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Abstract. Existence theorems are obtained for optimization problems

where the cost functional takes values in an ordered Banach space. The

order is defined in terms of a closed convex cone in the Banach space; and

in this connection, several relevant properties of cones are studied and they

are shown to coincide in the finite dimensional case. The notion of a weak

(Pareto) extremum of a subset of an ordered Banach space is then intro-

duced. Existence theorems are proved for extrema for Mayer type as well as

Lagrange type problems-in a manner analogous to and including those with

scalar valued cost. The side conditions are in the form of general operator

equations on a class of measurable functions defined on a finite measure

space. Needed closure and lower closure theorems are proved. Also, several

analytic criteria for lower closure are provided. Before the appendix, several

illustrative examples are given. In the appendix, a criterion (different from

the one used in main text) is given and proved, for the Pareto optimality of

an element.

1. Introduction. In problems of econometrics the concept of Pareto extre-

mum (maximum, minimum) has recently become relevant. Given a system

I[y] = (I¡[y]> / = 1,..., p) of p real valued functionals defined on a set fi,

we say that an element v0 G ñ gives a Pareto minimum to J[v] provided for

no element v G ñ, y ¥= v0, it happens that /,.[ v] < I¡[y0], / = 1,..., p, with

I¡[y] < I¡[yo\ f°r at least one '• We may say that v0 is a Pareto optimal

solution (minimum). Analogous definitions hold for maximum and min-max

situations.

Since the pioneering work of Pareto [26] in 1896 on the optimization of

vector valued functionals, applied to econometrics, there has been

considerable research on necessary and sufficient conditions for Pareto

optimality, such as by Zadeh, Dacunha and Polak, Olech, Yu, Leitman and

Yu, Weinberger and Smale, to name a few.

In the present paper we consider the problem of existence of Pareto

optimal solutions.

For the sake of generality, we treat the case of a functional with values in a
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Banach space Z with an ordering defined by a (closed) convex cone A in Z.

Also, we state the problem in the abstract form of optimal control theory with

the unknown in a Banach space X and state and control variables in metric

spaces Y and U as in [5]. Thus, in particular, the Pareto optimal solutions for

finitely many (say, p) functionals of the calculus of variations and of optimal

control theory on curves and surfaces are included, with or without side

conditions.

We first consider subsets & of a Banach space Z which are bounded below

in a suitable sense, and we state the concept of weak extremum of ¿E in Z

with respect to the partial ordering defined by a convex closed cone A in Z.

We prove, under hypotheses, on (£, Z and A, that 6E necessarily possesses at

least one weak extremum, which belongs to the weak closure of &. When & is

the set of values taken by a given Z-valued functional on a set ñ of

admissible elements, then we prove further that at least one weak extremum

(optimal value) belongs to &, that is, an optimal element belongs to ß. Our

existence proofs are based on closure and lower closure theorems similar to

those we have previously used in optimal control theory in Banach spaces [5],

[6], [12].
We discuss various properties of a convex closed cone A in a Banach space

Z, as A being "pointed", "acute", having property (jt) and "angle property".

We show the interrelationship of these properties in general Banach spaces.

They are equivalent properties in finite dimensional spaces. In the rest of the

paper we use the angle property. We discuss both Mayer-Pareto type prob-

lems in any Banach space Z and Lagrange-Pareto type problems in any

reflexive Banach space Z. For the sake of clarity, we illustrate our results by

considering, as a special case, a Lagrange-Pareto type of problem with finitely

many functionals (or Z = Ep) and ordinary differential equations, side

conditions and controls as usual in optimization theory.

We then analyze the various hypotheses of the main existence theorems,

and we show that some of them can be drastically reduced in many practical

'situations. This analysis is similar to the analogous one for scalar valued

functionals in [5]. Also, mere property (K) suffices for the relevant sets

instead of property (Q) when dealing with finite dimensional spaces as proved

in [34].

2. Cones and orderings in Banach spaces. In this section, we shall recall

some relevant definitions and facts regarding cones and orderings defined by

cones, in Banach spaces. A detailed study may be found in Bourbaki [3], Day

[16], Jameson [17], Klee [20], Yu [30] and others.

Let Z be a real Banach space and Z* be the dual of Z. A nonempty subset

A of Z is said to be a convex cone (with vertex at 0) if and only if for X„

A2 G A and ax, a2 nonnegative real numbers, we have a,X1 + a2A2 e A. Some
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authors (Day [16], Jameson [17]) use the term "wedge" where we use "convex

cone". We shall work with convex cones with at least two elements.

A convex cone A is "pointed" if and only if z G A and z G — A implies

z = 0. A cone A is said to be "acute" provided there is an open half space

La = {x G Z\ax > 0} with a G Z*, a ¥* 0, such that cl A c La u {0}. A

convex cone A in Z defines an ordering < (or <a) in Z as follows: x <av if

and only if v — x G A. This ordering is reflexive in the sense that we have

x <ax for every x E X, and transitive in the sense that x <\y and y <az

implies x <az. This ordering is a partial order (or antisymmetric, that is,

x <Ay and v <a* implies x — y) if and only if A is pointed.

Given a convex cone A, let A* denote the "polar" of A, that is, the set

{tj G Z*|t)\ < 0 for all X G A} c Z*. Clearly, A* is a closed convex cone in

Z*. It is of interest to note that, for a closed convex cone A, x <\y in Z if

and only if X*x > \*y for every X* G A*. Indeed, if (A*)„ = (:£ Z\X*z <
0 for every X* G A*} then A c (A*),. Conversely, if there is a z G (A*)* with

zíA, then by the Hahn-Banach theorem, there is a functional rj G Z* with

tj(z) = 1 and tj(A) = 0. Thus, tj G A* and z G (A*), and yet tjz = 1 i 0.

This contradiction shows that (A*)„ c A, (and hence A = (A*),). Thus, in

particular, it is seen that if Z is reflexive then A** = A = (A*), for any

closed convex cone A in Z.
A subset & of Z is said to be A-bounded (bounded below) if there is an

element c G Z such that 6E c c + A = {c + X\X G A}, that is, c <ax for all

x G &.

Given a nonempty subset & of Z, an element jc0 G Z is said to be a

(strong) weak A-extremum of éE if x0 belongs to the (strong) weak closure of

& ((x0 G cl((£)), x0 G w-cl(éE)), and there is no x £ S, x t4 x0, with x <a*0

(that is, x0 - x G A). Thus, ,x0 is a (strong) weak A-extremum of & if and

only if xQ is in the (strong) weak closure of &, and for every jc G (£, x ~£ Xq,

there is some element X* G A* such that X*x < X*x0 (a*jc0 & X*x).

Clearly, weak and strong extrema coincide if w-cl(i£) = s-cl((£). This

certainly happens if â is convex or if Z is finite dimensional and & is any

subset of Z.
We denote by w-ExtA£E (or simply ExtA &), the set of all weak A-extremum

points of ¡3,. Thus, ExtA(éE) c w-cl(£). In this paper, we shall consider weak

A-extrema only. We shall refer to ExtA(6£) also as the set of A-Pareto optimal

points of ($,.

3. A preliminary lemma. In this section, we shall present a useful criterion

for A-Pareto optimality of subsets & of a Banach space where A is a proper

convex cone (that is, with at least two elements) in Z. For a second criterion,

we refer the interested reader to the appendix.

If & is a nonempty A-bounded subset of Z and X* G A*, then the set of
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real numbers {% = X*z|z G &} is nonempty and bounded above. Indeed, if

ácc + A, then c <Az and X*z < X*c for every z G &. Let 7 = sup{2 =

X*z|z G &}.

Lemma 3.1. If & is nonempty and A-bounded in Z, and X* G int A*, then any

point z0 G w-cl(éE), with X*z0 =j (if any) is A-Pareto optimal for ® in Z.

Proof. Suppose that z0 G w-cl((£), X*z0 =j, and that z0 is not Pareto

optimal. Then there would be some other point z G &, z ^ z0 with z <az0 or

z0 - z G A. Since X* G A*, we have X*(z0 — z) < 0 or X*z > X*z0. But since

z G â,j > X*z > X*z0 =j. Hence X*z0 = X*z orX*(z0 — z) = 0.

Since z0 - z =5^ 0, by the Hahn-Banach theorem, there is a linear operator

/ G Z*, /: Z -> £', the reals, with /(z0 - z) = 1. For e > 0 sufficiently small,

then the operator X, = X* + el is interior to A*, so that from z0 — z G A

follows \(z0 — z) < 0. On the other hand \(z0 — z) = (X* + e/)(z0 — z) = e

> 0, a contradiction. This shows that every point z0 G w-cl(éE) with X*z0 = y*

(if any) is A-Pareto optimal for &.

Remark 3.1. In the above, Z was not required to be reflexive.

Remark 3.2. If a G -A*, that is, aX > 0 for all X G A, and if/ = inf{z =

az|z G &} then the above lemma (with X* = -a) shows that for a nonempty

A-bounded subset & of Z, any point z0 G w-cl((£) with az0 = / is A-Pareto

optimal for & in Z provided -a G int A*.

Remark 3.3. The conclusion of Lemma 3.1 may not be true if the condition

X* G int A* does not hold, as the following example shows. Take Z = E2,

A = {X = (X1, X2)|X' > 0, X2 > 0}, & = A, and thus A* = {(r,1, tj2)^1 < 0,

tj2 < 0}. The point z = (0, 0) is the only Pareto optimal point of & with

respect to A. For tj = (0, — 1), we have r/z = (0, — l)(z', z2) = — z2 < 0 for

all z G &, and j — 0. All points z = (z1, 0), z1 > 0, belong to & and satisfy

rjz = 0, yet only (0, 0) is Pareto optimal.

