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MULTIDIMENSIONAL QUALITY CONTROL PROBLEMS
AND QUASI VARIATIONAL INEQUALITIES^)

BY

ROBERT F. ANDERSON AND AVNER FRIEDMAN

Abstract. A machine can manufacture any one of n m-dimensional

Brownian motions with drift A,, P$, defined on the space of all paths

x(i) G C(J0, oo); Rm). It is given that the product is a random evolution

dictated by a Markov process 9(t) with n states, and that the product is P*>

when 9 (i) = j, 1 < j < n. One observes the a-fields of x (/), but not of 6 (/).

With each product p£> there is associated a cost c.. One inspects 9 at a

sequence of times (each inspection entails a certain cost) and stops

production when the state 9 = n is reached. The problem is to find an

optimal sequence of inspections. This problem is reduced to solving a

certain elliptic quasi variational inequality. The latter problem is actually

solved in a rather general case.

Introduction. Let 9(t) be a Markov process with n states and transition

probabilities p¡j(t). With each state /' we associate an m-dimensional

Brownian motion with drift X¡, i.e., a probability p£ defined on the space ñ of

continuous functions x(t) from [0, oo) into Rm.

Let Kx, . . . , Kn_x, cx,...,cn be nonnegative constants and define a

function / by /(/) = c, if /' = 1, 2, . . . , n. Let t = (t„ t2, . . . ) be an increa-

sing sequence of "inspection times" and consider the cost function

J>(r) = E<'>
n-l

K, , +   2 %
7 = 1

2 h(r,)-j
1=1

+ E'-:
n — \    oo

(T,f(9(s)) ds + S   2 IeM=JfTl+'f(9(s)) ds
Jo y=i/=i Jr,

(1)

Here E',x indicates the expectation associated with the process (x(t), 9(t))

when x(0) = x, 9(0) = /; more precisely, one can show that there is a

Markov process Pe'x on the a-fields of the functions (x(t), 9(t)) such that
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32 R. F. ANDERSON AND AVNER FRIEDMAN

p»Ms) coincides with P^s) as long as 9(s) = / and E'-x is the expectation

corresponding to Plx. In (1) it is understood that if 9(rm) = n then rm+, =

oo, and KjJHTf).j = 0, ftf = 0 if r, = oo.

The concept "inspection time" means roughly that each set (rh+x < s)

(ta+ , in t) depends only on the information of the o-field of x(t), 0 < t < s,

and on the knowledge of 0(r) for 1 < y < h.

It is easy to see that Jx(t) represents the cost incurred by

(i) inspection of 9 at times t¡, and

(ii) time spent in state A (provided ck > 0).

The cost in (i) is K, per inspection, provided that at the previous inspection 9

was at state /. The cost in (ii) is a sum of terms ckAk, where Ak is the time

spent in state A.

The problem of minimizing the cost is a problem of quality control. The

special case where m = 1, n = 2 was studied by the authors in an earlier

paper [11

The results in [1] consist of two parts:

(a) reducing the problem of finding a sequence of optimal inspection times

to a problem of solving a certain quasi variational inequality (q.v.i.);

(ß) solving the q.v.i.

In the present paper we shall generalize (a) and (ß) to any n, m.

In § 1 we state the quality control problem in precise terms. In §2 we recall

some results of Shiryaev (Theorem 2.1) which assert that the process

/>/(/) = P*x[9(t) =j\%]        (1 < j < n; % = o(x(s), 0 < s < *))

is a solution of a system of stochastic differential equations whose coefficients

can be expressed in terms of the X, and the infinitesimal generator (q¡) of the

9 process. Here u stands for the initial distribution of 9(0). We also give in §2

(Theorem 2.2) an explicit formula for the pf(t).

In the Appendix we give a derivation of the formula of Theorem 2.2. By

the same method we also give a new proof of Theorem 2.1.

In §3 we prove several lemmas on transformations of expectations Eß'x

with integrands which involve stopping times. These lemmas are needed in

the subsequent sections.

In §4 we write down the q.v.i.

MXf V(x,p) + 2 Cjpj > 0,        V(x,p) < K(p) + 2 PjV(x, ef),
7=1 7=1

Mx,V{x,p) + 2 CjPj
7=1

K(P)+ 2 PjV{x,ej)- V(x,p)
7 = 1

= 0    (2)

for x G Rm, p = (px, . . . ,pn), Pi > 0, 2"=,/7, = 1; here e) is the y'th unit

vector, K(p) is a suitable function such that K(p) = Kj if p = ep and MXJ, is
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the infinitesimal generator of the (x,p) process. MXJ> is a degenerate elliptic

operator. We prove that if F is a solution of (2) then

V(x,p)=MJ£(t),

where J£ (r) = Jx(r) when p = e¡. We also obtain an optimal sequence of

inspections, defined as follows:

If at the Ith inspection we find that 9 = i, then the (/ + l)th inspection is at

the first time when the process (x(t), p(t)) hits the set

(x,p); V(x,p) = K(p) + "2 PjV(x, ej)\;

here p(0) = / and x(0) is the position of x at the /th inspection. In view of

Theorem 2.2, this optimal stopping rule can be expressed directly in terms of

the process x(t).

In §5 we consider other costs: (i) one which allows for the option of repairs,

and (ii) a cost with a discount factor a, a > 0; that is, in (1) we replace/(j)

hyf(s)e~as and IB(Ti)=jKj by I9{j!)=jKje~a'Tl. Denote the optimal cost of the last

cost function by Va. The results of §4 extend to these two costs. In particular,

the q.v.i. for Va is the same as for V except that M is replaced by MXJJ — a.

