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BASES FOR THE POSITIVE CONE OF A PARTIALLY

ORDERED MODULE^)

BY

W. RUSSELL BELDING

Abstract. (R, R +) is a partially ordered ring and (M, M+) is a strict

(R, R +)-module. So M is a left Ä-module and (R + \ {0}XM* \ {0}) £
M + \ {0}. Let < ' be the order induced on M by M+. B C M* is an

R +-basis for M + means R *B = M * (spanning) and if r is in R, b in B

with 0 < 'rb < 'b then rb «Ë R +(B \ {b}) (independence).
Result: If B and D are R +-bases for AÍ + then card B = card D and to

within a permutation b¡ = u¡d¡ for units u¡ of R +.

Introduction, A closure operator c on a set X is a map from the subsets of

X, <$(X), to <$(X) with the following properties: A Q cA; cA = ccA and

A Q B implies cA C cB. The closure operator c is algebraic if cA = \JcA0

where .40 ranges over the finite subsets of A. Sets of the form cA are closed

and the closed sets form a complete lattice under \fcA¡ = c(\JA¡) and

/\cvl; = fi cA¡. A set 5 is a aos/í for cA if c\B = cA (B spans cA) and b E B

implies b E c(/7 \ {b}) (B is independent). The closure operator c has the

exchange property if a E cA and a E c(^4 u {b}) implies b E c(A u {a)). It

is known (Cohn [3, Chapter VII]) that for an algebraic closure operator c with

the exchange property the following statements are equivalent: B is a basis

for cA; Bisa maximal independent subset of cA ; B is a minimal spanning set

for cA. Further, every closed set cA has a basis and two bases for cA have the

same cardinality. These results may fail if c does not have the exchange

property.

The simplest example of an algebraic closure operator having a closed set

with bases of distinct cardinalities is the following (M. N. Bleicher and E.

Marczewski [1, p. 211]): X = {1, 2, 3} and S C X
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Observe that {3} and {1, 2} are bases for X. Example 5, below, gives an

example of a maximal independent set B QcA which is not a basis for cA.

Yet, in the examples of Theorem 3, every closed set has a unique basis. So the

exchange property is sufficient but not necessary for every closed set to have

a basis and for bases to have the same cardinality.

The following problems naturally arise for algebraic closure operators.

Find necessary and sufficient conditions for a closed set to have a basis. Find

necessary and sufficient conditions for bases of a closed set to have the same

cardinality. This paper is about sufficient conditions for bases to have the

same cardinality for one class of closure operators. For this class of closure

operators we need to strengthen the definition of independence to get this

result.

1. Definitions. We state some standard definitions which are found in L.

Fuchs [4] and P. Ribenboim [7]. A partially ordered group (G, < ') has < ' as

a partial order on G and if a < 'b then for every u, v in G, uav < 'ubv.

Equivalently we could write (G, G+) and require the positive cone G+ to

satisfy: reflexivity, 1 G G + ; antisymmetry, G+ n (G+)~x = {1};transitivity,

G*G+ C G + ; and monotonicity, for g in G, gG+g~l C G+. If < ' is the

order induced on G by G+ then G+ = {g|l < 'g). (G, G+) is directed if

every g in G can be written xy~x for some x,y in G + ; this is equivalent to

every pair { g, h) in G having an upper and a lower bound in G. A partially

ordered ring (R, R +) is a partially ordered group with respect to addition and

R +R + C R +. The ordering is strict if (R + \ {0))(R + \ {0}) CR+\{0}.

Should the order induced by R + not be strict, let D0 = {x G R +\x j= 0 & 3y

(y E R + &y =£ 0 & xy = 0)} and R * - R + \ D0; then the partially ordered

ring (i?, R *) has a strict ordering. For example, let C = C[0, 1] be the ring

of continuous maps from [0, 1] to the reals, R. Let C+ consists of those/in C

such that 0 < f(x) for all x in [0, 1]. The ordering induced by C + on C is not

strict. C* consists of those/in C+ such that/_1{0} contains no nonempty

open interval (a, b) C [0, 1].

