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RATIONAL FIBRATIONS, MINIMAL MODELS,
AND FIBRINGS OF HOMOGENEOUS SPACES1

BY

STEPHEN HALPERTN

Abstract. Sullivan's theory of minimal models is used to study a class of

maps called rational fibrations, which contains most Serre fibrations.

It is shown that if the total space has finite rank and the fibre has finite

dimensional cohomology, then both fibre and base have finite rank.

This is applied to prove that certain homogeneous spaces cannot be the

total space of locally trivial bundles.
In addition two main theorems are proved which exhibit a close relation

between the connecting homomorphism of the long exact homotopy

sequence, and certain properties of the cohomology of fibre and base.

1. Introduction. Originally Sullivan's theory of minimal models [12] was a

technique for the study of topological spaces. First he defined a contravariant

functor S ~* (A (S), d) from spaces to commutative graded differential

algebras (c.g.d.a.'s) over a fixed field k of characteristic zero.

Then with each c.g.d.a. (G, dG) such that H°(G) = k he associated a

homomorphism

r.(AX,d)^(G,dG) (1.1)

such that <p* is an isomorphism, AX is the free commutative graded algebra

(c.g.a.) over X, Im d c A+X • A+X and a certain "nilpotence" condition is

satisfied (cf. (2.3) for a precise definition). This determines (AX, d) up to

isomorphism, and (1.1) is called the minimal model for (G, dc). (Complete

definitions are in §2 below.)

If S is a space H*(S; k) always denotes its singular cohomology

(coefficients in k). If S is path connected the minimal model (AX, d) of

(A(S), d) satisfies H (AX) « H(A(S)) = H*(S; k). If S is 1-connected and

H*(S; k) has finite type then also

XssHomz(v¿S);k). (1.2)

Now in [12] Sullivan generalizes this to the minimal model of a

homomorphism y: (G, dG) -» (L, dL) between c.g.d.a.'s; this is a commutative
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diagram of c.g.d.a. homomorphisms

(L, dL)

(G, dc)-► (G ®AX,D) —>■ (AX, d)
i P

in which fjp* is an isomorphism. It is the exact analogue of the technique of

converting a continuous map into a fibration.

If F -¿E SB is a sequence of continuous maps such that v ° j is the

constant map then we apply the above procedure to A(v) and obtain a

commutative diagram

AM
A(B)      -> A(E) -»    A(F)

Il U î+ M
A(B)      ->     A(B)® AX    -+      AX

in which <p* is an isomorphism but \¡>* need not be. If u>* is an isomorphism

we say F-^ESB is a rational fibration. (For a technically complete

definition see Definition 4.5 below.)

A theorem of Grivel [5] asserts that a Serre fibration of path connected

spaces and 1-connected base with either base or fibre having rational

cohomology of finite type is a rational fibration. This is generalized to

non-simply-connected bases in [8] (see Theorem 4.6 below).

The purpose of this paper is to analyse rational fibrations. Our main

technique (cf. §3) is the A-model, in which we replace A (B) by its minimal

model in (1.3) to obtain a sequence

AY-* AY ® AX-* AX
of c.g.d.a.'s. This gives a convenient interpretation of the dualized rational-

ized long exact homotopy sequence-cf. (4.9) below.

In particular we obtain as special cases of our main theorems (Theorems

4.15 and 4.17 below) the following:

1.4. Theorem. Let F-^JESB be a Serre fibration, and let 3: vk(B)-*
mk~ i(F) be the connecting homomorphism. Assume F, E, B are l-connected CW

complexes and that H*(F; Q), H*(E; Q) and H*(B; Q) are graded spaces of

finite type. Then:

(i) If Coker 3 is strictly torsion then there is an isomorphism of graded
algebras

H*(F;Q)S;A(v.(F)®Q).

(ii) // Im 3 is strictly torsion and HP(E; Q) = 0, q > N, then any N + 1
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cohomology   classes,   y¡, . . . , yN+x,   in   H+(F; Q)   have product  zero:

Yi.Yjv+i = 0.
(iii) If dim H*(F; Q) < oo then 3 (v^B)) is strictly torsion.

1.5. Theorem. Let <p: S-*T be a continuous map between l-connected CW

complexes such that H*(S; Q) and H*(T; Q) are graded spaces of finite type.

Assume HP(T; Q) = 0, p > N, and <p#: vm(S) -» vJ(T) has kernel which is
strictly torsion.

Then the product of any N + 1 cohomology classes y„ ..., yN+l in H+(S;

k) is zero: y¡.yN+x = 0.

A space S is said to have finite rank if its minimal model is generated by a

finite dimensional space X. Homogeneous spaces G/K (G and K connected
Lie groups) are examples. We obtain

4.15(iv). Theorem. Suppose F->E->B is a rational fibration in which E

has finite rank and Hp (F; k) = 0, p > N. Then F and B have finite rank.

This places a severe restriction on the possible fibrings of a homogeneous
space. Indeed we establish as an application

7.7. Theorem. The following manifolds do not appear as the total space of a

locally trivial bundle (with connected fibre) over a CW complex unless either

fibre or base is a single point:

(i) S2k, k>\. (ü) Cp-\p aprime, (iii) U(4)/U(2) X U(2).

The paper is organized as follows. In §2 the basic facts from Sullivan's

theory are recalled. Throughout [8] is cited as a reference, solely because it

contains detailed proofs: the theorems are due to Sullivan [12].

In §3 we develop the notion of A-model, and in §4 we define rational

fibration and state the main theorems. For technical reasons we work always

in the categories of pointed spaces and augmented c.g.d.a.'s.

§5 contains the proofs of the results of §4. In §6 we apply the theory to

spaces of finite rank and in §7 we specialize to homogeneous spaces.

Theorems 1.4 and 1.5 may be regarded as showing how the connecting

homomorphism (in homotopy) of a fibration influences the cohomology of

the fibre and total space (over Q). It is interesting to wonder if there are

analogous results in characteristic different from zero.

It would also be interesting to have a complete list of compact homo-

geneous spaces which do not appear as the total space of any locally trivial
bundle.

2. Minimal models. We always work over a fixed field k of characteristic

zero. Graded spaces are graded over the nonnegative integers, which are
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written as superscripts. All differentials will have degree +1, and all algebras

are associative with identity.

A commutative graded algebra satisfies ab = (-l)desa de^bba, and tensor

product means in the graded commutative category. We use c.g.d.a. for

commutative graded differential algebra (A, dA).

A homomorphism <p: (A,dA)->(A',dA) induces a homomorphism tp*:
H(A) -» H(Ay

If X is a graded space AX denotes the free c.g.a. over X: AX = exterior
algebra (X^) ® symmetric algebra (Xeven).

