to complete irreducibility questions as

well. Several sufficient conditions for topological irreducibility are

established. A sufficient condition for reducibility is also presented-the

latter serving to explain an interesting counterexample due to J. M. G. Fell.

1. Introduction. In this paper we establish sufficient conditions for the

topological irreducibility of nonunitary representations of semidirect products

of the form

G = SK,      SnK={l),

where G is a connected Lie group, S is a connected, closed, normal subgroup

of G, and K is a compact subgroup of G. These representations are induced

from nonunitary representations of closed subgroups of G and are construc-

ted, in the spirit of Mackey [2], as follows. Start with a one-dimensional

(nonunitary) character A of S and form the stability subgroup

KA = [k E K\K(ksk~x) = A(s) for every s in S }

of K. Choose an irreducible unitary representation p of KA. p acts on a finite

dimensional Hubert space H (p.). Let L2(K, H(p)) be the Hubert space of

measurable, square integrable, //(fi)-valued functions f on K such that

f(mk) — p(m)f(k) for (m, k) in KA X K. The equation

(I^(sk)f)(kx) = Aikxskx-X)f(kxk),

(s, k, kx) E S X K X K,f E L2(K, //(ft)), defines a representation Ia* of G

on L2(K, H(p)) where each ¡^(a), a EG, acts as a bounded linear operator.

If A is unitary, in particular, then /A,il is precisely the unitary representation

of G induced in the classical sense of Mackey [2] by the representation A ® ft

of SKA. By the well-known Mackey theory, moreover, Ia* (for A unitary) is
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irreducible; i.e. 7a''' is topologically irreducible: L2(K,H(p)) admits no

nontrivial I^ closed invariant subspaces. However for a general nonunitary

A, Ia'11 may well be reducible; see §6 for an example due to J. M. G. Fell.

Also see Theorem 6.1.

A big step in the study of the representations IA'ß for A nonunitary has

been taken by E. Thieleker in [4]. His approach is infinitesimal in the sense

that questions of topological irreducibility are reduced to questions of

algebraic irreducibility of the corresponding representations of the universal

enveloping algebra of the Lie algebra of G on the space of ÄMinite vectors.

The approach presented here is a global, more direct, one and seems to lead

to a simpler analysis of the representations 7 a'''. In particular the methods

can also be used to study questions of complete irreducibility. On the other

hand this paper, in part, owes much to the basic ideas set forth by Thieleker

in [4].

Before noting some of the main results proved here it is necessary to

introduce additional notation.

Let L(S) denote the Lie algebra of S and let L(S)C denote the complexifi-

cation of L(S). Since S is normal and since S, G are connected, L(S) is

invariant under the adjoint action of G and, in particular, by restriction we

have a representation Ad^ of K on L(S) and hence on L(S)C. Since K is

compact we can choose (once and for all) an Adl^ invariant real inner

product < , ) on L(S). < , > extends to a complex inner product < , > on

L(S)C such that the action of K on L(S)C is unitary. We define dA to be the

C linear map from L(S)C to C such that

(1.1) A(exp tx) = e'dMx)   for all x in L(S) and / in R.

Identifying the complex dual space of L(S)C with L(S)C via < , > we shall

consider dA as an element of L(S)C. Then A is unitary if and only if

dA E (- 1)1/2L(5). Equation (1.1) now reads

(1.2) A(exp x) = e<x'dA>   for all x

in L(S). Let - denote conjugation of L(S)C with respect to L(S).

Now we can refer to Theorem 5.9 and Theorem 6.1 which constitute the key

results of this paper. Theorem 5.9 lists several conditions that insure the

topological irreducibility of the 7 a'''. Note that condition (b) is equivalent to

the statement that some nonzero complex multiple of dA lies in L(S). Thus

we are restating (in (b)) a result first obtained by Thieleker; see [4, Theorem

4]. Theorem 6.1 shows that under special circumstances the representations

Ia'11 can indeed be reducible.

The irreducibility (or reducibility) properties of the representations Ia-11

depend largely upon properties of a certain AT-invariant subalgebra A (dA) of

C(KA\K); see Definition 4.2, Theorem 5.9(j), (k), Theorem 5.10, and
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Theorem 6.1. In a forthcoming paper we shall prove the following "double

commutant" (or von Neumann density) result. Let A(/A,fl) denote the linear

span of the operators Ia'11 (a), a E G.

Theorem 1.3. If A(dA) is closed under complex conjugation then the closure

o/A(/A''1) in the strong operator topology coincides with the double commutant

A(/A,'t)" of A(/A,M). In particular IA,li is completely irreducible if and only if the

commutant 6.(1^)' consists of scalar multiples of 1. If dA satisfies (a), (b) or

(c) of Theorem 5.9 then IA,li is not only topologically irreducible but is actually

completely irreducible.