4. Special cones and existence of optima. We introduce two special

properties for cones in a Banach space that will be used later.

Definition 4.1. Given a Banach space Z, a closed convex cone A and its

polar A*, we say that A has property (17) if there is at least one element

X* G A* such that for any 8 > 0, the set V(X*, 8) = [z G A|X*z > -5}, if

nonempty, is relatively weakly compact in Z.

Remark 4.1. A has property (77) iff there is at least one element a G —A*

such that for any 5 > 0, the set V(a, 8) = (z G A|az < 8}, if nonempty, is

relatively weakly compact in Z. This property is of the type "weakly-inf-

compactness" of Moreau (see [23]).

Remark. 4.2. If Z is reflexive, the requirement (if) is satisfied if for the

linear functional X*z, that is, X*: A -» El, the reals, the inverse image of any
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bounded set is bounded; in other words {z|X*z G B) is bounded whenever B

is a bounded subset of the real Une.

Another property of interest is given by

Definition 4.2. A closed convex cone A in a Banach space Z is said to

have the angle property, if for some e and a, with 0 < e < 1 and a G —A*,

a 7* 0, we have A c {z G Z|az > e||a|| ||z||}.

Remark 4.3. If a G Z* is as in the angle property of a closed convex cone

A, then -a G hit A*. Indeed, if X* G Z* is with ||X* + a\\ < e\\a\\ (with e as
in the angle property) then

|X*z + az|<||X* + ö||||z||<eM||z||.

Thus, X*z < -az + e\\a\\ \\z\\ < 0 (by the choice of a) for all z G A. Thus,

{X*|||X* - (-a)H < e||a||} c A* or -a G int A*.

Remark 4.4. It is of interest to note that in any Banach space Z, a closed

convex cone with angle property is clearly acute (being contained in (z|az >

0} u {0}, with a from the angle property) and hence pointed. Also, a closed

convex cone A with property (77) is acute (and hence pointed). Indeed, if A is

not acute, then for each a G Z*, there is a nonzero element xa =£ 0, xa G A

with a • xa < 0. Thus, for 5 > 0 and for any fixed a G Z*, a =£ 0, the set

Va = {z G A|az > -8} contains the unbounded set {ax_a\a > 0, a real}

where x_a is the nonzero element of A with —ax_a < 0 or ax_a > 0. Thus,

Va is not weakly compact for any a G Z*, a^O and property (77) is violated.

Remark 4.5. If Z is reflexive, it is easily seen that angle property implies

property (77). However, even in the Hilbert space

h =    («i> «2. • • • )k- real» 2 a,2 < 00 I

we can find acute cones which do not have property (77) nor the angle

property. For example, let A = {X G /2|\ > 0, / = 1, 2,... }. Then, for any

a = (a„ a2,... ) G A*, and any integer n > 0, there is an index i(n) with

ai(n) > —n~l and thus X" = (0,...,«, 0,... ) (with n in the /(«)th place,

that is, \"n) = n and X? = 0 for 1 ̂  /(«)) belongs to (z G A|<zz > — 1} and

this set is therefore not weakly compact. (It is to be noted that {X"} is not

bounded in norm.)

Also, A does not have angle property because, for any a G —A*, a =

(a„ a2,.. ■ ) and any e > 0, A c {z|az > e||a|| ||z||} implies ete' > e\\a\\ \\e'\\

for any i where e' = (0,..., 1, 0,... ), that is, a¡ > e\\a\\ for every i. Since

e||a|| is fixed, a ¥= 0, and a¡ -> 0 as / -» 00 for (au a2,... ) G l2, we obtain a

contradiction. However, A is acute since A c {z G /2|az > 0} U {0}, where

a = (1, 2_I,... ), that is, a¡ = i~l. Indeed, X G A implies X, > 0 for every i

and, thus, SJLi(/~'\) > 0, while 2Jl,(/~%) = 0 implies X¡ = 0 for every /.
Remark 4.6. If Z is finite dimensional, then any closed convex cone which
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is acute has the angle property and, hence, also property (77) and is pointed.

Indeed, if A is an acute closed convex cone, then Ac{zGZ|az>0}U

{0}. Let / = inf{<7z|z G A, ||z|| = 1}. Then / > 0. Let z„ G A, be chosen with

||z„|| = 1 and azn -» /* as n -» 00. The sequence, being in a closed bounded

subset of a finite dimensional space Z, has a (weakly) convergent

subsequence, say still z„, converging to an element z G Z. But z G A since A

is closed. Thus, az > 0 and ||z|| = 1 so that az > 0. But az = Um az„ = i.

Thus, 1 > 0. For any z G A, z =£ 0, we have w = z/\\z\\ G A and ||w|| = 1.

Thus, by definition of i, we have aw > az, that is, az > az\\z\\ = e||a|| ||z||,

where e = az/\\a\\. But then e > 0 since az = i > 0, and

Thus, with this choice of e and a, A C {z|az > e||a|| ||z||} and A has the

angle property.

Example 4.1. To show that there exist "infinite dimensional" cones with

the angle property, we consider the Hilbert space

l2 = \z\z = (z„ z2,... ), 2 z? < °° }•

Let 0 < a < 1 and a" = (a, a2,... ) G l2 with ||öa||2 = a2/(l - a2). Then,

for any e, 0 < e < (1 - a2)l/2, the set V(aa, e) = {z G /2|aaz > e||aa|| ||z||}

contains elements aß = (ß,ß2,...)E l2 with suitable ß in 0 < ß < 1.

Indeed, if y„ y2 are the two distinct roots of the quadratic

j82(l - a2 + ah2) - 2ae2ß + (e2 - 1 + a2) = 0,

then for 7, < ß < y2, the geometric sequence aß = (ß, ß2,... ) belongs to

V(a", ¿) and the set {aß\yx < ß < y2} cannot be imbedded in a finite
dimensional subspace of l2.

Example 4.2. In any reflexive Banach space Z, if z',..., z" are any n

fixed nonzero elements and z1,..., z" are elements of Z* with z'(zJ) = Sy

(= 0 for i ¥= j, = 1 for i = j), then the set

V(z\ ..., z") - j X G Z|X = 2 <*¡z', ol¡ > 0, a¡ real j

is acute and has the angle property with a — S?_izj..

The above remarks and examples indicate the following diagram of impli-
cations.

Angle property ==*• acute =* pointed
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In finite dimensional spaces, all four properties are equivalent.

Remark 4.7. Since angle property (as well as property (77)) implies

acuteness, neither is satisfied for a halfspace. We illustrate this for Z = E2,

the 2-dimensional plane. Let A = {(-x,.y)|x > 0}. Then for any (X, ju) ¥=

(0, 0), and any 8 > 0 real, for which the set Us = {(x, y)\x > 0, Xx + ¡iy >

—5} is nonempty, we have Us unbounded and, hence, not compact.

We shall now use the two properties introduced in this section to obtain the

existence of A-optima for a A-bounded subset &.

Lemma 4.1. Let Z be any Banach space and let Abe a closed convex cone in

Z, satisfying property (77). For any A-bounded nonempty subset ¿E of Z, there

exists at least one weak A-extremum point z in the weak closure of &. That is,

&=£0, & cc + A for some c G Z implies w-ExtA(#) =^0. By definition,

w-ExtA(iE) c w-cl(éE) and thus, in particular, if & is weakly closed in Z, then

w-ExtA(#) c &.

Proof. Since A has property (77), it is also acute and thus there is an

element a G Z* with az > 0 for z G A — {0}. Let ¡1* = X* - a where X* G

A* is given by property (77), that is, for every 5 > 0, the set {z G A|X*z >

- 5}, if nonempty, is weakly relatively compact.

Since 8, is A-bounded, there is c G Z with & c c + A or c <az for all

zeS. Since /a* G A*, jli*z < ¡i*c and thus the set ¡i*& = {p.*z\z G &} is

nonempty and bounded above. Let./ = sup ii*&. Then y is finite. Let zk G &

be chosen so that j — k~l < [i*zk < j. Then

0 > fi*(zk - c) > j - AT1 - ¡x*c>j - 1 - p*c.

Thus, X*(zk - c)> (X* - a)(zk - c)> -8 where 8 =-(/'- 1 - M*c) >

0. Using property (77) and relabeling if necessary, we obtain z0E Z with

zk -» z0 weakly. Hence, ¡i*zk -> /i*z0 and ¡i*z0 = j. We claim that z0 G

w-Ext(eß). Indeed, z0 G w-cl(éE), and if there is z G & with z j= z0, and

z0 — z G A, then ju*z0 < /¿*z, and since ¡i*z0 —j, we get [i*z0 = jti*z. But

then X*(z0 — z) = a(z0 — z), which is a contradiction unless z0 = z, because

X* G A* and aX > 0 for X G A - {0}. It follows that z0 G w-Ext(£).
Remark 4.8. If Z is reflexive, then by previous remarks, we may take A to

be a closed convex cone with angle property since then it has property (77)

also, and if a is the element from angle property then — a E int A*. However,

with the angle property, we can obtain an estimate on ||z||. Indeed, if e and a

are given by angle property, j — k~l — X*c < X*(zk — c) implies

- j + k~l + X*c> -X*(zk - c) = a(zk - c) > t\\a\\ \\zk - c\\

(since - a = X* G A* satisfies the weak compactness condition in property
(77)). Thus,
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and

\m<¥\\+m\y\-^-j)-
It is to be noted that y < X*c = -ac and, hence, — ac — j > 0.