If A is a c.g.a. augmented by eA we set

Q (A) = ker e^/ker eA • ker eA

and denote by ÇA: ker eA -» Q(A) the projection. If A is a c.g.d.a. then dA

induces a differential Q(dA)inQ (A), and ÇA gives a linear map

SA".H(ktTeA)->H(0;(A)).

A KS extension is a sequence

S : (G, dc, eG) 4(C, dc, ec) -»(A, dA, eA)

of homomorphisms of augmented c.g.d.a.'s which satisfy the following:

(2.1) For some graded space X c ker eA, A = AX.

(2.2) There is an isomorphism of graded augmented algebras, /: C as G ®

AX, compatible with i and p.

(2.3) There is a well-ordered homogeneous basis {xa}a£i ot X such that

(with respect to/)

dc(l®xa)<=G®(AX)<a,      «E5.

(Note. (AX)<a is the subalgebra generated by the xß, ß < a. Similarly we

ha.ve(AX)<a,(AX)>tt,(AX)>a.)

The augmented c.g.d.a.'s G, C and A are called respectively the base, total

and fibre algebras of &.

A KS extension S is called minimal if the basis in (2.3) can be chosen so

that deg xp < deg jc„ implies ß < a. If H°(G) = H°(C) = k this is equiva-
lent to Q(dA) = 0 (cf. [8, Corollary 2.4]).

If G = k (so that C — A = AX) we say (C, dc, ec) is a KS complex (resp. a

minimal KS complex). In particular the fibre of a KS extension S is a KS

complex, minimal if S is niinimal.

Now suppose

y: (G, dG, eG) -» (L, dL, eL)

is a homomorphism of augmented c.g.d.a.'s, and assume that H°(G) =

H°(L) = k.A model for y is a KS extension
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S: G-+C-+A,

together with a homomorphism of augmented c.g.d.a.'s

<p: (C, dc, tc) -» (L, dL, eL)

such that (p ° / = y and <p*: H(C) -> H(L) is an isomorphism.

If S is minimal we say (S,<p) is the minimal model for y. The

homomorphism y always has a minimal model, and its minimal model is
unique up to isomorphism (cf. [8, Theorems 6.1,6.2]).

If y is the inclusion of k in L then a model is just a homomorphism <p:

(C, i/c, ec) -» (L, a^, eL) where C is a KS complex and q>* is an isomorphism.
We say (C, ç>) is a model (resp. minimal) for (L, í/¿, eL).

Suppose H°(L) = A: and that (Ç, <fy) are models for (L, dL, e¿). Then by-[8,
Theorem 5.20] there is a homomorphism <p: C, -» C2 of augmented c.g.d.a.'s

such that q>2<p is based homotopic to <p, (cf. [8, Chapter 5] for the definition).

In particular, this implies that ç>*: H(CX) -> ¿/(C^ and Q(<p)*: #(2(C,)) -»

H(Q(C2)) are isomorphisms. Moreover (cf. [8, Lemma 8.3]), the isomorphism
¡2 (<p)* is independent of the choice of q>.

Thus if we write v$(L; C, <p) = H*(Q(C)) we have a canonical identi-

fication v$(L; C„ <p,) a tt,*(L; C2, qo^. Thus we may identify all these spaces

as a single graded space, which we denote by v$(L). If (C, <p) is the minimal
model then v$(L) = Q(C).

2.4. Definition. v$(L) is called the ^-homotopy space of the augmented
c.g.d.a. L.

Now assume tj: (G, dG, eG) -» (L, rfL, eL) is a homomorphism of augmented

c.g.d.a.'s, with H°(G) = k = i/°(L). If (Q, <px) is a model for G and (C2, ffj)
is a model for L then there is a homomorphism of augmented c.g.d.a.'s <p:

Ct -» C2 such that <p2<p is based homotopic to tjç>, (cf. [8, Theorem 5.20]). By

[8, Lemma 8.3], Q(<p)* is independent of the choice of 9.

The linear maps Q(<p)*: v$(G; C„ tpx) -» v$(L; C2, y^ are compatible with

the identifications defined above [8, Chapter 8] and so define a unique linear
map

V#:v*(G)^>vf(L).

Moreover Tjfrç* — (tj,-»?^* and t# = t; thus i//-homotopy is a functor from

augmented c.g.d.a.'s with connected cohomology to strictly positively graded
spaces.

3. A-models. A A-extension is a KS extension in which the base is itself a

KS complex; it is called A-minimal if both the base and the extension are
minimal.

A A-extension S : G -»'C SA can be written in the form

Y X AY® AX ̂ AX, (3.1)
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where Y and X admit well-ordered homogeneous bases {yy)y^ and {xa}aeS

such that

dGyyG(AY)<y   and   dc(\ ® xa) G AY ® (AX)<a.

Moreover the augmentations are precisely given by eG(Y) = 0, ec(Y) =

6c(Ar) = 0, and 6^(^ = 0.

In particular, (C, dc, ec) is a KS complex.

If & : G-t'CSA is a A-extension, then (3.1) shows that the sequence of

differential spaces

0^{Q(G),Q(dG))QX\Q(C),Q(dc)fX\Q(A),Q(dA))^0
is short exact. Hence it induces a long exact sequence

...-+H"(Q(G)fU Hp(Q(C)f(" Hp(Q(A))
id*

Hp+i(Q(G))-+....

3.3. Definition. 3* is called the connecting homomorphism for &.

Now suppose tj: (R, dR, eR) -» (L, dL, eL) is a homomorphism, with H°(R)

= k = H°(L). Consider the diagram

& : G-Í-+C-?-* a

l:R^C-^Ä (3-4)

II j?

R—>L
n

in which (S, ci) is the minimal model for tj, (G, \p) is the minimal model for

R, and (S, <p,) is the minimal model for / ° \p. Since ker p is generated by

/(ker £c), and since

/<p(ker ec) c / (ker eR) c ker p,

<p, factors over p to yield oj.

Note that ip* and <pf are isomorphisms by definition; it follows from [8,

Theorem 7.2] that, hence, so is ax. Thus we may identify A with A via ax.

Now collapse (3.4) to the commutative diagram

S : G     —»     C    —»    ^4

*j lv (3-5)
/?     ->      L

in which <p = ffff,.
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Then S is A-minimal and i|/* and <p* are isomorphisms. By [8, Theorem

10.3] this determines S up to isomorphism.

3.6. Definition. (S, ^, <p) is called the A-minimal A-model for tj.

Consider the A-minimal A-model (S,^, <p) for tj; since G and & are

minimal we have

Q(dG) = 0   and   Q(dA) = 0.

