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SETS OF DrVERGENCE ON THE GROUP 2U
BY

DAVID C. HARRIS1 AND WILLIAM R. WADE

Abstract. We show that there exist uncountable sets of divergence for

C(2U). We also show that a necessary and sufficient condition that a set E

be a set of divergence for 1/(2"), 1 < p < oo, is that £ be of Haar measure
zero.

1. Introduction. Let t¿/0, $»... represent the Walsh functions ordered

according to Paley and defined on the group 2U (see Fine [2]). For each

/ G LX(2U) let

*«0

where/(/e) is the kth Walsh Fourier coefficient of /, k = 0, 1,_

If B C Lx(2°), then a set E Q 2° is said to be a set of divergence for B if

there is a function/ G B such that SN(f) diverges on E as N -* oo.

It is known that every singleton in 2° (hence, by our Lemma 3, every

countable subset of 2W) is a set of divergence for continuous functions, C(2")

(see [6] or [12]), and that every subset of 2" is a set of divergence for Lx(2a)

[7]. Other results concerning sets of divergence on the group 2" can be found

in [3] and [9].
Our first theorem was announced in [10]. It shows (see [8]) that the sets of

divergence for L/,(2"), 1 < p < oo, coincide with those subsets of 2" of Haar

measure zero.

Theorem 1. If E is a subset of the group 2a which is of Haar measure zero

then there exists a function f belonging to LP(2U) for 1 < p < oo such that

•SrC/O diverges on E as n -» oo.

Our second theorem produces a new class of sets of divergence for C(2")

which contains uncountable sets of divergence for C(2U).

Theorem 2. 7-br each i = 0, 1 and each nonnegative integer k set
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/(/, *) = {xe 2«: &(*)-(-!)'}• (0)

Suppose that kj, n} and i} are nonnegative integers which satisfy ij = 0 or 1 and

2a» < kj < 2~i+xforj = 1, 2_If E E2U is a set of Haar measure zero and

if
oo

y=l

then E is a set of divergence for C(2°).

This theorem is a partial answer to the following question: Is every subset

E Q 2a of Haar measure zero necessarily a set of divergence for C(2W)? The

trigonometric analogue to this question was answered in the affirmative over

a decade ago by Kahane and Katznelson (see [4]), but in the Walsh case it

continues to defy resolution.

2. The proof of Kahane and Katznelson. Our proof of Theorem 2 is similar

to that of Kahane and Katznelson. We shall supply details only for those

portions of the argument which are significantly different in the Walsh

setting.

The facts are as follows. If B is a homogeneous Banach space in LX(2U)

then the Cesaro means, o„(g), of the Walsh Fourier series of a function g G fi

converge to g in B as n -+ co. From this it follows that if g G B then there is a

function f E B and a sequence 0 < ß0 < ß, < • • • < ß„ -» oo as n -» co

such that

f(k) = Ükg(k),       A: = 0,1,....

This is the requisite step in proving the following lemma.

Lemma 1. A necessary and sufficient condition that a subset E of 2" be a set

of divergence for a homogeneous Banach space B E Lx(2") is the existence of a

function f G B such that

sup \Sk (/, x)| = +00   for x G E.
k

This leads to the central reduction which Kahane and Katznelson used:

Lemma 2. A necessary and sufficient condition that a subset E of 2a be a set

of divergence for a homogeneous Banach space B C Lx(2a) is the existence of

Walsh polynomials Px, P2,... which satisfy

2 \\Pn\\B< oo (1)
n-1

and
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sup fsupl^CT^x)!) = +00 (2)
n     »■    k J

for all x E E.

Necessity follows exactly the trigonometric proof. Sufficiency requires a

slight change. Indeed, for each pair of integers k, m define k + m by the

equation

4>k + m = 4>k • tm- (3)

Recall from Paley's definition of the Walsh functions that k + 2l = k + 2' if

k<2'.
Now, suppose that the Walsh polynomials

m„

Í.W-.ÁW    «-1,2,...,  .
fc = 0

satisfy (1) and (2). Let /, = am,. If lk_x has been chosen, set lk =

max(4_„ mk) + 1. Then /, < l2 < • • • and

2<"' + *, 7= 2'- + Är0 (4)

for any choices of 0 < k0 < AAin, 0 < &, < aai„+,.

Set

n = 0

and observe by (1) that this series is Cauchy in 7?. In particular, f E B, and

since the B norm is stronger than the L1 norm, this series is the Walsh

Fourier series of /. Consequently, by (4) and an easy calculation, if 0 < j

<2'"+'-2'"then

s*+J(f, x) - s2,„(f, x) = 2 ÄW*.(*).
* = 0

This allows us to conclude that

sup|SÄ(/,x)|>isup|S,(Pn,x)|
k k

for ai = 1, 2,_Hence by (2), the Walsh Fourier series of/diverges on E as

required.