If (M, M +) is a partially ordered group it is also an (R, R +)-module if M

is a left i?-module and if R+M+ Q M+. It is a strict (R, R +)-module if

(R + \ {0))(M+ \ {0}) ç M+ \ {0}. We restrict ourselves to strict (R, R +y

modules. In particular if r E R +, m E M+ \ {0} and rm = 0 then r = 0.

Consequently the ordering induced by R + on R must be strict. We require

rings to have a 1. The units of R+ are the units u of R for which both u and

K"1 are in R +. In particular a unit of R + is more than a unit of R which is in

R +. The nonnegative integers, rationals and reals are written Z+, Q +, R+

respectively.

Example 1. A partially ordered abelian group (M,M+) is a strict

(Z, Z +)-module as the positive cone M + is torsion free.
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What seem to be natural requirements in the proofs of Theorems 1 and 2

lead to a modification of the definition of a basis for closure operators on

abelian groups. Let M be an abelian group and c a closure operator on M.

Let B C cA C M. Then B is a basis for cA if (i) cB = cA and (ii) a EM,

b E B,a E c{b) and b — a E cB implies a E c(B \ {b)). So only the notion

of independence is changed from the standard definition given earlier. If B is

independent in this new sense it is independent in the standard sense but not

conversely. From now on we use only this new definition.

2. R +-bases for M+. Let (/?, R +) be a partially ordered ring and M an

7?-module. If 77 ç A/ let cB be the set of finite sums 2r(6(. with b¡ in B and r¡

in R+. Then c is an algebraic closure operator on M. For convenience we

write R +B = cB. If (M, M +) is a strict (R, R +)-module and B CM* then

(M, R +B) is a strict (R, R +)-module. The set B R +-spans M+ if R +B -

A/+. If < ' is the order induced by M+ on M then 77 is R + -independent if
for b in 5 and r in 7? we have 0 < 'rb < '¿ implies r¿ E R +(B \ {b)). With

both these properties, B is an /î+-basis for M+. This is how the new

definition of basis is interpreted in this context.

Example 2. Let Pn = {0, xx, x2,..., x„ «■ 1} be any partition of [0, 1] and

let fk E C be nonzero only on (xkA, xk) and nonnegative on this interval.

Then 77 = {/,./„} ç C+ \ C* but (C, C*B) is a strict (C, C^-mod-
ule.

Let < ' be the order induced on C by C #B. If g E C and 0 < 'gfk < % it

is straightforward to check that gfk E C*(B \ {fk)). Clearly the members of

C *B do not have unique expressions as C *-linear sums of thefk.

Example 3. Let / be an index set and (R, R +) a partially ordered ring.

Then ®,(/?, R +) = (©,/?, ©,/?+), having the product ordering (#>) < '(*,)

iff r¡ < 's¡ for each /, is an (R, R +)-module. The cone ©/7Î+ has R +-basis

{(8y)jel\i El) where 8y is the Kronecker delta in R.

Example 4. Let B be a set of positive reals which are independent as

vectors over Q. Then 77 is a Q + -independent set, (R, Q+B) is a (Q, Q+)-

module and B is a Q +-basis for the cone Q +B. The ordering < ' induced by

Q +B on Risx < 'y iffy - x E Q+B.

By the definition of R +-independence, a set B C M+ is R +-independent

if and only if each finite subset of 77 is 7?+-independent. So the union of a

chain of R + -independent subsets of M+ is an R + -independent subset.

Zorn's lemma gives that each R +-independent set B C M+ can be extended

to a maximal R +-independent set Bm, B C Bm C M+. Like the extension of

independent sets of vectors, Bm is not unique. Unlike the extension of

independent sets for algebraic closure operators with the exchange property,

it is not necessary that Bm R +-span M+.