It follows that

Q(dc) = Q(i)d*Q(p), (3.7)

where 3* is the connecting homomorphism for S.

As we have seen above, the A-model (S,^, <p) is determined by tj; in

particular, tj determines the model (C, cp) for L. (3.7) shows that (C, cp) is the

minimal model for L if and only if 3* = 0. By the exactness of (3.2) this is

equivalent to Q (/)* injective. But diagram (3.5) shows that

Q(i)* = V*:v*(R)->v*(L).

This proves

3.8. Proposition. The model (C, <p)fior L in the A-minimal A-model for tj is

itself minimal if and only if t]# is injective.

4. Rational fibrations. Let 5~> (A(S), d) be the contravariant functor from

topological spaces to c.g.d.a.'s defined by Sullivan [8, Definition 15.2]. (An

element O E AP(S) is a function which assigns to each singular q-sim-

plex of S a polynomial differential form with coefficients in k on the standard

^-simplex, in a way compatible with the face and degeneracy operators.)

Note that A(pt) = k, so that an inclusion pt-> S augments A(S). By [8,

Property 15.6] integration provides a natural isomorphism of graded algebras

H(A(S))?>H*(S;k).

(Cf. also [10], [13], [4] and [12].)

Fix a base point in S (so that A (S) is augmented) and assume S is path

connected (so that H°(A(S)) = k). Then a model for A(S) will be called

simply a model for S and the graded space v$(A (S)) will be denoted by v$(S)

and called the ^-homotopy space of S.

A continuous map cp: S -» T (between pointed spaces) gives a

homomorphism A(cp): A(T)^>A(S) (between augmented c.g.d.a.'s); the

resulting maps of cohomology and ^-homotopy will be written

<p*:H*(T;k)-*H*(S;k)   and   «p*: v*(T)^vj(S).

If H*(S; Q) has finite type and S is 1-connected then there are natural

isomorphisms
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v$(S)^Homz(v.(S),k) (1)

(cf. [12] and [8]).
Now suppose

TT j

BÏ-E1-F (I)

is a sequence of base point preserving continuous maps between poind,

path connected spaces, such that vj(F) is the base point of B. Then

AM A(j)
A(B) UA(E) %A(F) (3)

is a sequence of augmented c.g.d.a.'s; denote the augmentations by eB, eE id

Let (&, <p) be the minimal model for A (v), and write

&:A(E)Uc^Ä.

Because of (2.2) ker p is the ideal generated by /(ker eB); since A(J)A(v) =eä

it follows that cp factors over ¡5 to yield the commutative diagram

A(B)       U C       A Ä
II iv is (4)

A(B)      -,     A(E)      r     A(F)

of homomorphisms of augmented c.g.d.a.'s.

4.5». Definition. The sequence (4.2) will be called a rational fibration if*:

H (A)-* H(A(F)) is an isomorphism. (Since the passage from Q to is

simply via ® Q k, this condition is independent of k)

Thus (4.2) is a rational fibration if and only if (A, ct) is the nrinimal miel

îotA(F).

Theorem 4.6 below shows that many Serre fibrations are ratical

fibrations. It was first proved in the simply connected case by Grivel [5]. (or

that case it was established independently a little later by J. G Thomas.) is

proved in detail in [8, Theorem 20.3] and is indeed the main goal of Use

notes.

4.6. Theorem. Assume that (4.2) is a Serre fibration. Suppose further that

(i) vx(B) acts nilpotently on each HP(F; Q),p > 1.

(ii) Either H*(F; Q) or H*(B; Q) is a graded space of finite type.
Then (4.2) is a rational fibration.

Now suppose F SE SB is a rational fibration, and let (S, i^, cp) behe

A-minimal A-model for A (v).

Combine diagrams (3.4) and (4.4) to obtain the commutative diagram
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&:G        -4        C        A       A

*l U l« (4.7)
A(B)      ->     A(E)      ->     A(F),

A(tt) A(J)

in which a = ä« ax, & is a A-minimal A-extension, and i//*, cp* and a* are
isomorphisms.

4.8. Definition. Diagram (4.7) is called the A-minimal A-model for the
rational fibration F-* E->B.

Next note that, in view of (4.7), we can write the long exact sequence (3.2)
in the form

...-*«£(*)W4tt|(£)C«$(F) d^tf+1(B)-».... (4.9)

4.10. Remark. Suppose F-» £ -» 5 is both a Serre fibration and a rational

fibration, and that the isomorphisms (4.1) exist for each of F, E and B. Then

the isomorphisms (4.1) transform (4.9) to the dual of the standard long exact

homotopy sequence of the fibration.

4.11. Définition. The sequence (4.9) is called the long exact ^-homotopy

sequence for the rational fibration. 3* is called the connecting homomorphism.

4.12. Proposition. The following are equivalent conditions on the rational

fibration F SE SB:

(i) 3* = 0.
(ii) 77* is injective.

(hi)./* is surjective.

(iv) The model for E in the A-minimal A-model for the fibration is minimal.

Proof. Combine Proposition 3.8 and (4.9).   Q.E.D.

The rational fibrations satisfying the conditions of Proposition 4.12 are

precisely those whose A-niinimal A-model is obtained by "decomposing" the

minimal model of E, without adding any additional data. In this sense they

are intrinsic to the space E:

4.13. Definition. If the conditions of Proposition 4.12 hold we say F-> E
-* B is an intrinsic rational fibration.

Now consider a rational fibration

F^E^B (4.14)

with connecting homomorphism 3*. A main object of this paper is the

following two theorems:

4.15. Theorem. In the rational fibration (4.14):

(i) If 3* is injective then H*(F; k) is the free commutative graded algebra

over v$(F): H*(F; k) = Av*(F).
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(ii) If 3* = 0 and HP(E; k) = 0,p > N, then any N + 1 cohomology classes

Vu • • • > */n+\ 'n H+(F; k) have product zero: y,.y^^., = 0.

(iii) If dim H*(F; k) < oo, then 3* is zero on elements of even degree:

d*(v?m(F)) = 0.

(iv) // dim vf(E) < oo and HP(F; k) = 0, p > N, then dim v$(F) < oo,

dim H*(F; k) < oo and dim vf(B) < oo.

In particular, the minimal models for F and for B have finitely many

generators.

Proof. Apply the theorems of the next section to the A-minimal A-model

of (4.14). Thus Theorem 5.2 yields (i), Corollary 5.10 gives (ii), Remark 5.17

with Theorem 5.16 implies (iii) and (iv) follows from Theorem 5.23.   Q.E.D.

4.16. Corollary. For a rational fibration in which dim H*(F; k) < oo, the

sequence

LL LL

0-^dd(B) -=— <dd (E) -¿-+ <dd (F)

ffeven (5) _!!*_>   ff even (E) JL>   „ even (F)-„ Q

is exact.