2. Construction of the representations Ia*. In this section G will denote a

locally compact group; G need not be a Lie group. We assume that

(2.1) G = SK,       SnA-={l},

where S is a closed, normal subgroup of G, K is a compact subgroup of G,

and 1 is the identity element of G. Whenever it is necessary, we shall also

assume that G is o-compact. Let A be a continuous homomorphism from S to

the nonzero complex numbers C*; i.e. A is a 1-dimensional representation of

S. Define

(2.2) KA= [kE K\A(ksk~x) = A(s) for every s in S ).

KA is the stability subgroup of K at A under the action of K on the

1-dimensional representations of S. KA is a closed, hence compact, subgroup

of K and, hence, SKA is a closed subgroup of G. Now choose a continuous,

irreducible, unitary representation ft of KA on a Hilbert space H(p). Since KA

is compact and ft is irreducible, H(p)is necessarily finite dimensional. Since

KA stabilizes A the equation

(2.3) (A ® p)(sk) = A(s) p(k),       (s, k) G S X KA,

defines a continuous, irreducible, nonunitary representation A® p oí the

closed subgroup SKA on H(p). In turn, A® p. induces a continuous,

nonunitary representation /A,,i of G as follows. Let £*(AT, H(p)) denote the

space of measurable functions/: K-> H(p) such that

(i)f(mk) = p(m)f(k) for (m, k)EKAx K,

(ü)/*||/(*)||2<¿fc<oo,
where dk denotes normalized Haar measure on A'. Identifying functions that

agree almost everywhere, one obtains a Hilbert space L2(K, H ( p.)).

Proposition 2.4. The equation

(Tx (s)f)(k) = A(ksk~x)f(k),       (s, k)ESXK,fE £%K, H(p)),

defines a representation Tx oS S on L2(K, H (p.)). Tx is continuous; i.e. Sor every

<p in L2(K, H(p)), the map s -> Tx(s)<b is continuous from S to L2(K, H(p)).

For each s in S, Tx(s) is a bounded operator on L2(K, //(ft)).
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Proof. Given/in £J(Ä", 77(u)) and s in S, put Ms = supkeK\A(ksk~1)\2 so

that

(2.5) /1|(7, (s)f)(k)( dk < Msf |/(*)||2 dk

implies Tx(s)f E t2(K, H(p)). Moreover Tx(s)f E ££(7i, 77(u)) and by (2.5)

we can define a bounded operator Tx(s) on L2(K, H (p.)) such that 7,(5,^2) =

7,($,)7,(j2) for sx,s2 in 5. Thus we get a representation 7, of S on

L2(K,H(p)). The continuity of 7, at 1, and hence the continuity of 7,

everywhere, follows from the following easily proved

Lemma 2.6. Let V be a neighborhood of 1 in S. Then there exists a neighbor-

hood W = W1 of 1 in S such that for every k in K, kWk~l C V.

Let 72 be the unitary representation of K on L2(K, H (p.)) given by right

translation. Then one easily verifies that

(2.7) 7,(ksk~x) - 72(*)7,(s)T2(k~x)

for all (s, k) in S X K. In other words, because of (2.7) one obtains a

continuous representation Ia* of G on L2(K, H(p)) by setting IA-'l(sk) =

Tx(s)T2(k) for (s, k)'mS X K. Hence Ia* is defined by the equation

(7 A>* (**)/)(*,) = A(kxskx-X)f(kxk),

(s, k,kx)ESXKX K,f E £l(K, H(p)).

By (2.5) each 7a-'x(sä:) acts as a bounded operator on L2(K, H(p)). We shall

call 7 A,M the (nonunitary) representation of G induced by A ® p and write

(2.9) 7a'" =  ind A ® u.
SA-aTC

Indeed when S is abelian and A is a unitary character of S, 7A,,i is the unitary

representation of G induced by A ® p in the classical sense of Mackey; see

[2]. Moreover by the Mackey theory one knows that 7A,M (for A unitary) is

irreducible; see [2]. On the other hand given a general nonunitary character A

of S, Ia* need not be irreducible; see Theorem 6.1. Note that 7Aj'|JC is

unitary. Moreover

(2.10) 7^= indlu.
äaTä

3. Thieleker's density lemma. The following lemma will play a key role

later, when we examine the representations Ia'11 for irreducibility. In content,

it is essentially Lemma 3 of [4], stated in a manner suitable for our purposes.

As in §1 we assume that u is an irreducible unitary representation of KA on a

Hilbert space 77 (u). Let C(K,H(p)) be the space of continuous 77 (u)-

valued functions on K and let C^K, 77 (u)) be the subspace of C(K, 77 (u))

of functions / which satisfy f(mk) = p(m)f(k) for (zw, k) E KA X K. In
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particular for p = 1 we shall write CX(K, H(l) = C) = C(KA \ K),

L2(K,H(l)) = L2(KA\K). Note that C¡¡(K,H(p)) is K invariant; i.e.