Example 5. (Z, Z+) is a (Z, Z +)-module. {2} is a Z +-independent set
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and for every k > 1, (2, 2fc + 1} is a maximal Z+-independent subset of

Z +. Of these sets {2, 3} has the largest Z+-span, Z +{2, 3} = Z+ \ {1}.

Lemma 1. If (M, M+) is an (R, R +)-module and M+ has an R +-basis B

then 1 G R+.

Proof. Let < ' be the order induced on M by M+. Let b G B and

b = 1r¡b¡ for some b¡ in B and r¡ in R + ; then b must appear in the sum by

the R +-independence of B. If b = *, then 0 < '(1 - 0)¿ = 2wr,ô, < '6. By

R +-independence (1 — r)b = 0 and by strictness of the order, 1 = ry, so

1 ER+.    □

It is natural to ask, in the general case, how two /t"1"-bases for M* are

related. If Af + has R+ -bases B and D then B and Z) have the same

cardinality and to within a permutation b¡ = «,£?,■ for units u¡ of R+.

Theorem 1. If M + has R +-bases B = {bx,..., bm) and D = {dx,... ,dn)

then n = m and to within a permutation b¡ = u¡d¡for units u¡ of R+.

Proof. For xkj, yJk in R+, b¡ = 2j.iX0dj and dj = S™.^*^. Put A' =

(xkJ), Y = (ykj). Let H = AT, then b¡ - 2£. ,*«**. If < ' is the order

induced by Af + on A/ then 0 < '(1 - *„■)&,- = S^AA- By the Ä "Mndepen-

dence of B and the strictness of the ordering h¡¡ = 1 and hik = 0 for i *£ k.

Thus AT = Im, the m by m identity matrix over R. Similarly YX = I„. So

m n

y-i j~\

Each ¿, is nonzero so x¡j ̂  0 for some/; so each row of X has at least one

nonzero entry. If for a fixed/, x,y = 0 for all / then the b¡ can be written as

R +-linear sums of D \ (dj). By writing dj as an R +-linear sum of the b¡ we

obtain d} G R+(D \ {dj}), contradicting the R + -independence of D. Thus

x¡j *£ 0 for some / and each column of X has at least one nonzero entry.

Similarly each row and column of Y has at least one nonzero entry. Let < "

be the order induced on R by R +. Suppose 0 < "xipypi in R +. If k =£ i then

(1) implies 0 < "xkpypi < "0 so x^ = 0 by the strictness of the order < ". So

thepth column of X has precisely one nonzero entry. Similarly each row of X

has precisely one nonzero entry. If X has more rows than columns then X has

a zero row which is not possible so m < n. X has no zero columns so « < m,

so m = n. Similarly each row and column of Y has precisely one nonzero

entry. There is a permutation a of {1, 2,..., «} such that xia{í)ya(í)¡ = 1. To

within a permutation, b¡ — u¡d¡ for units u¡of R+.   □

If B and D are R +-bases for M+ and one is finite it is straightforward to

show the other is finite. If both B and D are infinite then card B = card D by

Proposition 5.5, p. 82 of P. M. Cohn [3] (B and D are minimal R +-spanning
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sets for M + and JQ(B) = R +B). Alternatively, the argument used to show

invariance of dimensionality of infinite dimensional vector spaces (N. Jacob-

son [6, pp. 240-241]) may be applied here without much change, to get

card B = card D.

Theorem 2. Let k be an infinite cardinal and suppose M+ has R+-bases

B = {ba\a < k) and D = {da\a < k). To within a permutation, ba = uadafor

units ua of R+.