In particular,

dimv^eD(F) < dimv^m(E).

Hence if the minimal model for E has only odd generators, the same is true for

the minimal model for F.

4.17. Theorem. Let cp: S^*T be a continuous map between path connected

spaces, preserving base points. Assume

(i)Hp(T;k) = 0,p > N,and

(ii) <p*: v^(T) -> v$(S) is surjective.

Then the product of any N + 1 cohomology classes yx.yAr+1 in H+(S;

k) is zero: y,.y^+1 = 0.

Proof. Apply Theorem 5.9.   Q.E.D.

4.18. Remark. In view of Theorem 4.6 and the isomorphisms (4.1),

Theorems 4.15 and 4.17 imply Theorems 1.4 and 1.5.

5. The algebraic theorems. Consider first a A-extension

S:G-Uc^A (5.1)

which we write in the form (3.1). Choose bases {jy}?ej and {xa}ae3 as
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described at the start of §3. Use £c, fc and ÇA to identify Y, Y © X, and X
with Q(G), Q(C) and Q(A).

5.2. Theorem. Assume that & is minimal as a KS extension and that the

connecting homomorphism, d*,for S is injective.

Then every cocycle $ in ker ec satisfies p$ = 0. In particular, dA = 0.

Proof. We induct on the well-ordered set i. It is sufficient to prove the

theorem is correct when AX is replaced by (AX)<a, assuming it to hold when

AX is replaced by (AX)<a.

First note that dc(\ ® xa) is a cocycle of degree > 1 in AY ® (AX)<a;

hence by our induction hypothesis dc(\ ® xa) E A+Y ® (AX)<a. Thus

dAxa = p(dc(l®xtt)) = 0.

It remains to show that if 0 E AY ® (AX)<a satisfies ec$ = 0 and i/c$ = 0

then p$ = 0.

Extend £c to a projection ÇG: A7-> Y © k by setting £g(a) = X, X E &.

Define a c.g.d.a. ((*: ® Y)® (AX)<a, D) by

£ • (SG ® 0 = (SG • 0 ° ¿c-

Then Z) restricts to ß(i/c) in y ® 1.

Write y = Im g(¿c) © Z and project y onto Z with kernel Im g(¿c).

This defines a projection

O ® i): (k®Y)® (AX)<a-+ (k®Z)® (AX)<a.

Define a c.g.d.a. ((ik © Z) ® (AZ)<a, d) by

</ » (/> ® t) = (p ® i) » Z). (5.3)

Observe that

Z • Z = 0   and   d(Z ® 1) = 0. (5.4)

Moreover, since ^ = 0 in (AAr)<a, it follows that dc(\ ® (AAr)<a) c A+y

® (AX)<a. Hence

Imd cZ®(AX)<a. (5.5)

It follows from (5.4) and (5.5) that

d(Z®(AX)<a) = 0. (5.6)

Finally, regard H (Y, Q(dG)) as a subspace of Z. Then we have (because of

(5.5))

d{\ ® xß) = 3% ® 1 + tiß,      ß < a, (5.7)

where fy E Z ® (A+AT)<j8.
We next show that

(ker d) n (1 ® (AX)    ) = A:. (5.8)
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It is enough to show (via induction on i) that if for some y < a, (ker d) n (1

® (AX)<y) = k, then (ker d) n (1 ® (AX)<y) = k.
Let ¥ E (A^T)<y satisfy d(\ ® ¥) = 0. Write

(£ © Z) ® (AZ)<y= (A: © Z) ® (AAr)<y® Axy,

and write
m

1 ® ¥ = 1 ® 2 (*/ ® xÇ),       %E (AX)<y, <Srm ¥• 0.
y-o

It follows from the definitions that d(\ ® 1 ® xy) E(k®Z)® (AX)<y.

Hence we can write

0 - d(\ ® ¥) - ¿(1 ® ¥m) ® xyM

m-l

+ 2 [</(l ® ¥,) ± (y + 1)(1 ® ¥,)¿(1 ® 1 ® x,)] ® xJr
j-o

This shows that d(\ ® ¥,„) = 0, and so by our induction hypothesis ¥„, is a

scalar X.

Were m > 0 we would also have

if (1 ® ¥m_i) ± mXd(l ® 1 ® xy) = 0.

Using (5.7) we would then conclude that

3*xy ® 1 ed*(X<y) ® 1 + Z ® (A+*)<y.

This would imply 3*xy E 3*(^f<y), and contradict the injectivity of 3*.

It follows that m — 0 and so ¥ = ¥TO E fc. (5.8) is thereby established.

Finally, suppose $ E Ay ® (AA^,, is a i/c-cocycle such that ec$ = 0.

Then

(p?G ® i)$ = $, + 1 ® p$,

where $, E Z ® (AX)<a and p$ E (A+A")<a. By (5.6) ¿$, = 0 and so
¿(1 ® p$) = 0. Since p$ E (A+A'),;,,, (5.8) shows that p$ = 0.   Q.E.D.

Now we rely on Theorem 5.2 to establish our next result. If one skips to

Corollary 5.10 it becomes clear that it deals with the opposite extreme: the

case 3* = 0.

5.9. Theorem. Assume tj: (R, dR, eR)->(L, dL, eL) is a homomorphism of

augmented c.g.d.a.'s. Assume that

(i) H°(R) - H°(L) = k.
(ii) HP(R) = 0,p > N, where N is some fixed integer > 0.

(iii) tj*: v£(R) -» v$(L) is surjective.

Then the product of any N + 1 cohomology classes yx,..., yN+ï E H+(L)

is zero: yx.yN+x = 0.

Proof. Let
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S: G    -4    C    ^A

H Í9
R      -*    L

i

be the A-minimal A-model for tj. Then we can identify Q(i)*: ß(G)->

H(Q(C)) with tj*. Hence Q(i)* is surjective. It follows from the exactness of

(3.2) that Q (p)* = 0 and so the connecting homomorphism 3* is injective.

Since S is a KS extension we can write C = G ® A. Moreover, since

(G, i/0 is the minimal model for H(R), and H°(R) = k, we have ker eG =

G+. Thus Theorem 5.2 shows that every cocycle in C is contained in

G+®A.
In particular, because cp* is an isomorphism, there are cocycles z¡ E G + ®

A such that cpz¡ represents y„ / = \,... ,N + 1.

Finally choose a subspace IN c GN so that GN = IN © (ker dGf. Let

Ip = 0, p < N and Ip = Gp, p > N. Let v: G-* G/I denote the projection

and make G/I into a c.g.d.a. (G/I, d) by setting dv = vdG. Then v* is an

isomorphism.