Remark 4.9. If Z is reflexive, we may avoid property (77) (as well as angle

property) in the above lemma, provided (i) z G éE, z ¥= 0 implies z/||z|| G éE,

(ii) éE c c + A with c G A, and (iii) int A* =£0. Indeed, in this case, we let

X* be any element of int A* andy = sup{X*z|z G éE}. As before, this is finite

and we get zk E éE with j — k~l < X*zk < j. We may construct a new

sequence {wk} c éE as follows: wk = zk if ||z¿¡| < 1 and wk = zk/\\zk\\ if

||z*|| > 1. Then X*wk ->y and ||wfc|| < 1. By weak compactness of spheres in

Z, there is a subsequence, say still [k], and an element iv G w-cl(éE) with

wk -» w weakly as k -> 00. Hence X*wk -> X*w — j and the rest of the proof

follows from Lemma 3.1.

The two conditions on éE are used to obtain y - k~l < X*wk < j. By (i),

wk E éE and, hence, X*wk < j. On the other hand, by (ii), éE c A and, hence,

X*z < 0 for all z G éE; hence,y < 0 andy - k~l < 0 so that ||z¿|| > 1 and
||zJ-'< limply

y - A:"1 <(y - *-')Nr< X*zk(\\zk\\yi=X*wk.

Remark 4.10. Note that, by the argument of the proof of Lemma 4.1, we

have shown the existence of at least one Pareto optimal point z = z(X*) for

every X* satisfying property (77). In Remark 4.11 we show by examples that

this point z(X*) may not be unique for any given X* satisfying (77), and that

z(X*) may not exist for X* not satisfying property (77). Finally, the set of all

possible points z(X*) may be smaller than the set of the Pareto optimal points
oféE.

Remark 4.11. For Z = E", 2 < p < 00, and

A - [X - (X1,.... X')rV > 0, / - 1.p] - E%,

property (77) holds for every X* = tj = (r/1,..., tjp), with tj' < 0, i =

1,..., p, as proved in Remark 4.6. For Z = Ep and A = E%, Lemma 4.1

proves that, for every tj = (tj1.tjp), tj' < 0, i = 1,..., p, there exists at

least a point z = z(tj) G cl 6E, z(tj) G ExtA éE, that is, z(tj) is a Pareto optimal

point of éE. This point z(tj) is not necessarily unique. For instance, if

# " [(x,y)\x > 0, v > 0, x + y > 1], any point (a, 1 - a), 0 < a < 1, is

Pareto optimal, and also a point z(tj) for tj = (— 1, — 1).

Again, for Z = Ep and A = E%., p > 2, the argument of the lemma does

not apply for X* = tj = (tj1, ..., tjp) with tj' < 0 for all /, and tj' = 0 for at

least one /, since then U is not compact. Actually, for any such tj, the point

z(tj) may not exist. For instance, if éE = [(x,y)\x > 0, y > 0, xy > 1], all

points (x, y) with x > 0, v > 0, xy = 1 are Pareto optimal, but there are no
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points z(tj) for tj = (0, 1) and tj = (1, 0), while z(tj) is uniquely determined

for tj ■» (tj1, tj2), with tj1 < 0, tj2 < 0, and these points z(tj) cover the set of
Pareto optimal points.

For 6E = [(x,y)\y > 0 if 1 < x < oo; y > 1 - [1 - (1 - x)2]x/1 if 0 < x

< 1], the points (x, y) with v = 1 - [1 - (1 - x)2]l/2, 0 < x < 1, are Pareto

optimal, a point z(tj) exists and is unique for every tj = (tj1, tj2) ̂  0, tj1 < 0,

tj2 < 0, and these are all the Pareto optimal points. On the other hand, for

$ = [(x,y)\x > 0, y > 0, x2 + y2 > 1], the points (x, y) with x > 0, y > 0,

x2 + y2 = 1 are the Pareto optimal points, z(tj) exists and is unique for every

V = (V. tj2) ̂  0, tj1 > 0, tj2 > 0, yet z(tj) can be either (1, 0) or (0, 1).

Remark 4.12. A detailed study of the geometry of Pareto extrema may be
found in [2].

5. Notations. We deal here with a topological space (X, r), with a Banach

space B with norm || ||, and with metric spaces (G, p), (Y, d), (U, d'). In most

applications X will also be a Banach space, t its weak topology; B, Y

Euclidean spaces Er, Es; G, U subsets of Euclidean spaces Er, Es. We

assume that G is also a finite, complete measure space (G, a, ¡i) and ¡i is

regular. Concerning Y and U, we assume that they are a-compact, that is, the

countable union of compact subsets. Let A be any subset in G X Y such that,

for any t E G, the set A(t) = [ v G Y, (t,y) E A] is nonempty. For every

(t,y) E A, let U(t,y) be a given nonempty subset of U. Let /(/,y, u) be a

given function defined on the set

S = [(t,y, U)EGXYX U\(t,y) EA,uE U(t,y)]

with values in B, or/: S -> B. We assume that A, S and the function/satisfy

a Carathéodory condition (C) on G, that is, given e > 0, there is a compact

subset K cG such that ¡i(G - K) < e, the sets AK = [(/, v) G A, t E K],

$k — [(l>y> M)l' e K] are closed in the product topologies of (G, p) X (Y, d)

and (G, p) X (Y, d) X (U, d'), respectively, and/: 5-> B, restricted to 5^ is

continuous (in the weak topology of B). For any Hausdorff space H, we

denote by ¡i(G, H) the set of all /i-measurable functions on G with values in

H. For any Banach space B, we denote by LX(G, B) the set of all strongly

Bochner integrable /i-measurable functions z on G with values in B. For any

p, 1 < p < oo, we denote by Lp(G, B) the set of all z G LX(G, B) with

||z(-)|| G Lp(G, El) and then \\z\\p has the usual definition. Usual

conventions hold for p = oo. Thus, L„(G, B) c Lp(G, B) c LX(G, B) c

1>.(G, B).
Let L, M be two operators (not necessarily linear) with domains D (L),

D(M) c X and values in LX(G, B), ¡i(G, Y), respectively, and let X0 c D(L)

n D(M) be a given nonempty part of their intersection. We shall consider

the restrictions of L and M on X0, or L: X0 -» LX(G, B), M: X0 -» p.(G, Y).
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We shall say that a pair x, u is admissible provided x E XQ, u G ¡i(G, U),

and

(Mx)(t) E A(t),   u(t) E U(t, (Mx)(t)),   (Lx)(t) = f(t, (Mx)(t), u(t)),

/i-a.e. in G.

Then we say that v = Mx E ¡i(G, Y) is a state function, and that u E

[i(G, U) is a strategy, or control function.

We shall consider a given collection ß of admissible pairs x, u. Then, we

shall denote by {x}a the collection {x}a = {x E X& (x, u) G ß for some «},

and we have {x)Q c X0 c X.

Let (X, t) be any topological space, Z a Banach space, X0 a subset of X,

and A : X0 -* Z a given operator, not necessarily linear.

The operator A is said to have the strong (weak) closure property on X0

with respect to (X, r) provided xk E X& k = 1, 2,..., xk -» x in (X, t) as

k -» oo, x E XQ, Axk -^>y strongly (weakly) in Z implies Ax = y.

The operator A is said to have the strong (weak) closed graph property on

XQ with respect to (X, t) provided xk E X0, k = 1, 2,..., xk -* x in (X, t) as

A: -> oo, * G A", -¿x* -»v strongly (weakly) in Z implies that x E X0 and

-¿x = v.

Whenever X0 = A", closure property and closed graph property coincide.

The operator A is said to have the strong (weak) convergence property on

X0 with respect to (X, t) provided xk E X& k = 1, 2,..., xk -» x in (X, t) as

k -» oo, implies that there is a subsequence [ks] such that Ax^, s = 1,2,...,

is strongly (weakly) convergent in Z.

We define convergence in measure property similarly.

6. Existence theorems for Pareto-Mayer problems. For (t,y) E A, we shall

consider the sets

Q(t,y) =f(t,y, U(t,y)) = {z G B\z = f(t,y,u),u G U(t,y)} C B.

We shall say that, for any given t0 E G, the sets Q (t,y) satisfy property (Q)

with respect to v at the point (f0, v0) G ^4 provided

Q(*o,yo)= H clcoU ôCo, >0,
£>0

where the union is taken for all v G A (t0) in a neighborhood of radius e of v0

(in the metric d of (y, d)). The sets Q are said to have property (Q) with

respect to v inv4(/0) if they have the above property at every v0 G A(t¿).

Finally, we assume that a functional I[x] is defined in {x}a with values in

a Banach space Z, that is, /: {x)a -» Z. Let A be a closed convex cone in Z

and A* be the polar cone of Z in the dual space of Z*. We say that the class

ß is closed (with respect to the Mayer problem under consideration) provided,

whenever (xk, uk) E ß, that is, xk E [x)a, k = 1, 2,..., xk -» x in (X, z) as
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k -> oo, x G XQ, and there is some u E ¡i(G, U) such that x, u is admissible,

then there is also some û G p,(G, U) with (x, ü) E ß; thus, x G [x)a.

The class ß of all admissible pairs (x, u) is certainly closed in the sense

above. This particular form of our definition is justified by the closure

theorem 5.4 of [19] with B2 = {0}.