The unanswered question concerning sets of divergence for C(2W) should

now be accessible. Indeed, we need only find Walsh's polynomials P„ which

satisfy (1) and (2) for B = C(2"). Yet, as we shall see in the next section, this

is difficult even if we restrict ourselves to sets of the type which appear in

Theorem 2. The problem is that (1) asks for HPJIo,, -» 0 as ai -> oo while some

partial sum of P„ is bounded away from one. This requires some sort of

internal cancellation, whereas the square wave nature of the Walsh functions

makes such cancellation seem highly unlikely.
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We close this section with a corollary to Lemma 2.

Lemma 3. Let B E Lx(2a) be a homogeneous Banach space and suppose that

Ex, E2,... are all sets of divergence for B. Then E = U".i-E„ is a set of

divergence for B.

3. Fundamental lemmas. Let M be a positive number and / be an interval in

[0, 1) with dyadic rational endpoints. A Walsh polynomial P = 2"_0a,i^ is

said to have dropped back from M on I ii \P(x)\ < 1 for x G [0, 1) and if

there is an integer n0 < N such that \a„ | < 1 and such that
"0

2 ^(x) = M   forx El. (5)
y-o

Lemma 4. If P is a Walsh polynomial which has dropped back from M on

(a, ß) then there is a Walsh polynomial which has dropped back from M + j

on (a/4, ß/4).

To prove Lemma 4 we may suppose that

P(x)=T±\^(x)
7 = 0

and that P satisfies (5) for J = (a, ß). Consider the Walsh polynomial

ô(*) = 2+21U(*)
/-o

whose coefficients are determined by the following process. Set bQ = a0,

¿2/10 = a"o> *2n0+i = 0- In general, if 0 < i < 2" and if / ¥= n0 then set

*2/ - ¿2/+1 =2°f (6)

Recall that if x G [0, ¿) then

&/(*) = *2i+l(*) = tfi(2*).

Hence (6) implies that Q(x) = P(2x) for xG[0, ¿). In particular, if

x G[0, ^)then

\Q(x)\ < 1. (7)

This inequality also holds for x G [ \, 1). Indeed for such x, we know that

Mx) + -l>2i+i(x) = 0.

Hence for such x, \Q(x)\ = |62J = |aj.

By repeating this argument we can show that

2 *#,(*) - 2 aj%Qx)
i=0 y-0
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for x G [0, j). Since (a/2, ß/2) ç [0, \), we combine this identity with (5)

to conclude

2n0

2U(x) = AT   for xE (a/2, ß/2). (8)
1=0

We are now ready to define the coefficients of P*. Set c0 = A0, c4mo+2

T4m0

[0,2n+1)set

= 5»r'4mo+2([« + /5]/8), and c4mo+3 = - c4mo+2. For all other indices k G

clk — c2Jfc+l — 2  V

Finally, let

p*(x)= 2'c^W-
*=0

As before, (7) leads to

|7>*(x)|<l   forxG[0, i). (9)

This time, however, if x G [ \, 1) then

rwi-J-H)-1-
Hence (9) holds for x G [0, 1).

Again, as before, if x G [ 0, \ ) then

4n0+l 2n0

2   Cktk(x) = 2 ^,(2^)-
A-0 i-O

Consequently, by (8), if x G (a/4,0/4) then

4n0+2

2  ckh(x) = M + \ ^o+2(x)^4no+2([a + ß]ß).
k~0

Since i//4„o+2 is constant on (a/4, /?/4) we have proved that P* has dropped

back from M + ¿ on (a/4, ß/4).

The following result is an immediate consequence of Lemma 4.

Lemma 5. If m is any positive integer and if I = [0, 2~m) then there is a

Walsh polynomial P which has dropped back from 1 + \ log(l/m(I))on I.

We need to extend Lemma 5 to sets of the form /(/, k) (see (0)). To do this

we introduce additional notation and a technical lemma.

A Walsh function \pk is said to belong to the nth layer for some nonnegative

integer n if 2" < k < 2"+I. A subset W of the Walsh functions is said to be

layered if no two functions in W belong to the same layer.

Let W = {\pw : j = 0, I,..., n) be layered with 0 = w0 < wx < • • • <
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w„. For each integer/ = 2h + 2h + ■ • • + 2ir where 0 < /, < j2 < • • • <jr

< n, we shall definepj by the following equation:

% - K K ■ ■ ■ *% <10>
and denote {$ :j » 0,1.2" - 1} by Pw.