Proof. For integers n(a), m(ß) let

n(a) m'ß)

K - 2 Xißtßdßifl   and   dß =  2 ^(«V)-
7=1 fc-1

xaß,yßy are in 7?+. For a, ß < tc let xttß = 0 if xaß does not appear in the sum

for ba; also putyßy = 0 if it does not appear in the sum for dß. Let X = (xaß),

Y = (yaß) with entries in 7?+. Each row of X and Y has finitely many

nonzero entries so the products XY, YX exist. As in the proof of Theorem 1,

XY = I = YX and each row and column of S and Y has precisely one

nonzero entry. The result follows as in the previous theorem.   □

In view of Theorems 1 and 2 we may define the degree of M* over R+,

d(M+, R+), to be the cardinality of any /?+-basis for A/+, if such a basis

exists. If (Rx, Px) is an (R2, P2)-module, (R2, P2) an (R3, P3)-module, (/?,, Px)

an (R3, P3)-module and each degree is defined, it is straightforward to check

that d(Px, P3) < d(Px, P2)d(P2, P3). Equality does not have to hold.

Example 6. (R3, P3) is (Z,Z+); (R2, PJ is (R, Z + {1, V3 , V5 }) and

(Rx, Px) is (R, 7>2{1, V6', VÏÔ }). Then {1, V3 , V5 } is a P3-basis for P2
andjl, V6 , V3 } is a P2-basis for Px. However, {1, V3 , V5 , V6 , 3V2 ,
V30 , 5V2 } is a Pj-basis for Px. Every cone Zc, with (Z, Zc) a partially

ordered group, may be characterized by a unique Z +-basis.

Theorem 3. If (Z, Zc) is a partially ordered group then Zc has a unique and

finite Z*-basis.

Proof. < ' is the order induced by Zc on Z. The symbol < and the terms

least, positive and negative all refer to the usual ordering in Z. Observe that if

Zc contains positive and negative integers then Zc = mZ for some integer m

and < ' is not antisymmetric.

First suppose Zc ç Z + and let nx be the least member of Zf. Let n2 be the

least member of Zc \ Z + {«,} if this set is nonempty, Generally let nk be the

least member of Zc \ Z + {«,,..., nk_x) if this set is nonempty, otherwise the

procedure stops. Since n2 must lie between tnx and (/ + X)nx for some integer

/, and so on for the choices n¡, this procedure will stop in A: < nx steps. If nk is

the final choice then Zc C Z+B where B = {nx,... ,nk). Since Zc is closed
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under addition and B C Ze then Z +B Ç Zc so Zc = Z + B and B Z + -spans Zf.

If B is not Z +-independent then n¡ E Z +(B \ {n¡)) for some n¡ in B and

i < fc. According to the procedure n¡ g Z + {nx,...,«,_,} so n¡ = m,n, +

positive terms, for at least one t > / + 1 and mt > 1. So n, < n¡, which is

forbidden by the procedure. Thus B is Z +-independent and B is a Z +-basis

for Zc. The uniqueness of 5 follows from Theorem 1.

If Zc Ç - Z + then -ZCCZ+ and -Zc has Z +-basis 5. So -B is a

Z +-basis for Zc.   □

The proof given simply picks out the set of atoms B of the ordering < '. So

the Z+-basis B is the subset of Zc consisting of those elements which sit

immediately above 0 in the relation < '. The proof uses the facts that

(Z, Z+) is totally ordered and that Z+ is well ordered and these two

properties characterize the integers. If (R, R +) is a totally ordered ring and

R + is well ordered, then to within an isomorphism (R, R +) = (Z, Z +). (G.

A. Heuer [5, p. 135].) M. N. Bleicher and H. Schneider [2, p. 241, Theorem

4.3] have also given a characterization of cones in Z.

3. Directed modules and automorphisms. If (R, R +) is directed then every r

in R has expression r = x - y for some x andy in R +. So R = R + - R +. If

(M, M+) is directed then M - M+ — M+. Generally, the directed compo-

nent ofOmRisR0='R'¥-R+ and the directed component of 0 in M is

M0 = M+ - M+. R0 is a subring of R. (M0, A/+) is an (R0, R +)-module;

for if rx, r2 G R +, mx, m2 E M + then (rx — r^(mx — m¿ = (rxmx + r2m1) —

(r2mx + r,/«^ is in M0. However, M0 is not always an .R-module. M0 is also a

convex submodule of M if mx, m2 G M0 and mx < 'm < '/m2 in M then

m G A/0. Let mx = a — b with a,b E M+. Then w, < 'm implies 0 < 'a < '