CyfK, H (p.)) is invariant under right translation by K.

Lemma 3.1 (Thieleker's density lemma). Let F¥"0 be a K invariant

subspace of CM(AT, H(p)) and let A be a K invariant subspace of C(KA \ K). If

A is dense in L2(KA \ K), then AF (the subspace of C^K, //(ft)) generated by

allpointwiseproducts <j>f, <p G A,f E F) is dense in L2(K, //(ft)).

For the sake of completeness we will sketch a proof of Lemma 3.1 in this

section. First it is necessary to show

Lemma 3.2. Let 0 ¥= W c L2(K, H(p)) be a closed K invariant subspace.

Then Wcontains a nonzero element of Cp(K, H(p)).

Proof. Let U = IA,li\K so that by (2.8) U is the unitary representation of

K on L2(K, H(p)) given by right translation. Given <p in C(K) we can form

the Fourier transform of $ at U; i.e. form the bounded operator

$(U) = U(k)U(k) dk   on L2(K, //(ft)).
•>K

Let/ G W,J ¥> 0. For each <f> in C(K)

(kU)JJ) = j*(k){U(k)j,J)dk.

Hence if >p(U)J = 0 for every <b in C(K), {U(k)J,j} = 0 for every k in

K=*J = 0. In other words there is some ¿> in C(K) such that $(U)J=£ 0. On

the other hand, since W is U invariant and since U is unitary, W is <¡>(U)

invariant; i.e. faU)J E W. Moreover $(U)J E CÁK,H(p)). In fact, by
Fubini's theorem, one sees that <b(U)J is the unique element of C^fK, H(p))

such that

((kU)j)(k), a) = U(kx)(J(kkx), «> dkx
A

= f<t>ik-xkx)(J(kx),a)dkx   iot(k,a)

inK X H(p). The last integral implies the continuity of 4>(U)J.

The proof of Lemma 3.1, which we now sketch, is the same, with one

exception, as that of Lemma 3 in [4], given by Thieleker. First note that A F is

K invariant since A, F are K invariant. Since K acts unitarily, it follows that

the orthogonal complement (AF)X of AF in L2(K, H(p)) is also K invariant.

Assume that (AF)X J= 0. Noting that (AF)X is a closed subspace of

L2(K,H(p)), we deduce by Lemma 3.2 that (AF)X contains a nonzero

continuous function /. If y G F is arbitrary define y¡ G C(KA \ K) by yf(k)

— (J(k% y(^)>; at this point we use the continuity and the unitarity of ft. For
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every <í> in A

f*(k)yf(k) dk -fK(f(k), (*y)(*)> dk = 0

since <¡>y E AF,f E (AF)1-. By hypothesis, A is dense in L2(KA \ K). There-

fore for almost all k in K, yf(k) = 0. But y¡ is continuous so yf(k) = 0 for all

k in K. Now let k, kx in A^ be arbitrary. Since Ot^ F is K invariant we can

choose y E F such that y(l) =£ 0. If R(k~xkx)y denotes right translation of y

by k~xkx, then R(k~xkx)y £ F and we have just seen that for all / in K,

(R(k-Xkx)y)f(l) = 0. Taking / = k we get

0 = (R{k-xkx)y)f(k)=(f(k),(R{k-xkx)y)(k))

= (f(k),y(kx))   for (k,kx) in KXK.

Let 770 = {p(m)y(l)\m E ATA} = {y(z»)|z» E KA). Since u is irreducible and

since y(l) =£ 0, the closed subspace of 77 (u) generated by 770 coincides with

77 (u). Thus by (3.3), </(*:), a> = 0 for every (a, z<) in 77 (u) X K so / = 0.

This contradiction shows that (AF)1- = 0 so that AF is dense in L2(7T, H (p.)).

4. The algebra ^4 (dA). From this point on we shall assume that G is a

connected Lie group and that S is also connected; see (2.1). To any 1-dimen-

sional representation A of S we shall associate a complex K invariant

subalgebra A (dA) of C(KA \ K) having the following properties:

(i) A (dA) contains the constant functions on K.

(ii) A (dA) separates the points of KA \ K.

(iii) If A(dA) is dense in L2(KA \ K) then 7A,,t is topologically irreducible.

Here dA is the differential of A given by (1.2). In particular, by the

Stone-Weierstrass theorem, a sufficient condition that Ia'11 be topologically

irreducible is that A (dA) be closed under complex conjugation.

As in §1 let < , > be a K invariant complex inner product on L(S)C. Given

z,xE L(S)C we define <pZiX E C(K):

(4.1) <p2X(k)e<AdWx^>   for k E K.

Definition 4.2. Given z E L(S)C, A(z) is the complex subspace of C(K)

generated by the functions <f>2X in (4.1) where x varies over L(S)C.