The results of §4 also extend to the case when the X- are functions of x.

However, when the X¡ do not depend on x then we prove that also the optimal

costs V, Va do not depend on x.

In §6 we assume that the X, do not depend on x and that Xj — X,

(2 < j < n) generate the entire space Rm (this is equivalent to the statement

that the elliptic operator Mp corresponding to the /»/(O-process is nonde-

generate in the set p¡ > 0, 2/>, < 1; it does degenerate, however, on the

boundary of this set). We then prove that the q.v.i. for Va = Va(p) has a

unique regular solution which coincides with the optimal cost Va ; the optimal

inspection rule stated above is then valid. We also show how to approximate

Va by solutions of partial differential equations.

In §7 we solve the q.v.i. (2) rather explicitly in the special case m — \,

n = 2 and general q,,.

We would like to thank A. Bensoussan, A. N. Shiryaev and S. R. S.

Varadhan for some useful suggestions.

1. The quality control problem. Let 9(t) be a Markov process with n states

1, 2,. .., « and with transition probability matrix P(t) = (p¡¿(t)). We denote

its generator by Q = (q¡j), so that P(t) = e'Q.

Let X,, . . . , X„ be given distinct w-vectors and define a function g(9) by

g(i) = \. We shall be working in this paper with the process (x(t), 9(t))

which, formally, is given by

dx(t) = g(9(t))dt + dw(t) (1.1)
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where w(t) is an w-dimensional Brownian motion. This process is called

random evolution and it can be constructed in various ways. We describe one

simple way:

Let Q be the measure associated with the standard Brownian motion w(t),

that is,

ôHO) = o) = i,

i f|r »C)|2
Q[w(t + s)GA\§l] = (—±— exp

JA  (2-ÏÏS)  ' 2s
dy

for any Borel set A in ®(7?m). Let 7?* be the measures associated with the

Markov process 0(f). We take the processes 9(t) and w(t) to be independent

and, in fact, to exist in two different probability spaces ß' and ß, respectively.

Let P9 = Q X R9. Consider the process

x(t) = x + w(t) + f'g(9(s))ds (1.2)
•'0

with 0(0) = 9, and write x(t) = xx9(t). Define

P9x (**,*('.) 6 Ax,..., xx,9(tm) G Am, 9(tx) GBX,... ,9(tm) G Bm)

= P9 (x + w(tx) + jT'1 g(9 (s)) dsGAx,...,x + w(tm)

+ f^g(9(s)) ds G Am,9(tx) GBX,..., 9(tm) G 7?m),       (1.3)

and extend P9x as measures on the a-field (î of (9(u), w(u)), 0 < u < oo.

Lemma  1.1. P9x is a Markov process with respect to the a-fields &, =

o((x(u), 9(u)), 0 < u < t).

Proof. Set

G(x, 9) = P9'x (x(t - s) G A, 9(t - s) G B). (1.4)

We shall prove that

P9-X[x(t) GA,9(t) GB\&S] = G(x(s),9(s)). (1.5)

We can write

*(/)-* (s) + (w(t) - w(s)) + f'g(9(«)) du. (1.6)
Js

In order to evaluate the left-hand side of (1.5) we first evaluate

7 = P9'x[gx(x(s))g2(w(t) - w(s))g3(9(u))g4(9(t))\&s]

where s < u < t and the g, are bounded Borel measurable functions. Using
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(1.3) and the Markov property of both w(t) and 9(t), we find that

7 = P9[gx(x(s))g2(w(t) - w(s))g3(9(u))g4(9(t))\&s]

= gx(x(s))P9M[g2(w(t - s))g3(9(u - s))g4(9(t - s))].

Setting

G(x,9) = Pe'x[gx(x)g2(w(t - s))g3(9(u - s))g4(9(t - s))],

we then have

7= G(x(s),9(s)).

The same kind of result holds also for linear combinations of functions of the

form g\g2g3g4. By approximation, it therefore also holds for the left-hand

side of (1.5). Since

x(t - s) = x + (w(t - s) - w(0)) + f    Sg(9(u)) du,

by comparing with (1.6), we see that the function G which is to appear on the

right-hand side of (1.5) is given by (1.4). This shows that P9,x is a Markov

process with respect to &,.

Let ß be the space of all continuous functions / -» x(t) from [0, oo) into Rm

and let %, <$ be the a-fields generated by x(u) for 0 < u < t and 0 < u <

oo, respectively. We denote functions x(t) also by w and write x(t) = x(t, w)
= "(0-

Let ß' be the space of all right continuous functions 9(t) from / E [0, oo)

into the set (1, 2, . . . , n) which have left limits 9(t — 0) for each / > 0.

Denote by %, and % the a-fields generated by 9(u) for 0 < u < / and

0 < u < oo, respectively.

In what follows we shall choose the random evolution model constructed in

Lemma 1.1 with the specific ß and ß' which we have just defined. Since the

process x(t) is continuous, the measures P9x can be redefined as measures
P9x in ß' X ß by

P9'x[x(tx, u>) G Ax,9(tx) G Bx, x(t2, <o) G A2,9(t2) G B2, . . . ]

= P9'x[x(tx, w) £ Ax, 9(tx) G Bx, x(t2, «) G A2,9(t2) G B2, . . . ].