m + 6som = (ffi + ¿)-¿E A/0. Hence the quotient module M/M0 may

be given the induced ordering with positive cone (M/M¿)+ = {m + MQ\mx

G M* for some m, G m + M0). If m + M0 G (M/MJ+ then w G A/q. So

(M/M0)+ = {0} and M/MQ is trivially ordered. Hence A/ is an extension of

the directed module M0 by the trivially ordered module M/M0. From now on

we assume that rings (R, R +) and their modules (A/, M+) are directed.

Then, if M+ has R +-basis B we have A/ = A/+-M+ = (ä+-jR+)5 =

It is natural to ask for a characterization of those (R, R +)-modules

(M, M +) for which M + has an R +-basis. Let © R denote the direct sum of

k copies of R as in Example 3. Let iß, mapping R onto the /?th component in

© R, be the canonical injection map.

Theorem 4. The (R, R+)-modules (M, A/+) for which M+ has degree k

over R+ correspond bijectively to the convex R-submodules K of (© R,

© R +) with the following property: Let < ' be the ordering induced on ®KR
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by © R+. If ra E R+ for a < k with only finitely many nonzero and if

sß E R andO < 'iß(sß) < 'iß(l) then

ißiSß)'* S i*ira)   mod AT.
a-tß

Proof. Suppose M+ has R +-basis B = {ba\a < k). Let/: (©,7?, ®R+)

-»(A/, M+) bef(ra) = 2>a6a. As M = RB,fis onto. Clearly fis an R-mod-

ule homomorphism. As /(© R +) Ç M +, f is order preserving. K = ker/ =

{(ra)|2ra6a = 0}. Clearly K is convex in the ordering < ' induced by ©^Z?+

on ®kR. If 0 < 'iß(sß) < 'iß(l), then 0 < 'sßbß < 'bß (in A/+) and" the

7?+-independence of 77 gives sßbß ¥* "2a¥,ßraba for ra in R +. Thus

M5*)* S ¡M   modK.
a+ß

Conversely suppose that K is such a convex /?-submodule of © R. Let

P = {(O + K\{sa) E @kR+ for some (ia) in (ra) + K). Since (R*R +) is

directed each (xa) in ©k7? can be written (xa) = (ua) - (va) for some ua, va

in R +. Consequently (®kR/K, P) is a directed (R, R +)-module. The given

property for K ensures that {/„(l) + K\a < k) is an R +-basis for P.

To show that this correspondence is bijective it is enough to observe that

the 71-module homomorphisms g and g~x where g: (@KR/K, P)->

(M, A/+) is given by g((ra) + K) = "2raba are order-preserving Ä-module

isomorphisms.   □

Suppose that M+ has fl+-basis B = {ba\a < k). If /: (M, M+)->

(M, M +) is an order-preserving /?-module automorphism it is straightforward

to show that f(B) is also an R+ -basis for M+. Using this result we can

characterize the group A of order-preserving Ä-module automorphisms of

(M, M+). For convenience let (M, M+) be written as (®R/K, P) as in the

previous theorem (k is fixed so we omit the notation © ). Let G be the group

of k by k matrices X having precisely one nonzero entry in each row and

column; each entry must be a unit of R +, and for (ka) E © R, (ka)X' E K

if and only if (ka) E K. Then G has the following action on (&R/K defined

by the map a: G X (®R/K) -> @R/K, a(X, (rtt) + K) = (ra)X' + K. It is

easy to show that for each X in G, the map a(X,... ) is an /?-module

automorphism of M and that a(X,... )P Q P so a(X,... ) is order preserv-

ing. Clearly the inverse of a(X,...) is order preserving. If a: G-*A by

a(X) = a(X,...) then &(XY) = a(X)a(Y) and a is a homomorphism.