By (4.1) <bt<Xl - <bz^ = *,,,,+,, for z, x„ x2 in L(S)C. Hence A(dA) is a

subalgebra of C(K) (under pointwise multiplication). That we actually have

A (z) c C(KA\ K) follows from

Proposition 4.3. KA - {k e K\Ad(k) dA = dA).

The proof of Proposition 4.3, which uses the fact that S is connected, is

easy.

The algebra A (z) is, in a sense, a global analogue of the algebra, introduced

by Thieleker, which is generated by the functions k -» <Ad(zV)x, z), k E K,
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where z is fixed and x varies, x,zE L(S)C. From our "global" point of view

the use of the exponential function in (4.1) is natural. This will become clearer

when direct use of equation (2.8) is made and when z is taken to be the

element dA of L(S)C. As we have seen, because of exponentiation, the

subspace A(z) is automatically a subalgebra. A(z) clearly contains the

function 1 on K and is K invariant; i.e. A(z) is invariant under right

translation by K. In particular for z = dA we have

Proposition 4.4. The K invariant subalgebra A(dA) oj C(KA \ K) contains

the constant junctions on K and separates the points oj KA \ K.

Proof. Suppose kx, k2E K such that §(kx) = <b(k2) for every <p in A (dA).

We must show that k2kxx E KA. Let s G S be arbitrary. Since S is connected

í - II, exp Xj, Xj E L(S). Then

A(k2kx-Xs(k2kxx)'1) = HA(k2kx-xcxp Xj(k2kx)-X)
j

= T[A(exp Ad(k2kx~x)xJ
J

= IIWd(*r')*,(*2)   (by (1.1) and (4.1))
J

= u <r\,A,Ad(*f,)*,(*l)     (SillCe *(*l) = *(*2) f0r eVefy * Ín A {dA))

j

= J[e<xJ-dA> = u A(exp xj) = A(s)   (again by (1.1) and (4.1)),
j j

which shows that k2kxx E KA, since í was arbitrary.

The following theorem is of fundamental importance. Its application in

conjunction with the density lemma (Lemma 3.1) will give us statement (iii)

on page74.

Theorem 4.5. Let W c L2(K, H(p)) be a closed IKll\s invariant subspace.

Then W is also A (dA) invariant; i.e. iS<$>EA (dA) and S E W, then <tf E W.

Proof. The heart of the proof involves justifying differentiation under the

integral sign and the use of Lebesgue's theorem on dominated convergence.

Note that since A(dA) c C(KA\ K), A(dA)W is indeed contained in

L2(K, H(p)). TakeS 6 FF,/fixed once and for all. Suppose x E L(S). Then

by (1.1), (2.8), and (4.1)

(4.6) IA»(expx)J=$dAJ;

i.e. since Wis IA,,l\s invariant

(4.7) «pdA> J E W   for every x in L(S ).

However we must show that (4.7) holds for every x in L(S)C. Again let
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x E ¿(S) be arbitrary but fixed. Let ¿> E C(K) be defined by

(4.8) <p(k) = <Ad(zc)x, dA).

Then for every (m, k) in KA X K, <¡>(mk) = <Ad(m)Ad(A:)x, dA) = (Ad(k)x,

Ad(m~l)dA} = <Ad(zc)x, dA} (by Proposition 4.3) = <b(k); i.e. ¿> E C(KA\

K)=*<bfE L2(K, 77 (u)). We claim that <$/, ¥> = 0 for every * in W±. To

prove this, choose a neighborhood N of 0 in R whose closure A/ is compact

and define F: K X N -> C by

(4.9) F(k, t) = (e'W<)*.dVf(k), *(£)).

Then

(a) k-* F(k,t) E LX(K) for every / in A/, by Holder's inequality,

(b) dF(k, t)/dt = e'<Ad(*)jc-rfA><Ad(Â:)x, dA)(f(k), <fr(k)) for every (k, t) in

K X N, and

(c) |9F(Jfc, 0/3*1 < M\\f(k)\\ ||¥(*)|| for every (A:,/) in A: x A/, where
k -> A/||/(zc)|| ||*(zc)|| E LX(K), by Holder's inequality, and

\es<Ad{k)x-dA\Ad(k)x, dA)\ < M

for every (k, s)inK X N.

In other words, because of (a), (b), (c) we can say the following. Put

G(Q = ÍkF(K t) dk, t E N. Then G'(t) exists on N, k-*dF(k, t)/dt E
LX(K) for every / in N and G'(t) = ¡KdF(k, t)/dt dt, t E N. In particular,

G'(0) - £ ^ (k, 0) J/ = J^«Ad(A:)x, dA)f(k), *(k))dk    (by (b))

= <<*>/,*>   (by (4.8));

i.e.