Notation.

&, = a(x(u),s < u < t),        9ki = a((9(u),x(u)),s < u < t),

V, = §î+0,    <mi = 9Ítí+0,   % = %   9IL, = «D1L?.

Notice that %, ÇTIL, are right continuous a-fields.

From Lemma 1.1 we deduce (using the Feller property) that the P9,x form

a Markov process with respect to 911,.
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Let <¡>s be the shift operator, mapping ß into ß:

<#»,: x(t) -» (t + s).

Definition. A sequence r = (t,, t2, . . . ) is called a sequence of inspection

times if 9 (rm) = n implies r, = oo for all I > m, and

n-l

Tl  = «1.      Tm+1  =  Tm  +   2   h(vJ = Pm+\AK) (W  >   0» (L7)
/=1

where o, and the aml are (finite valued) stopping times with respect to 9t.

Each Tm is called an inspection time.

Lemma 1.2. Each rm+x is a stopping time with respect to the a-field

<5m,=a(%,9(Tx),...,9(rm)).

Proof. The proof is by induction. Assume that rm is a stopping time with

respect to 5m_,,. We shall need the rule:

A G % implies <i>~ml(A) E %+Tm,

which follows by checking it first for cylinder sets (making use of the fact that

x(s + t) is %+T measurable). Taking/I = (am+1/ < /}, we conclude that

<CK, + u < 0 € %+Tm,

i.e.,

K + u(<ÍÜ < *} e %+rm'

Thus am+,,/(<i>Tm) is %+Tm stopping time. Now, according to [7, p. 74], if <&, is a

right continuous increasing family of a-subfields of 911, and f is $, stopping

time, then â + f is %, stopping time if and only if â(^) is %t+- stopping

time. Applying this result with <•$, = '3rm_,j, we find that

for all / > 0. Writing

n-l

{Tm+1 < /} = U {«(O = /} n {rm + am+1,,(*TJ < '}'
¡=\

it follows that {rm+1 < t) G &mJ.

Corollary 1.3. Each Tm+, is 91L, stopping time.

In the problem to be introduced below it seems natural to take tot+, as any

stopping time with respect to "■?„,,. However, in order to be able to apply the

strong Markov property for suitable functionals we have restricted the rm+,

to be as in (1.7).

Let Kx, . . . , Kn_x be positive constants and define a function K(9) by

K(i) = K¡. Let Cj,..., cn be nonnegative constants and define a function

/(#) by/(/') = c¡. We now introduce the cost function
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n-l

J'(r) = E''x
*, + 2 Kj\

7 = 1

2 h(r,)-j
l=\

n— 1    oo

or, more briefly,

Hi*)-*

r'f(9(s))ds+2 2ie(Tl)-jri+>f(9(s))ds
•'n ._, /_, Jt,7=1/=l

2/,
/ = 0

9(.r,)^n K(9(rl)) + fTl+,f(9(s))ds

(1.8)

(1.9)

where t0 = 0, 0(0) = i and t = (t„ t2, . . . , t¡, . . . ) is a sequence of

inspections. It is understood here that if 9(rm) = n for some m, then K(9(t¡))

+ /;;+!/X0(5))ífc = Oif/ > m.
In order to motivate the interest in (1.8), we take /' = 1 and rewrite (1.8) in

extended form:

4(t) = 2?u

+ 7,(T,)-l

Kx + fT,f(9(s))ds

Kx + fT2f(9(s))ds

Kx + fT,f(9(s))ds+ ...

K2 + fT3f(9(s))ds + ...

Kn_x+fT3f(9(s))ds +

+ 7,0(t2) = 1

+ 79(t2) = 2

+  I0(r2) = n-l

9(t2) = 2

+ I„(Tl)JK2 + fT2f(9(s))ds

K2 + fT3f(9(s))ds+...

K3 + [T3f(9(s))ds+ ...

Kn_x + [T3f(9(s))ds+ ..

Kn_x + [T2f(9(s))ds

+ 7«(t2) = 3

+ 7
#(r2) = n-

+  79(t,) = „-1

+ 70(t2) = b-1 A.-. + rv^w)*
•'is

(1.10)
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Consider the special case where c0 < c, < • • • < cn, Kx > K2 > • • • >

Kn_x and p¡j(t) = 0 if j < i. Then the cost Jx(r) arises naturally in the

following model:

A machine is manufacturing a product A¡ when it is in position M¡,

1 < i < n. The product A¡ is preferable to the product Ai+X. The machine

may shift at random from position M, to position Mj (i.e., from 9(t) = i to

9(t) = j) only if y > /'. In particular, the state M„ is absorbing. The product A¡

is a Brownian motion with drift X,, which we designate by P£. By looking at

the product (i.e., at the P^) one cannot tell the position in which the machine

is at present (i.e., the information in % is only a partial information on 9(t)).

In order to determine this position, one must actually check the machine

itself; the cost thereby incurred is K¡ if one has the knowledge that in the

preceding inspection the machine was in position M¡.

Another cost incurred is due to the production of the less desirable

products between the times of consecutive inspections; the cost, per product

A¡, is c, multiplied by the time of production. The functional Jx(r) represents

the total cost incurred during a sequence of inspections. It is assumed here

that once the machine is found to be in state Mn we stop production.