Theorem 6.1 (Existence theorem for Pareto-Mayer problems). Let Z be any

Banach space over the reals, A a closed convex cone in Z, A* the polar of A,

with int A* ¥= 0. Let A, S, f satisfy condition (Q. Let us assume that ß ¿s

nonempty and closed, that [x)a is sequentially relatively compact in (X, t), and

that the functional I: [x)a -*Z is A-bounded in Z. Also, for some a E Z* with

—a E int A* let ah {x)a->El be lower semicontinuous (with respect to ß),

that is, xk -» x in (X, t) and x E {x}a implies al[x] < Urn inffc_>00a/[.xjt].

Let us assume that both the operators L and M have the closure property in

X0 and that at least one of them has the closed graph property in X0. Finally, let

us require that (AQ): L: X0-* LX(G, B) has the weak convergence property

relative to {x)Q; M: X0^> p.(G, Y) has the convergence in measure property

relative to [x)a; and that, for ¡i-almost all t E G, the subsets Q(t,y) of B are

closed, convex and have property (Q) with respect to y in A(t). Then the

functional I[x] has at least one A-Pareto minimum in {x)a. (Specifically, ai

has a minimum.)

Mere property (K) suffices, instead of property (Q), if the space B is finite

dimensional (cf. Remark 7.3).

Proof. By hypothesis J[x] >ac for some element c E Z and all x E {x)Q,

or I[x] c c + A. Thus, the set éE = {z G Z, z = /[x], x E {x)a} is

nonempty and bounded below in Z with respect to A. Let us choose an

element a with X* = — a E int A* and for which ai is lower semicontinuous,

and note that for this X* the set of real numbers {z = X*z, z E éE}, or

{z = X*I[x], x E {x}a), is bounded above and nonempty, so that its

supremumy is finite. Let [zk] be a sequence of points of éE, or zk = I[xk],

xk E {x}a, k = 1, 2,..., such that X*zk -*j. By hypothesis, [x)a is rela-

tively weakly compact in X; hence, there is a subsequence, say still [k] for the

sake of simplicity, and an element x EX such that xk -» x in (X, t).

Because of the assumed convergence properties of L and M, there is a

subsequence, say still [k], such that Lxk -*y weakly for some.y G LX(G, B),

Mxk -> z for some z G ¡i(G, B), and thus, for a suitable further subsequence,

say still [k], we also have Mxk(t) -» Mx(t), ji-a.e. in G. Because of the closure

properties of L and M we have Lx = v, Mx = z, and because of the closed

graph property of at least one of the operators L and M, we also have

x E X0. By closure theorem 5.4 [19] there is some u(t), t E G, « G

fi(G, t/)-which may depend on X*-such that (x, U) is admissible. By
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hypothesis, there is some element u, u E p(G, t/)-which again may depend

on X*-such that (x, u) is also admissible, (x, u) E ß, x E {x}¡¡, and by lower

semicontinuity of ai,

al[x] <lim infaTfxJ = lim azk — —j,
k-KX> k-*co

or - al[x] > j. Thus, % = X*z > y for z «■ I[x]. But since * G [x)a, I[x] G

éE and, thus, %=X*z<j. We conclude that % = X*z = X*/[;c] =y.

Finally, z G éE, X*z =y, X* G int A* and, by Lemma 3.1, z is A-Pareto

optimal for éE in Z. In other words, x E {x}a is A-Pareto optimal for the

Z-valued functional I[x] in {x)a. Theorem 6.1 is thereby proved.

Remark 6.1. By using variants of the closure theorem mentioned in the

above proof, the same conclusions as in the above theorem can be drawn

under a variety of alternate hypotheses, as in Cesari [5]. We mention three of

these below, for illustration purposes, which are relevant if B is not finite
dimensional.

(a) [(AQ) replaced by (AQ*)]: Let B = Bx X B2, Bx, B2 Banach, Y, U
metric, L = LXX Lt, f = (fx, fj, f: S -» B¡, L¡: X0-*LX(G, B,), i - 1, 2; M:
X0 -» n(G, Y) and equation Lx = / replaced by L¡(x(t)) = f(t, Mx(t), «(/)),

t E G, i = 1,2. We assume that L, has weak convergence property, L2 has

strong convergence property (all relative to {x}a). We assume finally that for

every t E G - T0, the sets Q(t,y) satisfy property (Q*) with respect to.y in

A(t) relative to (Bx, B2). [For definition of property (Q*) see Cesari [5], or

Kaiser and Suryanarayana [19].] Here we assume that Lx, L2, M have closure

property in X0 and that at least one of them has the closed graph property in
X0.

(b) (AQ) replaced by (AP): B is a Banach space with the following
properties: (R,) Any sequence zk(t), t E G, zkE Lœ(G, B), k = 1, 2,...,

with Hz/til,« < N for all k, possesses a subsequence which is weakly conver-

gent in Lœ(G, B). (R2) Any sequence zk(t), t E G, zkE LX(G, B), k =

1,2,... , which is weakly convergent in LX(G, B) is equiabsolutely
integrable in G.

We assume L: X0 -» LX(G, B) has weak convergence property relative to

{x)a and M: X0 -» ¡i(G, Y) has convergence in measure property relative to

[x}a. We also assume that the sets Q(t,y) are closed and convex and satisfy

the conditions: (P,) there is a bounded /¿-measurable function p(t), t E G,

p G ¡i(G, B),p: G->B, \\p(t)\\B < a for nil t E G such thatp(t) E Q(t,y)
for all t E G - T0 and v G A(t). (Pj) For every t E G - T0, and N > a

(with a as in (P,)) the closed convex equibounded sets Q(t,y) n ^(0, N)

satisfy property (Q) with respect to v in A(t). Here V(0, N) = {z G B\

11*11 < #)•
(c) ((AQ) replaced by (Fp), 1 < p < oo). Here both B and Y are Banach
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spaces and U is a metric space. Let L: X0 -» LX(G, B) have weak convergence

property relative to {x}a. Also, let M: X0^> Lp(G, Y) have strong Lp-

convergence property, relative to [x)u. The sets U(t) depend only on t, the

sets Q(t,y) are closed and convex. For 1 < p < oo, there are constants

c, y, $o>P' with c > °> ío > °» ° < y < P> P' = P(P - V)_1 if 0 < y < />,

p' = oo if y = p and functions F(/) > 0, / G G, F G L„.(G, E1), A(£), 0 < £

< oo, A monotone nondecreasing, A(0 + ) = 0, A(f) < c|f |Y for S > f0 such

that, for all (t,y, u), (t,y2, u) E S,t E G - T0, we have

\\f(t,yx, u)-f(t,y2, u)\\B< F(t)h(\\yx - y2\\Y).

For p = oo, this same relation holds for some F(t) > 0, t E G, F E

LX(G, E1), h(Ç), 0 < £ < + oo, A monotone nondecreasing with A(0 + ) = 0.

Remark 6.2. For some other variations, see also the remarks for Lagrange

problems in the next section. See, in particular, Remark 7.3. The sufficiency

of property (K), instead of property (Q), whenever the space B is finite

dimensional was proved by Cesari and Suryanarayana in [34].

7. A lower closure theorem. In the study of Mayer problems in the last

section, we were able to apply known closure theorems to obtain the existence

of Pareto optimal solutions, with respect to a general closed convex cone A

(with no requirement of angle property) in a general Banach space Z (with no

reflexivity condition). This is mainly due to the fact that the cost functional /

is assumed to be such that ai is lower semicontinuous for some a with

— a E int A*. This freedom is certainly curtailed when we consider Lagrange

problems. We shall assume Z to be reflexive and the closed convex cone A to

satisfy an angle property. We shall prove a relevant lower closure theorem in

the same lines as Theorem (5.i) of [7], applicable to the Pareto optimal

problems. For completeness, we incorporate the proof here.

Theorem 7.1. Let Z and B be Banach spaces. Let Z be reflexive and ¡et A be

a closed convex cone in Z, with the angle property. Thus, A c {x E Z\ax >

«l|a|| \\x\\) for some a E Z*,a i= 0 andO < e < I. Let (G, p), (Y, d) be metric

spaces and G be a complete measure space with a finite measure ¡i and a-algebra

a of ¡i-measurable subsets. Let A be any subset of G X Y such that, for t E G,

the set A(t) = {v G Y\(t,y) E A) is nonempty. For each (t,y) E A, let

Q (t, y) be a nonempty subset ofZxB.

Let T0 E a, ¡i(T0) = 0 be such that for t G G - T0, A(t) is closed and

Q (t, y) is closed and convex and satisfies property (Q) with respect to y E

A(t). Let t(t), y(t), Vk(t), &(f), yk(t), <i>(0> t E G, k = 1, 2,. .., be im-

measurable functions, Í, 4 G LX(G, B), r\k, <j> G LX(G, Z) such that

(i)yk(t) E A(t), (Vk(t), 4(0) G Q(t,yk(t)), t E G (a.e.), k - 1, 2,... ;

(ii) — oo < / = lim iník-xnf Ga(r¡k(t)) dt < oo, with a as above;

(iii) 4 -» £ weakly in LX(G, B),yk(t) ->y(t) in measure in G as k -» oo;
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(iv) i?*(0 - <i>(0 e A, t G G, n-a.e.,
then, there is a function tj(0, t G G, tj G LX(G, Z) such thaty(t) G A(t), (r¡(t),

¿(0) G Q(t,y(t)), t G G (a.e.), and /Ga(Tj(0) dt < i.