Moreover, we can define a c.g.d.a. (G/I ® A, D) by requiring that (v ®

i)dc = D(v ® t). Since v* is an isomorphism, [8, Theorem 7.1] shows that

(v ® i)* is an isomorphism.

But note that (v ® i)z¡ E (G/I)+ ® A. Since (G/iy = 0, p> N, we

conclude that

(v ® i)zx.(v® i)zN+x = 0.

Since (v ® t)* and cp* are isomorphisms and cpz¡ represents y„ the theorem

follows.   Q.E.D.

5.10. Corollary. Let GSCSA be a A-extension such that H°(G) =

H°(C) - k and 3* = 0. Assume HP(C) = 0, p > N. Then H°(A) = k and

any N + 1 cohomology classes yx,..., yN+x in H+(A) satisfy y,.y^+1
= 0.

Proof. It follows from [8, Theorem 2.2] that the minimal model for C is

generated by a space isomorphic with H(Q(C)); since H°(C) = k we obtain

H°(Q(C)) - 0. Since 3* = 0 we conclude by exactness that H°(Q(A)) = 0.

A second application of [8, Theorem 2.2] shows that H°(A) = k.

Moreover, because 3* = 0, p* is surjective. Thus we can apply the theorem

to p: C-*A to obtain the corollary.   Q.E.D.

5.11. Corollary. Suppose tj: R^L satisfies the hypotheses of Theorem 5.9,

and cp: (AZ, d) -» (L, dL) is the minimal model of L. Assume Z,cZ generates

a d-stable ideal, I.
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Then any N + 1 cohomology classes yx,..., yN+i in H+((AZ)/I) satisfy

Yi.Yjv+i =0.

Proof. Let v: AZ -> (AZ)/7 be the projection. Write (AZ)/I = A(Z/Z,)
and observe that this is a minimal KS complex. Since AZ is also, we may

write

v* = Q(v):Z-»Z/Zx.

In particular, v# is surjective. Hence so is (v ° tj)* = v* ° tj*. Now apply

Theorem 5.9 to v ° tj: R -» (AZ)//.   Q.E.D.
Again suppose tj: R -» L satisfies the hypotheses of Theorem 5.9, and

(AZ, d) is the minimal model for L. Let {zy}ye% be a well-ordered homo-

geneous basis for Z such that

dzy E (AZ)<Y,       y E DC.

Then for each y we have the A-minimal A-extension

{(AZ)<y,d)-^(AZ,d)S[(AZ)>y,d),

and dzy = 0.

5.12. Corollary. The class [zy] represented by z in (AZ)>y satisfies

[zy]N+i = 0. Thus we can write zy+1 = d$ + ¥, where * is in the ideal

generated by Z<y.

Proof. Apply Corollary 5.11.   Q.E.D.

5.13. Corollary. Suppose that the hypotheses of Corollary 5.11 hold and

that, in addition, dim Z/Zx < oo. Then

dim//((AZ)//)<oo.

Proof. Write (AZ)// = A(Z/Z,), and let zx,..., zn be a well-ordered

homogeneous basis of Z/Zx such that

dz¡ E A{zx,..., ¿j_i),       1 < i* < n.

Consider the composite projection

AZ^(AZ)//-^A(¿;..z„),

where the second projection has kernel generated by zx,..., z¡_v

We can apply Corollary 5.11 to this composite to conclude that

[z,]"*l - 0   in H (A(J„ ..., z„)),       1< / < «.

It follows now from [7, Proposition 1] that dim H ((AZ)//) < oo.   Q.E.D.
It would be more satisfying if in Theorem 5.9 we could weaken the

hypothesis on R to resemble the conclusion on L or alternatively strengthen
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the conclusion to dim H(L) < oo. Neither of these is possible as the next two

examples show:

5.14. Example. Consider the A-minimal A-extension

A(x, y) -» A(x, y, u, v) -» A(u, v)

where deg x = 3, deg y = 2, deg u = 4 and deg v = 3, and the differential d
in A(x,y, u, v) is given by

dx = dy = 0,   í/h = xy,   í/ü = _y2.

The differentials in A(x, y) and A(u, v) are consequently zero.

An easy computation checks that the cocycles xuk and yuk + kxuk~xv

(k > 0) represent cohomology classes which form a basis of H(A(x,y, u, t))).

It follows easily that

H + (A(x,y, u, v))-H+ (A(x,y, u, v)) = 0.

On the other hand, in H(A(u, v)) = A(u, v) no power of u is zero. Thus we

cannot weaken the hypothesis on R.

5.15. Example. Consider the inclusion H*(S3; £)-> H*(S3\/ S3; k)

(induced by the collapse of one sphere to a point) as a homomorphism of

c.g.d.a.'s (with zero differential). Form the corresponding A-minimal A-model

H*(S3) Ur^L.

It is trivial that g(/)* is injective and so Q(p)* — p* is surjective. Since

dim H(R) < oo, Theorem 5.9 applies and shows in fact that the product of

any four cohomology classes in H +(L) is zero.

But we cannot strengthen the theorem and conclude dimH(L) < oo.

Indeed, there is an obvious spectral sequence converging from H*(S3) ®

H(L) to H(S3 V S3); were dim H(L) < oo we could conclude that the

Euler characteristic oí S3\y S3 was the product of the Euler characteristics

of S3 and of H(L). This would yield

0 = 0- Xh(D = Xs'vs' m -1»

which is a contradiction.

Next consider a A-extension £ : G SC SA and, as at the beginning of

this section, write it in the form

AY^AY ®AX^*AX.

Use tG, $c and $A to identify Y with Q(G), Y ®X with Q(C), and X with

ß (A). Assume {xa}aB5 is a well-ordered homogeneous basis for X such that

dc(l®xa)EAy®(AAr)<a,       a£l

Then for each a we have the A-extension

(AA-)<a^AA-^(AA-)>a.
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We will denote by [xa] the class in H((AX)>a) represented by xa.

5.16. Theorem. Suppose that & is A-minimal and satisfies

(i) H°(C) - k, and
(ii) for each a E á there is an na such that [xa]"° = 0.

Then A0 = k and the connecting homomorphism, 3*, for S  is zero on

elements of even degree.

5.17. Remark. The hypotheses (and hence the conclusion) of Theorem 5.16

are implied by the following assumptions on S ; it is A-minimal, H°(A) = k

= H°(C), and dim H(A) < oo.

Indeed, simply apply Corollary 5.12 with R = L = A.

5.18. Corollary. Under the hypotheses of the theorem, the sequence

0-► y°dd -&&-* Hodd (ß(0) -^> *°dd

yeven _SÍÍ2!>  //even fQ(C))  g(p)>> X even -► 0

is exact.