Denote by 6B the set of all sequences of inspections and set

Vi(x)= inf Jx(r).
v   '      res       v '

We are interested, in this paper, in the problem of studying V¡(x) and of

finding t, G & which minimizes the cost, i.e.,

v,(x)-H(*ù-

This problem is called a quality control problem or a quickest detection

problem.

2. The /»-process. Let /x be any measure on the space ß', i.e., u =

(/»i> • • -,Pn) where p¡ > 0, 2?=,/>, = L We set
n

P** = 2 p¡Pix

/=i

and

p/(t) = E^[9(t) =j\%]        (1< j < n), (2.1)

where EQ denotes the expectation with respect to the measure Q. For

simplicity we write

pAû-pm-
Notice that pj(t) > 0, 2". !/>,■(*) = 1.

Theorem 2.1. The process (px(t), . . . ,p„(t)) is a continuous strong Markov

process with respect to the a-field %, and
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dPj(t) = 2 QijPM dt + PJ\XJ - 2 V/(0 J -dw(t), (2.2)
/=i \        /=i /

where w(t) is an m-dimensional Brownian motion adaptable to *§,. If p¡ ^ 0 for

some i thenp¡(t) ¥= Ofor all t > 0, so that one can define y¡(t) = Pj(t)/Pj(t)for

j = 1, . . . , / - 1, / + 1, . . ., n; the process (yx(t), . . . ,y¡-X(t), yi+x(t), ■■ -,

yn(t)) is a continuous strong Markov process with respect to %, and

dyj(t) = M')(\ - \) ■ (<*» - \dt) + i y M [ q,j - M'H.] dt,   (2.3)
/=i

where

M') = 2 V/(0 dt + dw(t),       v,(0 = 1. (2.4)
/=i

This theorem was proved by Shiryaev in [9]; see also [6]. It may be noted

that the derivation of (2.3) from (2.2) and, vice versa, the derivation of (2.2)

from (2.3), (2.4) can be carried out by straightforward calculation using Itô's

calculus.

Later on we shall need an explicit formula for thepj(t). We set

pj(t) = p/(t)   when /x = (0, . . . , 0, 1, 0, . . ., 0)

with 1 in the j'th component. (2.5)

Defining

ztJ(s, t) = exp[(Xy - X,) • (*(/) - *<*)) - i (|X/ - |X,|2)(/ - ,).],       (2.6)

we introduce the functions

Äv(0=2 2 du¡yexp{-qiuUy¡}qi¡yi
P-0(i,Y.,Yp,7)    °

•í'_""Y'^„y2exP{-^,"r„y2}^„y2
•'O

• • • g-*"*--™ ""— duypJexp{ -qyuyJ

•Z-,y("--.y,' "/.y, +  "y„y2)   ¿/,y2(»/,Y, + «y,.y2> «/>Tl +  "y„Y2 +  «y2,y3)

• • • hfaiti + "y,y2 + • • • + V»r. + %j, t)       (1 < Uj < n),    (2.7)
where q, = — <7,,.

Here we have used the following notation: 2«T ,, y « indicates the sum

taken over all yx, . . . , yp with each y, varying over 1, 2, . . . , n in such a way

that !"¥■ y, ¥* y2 ^ • • • t^ yp_, =*= yp *j, i.e., y, ^ yl+x for / = 1, . . ., p

and y, =?= /, yp ¥= j- The notation
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2
p = 0

indicates that if / =£ j then the summation is taken over p = 0, 1, 2, 3, ... ;

whereas if / =y, then the summation is over p«» — 1, 1,2,3,.... When

p = 0 there is only one integration on the right-hand side of (2.7) (generally

for any p the number of integrations is p + 1); the term in (2.7) correspond-

ing to p = — 1 (when i = y) is understood to be exp( — q¡t).

Theorem 2.2. The following formula holds:

Pu«)pj(t)

2 Pu(t)
(2.8)

and, more generally,

pf(t) = 2 PñAO,
i=i

2mw(o,o2 p,,k(t)
l=\ k=\

(2.9)

if ¡i = p = (px, . . .,p„).

One can verify (2.8) (or (2.9)) by showing that the functions given by the

right-hand side of (2.8) (or (2.9)) satisfy the stochastic differential system

(2.2).
In the Appendix, however, we shall actually derive formulas (2.8) and (2.9).

The method used will enable us to also give a new proof of Theorem 2.1.

Unlike the method of Shiryaev, our method relies only marginally on the

stochastic calculus, and it can be adopted to any Markov process or chain.

3. Auxiliary results. As in §2, let p¡(t) = pf(t).

Lemma 3.1. Let t be an % stopping time and let h(x) be a continuous

bounded function in Rm. Then

E»>x[lgM=jh(x(T))) = E^x[Pj(r)h(x(r))]. (3.1)

Proof. Suppose first that t takes only countably many values rk. Then

E^x[l9M=Jh(x(r))] - 2£"ÍW,(,i)-yA(*.('*))]
k

= ^E»-x[lr = rkPj(rk)h(x(rk))] = E-x[Pj(T)h(x(T))].
k

Consider now the case of general t. Let rm be a sequence of countably valued

stopping times such that rm | t if m f oo. Then (3.1) holds for t = rm. Taking

m -» oo and recalling that p(t), h(x(t)) are continuous and 9(t) is right

continuous, (3.1) follows.
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Lemma 3.2. For any <%t stopping time r,

£/V [7(0 (0)•fO
dt = E»'x fiwcodt

J0 y=i

Proof. It is clearly sufficient to show that

£fV ,dt = E^x

A>>dt

41

(3.2)

(3.3)

Consider first the case where r is bounded and with countably many values

rk. If t < rthen

£"';
rT

I   h(t)-jdt•'t

= 2 E»

= 2^ Ir-JTIe«)-jdt

7T= rV^^^fjrf/

I^rJTpA>) dt= 2 £"•* = Tf-

Also,

7f'J
rT

I   h(t)=jdt = £"^ /7>,(0■'o
¿/

so that (3.3) follows. The case of general t follows by approximation.