Mere property (K) suffices, instead of property (Q), if the space B is finite

dimensional (cf. Remark 7.3).

Proof. Let jk = Sca(t]k(f)) dt, k «■ 1, 2, ... . By taking suitable

subsequences we may assume thaty'¿ -» /' andyk(t) ~>y(t) a.e. in G as k -» oo.

Here, — oo < /' < oo, so that if ps = max{|y'fc — i'|, k > s + 1} then ps -» 0 as

j -» oo. Let To G a with n(T¿) = 0 be such that v¿(0 -».KO for all / G G -
T¿. Then v(0 E A(t) for t E G - (T0 U T¿).

For s = 1, 2,..., consider the sequence Hs+k(t), t E G, which converges

to i(t) weakly in LX(G, B) as k -> oo. By Mazur's theorem, there is a set of

real numbers csNk > 0, k = 1,..., N, N = 1, 2.with SjLiC,^ = 1 and

such that £¿(0, defined as S^c^^+^O, converges strongly in LX(G, B) to

£(0. This is true for i = 1, 2,_For each s, there is a subset Ts G a,

H(TS) = 0 and a subsequence N¡¡, A = 1, 2,..., with Nk-*oo such that, for

f GG- ^.^(O^KOasA^oo.
Let r¿' be the set of measure zero such that i}k(t) — $(t) E A for all k and

t G G - T¿'. Defining

N

■nÑ(()= 2 CsNkVs+kiO
k-ï

(just as £¿), we have

^(')-<K')eA   and   i-ps<[a(7ij,(t))dt<i + Ps.

For JV = JV¿ and A -» oo, we obtain from Fatou's Lemma and the relation

o(rjjv(0 - </>(')) > 0 that the function 0s(t) defined by

0f(O=liminfa-Tj^(O

satisfies the relations

9s(t) > a(<p(t)),   (EGa.e„

and

(9s (t) dt < lim inf  ( a(t\sN (0) dt < i + ps,      s - 1,2.
•'G A-*oo     Jq "

Thus, 0*(O is finite a.e. in G and of class L,(G) = LX(G, E1). Let r; denote
the set of measure zero of points / G G where 9s (t) is not finite. Define

0(0= hm inf 9s (t),       t G G.

Then, 0(0 > a($(t)), a.e. and /C0(O dt < /. Thus, 0(0 is finite a.e. in G and
of class LX(G). Let T¿" be the set of measure zero where 0(0 is not finite, and



PARETO OPTIMIZATION 51

let T be the union of all sets T0, T¿, T¿', T¿", Ts, r;, s = 1, 2,-Let

t0E G - T, and let sa(tQ) be a subsequence such that 9(Q = limu_>oo0î"(/a)

and|0-(ío)|<|0(ío)| + l.
For each fixed sa, let {^"(/q)} be a subsequence of {tj^(/0)} such that

and

K"(io)|<|0-(/o)| + K|0(/o)|+2.

Thus,

|««Co) - *Co))| <löCo)| +KCo)| + 2.
But since r]*u(t0) — <|>(/0) G A, by choice of a and e, it follows that

IK Co) - <K'o)|z<[|0Co)| +K<K>o))| + 2]e-l\\al

Thus, ||tj*"(/0)|| is bounded and, by weak compactness of spheres in Z, there

is a subsequence, say {y} still, and an element r¡su(t¿) such that tj *"(/,})->

1™Co) weakly as y -> oo. Then, -qsu(t¿) - <¡>(t¿) G A, arislÀ>(t0) = 9sa(t¿), and

IM'o)||z<I<H>o)||z+[|<K'o)| +|«(*Co))| +2>-'|H|.

By repeating the above argument, with tjju(/0), we observe that there is a

subsequence, say jw still, and an element tj(/0), such that tjju(í0) -» r¡(t¿)

weakly in Z as co -» oo and

INCo)||z<H*Co)«z+[|Ö(/o)| +KCo)| +2]e-'|H|.

Also,ar,(fo) = 0(io).

Setting v0 = v(r0), we have (t0,y0) G A and the sets Q(t0,y) have property

(Q) at v0. Given 5 > 0 there is some s0 such that d(ys(t0),y0) < 5 for s > s0.

For s > s0, we have (i)s+k(t0), &+*Co)) S ßCo> •)>*+* Co)) and d(y1+k(t0),y¿

< 8, k = 1, 2,..., and, hence,

0i¿ Co). « Co)) eco U {<2Co,>')l¿(v).y0)<S}.

Finally, for N = Nj¡ and A -» oo, (tj^(ío), |¿C0)) is a sequence with (tj(ío),

£(/0)) as an accumulation point. Thus,

(i?('o).f('o)) e clco U {Q(to,y)\d(y,y0) < 8).

Since 5 > 0 is arbitrary, by property (Q), we have

Ci('o).£Co)) e D clco U {Q(to,y)\d(y,y0) < 8} - ßCo. v0)-
«>o

Thus, (tj(0, £(0) G <2C..yC)) for all í G G - T. Also,

IK')||z<ll<K')llz+[l<í>C)| +K0I + 2]e-,|H|
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for t E G — T and the right-hand side of this inequality belongs to

LX(G, £'). Thus, tj(0 is Bochner integrable tj G L,(G, Z). Furthermore,

arj = 9 implies fGar¡(t) dt < i. This completes the proof.

Remark 7.1. Requirement (iv) in the above theorem can be replaced by the

weaker assumption:

There exist <f>k, <p E LX(G, E1) such that at]k(t) > $k(t), t E G ( jx-a.e.) (with

a as above).

The following implicit function theorem of McShane and Warfield [22] has

been used in the past to obtain lower closure theorems for control problems

as particular cases of those for orienter fields.

Theorem 7.2. Let G be a measure space, H a Hausdorff space and X a

topological space which is a-compact, that is, X is a countable union of compact

metrizable subsets. Let g: X' -» H be a continuous function and $: G -> H be a

measurable function such that «5(G) Q g(X). Then there is a measurable

function $: G -» X such that g(H0) " $C)> ' e G-

As a consequence of Theorems 7.1 and 7.2, we obtain

Theorem 7.3 (A lower closure theorem for Pareto-Mayer control prob-

lems). Let G, Y, U, B, S, f and A be as in §5. Let Z be a reflexive Banach

space and A be a closed convex cone in Z with the angle property so that for

some a E -A* andO < e < 1, A c [z\az > e\\a\\ \\z\\). Let g: S -» Z and let

f, g, A and S satisfy Carathéodory condition (C). Let

Q (t,y) = {(z°, z) G Z X B\z° = g(t,y, u), z = f(t,y, u), u E U(t,y)}

and

Q(t,y) = Q(t,y) + A

= ((z°,z)GZ X B\z°Eg(t,y,u) + A,z=f(t,y,u),uE U(t,y)}.

Let TQE a, ¡i(TQ) = 0 be such that for t E G — T0, A(t) is closed and

Q (t, y) is closed and convex and satisfies property (Q) with respect toy E A (t).

Let 4(0, t(t), yk(t\ y(t\ uk(t), tja(0, <K0, f e G, * - 1,2,..., be
measurable functions on G such that

(i) yk(t)EA(t), uk(t)EU(t,yk(t)), Ük(t) = f(t,yk(t), uk(f)), t¡k(t) =

g(í.7*(0. "¿C))» M"«-«7- in G, k = 1, 2,... ;

(ii) 4,1 G LX(G, B), T}k, <f> E LX(G, Z);
(iii) — oo < i = lim infft_oo/GaTjÄ(0 dt < oo, with a as above;

(iv) 4 -» i weakly in LX(G, B),yk(t) ->y(t) in measure in G as k -> oo;

(v) %(0 - «KO e A, / G G a.e.;
then there are ^.-measurable functions r\(t), u(t), t E G, such that fj G LX(G, Z)

and y(t) E A(t), u(t) E U(t,y(t)), and if tj(0 denotes g(t,y(f), u(t)), then
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tj(0_-tj(0 G A,  £(t)=f(t,y(t),   u(t))  ii-a.e.  in   G,  and  íGar}(t) du <

/cafj(0 du < i.

Mere property (K), instead of property (Q), suffices if the spaces B and S

are finite dimensional (cf. Remark 7.3).

Remark 7.2. Without additional assumptions we may have fGar¡(t) d¡i =

-oo and tj £ LX(G, Z). This happens even in the case Z = E1 (see Exam-

ples 1, 2 of Cesari [7]). On the other hand, we can guarantee that otj G

Lx(G,El) and even that tj G LX(G, Z), if the following "lower bound"

condition (a) holds.

(a) There is a real valued function </>a G LX(G, Ex) such that ag(t,y, u) >

<i»a(0forall(/,vL«)G5.

Indeed, since tj(0 — tj(0 G A, we have

a(iC) - 1(0) > *H |ï(0 - iCOII
and

INOII <|«/)|+«~IM~,*(ï(0 - *('))

<liC)|+e-,[a(nC))-*aC)].
Since the right-hand side of this inequality is in LX(G, El), it follows that tj is

Bochner integrable.

For other similar lower bound conditions, we refer to Cesari [7].

The following lower closure theorem requires an analytic condition instead

of property (Q). The proof is in the same lines as the analogous theorem in

[12].