<*/,*> =hm±[rJ(/)-G(0)]

= lim- f[F(k,t)-F(k,0)]dk

= lim j J [(e'<A«k)x<dA>f(k), *(*)) - </(*), ¥(*)>] <ft

(by (4.9))

-um j[<*rfiUx/; *>-</,*>] -0
z—>o *

by (4.7) since * E H/-1-. Thus we have shown that d>/ E (H/X)-L. But ( W1-)1-

= If since If is closed; i.e. <Ad(-)x, dA}f E W for every x in L(S) =»

<Ad(-)x, i/A>/ E W   for every x E L(S)C.

Next let z E L(S)C, * E IT-1-. Choose M such that |<Ad(£)z, dA)\ < M for

every kinKand choose M, 3 "2p.0Mp/P\ < Mx for n = 1, 2, 3,-Put
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»    (Ad(k)z,dA\p
/.(*)-2 ̂ ~4i—-</(*>.*(*)>•

p-0 P'

k E K. Then each/, G L'(^)> by Holder's inequality, and

|£<*>| <!/(*)! I*(*)|"i
for every «, A:. Thus by the Lebesgue dominated convergence theorem

^<Ad(. )z,dA>£ *> = J jiim /„ (k) dk

- & J> (*)* - & 2o ji «Ad(.)i. ¿A>7, *) = 0

since <Ad(-)z, </A>^f G If by (4.10) (and induction on p) and since ¥ G

If x; i.e. e<Ad«^A>/ e (^Y = H/ for every z in L(Sf implies ¿»/ G W for

every d> in A (dA).

We can now state the main result of this section.

Theorem 4.11. IJA(dA) is dense in L2(KA \ K) then the nonunitary induced

representation Ia'11 oS G is topologically irreducible; see (2.8) and Definition 4.2.

Proof. Let 0 =£ We L2(K, H(p)) be a closed Ia* invariant subspace. In

particular W is /A,,l|Jf invariant; i.e. W is invariant under right translation by

K. By Lemma 3.2 there is a continuous function / in C¡l(K,H(p)) with

/ G W, j¥= 0. Let F = R(K)J = subspace of C^K, //(ft)) spanned by the

right A' translates of /. Assuming that A (dA) is dense in L2(KA \ K) we can

apply Lemma 3.1 to conclude that A(dA)F is dense in L2(K, //(ft)); i.e.

(4.12) A(dA)F (closure in L2) = L¡(k, H(p)).

Also W is /A,"|s invariant. Thus if <p G A(dA) and k E K, ¿»/^(fc)/ G W

by Theorem 4.5 since /A,,*(fc)/ G W. In other words, A(dA)F c W so

because Wjz L2(K, H (p.)) is closed we have Lfâ, //(ft)) =A(d A)F (by
(4.12)) c IF = W, which proves irreducibility.

5. Sufficient conditions for irreducibility. If A (dA) is uniformly dense in

C(KA \ K) then A(dA) is dense in L2(KA \ K) since C(KA \ K) is dense in

L2(KA \ K) and since A' is compact. Hence by Proposition 4.4, the Stone-

Weierstrass theorem, and Theorem 4.11 we have

Theorem 5.1. IJ A(dA) is closed under complex conjugation then Ia* is

topologically irreducible.

Now we shall describe some general conditions on dA which will guarantee

the closure of A(dA) under complex conjugation. First note that the K

invariant inner product < , > on L(S)C satisfies <z,, z2>= (zx, z2} for zx, z2 in

L(S)C, where — also denotes complex conjugation on L(S)C with respect to
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L(S). Since Ad|Ä leaves L(S) invariant it follows that

(5.2) W*) = *<Ad(*)z~,JX>

for (z, k) E L(S)C X K; see (4.1). Recall that A is unitary if and only if

dA E (- l)l/2L(S). From (5.2) it is clear that A(dA)c A(dA) for A unitary

so that Theorem 5.1 implies 7^** is irreducible if, in particular, A is unitary.

Theorem 5.3. If k-* (Ad(k)A, dA} is a real-valued function on K then

A(dA)cA(dA).

Proof. Let KdK be the subspaceof L(S)C spanned by {Ad(k)d~K\k E K).

Thus we can write L(S)C = KdK®(KdK)-L. If z E L(Sf is arbitrary,

z - 2jCjAd(kj) dA + zx where z, E (KdA)1-, kj E K and c, E C. Then for
every kinK

(Ad(k)z, IK) =^Cj(Ad(kkj)dX, dK)
j

since (Ad(k)zx, dK) = <z„ Ad(k-X)7K) = 0. By (5.2)

fa#) = LIexp{c,.(Ad(A*,)dK, IK)}
j

- II exp {c, (Ad(kkj)dA, dA) } = Llexpfc^Ad^zc,) dA, dA)}
J j

since kx -* (Ad(kx)dA, dA} is real-valued by hypothesis. Thus

W*) - nexp{<Ad(*)c,Ad(*,)¿A, dA)}
j

= l±'P<IA,CjAd(.kj)d\(k)

j

for every k in K, which shows that $dA<z E A(dA) for every z in L(S)C. Since

A(dA) is spanned by the functions $dAyZ, z E L(S)C, Theorem 5.3 follows.