Corollary 3.3. Let t and rm be stopping times such that rm -» t a.e. as

m -» oo. Then, for any continuous bounded function h(x),

Jim   2^[/,(Tj.,A(*(rM))] = 2^[J,(T)_y»(*(r))]. (3.4)

Indeed, a similar limit theorem is true for the right-hand side of (3.1) (since

Pj(t), h(x(t)) are continuous). Now use (3.1) to deduce (3.4).

Corollary 3.4. Let r be a predictable stopping time. Then

7"^[0(t-O) = 9(t)] = 1. (3.5)

Proof. The predictability assumption means that there is a sequence of

stopping times rm such that rm < r, rm f t as m | oo. It follows that 9(Tm) ->

9(t - 0) as m —> oo. Applying (3.4) with A = 1 we then get

7"^[0(t - 0) mj] = 7>^[0(t) -y]. (3.6)

Since 9(t - 0) < 9(t), the set (0(t - 0) = n) is a subset of the set (9(r) =

n). Hence, by (3.6) withy" = n, these sets are equal a.e.
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Next,

(9(r - 0) = n - 1) c (9(r) = n) u (9(r) - n - 1).

Since the set (0(t) = n) coincides a.e. with the set (9(r — 0) = n), we

conclude that (9(t - 0) = n - 1) is contained in (9(r) = n — 1), up to a set

of measure 0. Applying (3.6) withy = n - 1 we find that the sets (9(t — 0) =

« — 1) and (0(t) = n — 1) are equal a.e.

We can now proceed step by step in this manner and establish (3.5).

Lemma 3.5. Let r2 = t, + o2(<bT ) where t, is a stopping time with respect to

cd\i, and a2 is a stopping time with respect to %. Then, for any bounded

continuous function h(x),

7^-[7,(Ti)=,.7(,(T2)=,Mx(T2))]

= E^x[le(T^iE''x^[l9M=Jh(x(a2))]]

(1 < i,j < n).      (3.7)

Proof. Consider first the case where o2 has only countably many values rk.

Then

E»'x[l9(T¡) = iIe{r¡ + aM=Jh(x(Tx + a2í>T)))]

= 2^[ WA,(*>-*W*>-/(*(*! + *))]. (3-8)

As easily seen, the sets (a2(<£T ) = /¿) and <¡>~l(o2 = rk) are equal. By the

strong Markov property (as stated in [4]) of the (x, 9) process we then have

E^x[l9^) = iI<(a^rk)I9^ + rk)=Jh(x(Tx + rk))]

= ^[7<KT,) = ,[7i'^.)[7(a2=rt)7ô(rt)=y!(x(r,))]]].        (3.9)

Hence, the right-hand side of (3.8) is equal to the right-hand side of (3.7).

Having completed the proof of (3.7) in case a2 has countably many values,

we now consider the case of a general o2 and let a2m be countably valued

stopping times such that o2m | a2 if m 1 oo. Writing (3.7) for a = a2m,

t2 = t, + a2m(<£T|), taking »ifoo and using the continuity of h(x) and the

right continuity of 9(t), assertion (3.7) follows.

Lemma 3.6. Let t2 = t, + o2(<j>r ), where t, is a stopping time with respect to

911, and a2 is a stopping time with respect to *$,. Then
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£ÍV ■9(r^r2f(9(s))ds

'9Ui)=iE^\f°>f(9(s))ds= E

Proof. Suppose first that a2 = T. Then, by the Markov property,

rr, + T

(3.10)

£>,;

= E^'

I9(Ti)=i£' + Tf(9(s))ds

I9{^ATf(9(rx+s))ds

= /or£MÍW = ,/(0(T, +S))ds]

= J^r£^[79(Ti)=,7J'><T.>[/(ö(i))]] ds

= £"-
Wr*.'**0 •'o

¿ft

We can next establish (3.10) when a2 takes only countably many values and,

by approximation, by any o2.

4. Reduction to quasi variational inequality. Any probability measure ¡j. on

the space ß' is determined by numbers p¡ > 0, 1 < / < n, such that 2/>, = 1,

i.e.,Pi = n{i). We shall write/» = (/?,, . . . ,pn) and, for simplicity, identify n

with/7.

We shall extend the cost function (1.9) to the case where E',x is replaced by

E^ (or Ep'x with /x = p). But first we have to define a function K(p).

Consider the case where the Markov process 9 (t) goes only to the right, i.e.,

/>,.,.(/) = o if y < i, f > o. (4.1)

In this case we define

K(P) = *,0+i    wherep = (/?„ . . . ,pio,pio+x, . . . ,p„)

and/j, = • • • =p¡0 = 0,/7,o+, ¥= 0.       (4.2)

In the case where the Markov process can go both to the left and to the

right, we assume that Kx = K2 =    ■ ■ = Kn_x = AT and define

K(p) = K. (4.3)

These definitions make good sense from the motivation of the quality
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control problem given in §1 (following (1.10)), and they are also needed for

mathematical reasons.