Theorem 5. G/ker a is isomorphic to A the group of order-preserving

R-module automorphisms of(M, M +).

Proof. We need only show that a is onto A. If g E A then g preserves

R +-bases. By Theorems 1 and 2 there are units ua of R + and a permutation
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a of k such that g(/a(l) + K) = uaia(a)(l) + K. Recall that {/a(l) + K\a <

k) is an R +-basis for P. Since g is an .R-module homomorphism,

*(('.) + K) = 2rjt{ij(\)) + K - 2 W„(«)0) + K.

Define A" in G by Xßa = 0 unless ß = o (a) in which case A"o(a)a = ua. Then

(ra)X' + K = '2 rauaia(a)(x) + K = g((ra) + K).

Hence a(A\...) = g and a is onto.   □

We remark that ker a - {A" G G\ia(Xaa) + K = i„(l) + K for all a < k).

For if a(A",... ) = 1 then in particular a(A\ /a(l) + K) = /a(l) + K. Suppose

a is the permutation determining X (Xßa = 0 unless ß = o(a) and Xa(a)a is a

unit of R +). Then iLX, ia(l) + K) = X^i^l) + K= /a(l) + K and

/?+-independence requires o(a) = a. So a = 1 and A*ao/a(l) + K - /a(l) +

Ä". Conversely if X is diagonal and Aoa/a(l) + ÍT = /a(l) + K it is clear that

X E ker a.

There are several conditions which imply that kera= {1} in G. For

example if (R, R +) is totally ordered then ker a = {1}. For Aaa/a(l) + K =

i0(l) + # implies (Xaa - l)(/a(l) + tf) = 0 and as XM - 1 or 1 - Xm E

R + the strictness of the order gives A"aa = 1.

4. Examples of nonexistence of /{-bases. As expected not every (R, R +)-

module (M, M +) has an R +-basis for its cone M+.

Lemma 2. Let (M, M +) be an (R, R +)-module, mx,mEM+ and r E R + .

If mx = rm and r is not a unit of R+ then any set B Q M+ containing mx is

not an R +-basis for a subcone of M+ which contains m.

Proof. Let B C M+ contain m, and suppose R +B contains m. Assuming

mx = rm we show that B is not R +-independent. Let m = 2/",6, with r¡ inR +

and b, in B. So mx — 2/*/",6, and as mx E B, if B is R +-independent, m, = b}

and bj appears on the right of this sum. If < ' is the order induced on M by

the cone R +B then S.^/r,*,. = (1 - rrßbj < 'bj. By hypothesis 1 - rr} ̂  0

so (1 — rrßbj is strictly positive in R +5. Thus B is not R +-independent.   □

Corollary 1. Let (G, G +) be a totally ordered divisible abelian group. Then

G + has no Z +-basis.

Proof. Let g G G +, then g/2 G G +. So g is not in any Z +-basis for G +.

So G + has no Z +-basis.   □

In particular R+ and Q + do not have Z +-bases.

Lemma 3. Let (F, F+) be a totally ordered field which is also an (R, R+)-

module. Let R+ C F+ and < ' be the order on F induced by F+. If for every

nonzero f in F+ there is an r in R+ with 0 < 'r < '/ then F+ is of degree 1

over R+ or F* has no R +-basis.
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Proof. For every/ in F+\ {0}, {/} is an R + -basis for the cone R*f C F+.

Now suppose F+ has R +-basis B and let b, c be distinct members of B. Since

1 E F+ and F is totally ordered, if c~x < '0 then 1 < '0, a contradiction of

Lemma 1. So c~x E F+. Choose r E R + such that 0 < '/■ < 'bc~x so0<'b

— re and for b¡ in B and r¡ in R +, b = re + 2r,6,. By R +-independence of

B,b = bj appears on the right in this sum. So

0 < '(1 - r])b = rc + 2 r¡b¡ < 'b.

This contradicts R +-independence.   □

Corollary 2. R+ has no Q +-basis.
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