Proposition 5.4. The function k -» (Ad(k)dA, dA) is real-valued on K if

any of the following conditions holds : _

(i) <i/A, x){dA,y) is real for every x,y in L(S); note (dA,y)= (dA,y).

(ii) ATaA:A:a =_KAk~xKAfor every k in K.

(iii) dA = cd A for some c E Cx.

(iv) Every closed K invariant subspace of L2(KA \ K) is spanned by real

functions; here K acts on L2(KA \ K) by left translation.

(v) f(k) = f(k~x) for every k in K for any f E C(K) which satisfies

/(m^zzzj = f(k)for every k in K, mx, m2 in KA.

If the adjoint representation of K on L(S)C is irreducible, then k-*

(Ad(k)dA, dA) is real-valued on K if and only if(i) holds.

Proof. Choose a real orthonormal basis {e,} of L(S). Then for each k in K
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the matrix coefficients (Ad(k)ej, e¡) are real numbers. On the other hand {e}}

is a complex orthonormal basis of L(S)C so that dA = ~2j(dA, ej/ej implies

<Ad(*) dA, dA) = 2 {Ad(k)ej, e¡)(dA, e}> (dA, et) .
ij

Hence (Ad(-)dA, dA} is real-valued on K if (i) holds. Conversely suppose

(Ad(-)dA, dA) is real-valued on K and, in addition, the adjoint repre-

sentation of K on L(S)C is irreducible. Then by the Schur orthogonality

relations, for every x, y in L(S),

(dA, x)(dA,y) = dimc L(S)C [ (Ad(k)dA, dA)(Ad(k)x,y) dk

is real. Suppose (ii) holds. Then given k in K there exist mx, m2 in KA such

that k = mxk~xm2. Then

(Ad(k) dA, dA) = (Ad(mx)Ad(k-x)Ad(m2)dA, dA)

= (Ad(k~x)dA, dA)   (see Proposition 4.3)

= (dA, Ad(k) dA) = <Ad(Jfc) dA, dA)

which shows that (Ad(k)dA, dA) is real for every k in K. Clearly (iii) implies

(ii). Now (ii), (iv), (v) are equivalent by [3].   Q.E.D.

In the special case that (K, KA) is a symmetric pair of compact type the

double coset condition in (ii) of Proposition 5.4 can be replaced by a simple

Weyl group condition. Thus suppose:

(5.5) K is connected, the center of K is discrete, o is an involutive

automorphism of K which fixes KA pointwise, and KA is open in the fixed

point set of o.

Let f, fA denote the Lie algebras of K, KA, let a„, denote the differential of o

and define/? = [x E ï\a^x = - x). Then f = fA ® p is a Cartan decompo-

sition of f. Let a cp be a maximal abelian subspace and let M' = {k E

K\Ad(k)a c a).

Proposition 5.6. Let (K, K^ be subject to (5.5). Then the Jollowing are

equivalent

(i) There is an m in M' such that Ad(w)|Q = -1.

(ii) KAkKA = KAk~xKAJor every k in K.

(i), (ii) are equivalent to conditions (iv), (v) in Proposition 5.4.

For a proof, which is valid even in a more general context, see [3].

Corollary 5.7. Ij the symmetric space KA\K is rank 1 (i.e. dim a = 1)

then k -» (Ad(k)dA, dA) is real-valued on K.

Proof. Condition (i) of Proposition 5.6 holds so that Proposition 5.4

applies.
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Another special case is the following.

Proposition 5.8. Suppose z(K) is the center of K and dA lies in the z(K)

cyclic subspace of L(S)C generated by dA. Then A (dA) is closed under complex

conjugation.

Proof. By hypothesis, d~K='2jCjAd(kj)dA where kj E z(K), Cj E C. Then

for every k in K, and z in L(S)C

(Ad(zc)z, dK) = ^lcj^Ad(kri)Ad(k)z, dA)

= Ud(k)'2cjAd(kj-l)ldA\

soby(5.2),$dA,zEA(dA).
The main results of this paper can now be stated. Again we assume that in

(2.1) G is a connected Lie group and S is also connected. L(S) is the Lie

algebra of S, dA E L(S)C is given by (1.2), KA is given by (2.2) (or

Proposition 4.3), the bar - denotes complex conjugation on C or on L(S)C

with respect to L(S), and < , > is a K invariant complex inner product on

L(5)casin§l.

Theorem 5.9. The nonunitary induced representation 7A,>1 = inds^Al.cA ® p

(see (2.8)) is topologically irreducible if any one of the following conditions holds.