We now extend the cost (1.9) to the case where the distribution of 9(0) is

the measure ju, = p :

J> (t) = E"-x K(p)+fT,f(9(s))ds

+   2 h(r,)*n
1=1

K(9(r!))+fT'+,f(9(s))ds (4.4)

We also define

V(x,p)=mf JÏ(t).

Proceeding heuristically, we shall derive a quasi variational inequality for

V.

Suppose we start from a point (x,p). We can make one of two choices:

(i) apply a stopping time t, = 0, or

(ii) apply a stopping time t, > 0.

The first choice entails an immediate cost K(p), and, if we proceed optimally

thereafter we incur an additional cost, "S,jZ¡pjV(x, e), where e} = (0, . . ., 0,

1, 0, . . . , 0) with 1 in they'th component. Thus choice (i) gives

V(x, p) < K(p)+ 2 Pj V(x, ej). (4.5)
7=1

In case (ii), if we proceed optimally subsequent to t„ we get

V(x,p) < E"-x f 2 cj>,(t)dt + E">x[V(x(tx),p(tx))],

where thep¡(t) = p?(t) are defined in §2, with n = p. Proceeding as in [1], we

deduce the inequality

MXJ,V(x,p)+ 2w>0,
7=1

(4.6)

where Mx   is the infinitesimal generator of the (x, p) process.

Finally, at each point (x, p), equality should hold either in (4.5) or in (4.6),

that is,

n-l

K(P)+ 2 PjV(x,e¿)- V(x,p) MXJ,V(x,p)+ ^cjpj

7 = 1

= 0.    (4.7)

The system (4.5)-(4.7) is a quasi variational inequality.

The operator M    is given by
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MXJ,u(x,p) = 7^71 + 7    2   PjPAh - 2 \Pl]
L   l=\    OX, ¿  j,k=\ \ 1=1 J

r,?,*")^
+I4i4iv
+ 2V/-v> +   2   %kPj^r- (4-8)

1=1 j,k = \ °Pk

This formula, for a function u = u(p), follows from (2.2). For a function

u = u(x,p), formula (4.8) follows by noting (from the proof of Theorem 2.1)

that

Formula (4.8) is actually valid also when the given drifts X, are functions of x

(since Theorem 2.1  extends to this case; the (x, /?)-process is a Markov

process in this case, but not the/»-process alone).

Later on we shall apply Itô's formula

Ex[V(X(r))] - V(X) = Ex\fTMV(X(s))ds (4.9)

where X(t) is the process (x(t),p(t)), M = MXJ> and t is an % stopping time

with finite expectation. The standard assumptions on V are

VGC2(A),       MV is bounded in A, (4.10)

where A is the phase space.

If X(t) is a continuous Markov process with nondegenerate generator M,

then (4.9) is actually valid under the weaker assumptions:

V continuous in A,    V G WX2¿(A),   MV G Lco(A) (4.11)

(see [2]). In our case, however, M is degenerate. We claim:

Lemma 4.1. Formula (4.9) is valid if V G C\A), D2V G L°°(A), MV G
L°°(A).

Proof. Suppose first that t < m where m is a positive integer. Let Me = M

+ eA (A = Laplacian, e > 0) and denote the corresponding solution of the

stochastic differential system by Xe(t). The coefficients of the Brownian

differentials dw¡, in the equations for Xe, converge to the corresponding

coefficients of dw¡ in the stochastic differential system for X, uniformly in

bounded sets (this follows, for instance, from [5, p. 129]). Employing the

martingale inequality we find that, for any 8 > 0,

sup   \Xe(t) - X(t)\ > ol^O   ife-*0.
0<i<m
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Hence, for a subsequence e = e, | 0,

sup   \Xe(t) - X(t)\^0   a.e. (4.12)
0</<m

Since Me is nondegenerate and V satisfies (4.11), we have

Ex[V(Xe(r))] - V(X) = Ex jTMeV(Xe(s))ds

Noting that Afe F—> MV uniformly as e —>0, and using (4.12), assertion (4.9)

follows.

So far we have assumed that t < m. Now take any t, apply (4.9) to t /\m,

and take m f oo.

When the Xj are constants the /»-process alone is Markovian and its

infinitesimal generator Mp is given by

Mpu(p) =2.2   PjPkhj - 2 V/J • l\t - 2 V/J -fy
dPk

♦,£,•*£• (413)

Let

Ajm \(0,...,0,pj,Pj+x,...,pn)GRn;

Pj > 0,Pl > 0, 2/>/= 1   -    (4.14)

If (4.1) holds and if thep(t) process starts at Aj then it remains in Aj for all

t.

Observe that
if Pi =?*= 0 then p¡(t) ^ 0 for all t > 0. (4.15)

Indeed, this is stated in Theorem 2.1 (and it is also a consequence of Theorem

2.2). It follows that if (4.1) holds, then

K(p(t)) = K(p) a.s. P"x       (t > 0). (4.16)

Also, if p G Aj then the process (x(t), p(t)) remains in Rm X Aj for all t > 0

(if (4.1) holds). Thus, Lemma 4.1 is valid, in this case, with A = Rm X Ay

In case K(p) is defined by (4.2) (rather than by (4.3)), the function K(p) is

generally discontinuous in Ax. Thus, we cannot expect V(x,p) to be

continuous in Rm X Ax. However, since K(p) is continuous when restricted

to each Aj, we may expect V(x, p) likewise to be continuous when restricted

to each Rm X Aj.