Theorem 7.4. Let G, T0, A(t), t E G, be as before. Let U(t) depend only on

t. Let S be defined as before, {(t,y, u)\t G G, v G A(t), u G U(t)). Let f:

S-* B and g: S -» Z satisfy property (C). Let Q(t, y), y E A (t) be defined as

before and be closed and convex for t E G — T0. Let £(f), y(t), 4C)> J^O»

t]k(t), uk(t), 0(0, 0*;(O> t E G, k = 1,2, .. ., be measurable a.e. finite

functions, tj* G LX(G, Z), £ 4 G LX(G, B), 9, 9k E LX(G, El), yk(t) E A(t),

uk(t) E l/(/),

&(') ~f{t,yk(t), uk(t)),   -qk(t) = g(t,yk(t), uk(t))

and let

t*C) = g(t,yk(t), uk(t)) - g(t,y(t), uk(t))

and

8k(t) =f(t,yk(t), uk(t)) -f(t,y(t), uk(t)),       tEG,k=\,2,....

We shall assume that A c (z|az > e||a|| ||z||} for some 0 < c < 1 and

a E — A*, and that

(i) -co < i = lim mîk_^JGat)k(t)dii < oo;
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(ii) 4 -» £ weakly in LX(G, B), 9k-*9 weakly in LX(G, E1), rk -> 0, 8k -» 0,

andyk -» v in measure in G as k -» oo;

(iii) ar¡k(t) > 9k(t), ¡i-a.e. in G and k = 1, 2.

Then there exists a measurable function u(t), t E G, such that y(t) G A (i),

u(f)EU(t), m=f(Uy(t), u(t)), and if v(t) = g(t,y(t), u(f)), then
JGar¡(t) dp exists and is < i. If condition (a¿) is also satisfied then r¡ G

LX(G, Z).

Remark 7.3. It is known that if / satisfies property (Q, if U is a Banach

space, if uk(f), t E G, k = 1, 2.belong to a norm bounded subset of

Lp(G, U) for some p, 1 < p < oo, then 5* -> 0 and rk -» 0 in measure, and

this particular hypothesis in the above theorem is automatically satisfied. For

a proof of the above statement, we refer to Cesari and Suryanarayana [12]. If

yk are also known to be L^-bounded for some/», then the above statement is

obtained from Lemma (2.1) of Krasnoselskiï [21]. This special case where uk

and yk are both L^-bounded and Z is the set of reals was considered by

Berkovitz [1]. Let T(t, y, z) = Inf[Tj|(Tj, z) G Q(t,y) for some z]. If we use

suitable selection theorems (such as Castaing's) instead of the McShane-

Warfield lemma, then property (C) can be modified as follows: T(t, v, z) is

lower semicontinuous in ( v, z) for every t, and measurable in t for every

( v, z) (cf. [35]). This is equivalent to a recent result of Olech [25]. Thus, the

present paper extends these results to Pareto problems. In [35] Suryanarayana

proved that, if A is a polyhedral cone and Z is finite dimensional, then, by

suitable slight changes in the hypotheses, the conclusions of 6.1, 7.1, 7.3, 7.4

are valid for every a E —A*. Finally, Cesari and Suryanarayana [34] proved

that, in case where B and Z are finite dimensional, Theorem 7.3 is valid with

property (Q) replaced by mere property (K) of the sets &(t,y), and Theorem

7.4 holds without the property concerning 8k. Analogous remark holds for the

other theorems.

8. Existence theorems for Pareto-Lagrange problems. We shall prove in this

section existence theorems for control problems where the Z-valued cost

functional is a Bochner integral on G. We need the lower closure theorems of

§7. If the cost functional is a Pettis integral one can use the lower closure

theorems of Cesari [5], [6] for scalar valued functionals.

We shall follow the notations of §5. Let Z be a reflexive Banach space and

let A be a closed convex cone in Z with the angle property; that is, there exist

e real, with 0 < e < 1 and a G -A* such that A c {z|az > e||a|| ||z||}. Let

g(t, y, u) be a function defined on S with values in Z or g: S -» Z. We

assume that A, S and the functions / and g satisfy Carathéodory conditions.

We shall consider the sets

Q(t, y) - {(z°, z)EZX B\z° - g(t, y, u),z=f(t,y, u), u E U(t,y)}
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and

Q(t,y) = Q(t,y) + A = {C°,z)ezx b\z°gg(t,y,u) + A,

z=f(t,y,u),uEU(t,y)}.

We say that a pair (x, u), x E X0,u E ¡i(G, U), is admissible provided

(Mx)(t) E A(t),   u(t) E U(t, Mx(t)),   Lx(t) - f(t, Mx(t), u(t)),

/x-a.e. in G,

and

\\g(;Mx(-),u(-))\\ELx(G,E\ii).

Thus, the Z-valued (Bochner) integral

I[x, w] = f g(t, Mx(t), u(t))diL (*)
JG

has a finite value in Z for every admissible (x, u). We shall consider a given

class ß of admissible pairs as in §5, and thus I[x, u] is a Z-valued functional

defined on ñ.

As in §5, we denote by {x)a the collection {x E X0, (x, u) E fi, for some

m}, so that [x)a cX0cX. We shall say that the class ß is closed (with

respect to the Lagrange problem under consideration) provided, whenever

(xk, uk) E ß, k = 1, 2,..., xk -» x in (X, t) as k -> oo, x G X0, and there is

some u E n(G, U) such that (x, u) is admissible, then there is also some

û E [i(G, U) such that (x, ü) E ß, and I[x, u] <aI[x, u].

Remark 8.1. For a fixed X* G A*, one may consider the sets

-X*Q(t,y)=[(%,z) EElX B\% = -X*z°, (z°, z) E §(t,y)]

and the real valued functional

-X*I = [- X*g(t, Mx(t), u(t))dn.

In this case, we may define a class ß to be closed with respect to X* as

follows. Whenever (xk, «t) 6 Í!, k ■» 1,2,..., x* -* x in (X, t) as k -> oo,

x E X0, and there is some u E ¡i(G, U) such that (x, u) is admissible, then

there is also some ü E ¡i(G, U) with (x, w) G ß and — X*I[x, ù~\ <

-X*I[x, «].
One may require the existence of such U only for those sequences (xk, uk)

and the element (x, u) with — X*I[x, u] < lim inf — X*I[xk, uk].

We say, as in §6, that a condition (a0) holds if there is a Z-valued function

<K0, t G G, <K0 e Z, with ||«K0|| ̂  LX(G) such that 4>(t) <Ag(t,y, u) for all
(t,y,u)ES.

Remark 8.2. It is of interest to note that if A is a closed convex cone in a
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Banach space Z and if / G LX(G, Z) with f(t) G A, then !af(t)dn G A.
Indeed, this is true for simple functions and Jcf(t)d¡i is defined as the limit of

integrals of simple functions.

Theorem 8.1. Existence Theorem (for Pareto-Lagrange problems). Let Z

be a reflexive Banach space over the reals, A a closed convex cone in Z, and A*

the polar of A, such that Z, A satisfy the angle property, so that A c {z G Z|az

> e||a|| ||z||} for some e real and a E Z* with 0 < e < 1 and —a E int A* ¥=

0. Let A, G, S,f,g satisfy conditions (C) and (a¿). Let us assume that ß is not

empty and closed, and that {x)a is sequentially relatively compact in (X, t). Let

us assume that both operators L and M have the closure property in X0, and that

at least one of them has the closure graph property in X0. Finally, let us require

the condition (AQ) L: X0 -> LX(G, B) has the weak convergence property

relative to {x}a; M: X0-*n(G, Y) has the convergence in measure property

relative to [x}a; and, for ¡¡.-almost all t E G, the sets &(t,y) = Q(t,y) + A

are closed, convex, and have property (Q) with respect to y in A (t). Then the

Z-valued functional I[x, u] defined by (*) has at least one Pareto minimum in

ß.

Mere property (K) suffices, instead of property (Q), if the space B and Z

are finite dimensional (cf. Remark 7.3).

Proof. Let éE = {I[x, u]\(x, u) E ß}. Condition (aQ) and Remark 8.2

imply that éE is bounded below. Indeed, there is a <f> g Lx(G, Z) such that

«K0<AgC,.y,w) or g(t, Mx(t), t/(0)-«K0eA and, hence, I[x,u]-
fG<b(t)dn E A for every admissible [x, «]. Thus, éE c c + A with c =

¡c<&(t)d¡L. Also éE is nonempty since ß is. Just as for Mayer problems let us

consider the set of real numbers {% = az|z G éE}, where a is the element of

Z* appearing in the angle property of A. This set of real numbers is bounded

below and nonempty. Hence, its infimumy is finite. Let zk E éE be chosen

such that azk -*j as k -» oo. If zk — I[xk, uk] with xk E {x)a, k = 1, 2,...,

then by weak sequential compactness of {x}a (which is assumed) there exist a

subsequence, say still [k], and an element x EX such that xk -* x in (X, r).

Because of assumed convergence properties of L and M, there is a

subsequence, say still k, such that Lxk -*y weakly in LX(G, B) for some

y E LX(G, B). Also Mxk -» z for some z G ¡i(G, B). By extracting a

subsequence if necessary, we may assume that Mxk(t) -» Mx(t) ji-a.e. in G.

Because of the closure properties of L and M we have Lx—y, Mx = z and

by the closed graph property, x E X0. By lower closure theorem 7.3 there is

some ¿7(0, t E G,U E ¡l(G, i/)-which, of course, may depend on a-such that

(x, u) is admissible. By the definition of closedness, and since fi is closed,

there is some element u E ¡i(G, i/)-which again may depend on a-such that

(x, ií)6ü,xe {x)a and
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% = al[x, u] < al[x, u] <lim inf al[xk, uk] = lim azk —j.