5.19. Corollary. Suppose S satisfies the hypotheses of the theorem, and that
?£: yyeven(C)->Zieven(g(C)) is surjective. Then

^:Heven(A)-*Xevtn

is surjective.

Proof. Observe that £Jp* = ß(p)*£*, and that Q(p)* is surjective by

Corollary 5.18.   Q.E.D.
5.20. Proof of Theorem 5.16. Since S is a minimal KS extension and

H°(C) = k, [8, Corollary 3.10] shows that

H(A)s*AX°®H(AX+).

If xa had degree zero then we could write

xon« + $ = dAy

where 4> and x£° were linearly independent. Hence deg $> = 0 and so xa,

$ E AA'0, which contradicts the above isomorphism.

It follows that A is connected, A0 = k.

Now we show by induction on 5 that d*xa = 0 if xa has even degree. It is

enough to show this for some fixed a, assuming the result to hold for all

ß< a.

Write C = Ay ® (AX)<a ® (AX)>a; this defines a A-extension
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Ay ® (AX)<a^AY ® (AX)<a® (AX)>a^(AX)>a.      (5.21)

Assume deg xa = 2«. Then by hypothesis 3* is zero inX^a and so

O-» Y2**1-* H(Y © X<a, Q(dc))

is exact. It follows that it is sufficient to prove d*xa = 0, where 3~* is the

connecting homomorphism for (5.21).

Next, form the A-minimal A-model of j (possible because H°(C) m k and

so H°(AY ® (AX)<a) — k too). Recall that the fibre of this A-extension can

be identified with (AA")>a because (5.21) is a minimal KS extension [8,

Theorem 7.2].

Hence the A-minimal A-model of y takes the form

6,:AZ X AZ®(AX)>a -    (AX)>a
U «4- ' II

Ay®(AA-)<a     -»    Ay®(AA'')<0®(AA')>a    -*    (AX)>a

in which the upper row is a A-minimal A-extension,and $* and cp* axe

isomorphisms.

In particular [8, Theorem 7.1], Q(ip)* and Q(cp)* are isomorphisms. Thus

the diagram above identifies 3* with the connecting homomorphism (3,)* for

&i, and so we have only to show that

(3,r*„ = 0. (5.22)
Denote (d{)*xa by ua.

Assume (5.22) is wrong. As in the proof of Theorem 5.2 divide AZ ®

(AA")>a by A+Z- A+Z ® (AA-)>a to obtain a c.g.d.a. (k © Z) ® (AX)>a.
Since AZ is minimal the induced differential in Z ® 1 is zero. Hence we can

further divide out by Zx ® (AX)>a where Z, c Z is a graded space such that

Z = Z, ©(«„).

Because xa has even degree 2n, deg ua = 2n + 1 and so the resulting factor

c.g.d.a. has the form (Aua ® (AA")>a, D), and Aua is the exterior algebra

over ua. In particular, D has the form D (ua ® 1) = 0 and

D(\ ® $) = ua ® 0($) + 1 ® rf$,

where d is the induced differential in (AA")>a and 9 is a derivation of degree

-2n such that Bd= dB.

Now in (AA")>a we have dxa = 0, and so Z>(1 ® xa) = ua ® 0(xa). Since

A is connected 6(xa) is a scalar, and since ua = (3j)*Jca we conclude 0(xa) =»

1. Thus

D(l®xa) = ua® 1.

Furthermore, by hypothesis, x£° is a coboundary in (AA")>a. Choose the

least m > 1 such that xam = ¿$, some $ E (AX)>a. Then
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0 = D2(\ ® $) = D(\ ® xam + ua ® 0$)

« mua ® x„m-1 - ua® d&$.

This shows that x™~x — d(6<P/m), which contradicts the minimality of m,

when m > 1.

But if m = 1 we have xa — d$, which contradicts the minimality of

((AA")>a, d). We have thus arrived at a contradiction, and so (5.22) must be

correct. This completes the proof.   Q.E.D.

Again consider a A-extension & : G SC SA.

5.23. Theorem. Assume that $ is A-minimal. Suppose that

(i) dim H(Q(C))< oo.

(ii) H°(A) m k and HP(A) = 0,p> N.

Then dim Q(A) < oo, dim Q(G) < oo and dim H(A) < oo.

Proof. As previously, write & in the form Ay~>Ay ® AA'->AA', and

identify Y = ß(G), X = Q(A), Y © X = Q(C).
Since ker 3* = Im Q(p)* and dim H(Q(C)) < oo, we conclude that

dim ker 3* < oo.

Choose a well-ordered homogeneous basis [xa)aeS for X so that ¿/c(l ®

xa) E Ay ® (AAr)<a. It is an easy exercise to do so, so that in addition a

subset of the xa's is a basis for ker 3*. Thus we may assume that xa,..., x^

is a basis for ker 3*.

An easy induction argument shows that then there is an additional finite

subset of the x's, x^ ,..., x^, so that Ay ® A(xax,..., x^) is dc-stable.

Thus we can reorder i so that a„ ..., a„ are the first n elements of S and

still retain the condition that dc(\ ® xa) & AY ® (AX)<a. We do this, and

forget the old ordering.

Let Z be the span of xa,..., x^ and consider the A-extension

Ay ® AZ-»(Ay ® AZ) ® (AA")^-» (AX)>a¡i.

Its connecting homomorphism, 3~*, may be identified with the composite

3*      pr°j

A->a,->yp-+Jy/3*(z).

Since Z d ker 3* it follows that 3* is injective.

Now Theorem 5.2 applies and shows that the differential dA in (AA")-^ is

zero; i.e.

H((AX)>an) = (AA-)>a„. (5.24)

On the other hand, consider the A-minimal A-extension

AZ^AX-^(AX)>a,

Since AA" is a minimal complex (because S was assumed A-minimal) it

follows that the connecting homomorphism for this extension is zero. Thus all
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the hypotheses of Corollary 5.10 are satisfied and we conclude that the

product of N + 1 elements in H+((AX)>aJ is zero. In view of (5.24) we

obtain that the product of N + 1 elements in X>0ln is zero in (AX)>a^.

It follows that dim X>Un < N, and so

dim X = dim Z + dim X>c¡ñ < n + N < oo.

Hence AX has finite type and so then does H (AX) = H (A). Since HP(A) —

0,p > N, we obtain dim H (A) < oo.

Finally, since

a*    GO')*Xd->Y^ H(Q(C))

is exact, and dim A" < oo, dim H(Q(C)) < oo, we conclude that dim Y <

oo.   Q.E.D.