(a) <í/A, x)<i/A,y) is real for every x,y in L(S); note <i/A,y>= (dA,y)

for every y in L(S).

(b) dA = cd A for some nonzero c in C (Thieleker).

(c) The function k -» (Ad(k)dA, dA) is real-valued on K.

(d) KAkKA = KAk~xKAfor every k in K.

(e) Every closed K invariant subspace of L2(K \ KA), where K acts on

L2(K \ KA) by left translation, is spanned by real functions.

(f)./W = f(k~x)for every k in K for any continuous function f on K which

satisfies f(mxkm2) = f(k)for every k in K, mx, m2 in KA.

(g) dA lies in the z(K) cyclic subspace of L(S)C generated by dA where z(K)

is the center of K.

(h) (K, KA) is a symmetric pair of compact type (see (5.5)) and (i) in

Proposition 5.6 holds.

(i) KA\ K is a rank 1 symmetric space.

(j) The algebea A (dA) (see Definition 4.2) is dense in L2(KA \ K).

(k) A (dA) is closed under complex conjugation.

For various redundancies and equivalences among conditions (a) through

(k) see Theorem 5.3, Proposition 5.4, Proposition 5.6, Corollary 5.7, and

Proposition 5.8. The proof of Theorem 5.9 follows from Theorem 5.1 and the

other results of this section.
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Theorem 5.10. Suppose p — 1 is the trivial representation of KA on H(p) =

C. Then /Al1 is irreducible if and only if A (dA) is dense in L2(KA \ K).

Proof.  The point is  that A(dA) is an /A,!  invariant subspace of

L2(KA \ K). In fact if (x, z) E L(S) X L(S)C is arbitrary then by (4.1) and

(4.6)

/A>1 (exp x)<bdA¡2 = <bdA¡x • 4>dAa - 4>d\s+z-

It follows then that A(dA) is IA,X\5 invariant since S is connected. On the

other hand IA,X\K is right translation on L2(KA\ K) and A (dA) is always

invariant under right translation. Hence A (dA) and hence A (dA) (closure in

L2(KA \ K)) are IA'X invariant. If IA,X is topologically irreducible then we

must have A(dA)= L2(KA \ K). Conversely if A (dA) is dense in L2(KA \ K)

then /A'' is topologically irreducible by Theorem 5.9(j).

The proof shows

Corollary 5.11. If p = 1 is the trivial representation of KA on C then

A (dA) is an IA'X invariant subspace of L2(KA \ K).

As an example consider the Euclidean group of motions E„ = R". SO(n)

of R", where SO(n) acts linearly on R". If A ¥- 1, KA = SO(n - 1) and for

« > 3, (d) of Theorem 5.9 holds (or (i))'. Hence the induced representations Ia'11

of E„ are always topologically irreducible for n > 3. For n = 2 this is not the

case; see p. 82.

6. A reducibility theorem. The nonunitary induced representations LA,M =

indSJfAÎCA ® ft, contrary to the unitary case, can indeed be reducible.

Theorem 6.1 of this section shows that when K is abelian, when ft = 1, and

when dA is a "weight vector" of Ad|^, then /A>1 is reducible. The latter

hypotheses are satisfied, for example, when G is taken to be the two-dimen-

sional Euclidean group of motions of the plane E2 and A is the representaiton

of S = R2 whose infinitesimal character dA is [l/(-l)1/2] G C2 = L(S)C;

see page 82. This example is due to J. M. G. Fell and was the motivation for

our formulation of Theorem 6.1. A similar example is given on page 83. On

the other hand if n > 3 we have seen (page 81 that the induced repre-

sentations Ia"* of En are always topologically irreducible.

The following theorem is more or less known.

Scholium. Let K be a compact abelian group and let K denote the dual group

of unitary characters of K. Then K is connected if and only if K is torsion free

(i.e. K has no elements of finite order other than the identity).

We shall only need that connectedness implies no torsion. In fact when K is

a compact, connected, abelian Lie group-the case which we shall consider-AT

is a torus and K = Zdim K where Z is the ring of integers. Thus K is clearly

torsion free.
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Theorem 6.1. Suppose K is abelian and suppose Ad|^ leaves Cd A invariant;

i.e. there is a unitary character x of K such that Ad(k)dA = x(k)dAfor every

k in K. Assume that x ¥= 1. Then the nonunitary induced representation Ia"1 is

reducible. In fact A (dA) (closure in L2(KA \ K)) is a nonzero, proper, closed

Ia'1 invariant subspace; see Definition 4.2 and the paragraph which precedes the

statement of Theorem 5.9.

Note that if x = 1» then 7a'1 is topologically irreducible since in fact

K = KA by Proposition 4.3; i.e. 7A>1 = A. Note also that x E C(KA\K)

since for every (m, k) in KA X K,

X(mk)dA = Ad(zzz)Ad(A:) dA = x(¿)Ad(zzi) dA - X(k) dA.