But, since x G {x)a and, thus, z = I[x, u] G éE, we have % = az > y and,

consequently, 2 = az =y. Since by Remark 4.3, —a G int A*, Lemma 3.1

and Remark 3.2 apply, and we see that z = I[x, u] is A-Pareto optimal for

the éE in Z, or that (x, u) is A-Pareto optimal for the Z-valued functional

I[x, u] in ß. The theorem is proved.

Remark 8.3. Just as for Mayer problems, we could use variants of the

lower closure theorems mentioned above and obtain the existence of optimal

solutions under a variety of alternate hypotheses, such as (AQ*), (AP), and

(Fp) of Remark 6.1, with sets Q(t,y) replaced by Q(t,y). For details of these

alternate hypotheses, we also refer to Cesari [5] and Cesari and

Suryanarayana [13], [34].

We wish to single out, however, a particular class of Lagrange problems,

where the minimizing sequence has a certain property (D) (see [11]) which

allows us to make no explicit seminormality requirements on the relevant sets.

We use the lower closure theorem 7.4 and Remark 7.3.

Theorem 8.2. Same as in Theorem 8.1 except for the following changes: U is

a Banach space and (x, u) E ß implies that u belongs to a fixed Lp-bounded set

for some p, 1 < p < oo. The requirement of property (Q) of the sets Q(t,y), is

omitted.

We shall now state an important corollary (8.3) of the above theorem

applied to ordinary differential equations. First we introduce the needed

notations.

Let A be a closed connected subset of the fcc-space E1 X E" whose

projection on the i-axis is the finite interval t0 < t < T. For each (t, x) E A,

let  U(t, x) be  a  closed  subset of  the  «-space Em.  Let g(t, x, u) =

(gx.gN), f(t, x, u) = (/„ . ■ . ,f„) be continuous vector functions on the

set S » {(/, je, u)\(t, x) E A, u E U(t, x)). Let Bx, B2 denote given closed

subsets of A, one of which is compact.

Let us consider the problem of Pareto optimization (with respect to the

positive cone A = {(X„ ..., X^X, > 0, i = I,..., N) c EN) for the cost

functional I[x, u] = (/,,..., IN), where

Ij[x, u] = P2 gj(t, x(t), u(t))dt,      j = l,...,N.
Jt\

We shall consider this problem in the class ß of all pairs x(t), u(t),

tx < t < t2, x AC (absolutely continuous), u measurable in [/„ t2] satisfying

the differential system

dx/dt = /(/, *(/), u(t)),       tE[tx, t2] (a.e.),
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the constraints

C *(/)) e A,   u(t) G U(t, x(t)),

and the boundary conditions

(*i, x(tx)) G Bx   and   (t2, x(t2)) G 52.

In order to state an existence result, we introduce the sets

Q(t, x) = [(2?,..., 2", z\ ..., zn)\<V > gj(t, x, u),j -l,...,N,

z' = /■(/, x,u),i=\,...,n,uE U(t, x)],

for each (t, x) E A.

Theorem 8.3. With the above notation, let S be closed and ß be nonempty.

Assume that there is a continuous scalar function «$(£), 0 < £ < + oo, with

$(£)/£ ->+oo as £-»+oo, and an index y0 with 1 < y0 < N such that

gJo(t, x, u) > $(|/(i, x, u)\)for all (t, x, u) E S. Let the sets g*(/, x) be closed

and convex (and therefore by the slow growth condition just assumed, these sets

Q(t, x) will, for each t E [/0, T], satisfy property (Q) with respect to x E A(t)

= [x\(t, x) E A}; see Cesari [9]). Finally, let us assume that there are L,-

integrable scalar functions <fy(t), t E [t0, T], such that gj(t, x, u) > <j>j(t)for all

(t, x, u) E SJ = 1,..., N,j =^y0.

Then there is at least one A-Pareto optimal solution [x, u] for the cost

functional I in the class ß.

Remark 8.4. We may obtain the Pareto optimum in a smaller class ß' c ß

provided fi' is nonempty and is "closed" in the sense of §7. A growth

condition on gJo is required to guarantee the equiabsolute integrability of the

x'k E Lx.

We shall now obtain as a corollary an existence theorem (8.4) for optimal

solutions for systems described by total differential equations. The following
notations are needed.

Let G be a bounded open subset of the /-space E" with regular Sobolev

boundary. For the sake of simplicity we shall assume that G is of class K,,

I > 1, that is, G is bounded by a surface T which can be decomposed into

finite numbers of manifolds Tx,... ,Tj of dimension v — 1 (and correspon-

ding boundaries), each Tj having the property that it can be mapped into a

hyperplane vj by means of a transformation of coordinates aj defined on a

part Gj of G and continuous with continuous derivatives up to order /, for

j = 1,..., J.
For each / G cl(G), let A(t) be a nonempty subset of the x-space E", and

we shall assume that the set A of all (t, x) E E" X E" with / G cl(G) and

x E A(f) is closed. For each (t, x) E A, let U(t, x) be a nonempty closed
subset of the w-space Em. Let S be the set of all (t, x, u) E E" X E" X Em
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with u G U(t, x) and (/, x) G A. For each i = 1,..., n, let {a}¡ be a given

finite system of indices a = (ax,..., a,), 0 < \a\ < l¡ < /, where \a\ = ax

+ • • • + a,. Let TV, be the total number of elements a G [a}¡, i = 1,..., n.

Let g = (g„ ..., gN) and / = (/a, a G {a},, / = 1,..., n) be continuous

vector valued functions on S. Let

Q(t, x) = {(2, z) EEN» X EN'\%J > gj(t, x, u),j = 1, 2,..., No,

z=f(t,x,u),uE U(t,x)}.

We shall impose boundary conditions (B) on the trajectories x'(t) and their

derivatives Dax'(t) in such a way that the following closure properties (P,)

and (P^ are valid:
(P,) If x(t) - (x\ .... x"), xk(t) = (x¿ ..., xH), t G G, k - 1,2,...,

are vector functions whose components x', x¿ belong to the Sobolev class

W'p'(G), if Dßxl(f)->Dßx'(f) as Ä:-> oo strongly in Zj,,(G) for every ß =

(/3'1,..., ß") with 0 < | ß\ < /, - 1, if Dßx'k(t) -> Dßx'(t) as A: -> oo weakly

in ^.(G) for every /3 with |/?| = /„ and if the boundary values <>£ of x'k(i),

i = 1,..., n, 0 < |a| < l{, — 1, on 9G satisfy the boundary conditions (B),

then the boundary values <fcj of x'C)> ' = 1.n, 0 < |o| < /£ — 1, on 9G

satisfy the boimdary conditions (B).

(P2) If x(0 = (x1,..., x"), r G G, is any vector function satisfying

boundary conditions (B) and whose components x'(f) E Wp'(G), pt > 1,

!</,</, /c|D^x'(0|^/ < Mip for aU ß = (/?„ ..., ß„) with | /3| = ¡„ i =
1,..., n, and constants M¡, then there are constants M¡ such that

fc\Dax'(t)\dt < M¡a  for all a - (a„ ..., a,) with 0 < |a| < /, - 1, i -
1.«, where the constants M¡ depend only on p„ v, all M¡, G and the

boundary conditions (B), but not on the vector function x(0 above.

Let ß be a nonempty closed class of pairs x(0 = (xl,..., x"), «(0 =

(u\ ..., um), t G G, x'(0 G W¿(G), 1< I, < Up, > I, i - 1,... tn, um(t)

measurable in G,j= 1.m, satisfying (a) the constraints (/, x(0) G A,

u(t) E U(t, x(0) a.e. in G, (b) the system of partial differential equations

Dax'(t) = fia(t, x(t), u(t)) a.e. in G, a G {a},, / = 1,..., n, (c) the

boundary conditions (B) on the boimdary dG of G (satisfying closure

properties (P,) and (PJ) on the boundary values of x'(0 and Dßx'(t) for

0 < |/3| < // — 1, i'=1,...,/j, and (d) the system of inequalities

fG\Dßxl(t)\p'dt < Niß for all ß with \ß\ = l„ß & {a}¡, i = 1,..., n, where

N¡ are given constants, and finally (e) gj(t, x(t), u(t)) E LX(G), j =

1,'. • -, N0.

In view of the last lines of Remark 7.3, we are now in a position to state

Theorem 8.4. With the above notations, if S is closed, if the sets Q(t, x),

x E A(t) satisfy property (K) with respect to x only, for each t E G, if there
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exist functions </>, G Li(G) with gj(t, x, u) > <f>j(t),j = 1, ..., N0, and (t, x, u)

E S, and if for ail (x, u) G ß with fGgJo(t, x(t), u(t)) < L0,j0 fixed, 1 < y0 <

N0, L0 a constant, we also have fG\Dax'(t)\Pl dt < L¡a, a G {a},, / =

1,..., n, with Lia depending only on L0, Ü,p¡, l¡ and on the boundary conditions

(B), then the vector valued cost functional I[x,u] = (Ix,..., IN^, with Ij =

jGgj(t, x(f), u(t))dt, has a Pareto minimum in ß, that is, there is a (x,ü~) E ß,

such that Ij[x, u] < I[x, u], j = 1,..., 7V0, for some [x, u] E ß, implies

I[x, u] = I[x, «].

Remark. Note that if we impose slow growth conditions as in Theorem 8.3,

then we ensure property (Q) of the sets ß above. If we only know that

\g(t, x, u)\ -» oo as |w| -» oo uniformly in every compact subset of A(t), then

the same sets certainly have the required property (K).