Consider now the case where (4.3) holds and let

A =    (x,p); x G Rm,Pj >0,  ¿ Pj = 1 }•

With a solution V(x, p) of the q.v.i. (4.5)-(4.7) we associate a set
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S=Ux,p)GA; V(x,p) = K(p) + "2 PiV(x, e,)\.

When F is a continuous function, S is a closed set.

Definition. We denote by a£ the hitting time of the set S by the

(continuous) process (x(t),p(t)) with/»(0) = p and let a£ = a£ when/? = e¡.

Set
n-l

if = »Î, *X+1 = t£ + 2 /(üs)./^^)        (1 < m < 00),
i=\

f>-(if, if,.,..). (4.17)

Theorem 4.2. Lev ^ (•*,/>) Z»e a bounded function in Cl(A) with D2V in

LX(A) and with MV in L0O(A). Assume that V satisfies the q.v.i. (4.5)-(4-7)

a.e. and that the a£ are finite valued for allp i= en. Then

V(x,p)=tmnrx(r) = JPx(r"),
tBS.

where rp is given in (4.17).

Proof. We first show that

J>x(t)> V(x,p).

(4.18)

(4.19)
By (4.6), Lemma 4.1 and (4.5),

£/>,- P 2 cfiM dt   > E»-x\ f"MV(x(t),p(t)) dt

= V(x,p)-EP'x[V(x(cx),p(ax))]

> V(x,p) - E"
n-l

K(p(ox))+ 2 Pi(ox)V(x(ox),e)
i-\

Using Lemmas 3.1, 3.2 and (4.3), we conclude that

V(x,p) < E"'

+ Ep

foT,f(9(t))dt + K(p)

n-l

2 Vo-.-^í^íti). e)
1 = 1

(4.20)

Of course, K(p) is the constant K, but we prefer to write it as K(p) in order

to make it clear later on how to extend the proof of Theorem 4.2 to the case

where K(p) is defined by (4.2).

Applying the inequality (4.20) with x = x(tx), p = e„ t, = a2, and inser-

ting the result into (4.20), we get

V(x,p) < E"-x fT'f(9(t)) dt + K(p) + "2 W^'^
•'o ,=1

(°2'f(9(t)) dt + Ki+ "2 I9(a2^JV(x(a2J), ej)
J0 y„i
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Applying Lemmas 3.5 and 3.6, we obtain

V(x,p) < E"-x fr,f(9(t))dt + K(p)+ 2V,)

f(9(t)) dt + Kt + 2 l0W-jV(x(r2), ej)\

which can be written in the form

V(x,p) < E"' foT,f(9(t)) dt + K(p) + "2 79(Ti) = ,(p7(ö(0) dt + A,)

H-l

+ 2*'ÍW-7»'(*(T2).ey)]
7=1

= 7 + y. (4.21)

This inequality is analogous to (4.20).

We proceed to evaluate J by using (4.20) with x = x(t2), p = e, and

T, = oy. We then get an inequality analogous to (4.21), but the new term 7

contains more of the terms which appear in /£ (t). Proceeding step by step,

we arrive at the inequality

V(x,p) < E"- K(p) + fT'f(9(t))dt
Jo

m   n—1 / \

+ 2 2W-A + P*7(*(oH
/=i y=i V ■'i) /

where

7?„ = £'-J

n-l

2 h(rm^)=jV(x(rm+x),eJ)
7=1

+ 7?m,   (4.22)

(4.23)

Now, we have to prove (4.19) only for such t for which /£(t) < 00. Since

Jpx (t) consists of a finite number of infinite series (with positive terms), the

remainder must converge to zero. This implies that

00     n— 1

2     2 f«(T,)-y 0   if m —> 00. (4.24)

Since V is a bounded function, we conclude from (4.23) that Rm -» 0. Taking

m —> 00 in (4.22) and using the last remark, assertion (4.19) follows.

We next have to prove that

J>(i')=V(x,p). (4.25)
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Taking a, = a£ in (4.20) we obtain an equality. Similarly, we get the equality

in (4.21) (here we take a2l = o't). More generally we get the equality in (4.22)

(when t, = t/). Since Rm > 0, it follows that the partial sums of the series

(4.4) (when t = f) are bounded above by the quantity V(x,p). Since the

terms are all nonnegative, the infinite series is convergent. Consequently,

Rm -> 0, and relation (4.25) follows upon taking m—>co.

Remark 1. Theorem 4.2 means that the optimal stopping rule is to stop as

soon as (x(t),p(t)) hits the set S, given that in the previous inspection 9 was

at state p(0) and x at x(0). In order to render this theorem useful, one should

express the optimal stopping rule in terms of the observable process x(t). This

can be done by means of Theorem 2.2. We can now state:

The optimal stopping rule is to stop as soon as (x(t),p(t)), with p(t) defined

by (2.9), hits the set S, given that at the preceding inspection the distribution of 9

is [i = (/>,, . . . ,p„) andx(0) = x. Notice that, after the first inspection, 9 is at

a particular state, say i, and thenpj(t) is given simply oypj(t).

Remark 2. If (4.1) holds and K(p) is defined by (4.2), then the proof of

Theorem 4.2 remains valid provided we make use of (4.16), instead of (4.3).

Further, if initiallyp is in^ (i.e.,p = (0, . . . , 0,pj,pj+x, . . . ,pn) andpj > 0),

then we have to impose the assumptions of Theorem 4.2 with A = Rm X Aj.