6. Spaces of finite rank. A path connected space S is said to have finite rank

if dim tt*(S) < oo. In this case we call

xAS) = 2(-l)Pdimrf(S)
p

the homotopy Euler characteristic of S. If dim H*(S; k) < oo  then [7,

Theorem 1] shows that xÂ$) < 0«
Assume now that

F^E^B (6.1)

is a rational fibration. If all of F, E, B have finite rank then the exact

^-homotopy sequence for (6.1) (cf. (4.9)) shows that

X„(E) = X.W + X.(n (6-2)

6.3. Theorem. Suppose that FSE SB is a rational fibration. Assume E has

finite rank, and that for integers M,N>0,

Hp (B; k) = 0,      p> M   and   H" (F; k) = 0,       q > N.     (6.4)

Then

(i) B and F also have finite rank.

(ii) H*(B; k), H*(F; k) and H*(E; k) have finite dimension.

(iii) x.(B) < 0, xÁF) < 0 and *,(£) < 0.

Proof. It follows from Theorem 4.15(iv) that B and F have finite rank and

that dim H*(F; k) < oo. Since B has finite rank its minimal model is finitely

generated and so of finite type. Hence also H*(B; k) has finite type. It

follows from our hypothesis that dim H*(B; k) < oo.

Let Ay~> Ay ® AA*-> AA" be the A-minimal A-model of the rational
fibration. As in the proof of Theorem 5.9 define a projection of A y onto a
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c.g.d.a. U such that Up = 0, p > M, and the projection induces an

isomorphism of cohomology.

Extend the projection to a projection Ay ® AA"-» U ® AX which also

induces a cohomology isomorphism. Filter U ® AX by the ideals "2J>pUJ ®

AX to obtain a spectral sequence converging to H*(E; k). Its is,-term is

U ® H*(F; k) and so E{-q - 0, p + q > M + N. Thus Hr(E; k) = 0,r>
M + N.

But because ir$(E) is finite dimensional, H*(E; k) has finite type; hence

dim H*(E; k) < oo.

The rest of the theorem follows from [7, Theorem 1] and (6.2).   Q.E.D.

6.5. Corollary. Suppose the hypotheses of Theorem 6.3 hold and that

X,(E) = 0. Then

^(F) = x„(B) = 0,

and there is an isomorphism of graded H*(B; k) modules

H*(E; k) a H*(B; k) ® H*(F; k)

compatible with m* andj*.

In particular, ir* is injective andj* is surjective.

Proof. It follows from Theorem 6.3(iii) and (6.2) that x*(F) = Xm(E) = 0.

Hence by [7, Theorem 1] H*(B; k) and H*(F; k) are evenly graded.

In particular, Hl(B; k) = Hl(F; k) = 0 and so the minimal models of B

and of F contain no elements of degree 1.

Now let A y-»A y ® AA'-*AAr be the A-minimal A-model for the

fibration, and filter Ay ® AA" by the ideals Fp = ^j>p(AY)> ® AX. The
resulting spectral sequence converges to H*(E; k). Since y has no elements of

degree 1, the E2-term is given by

EP'" = H" (B; k) ® H" (F; k).

Hence E2 has only elements of even degree, and the spectral sequence

collapses.   Q.E.D.

6.6. Corollary. Suppose, in addition to the hypotheses of the theorem, that

ir?m(E) = 0. Then rfen(F) =*0and

dim 77¿(£) = dim 77¿(F) - ^(5).

In particular, dim m$(E) > dim tt$(F).

Proof. Apply Corollary 4.16 and (6.2), recalling that x^C8) < 0.   Q.E.D.

6.7. Corollary. Suppose F->£->J5 is a rational fibration with (6.4)

holding. Assume H*(E; k) is an exterior algebra on r elements of odd degree,

where r = 1 or 2.

Then H*(F; k) is an exterior algebra on at most r elements, all of odd degree.
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6.8. Remark. When r = 1 the corollary generalizes a result of Borel [2] and

Spanier and Whitehead [11].

Our final application of the theory to spaces of finite rank reads

6.9. Theorem. Assume F SE SB is a rational fibration such that HP(F;

k) =* 0,p > N. Suppose E has finite rank and suppose H*(E; k) = AZ (so that

Z - 77¿(£)!).

Then the minimal model of F has the form (AP ® Aß ® APX, dF), where:
(i) P = P0™, Px = Pf™ and Q = ßeven;

(iï)P®Q=j*(rf(E));
(iü) dF(P © ß) = 0 and dF(Px) c A+(P © Q) ® APV

6.10. Corollary. If 77^ven(£) = 0 then the minimal model of F is given by

(AP ® AP„ dF) satisfying the conditions described above.

6.11. Remarks. (1) Spaces E satisfying the hypotheses of Theorem 6.5

include products of connected Lie groups, classifying spaces, and many

homogeneous spaces (e.g. odd spheres and complex Stiefel manifolds). See [6]

for more examples.

(2) The theorem shows that the minimal model of F can be decomposed

into the A-extension

(AP ® Aß, 0) -> (AP ® Aß ® AP„ dF) -> (AP„ 0).

(3) The theorem also yields a A-extension

(AP, 0) -> (AP ® Aß ® AP„ d) -* (Aß ® AP„ d).

Since H*(F; k) has finite dimension, [7, Corollary to Proposition 1] shows

that

dim H (Aß ® AP! ) < oo.

In particular [7, Theorem 1], dim ß < dim P,.

6.12. Proof of Theorem 6.9. Let S : (G, dB) -» (C, dE) -> (A, dF) be the

A-minimal A-model for the fibration. It follows from the hypotheses H (C) =

H*(E; k) = AZ that there is a homomorphism cp: (AZ, 0) -» (C, dE) such
that cp* and ß (cp)* are isomorphisms.

Define P c 77^dd(F) and ß c 77¿ven(.F) by

P©ß = Imj*.

Then ß = ir^m(F) as follows from Corollary 4.16.

Now write S in the form A Y -> A Y ® AX -> AAT and identify ̂ (F) = X.
It is an easy exercise to do so, so that

cp(Z) n (1 ® A") = l®(P©ß).

It follows that 4(1 ® (P © Q)) = 0 and so dF(P © ß) = 0.
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Finally, choose P, c X0** so that X0" = P © P,. Since ß = A"even we

have

AA" = AP ® Aß ® AP,.

Since dE(\ ® P) = 0 = dE(\ ® Q) we can form the A-extension

Ay®AP®Aß-»Ay®AA"->AP,.

Moreover, it is A-minimal.

Thus the connecting homomorphism, 3*, for this extension is a linear map

P( -» y © P © ß; in fact it is just the restriction of the connecting

homomorphism 3* for S. Since by (4.9)

ker 3* = Imy* = P ©ß,

it follows that 3~* is injective.