Proof. Suppose/ E L2(KA \ K) and z E L(S)C are arbitrary. By Holder's

inequality L2(K) c LX(K) so by (4.1) and by Lebesgue's theorem on

dominated convergence

f W*)/(*) dk = fe<Ad(k)2'dA>f(k) dk

(6.2) = f e<z^k'>)dA>f (k) dk=f »<***>*«»/ (k) dk

»-0 n] JK

Now take/ = x E L2(KA \ K); see above note. Then

(6.3) fxn(k)f(k)dk = fxn+x(k)dk = 0

for » = 0, 1, 2, 3,..., by the orthogonality relations. The point is that K is

connected (K is a continuous image of G) so by the Scholium, or the remarks

following it, K is torsion free; i.e. x"+l ^ 1 since x ^ 1 and hence the

orthogonality relations do apply. Thus (6.2) and (6.3) imply that for/ = x

/ ta-Aa (k)f (k) dk = 0   for every z

in L(S)C. In other words xE A(dA)L and since x ^ 0 this shows that

A(dA) cannot be dense in L2(KA \ K). Theorem 6.1 is now a consequence of

Theorem 5.10 and Corollary 5.11.   Q.E.D.

Now we shall consider Fell's example. Let G = E2 be the Euclidean group

of motions of the plane. Here S = R2, K = SO(2) is abelian, and L(S)C may

be identified with C2. Let A be the representation of S whose infinitesimal

character is dA = [l/(-1)1'2] E C2. If

a(0)=[cos0        sin 0 1 ESOn\
y '    I — sin 9    cos 0 J

then Ad(a(0)) dA = eiB dA for every 0 in R. Therefore by Theorem 6.1 the
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corresponding nonunitary induced representation /A'' of E2 is reducible.

Proposition 6.4. Let A be any nonunitary character of R2. In particular

since A =^= 1, A^A = {1}. The corresponding induced representation IA'X of E2 =

R 2. 50 (2) is topologically irreducible if and only if the infinitesimal character

dA is an Ad|SO(2) cyclic vector.

Proof. If dA is cyclic then the irreducibility assertion is a consequence of

Theorem 5.9(g). Conversely let SO (2) dA denote the Ad|S0(2) cyclic subspace

of L(R2)C generated by dA. Then since L(R2)C has dimension 2, SO(2) dA

= C dA if dA is not cyclic. Then LA'X is reducible by Theorem 6.1.

As another example we consider K = SO (2) as a group of automorphisms

of the Heisenberg group S. Typical elements of S, K are written, respectively,

[x,y,z] =

x

1

0
0

z

y

y

o
1     -x
O       1

o(9) =

O
eos 9

— sin 9
O

O O
sin 9 O
eos 9 O

O 1

where x,y, z, 9 are real numbers. The corresponding semidirect product G,

for which 5 ia a normal factor, is called the Oscillator group and consists of

4x4 real matrices of the form

z

y

1 x cos 9 - y sin 9 x sin 9 + y cos 9

0            cos 9 sin 9

0 - sin 9 cos 9 -x
LO 0 0 1

Clearly the Lie algebra L(S) of S consists of matrices of the form

[a,b,c] =

a

0
0
0

b
0
0
0

c

b
— c
0

where a, b, c are real numbers. An easy calculation shows that

(6.5)

Ad(o(9))[a,b,c]

— asin9 — b cos 9
- a cos 9 - b sin 9

0

0 a cos 9 + b sin 9 - a sin 6 + b cos 6
0               0 0
0 0 0
0 0 0

for [a, b, c] G L(S)C; i.e. for a,b,cE C; here 9 is any real number. Any

character of 5 has the form Aaß where Aaß([x,y, z]) = e0"*®, (a, ß) E C2,

and [x,y, z] G S. dAaß in L(S)C is given by dAaß = [ä, ß, 0]. If Aaß *= 1,

KKß = {1}.   In   particular  if  dAaß = [1, (-l)1/2, 0]  (i.e.   a = l,  ß =
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-(-l)'/2) then by (6.5), Ad(o(9))dA = expft-^)1/2} dA for every real

number 0 and by Theorem 6.1 the corresponding induced representation

ja,,_,_„1/2,1 of q is re(jucibie# On the other hand, for (a, ß) E C2 arbitrary

(Ad(o(0)) dAaj, dAa,ß) - (|a|2 +1 0|2)cos 0 + (ßa - Í0)sin 0

by (6.5). This is real if aß is real. Hence by Theorem 5.9(c) the corresponding

induced representation IAa^1 of G is topologically irreducible whenever aß is a

real number.

As we indicated in §1 (see Theorem 1.3) the complete irreducibility

properties of the representations Ia'11 will be investigated in a forthcoming

paper.
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