Example 1 (See Cesari and Cowles [10].) Let G be a subset of the (/, t)

space R'+\ t = (t1, ..., t"), of the form G = (0, T) X G', where G' is an

open bounded connected subset of jR" of class K¡. The boundary T =9G is

made up of three parts: Tx = {0} X cl G', T2 = [0, T] X9G\ T3 = {T) X
cl G'. On T, and T3 we have the Lebesgue »»-dimensional measure or | |„ (and

we shall use the symbol dr in integration). In T2 we have the product measure

a = I Ii x r1 °f me one-dimensional measure on [0, T] and of hyperarea jx on

the boundary 9G' of G' (and we shall use the symbol dt dp in integration).

Given a function x in G, we shall denote by yx the boundary values of x on

T = 9G, and, specifically, we shall denote by y,x the boundary values of x on

T,., / = 1, 2, 3. We shall denote by T, T? the families of all measurable

functions on G, T¡, i = 1, 2, 3, respectively.

Let 5p(G), 1 <p < +00, I > 1, be the space of all real valued functions

x(t, t), (/, t) G G, such that 9x/9/ and all D?s, a = (ax,..., a„), 0 < \a\ <

/, exist as generalized derivatives and are all in Lp(G). We shall make Sp(G) a

Banach space by means of the norm

p        \1/p t . \x/p

dtdr)     +     2    I [ \Dpcf dt <h\    .

These spaces Sp'(G) have weak compactness properties similar to those for

Sobolev spaces. Each element x G Sp(G) possesses the boundary values

y,x G Lp(Tx), y3x E Lp(T3) on Tx, T3, respectively, and all y2DTax G L^TJ,

0 < \a\ < I — 1, on r2. We are concerned with the Pareto minimum of the

vector valued functional (/„ I2,13) with

h = [ foi1' t, Mx(t, t), u(t, T))dt dT,
JG

h=\   8o(1' T> (Kx)(t, t), v2(t, r))dt dp,

I3 = [ g0(t,(Kx)(T,r),v3(T))dr.

|s;(o -u9x
dt
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Here Mx = (x, VTx) and Kx = 9x/9n on T2 and Äx = x on T3. Also,

/0=/2+|t|2+x2+|Vtx|2 + |i/|-1 > -1,

and

g0 = (dx/dnf+ v¡>0   on r2,      g0 = x2 - 1 > -1   on T3.

We consider state equations of the form

(tx)(t, t) = f(t, t, (Mx)(t, r), u(t, t))   a.e. in G,

0x)(t, t) = g(r, t, (Kx)(t, t), u2(f, t))   a-a.e. in T2

with

^ « f - 2   -%    and   Sx = 2 *,(,, r)y2( £ ),
d'     /'-i   (9t') f-i ^ 3T '

where a, are given elements of L2(T2). Also,

/=í + 2t' + x + 2  ■^+m + 2-1|M|,   g = x^+v2    onT2.

Let ß be the set of all admissible systems x G S¿(G), uET,v2E r2° with

11*11 s2(G) ** N f°r sufficiently large N.

Here Z = Ä3 and A = {(X„ X2, X3)|\ > 0, / = 1, 2, 3}. Clearly, A is a

closed convex cone and is acute and satisfies property (77) with

X* = (-1, -1, -1) G int A* = int{(X„ X2, X3)|X,. < 0,1 = 1, 2, 3}.

Due to weak compactness of spheres and imbedding theorems, it is seen that

M and K have convergence in measure property while £ and 5 have weak

convergence property. In fact, in this case, xk -*• x weakly in S2(G) implies

txk -» £x weakly in LX(G), §xk -» ix weakly in Lfö^, Mxk -» Mx in

(L,(G))"+ ' and Kxk -> Kx in L,(r) strongly.

Here U = {(«, v2)\u, v2 real} and ß = [z°x > f0, z\ > g0, z\ > g0\Vi, z\ =

f, z2 = g), so that

Q(t, t, x, VTx) = f z° > t2 + |t|2 + x2 +1 VTx|2 + |u| - 1, z2° > ( |* )

+ v\, z° > x2 - 1, z, - r + 2 t' + x + 2  -^7
i /    9t'

+ m + 2~'|h|, z2=x-z—\-v2, u, ü2real|

= Íz° > t2 + |r|2 + x2 + |VTx|2 - 1, z° > ( |£ j',

z3 > x2 — 1, z,, z2|z!, z2 real >,

and property (Q) is easily verified.
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Example 2. Consider the problem of A-Pareto minimum of the functional

(f%x2(t)dt, fle\p(x(t))dt) subject to the conditions x'" ■ 0, x(0) - 1, x(tt) =

1, where A = {(a, b)\a > 0,b > 0,a,b real} c R2. Here, the problem is one

of calculus of variations with no controls. The admissible trajectories (AC

solutions) are x(0 = a(t2 - tit) + 1, a real. Thus,

/, =f\2(t) dt =P[a2t2(t - 77)2 + 1 + 2at(t - 77)] dt

= û2(3-'t75 - 2t754-1 + 7r55-') + 2a(7r33"1 - v3!'1) + it

= fl2(775/30) - fl(773/3) + 77,

which is minimum for a = 5/V2. Thus, x0(0 = 5?7~2(r2 — 7r0 + 1 is a Pareto

optimal solution. However x(t) = t2 - mt + 1 < x0(0 for all t G (0, it) so

that

J2[x] = fV('><ft< 72[x0] = rcxp(x0(t))dt.

Thus, x0(0 may not minimize the functionals simultaneously.

Example 3 [14, Example 1, p. 14]. Production scheduling problem. It is

known that at time /0 the production rate/>(0 is.PCo) ■" Po> it is required that

at time tx the production rate bep(tx) = px. The objective is to find the Pareto

minimum (with respect to the positive cone, A = {(X„ X^X^ > 0, X2 > 0}) of

the cost vector (J','g cx, /,'¿ Cj); here c, is the machine cost, which is assumed to

vary on the square of rate of change p(t) of the production rate; and c2 is the

labor cost associated with the change in the production rate-assumed to be

given by c2 = ktp(t) where A: is a constant.

This is a free problem. Thus, p(t) is the trajectory, p(t) is the control. We

assume that there is a constant a (possibly negative) such that/5(0 > a for all

t E [f0, /,]. In this case the sets Q(t, x) are {(2\ 2?, z)|2' > u2, 2? > tu, z

— u,u> a) for t E [t0, tx], x E E1. For fixed t, these sets are fixed and,

hence, have property (Q) with respect to x.

Theorem 8.3 applies and the existence of at least one Pareto optimal
solution is guaranteed.

Example 4 [13, Examples 10, 12, pp. 70, 87]. It is desired to find a
production rate P(t) and an advertising rate ^4(0 such that inventory level is

changed from 7(0) = 7° to 7(r) = 71 in such a way that the cost cT =

fokxP2(t) dt is minimized and the total sales ST = Íqs(í) dt is maximized,
subject to

dI/dt = P(t)-S(t),   7(0) = 7°,   7(7") = 7\

dS/dt = -aP(0 + lA(t) - [X + yM~lA(t)]S(t),   S(0) - S*

where 5(0 is the sales jate at time t, and the controls P(t) and .4(0 are

bounded, P < P(t) < P, and A < A(t) < A, and a, y, M are constants.
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Once again Theorem 8.3 can be applied with the positive cone replaced by

A' = {(X„ X^X, > 0, X2 < 0}.

Appendix. Here we shall present a second criterion for A-Pareto optimality

of subsets éE of a Banach space Z with respect to a closed convex cone A in

Z. Given X* G A*, let us note, as in Yu [24], the set [aX*\a > 0} by <X*> and

the set A* - <X*>= { p* - aX*\a > 0, p* E X*} by <X*>X. Thus any p* E

A* is of the form pf + jx| with pf E <X*> and /¿j1 G <X*>±. Given éE c Z,
éE 7^0, z0 G Z andX* G A* let

Y(X*, z0) = {z E &\ p*z > p*z0 for all p* E <X*>X}

and

M(X*) = {z0 G w-cl(éE)|X*z > X*z0 for all z =£ z0, z G Y(X*, z0)}.

Lemma 2.1. For each X* E A*, ExtA(éE) = M (X*).

Proof. Let z0 G ExtA(éE) and X* G A*. Then z0 g M(X*) implies X*z0 <

X*z for some z ¥= z0 with z G Y(X*, z0); that is, for some z ¥= z0 with

p*z > p*z0 for all p* E (X*)2-. But then for any p* E A*, p* = jxf + joj,

with jnf G <X*>X, /*£ G <X*> and jx*z0 - pfz0 + /¿^o < (M* + /£)* - M*¿-
Thus, for some z t¿= z0, jx*(z0 - z) < 0 for all p* E A*, and, hence, z0 G z +

A contrary to A-Pareto optimality of z0.

Conversely, let for some X*, z0 G M(X*). Thus, z0 G w-cl(éE) and X*z0 >

X*z for all z G y(X*, z0), z =£ z0. Thus, given z G éE, z ^ Zq, either z G

7(X*, z0) and, hence, X*z0 > X*z so that z0 ^ z + A, or z £ Y(X.*, z¿) and,

hence, there is a ja* G (X*)-1 with p*z0 < p*z and z0 ^ z + A. Thus, z0 G

ExtA(éE).

Remark. For Z = R', the /-dimensional Euclidean space, and if A is a

polyhedral cone, then the above lemma reduces to Corollary 4.4 of Yu [15].

(See also Aubin [33].)
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