We can now apply Theorem 5.2 and conclude that the differential in AP, is

zero; i.e.

dF(Pl)cA+(P®Q)®AP,.   Q.E.D.

7. Homogeneous spaces. We shall apply the results of §6 to fibrings of

homogeneous spaces. Recall that E SB is a locally trivial bundle with fibre

F if there is an open cover {í/a}aSÍ of B and homeomorphisms Ua X F

S*ir "'({/„) which convert 77 to the standard projection Ua X F-> Ua.

Assume ESB is a locally trivial bundle with path connected fibre F.

Suppose E is a connected r-manifold, and B is a CW complex. A cross-

section over an w-cell of B defines an embedding J?m->£; hence by

invariance of domain m < r.Thus B is finite dimensional of dimension

M < r. In particular,

Hp(B;k) = 0,      p>M. (7.1)

Next trivialize the bundle over an open M-cell of B to obtain a

homeomorphism of RM x F onto an open subset of E. If W is any proper

open subset of E then Hp( W; k) = 0, k > r. It follows that

Hp (F; k) = HM+P (RM X F, (RM - 0) X F; k)

= HM+P (E, E - F; k) = 0,

if M + p > r. Hence setting N = r — Mv/e find

H> (F; k) = 0,      p>N. (7.2)

Moreover the equation (for y E F)

H*(E, E-y;k) = H*(RM, RM - 0; k) ® H*(F, F-y;k)

yields
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H'{,,F-r,k)-[l    "/JN- (7.3)
Next let Kbea closed connected subgroup of a connected Lie group G and

suppose Kc c Gc are maximal compact subgroups of K and G. By Iwasawa's

theorem the inclusions Kc-* K and GC-*G axe homotopy equivalences.

Hence the inclusion Gc/Kc -» G/K is also a homotopy equivalence.

According to Cartan [3] the manifold Gc/Kc has finite rank and the linear
map

? :  S H* (Gc/Kc ) -> *Î™(GC/KC )

is surjective. (He works with coefficients R but this implies the result for any

k. A full exposition is given in [6, Chapters 10, 11].) Hence G/K has finite

rank as well and £*: H2J(G/K) -> ^(G/K) is also surjective.

Again by [3]

X*(G/K) = rank Kc - rank Gc. (7.4)

Clearly

dim H*(G/K; k) < oo. (7.5)

Now consider an arbitrary locally trivial bundle with total space G/K:

F-Ug/K^B (7.6)
and suppose B a CW complex. (If B is 1-connected then F is path connected

and a simple argument on the Serre spectral sequence shows dim H*(B;

k) < oo. Thus in this case it follows from Grivel [5] that (7.6) is a rational

fibration.)

In general (when B is not 1-connected) simply assume (7.6) is a rational

fibration. Because of (7.1) and (7.2) the results of §6 (especially Theorem 6.3

and its corollaries) apply. For instance, B and F must have finite rank.

In particular, we obtain

7.7. Theorem. The following manifolds do not appear as the total space of a

locally trivial bundle with connected fibre over a CW complex unless either the

fibre or the base is a single point:

(i) S2k, k>\.

(ii) CPp~\p aprime.

(iii) U(4)/U(2)X U(2).

Proof. Suppose such a bundle existed and write it F SE SB, where E is

one of the manifolds above. Since F is connected and all the possibilities for

E are 1-connected, B is 1-connected. Hence the bundle is a rational fibration

and §6 applies.
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Moreover, all the possibilities for E satisfy x,r(E) = 0- Thus we can apply

Corollary 6.5 to obtain

dim H*(E; k) = dim H*(B; k) • dim H*(F; k).

In case (i) or case (ii) dim H*(E; £) is a prime; hence

either dim H+ (F; k) = 0   or   dim H+ (B; k) = 0. (7.8)

Now we establish (7.8) in case (in). Recall that the Poincaré series of a

space S is defined by

/«(')- 2  dim Hp(S;k)tp.
p=0

Corollary 6.5 shows that

fE{t)=fB{t)-fF(t).

But (cf. [6, p. 492])

fE(t) = (l + t4)(l + t2 + t4).

Moreover, since H*(B; k) and H*(F; k) are evenly graded fB(t) andfF(t) are

also polynomials in t2. Now a simple check shows that were (7.8) to fail, then

either

fB = l + t4   and  fp-l + t2*? (7.9)

or

fB=l + t2 + t4   and  fF = 1 + f4. (7.10)

By [7, Theorem 3] H*(B; k) and H*(F; k) axe Poincaré duality algebras.

Given the possibilities for the Poincaré polynomials we can conclude that

both algebras are truncated polynomial algebras in one variable. Hence the

minimal models are given by

A(b4, £7);   db-j = b\,   db4 = 0,

and

A(c2, c5);   dcs = c\,   dc2 = 0.

(Subscripts denote degrees.)

Thus in this case the A-minimal A-model will have to provide a minimal

model for E. But the minimal model for E is (cf. [6, p. 475, Example 2]) ((a2,

a4, a¡, a7), D) where

Da2 = Da4 = 0,   Da5 = a\ — 2a2a4,   Da-, = a2 — a\a4.

Clearly a\ is not a coboundary, and so there is no inclusion (Afa c5), d)

into (A(a2, a4, a5, a7), D). An inclusion of (A(b4, bn), d) into (A(a2, a4, a5, a-,),

D) would carry b4 to aa\ + ßa4 for some scalars a and ß. But the space of

coboundaries in degree 8 in (A(a2, a4, as, a7), D) is spanned by a2 — 2a2a4
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and a2 - a\a4. It follows that (aa\ + ßa4f cannot be a coboundary (if

kcR).
Hence (A(b4, b7), d) cannot be included in (A(a2, a4, a5, an), D) and so (7.9)

and (7.10) are ruled out. This establishes (7.8) for (iii).

We now deduce the theorem from (7.8). Suppose first that dim H*(B;

k) = 1. Then Corollary 6.5 shows that

j*:Hr(E;k)^Hr(F;k)

is an isomorphism (r = dim E). Since E is compact and orientable, Hr(E;

k) ¥= 0, but an element of Hr(E; k) will vanish on any proper subset. It

follows that F = E and B = pt.

On the other hand, suppose dim H*(F; k) = 1. Then Corollary 6.5 shows

that Hr(B; k)^0 and so dim B > r.

Thus dim B = r — dim E. Hence (7.3) reads

Pick y E F. Since Fis connected, H°(F; k) = k. Thus the exact sequence

0 -» H° (F, F - y; k) -> H°(F; k) -* H° (F - y; k) -» H1 (F, F - y; k)

shows that H°(F -y; k) = 0. Hence F - y = 0, F = (y), and E = B.

Q.E.D.
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