It is clear that Pw is closed under multiplication, and since W is layered,

that Pw contains 2" distinct elements. We shall now show that if W is chosen

carefully then the ordering on Pw induced by (10) is the usual ordering.

Lemma 6. If W = {\pw.; j — 0, I,..., n) is layered then there exists a

layered set W ■» {\f>w : j ■* 0, 1,..., n) such that Pw = Pw. and such that p,

increases withj, where thepj are defined by (10).

To begin to prove Lemma 6 we observe that Pyy, = Pw. if we form W*

from W' by replacing a i/v by any \¡/¡ provided that x}/, E Pw, and that \p, and

\p^ belong to the same layer. Indeed, having made such a choice, Pm still has

2" distinct elements and P^ E Pw..

Consequently, set W = {\pw: / = 0, 1,. .., n) where \pw, is the Walsh

function of smallest index in Pw. which belongs to the same layer as t/v- We

need to show that the corresponding p, increase in /. We shall do this by

induction on n. If n = 1 then there is nothing to prove.

For the inductive step, set V = {\pw: j = 0, 1,..., n - 1} and suppose

that Pv is ordered correctly. Then to show that thep, increase in/ we need

only consider the case when \p belongs to the same layer as i^.

Toward this, let y < k and set

where \pPi, ty E Pv. We claim that neither \j/ nor ^/Pm have any (Rademacher)

factors in common with i//w. Indeed, let <b¡ be the Rademacher factor of

it • iL of highest index. If <b¡ is a factor of \1>W then \f> • \¡/„ • iL G V belongs

to the same layer as ^ , but has index smaller than wn. This contradicts the

choice of wn. If <£, is a factor of \¡/p¡ then since <b2 = 1, it cannot be a factor of

^j, . Hence p, > pm. By our inductive hypothesis, then, we conclude that

I > m. This contradicts the assumption that/ < k. It follows, then, that <£,

must be a factor of uV, and cannot be a factor of typ. By equation (11), then,

Pj < pk, as required.

Lemma 7. Suppose that W = (^ :/ = 0, 1,...,«} « layered and that
n

En = n/(»>*,)

wAere «} = 0 or 1. 77ien /Aere w a Walsh polynomial from Pw which has dropped

back from 1 + \ log2 (I /m(E„)) on E„.

Proof. By multiplying coefficients of the polynomial by -1 where needed,
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we may suppose that all i} = 0. In view of Lemmas 5 and 6 it suffices to

partition [0, 1] into sets K¡, I = 0, 1,..., 2" — 1, such that K0 = En and such

that

\l>Pj = 1 on K, if and only if uV = 1 on   -^ , —^- j (12)

fory = 0, 1,..., 2" - 1.
Toward this for each / = 0, 1,..., 2" - 1 write out its dyadic expansion

/ = i,2n_l + /22n_2 + • • • + in_,2 + /„

and set
n

k,= ni(ij^j)
7=1

(see (0)). Clearly, K0 = En and Km n K, = 0 if m ¥= I.

Also, i/v = 1 on K¡ if and only if /, = 0. Hence

if>w = 1 on K, if and only if <fy = 1 on L   L±l\
2" '    2"   )

where ty is a Radamacher function. Finally, then, since Pw is built from $w

by (10) in precisely the same manner that Walsh functions are built from

Radamacher functions, we conclude that (12) holds for./ = 0, 1,..., 2" - 1.

4. Proofs of the theorems. To prove Theorem 2 fix « > 0 and set Wj = ky for

j = 0, I,... ,2". Apply Lemma 7 to choose a Walsh polynomial Qn which

has dropped back from 1 + \ log2(l/fm(Er)) on 7i2».

Now set Pn = Q„/n2, n = 1, 2,..., and observe that since IIPJIoo < ai-2,

wehave2*.1||PB||00<oo.Also,

sup|5,(7Jn,x)|>2"-2/«2
k

for Ai = 1,2,... and for x G Er. Since E c Er for ai = 1, 2,... we have

sup [sup |5Ä(7>„,x)|) = +00
n      I    k '

for x E E. Consequently, £ is a set of divergence for C(2") by Lemma 2.

To prove Theorem 1 we translate the Haar series result of Prohorenko [5]

to Walsh series in the usual manner (see [11]), which allows us to conclude

that if E C 2W is a set of Haar measure zero then E ~ D is a set of divergence

for LP(2U), 1 < p < oo, where D are those points in 2" which terminate in l's

or in O's. But D is countable and, therefore, it too is a set of divergence for

LP(2U). Finally, then, by Lemma 3, E itself is a set of divergence for Lp(2°),

1 <p< oo.
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