The stopping set 5 is defined accordingly.

Remark 3. In order that there exists at least one r in & with J£(r) < oo, it

suffices to assume that the state n is absorbing, i.e.,

P[9(t)<n]^0   ifr->oo. (4.26)

(We then have, by the Markov property, P[9(t) < n] < e~°" for some a > 0,

so that /£(t) < oo if t = (t,, t2, . . . ) with t¡ =y.) Condition (4.26) is

satisfied in case (4.1), and also in the case where

«m = 0-       %- > 0   for / = 1, ...,#!- 1. (4.27)

In fact one can prove, in both cases, the stronger result

pi'x[0(Tm) = "]->l    if Tm -+ °° a.s as m -> oo, (4.28)

where {rm} is any sequence of inspections. Let us prove (4.28) in case (4.27)

holds (the proof in case (4.1) holds is a consequence of (4.26)).

Consider the function

/(/) = />'[ö(i)^ « for allO < s < /].

It satisfies/'(/) = - q¡J(t), so that

/(/) * e -«-' ^ 0   if t -> oo. (4.29)

For any inspection time Tm we then have

P^[9(t) = n] = P>'x{9(t) = n,rm>t] + ^[•(^t. < t]

< Pi'x[9(rm) = n] + Pi-X[rm<t], (4.30)
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since P"-X[9(t) = n] = 1, by (4.27). Taking m -» oo in (4.30) and using (4.29),

assertion (4.28) follows by letting t -» oo.

Remark 4. Theorem 4.2 and the previous remarks hold (with the same

proofs) also when the drifts Xj are functions of x. However, when the X, are

constants, V(x,p) is actually independent of x (see §5), and the q.v.i. for

V m V(p) becomes

V(p) < K(p) + 2 PjV(ej),
7=1

MpV(p)+ 2<y>/>o,
/=1

where M is defined in (4.9), and

n-l

K(P)+ 2 PjV(ej)- V(p)
7=1

MpV(p)+  2<y/>,
7 = 1

(4.31)

(4.32)

= 0.      (4.33)

In case (4.1) holds (and the X, are constants), set

yt(p,,Pi+i, ■ ■ ■ ,Pn) = ^(0, • • • , 0,/>,,/>,+ „ . . . ,p„). (4.34)

Then (4.31)—(4.33) reduce to a successive sequence of simpler q.v.i. for

K-ÁPn-uPnl K-2(Pn-2>Pn-\>Pn)> ■ • • .  V\(P\>Pl> • • • > PnY-

j = n-i

Vn-i(Pn-t, ■ ■ ■ ,Pn)  <   K-l +      2      PjVj^),
j = n-i

n

M„-iVn-i(Pn-i> ■ ■ ■ >Pn) +      2     tyj  > 0,
7 =

PjVj(ef)- K^,.^.,,...,^)

M„_,.Fn_,.(/7„_,., ...,/»„)"      2     CjPj

(4.35)

(4.36)

n-l

j = n-i

j = n-i

= 0,     (4.37)

where

M„_,.M(/>„_,., ...,Pn)= 2      2     />,/>*
y, k = n — /'

■(^■¿^^»i <4'38)

Remark 5. The process (x(/), v,(0; 2 < y < «) where v^(/) = Pj(t)/px(t)

(2 < y < w) is a Markov process and its generator Ax¡y is given by
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Ax^(X,y) - £ ¿ 0. + £ tjMh - h) ■ (K - \) ^

7 = 2 "-V

+ 2
7 = 2

(x, - Xj) ■ xxyj + 2 {qkj - ak,\y/)yk
k=\

,.       . v       À, + X2 v2 + • • • + X^yn
+ (X, - X,) V. • -r~;-;-T-V7       vsj       i +y2+ • • • +y„

dv

^•(4.39)

Remark 6. The elliptic operator MXJ! is degenerate throughout the (x, p)

region A. Let

B= {(/>„...,/>„),   P,>0,    ¿A-l.

In case the X, are constants, the elliptic operator Mp is nondegenerate in B if

and only if the vectors Xy - X, (2 < y < n) are linearly independent; this can

easily be seen from (4.39). Thus if m > n — 1 and the X, are in "general

position", then Mp is nondegenerate in B. It does degenerate, however, on the

boundary of B.

Remark 7. When Mp is nondegenerate in B, one can slightly improve the

assertion of Theorem 4.2 by requiring weaker regularity conditions on V(p),

namely:

FGC(7i),    VGW2'2(B),   MpV G L2(B). (4.40)

Indeed, these conditions already insure that Itô's formula can be applied

for bounded stopping times (see [2]). By approximation one can then justify

the use of Itô's formula for any stopping time. A similar improvement is

possible in the case (4.1), (4.2).

Remark 8. If for the solution V(x, p) as in Theorem 4.2 the closure of the

set A \ S does not intersect the set/?, = 0, and if piX = 0 when i > 1, then the

o£ are finite valued a.s. Indeed, since

n

Mxfpx = 2 %\Pi = 9i,i/>i>       ?i,i > o.
r-1

Itô's formula applied to/7,, integrated from 0 to a£, gives Ep,xo? < oo.

5. Properties of the optimal cost.

5.1. Other cost functions. Suppose we modify the cost function J'x(t) by

including a discount factor a, a > 0, i.e.
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jx(t) = e>-

+ E'-3

j=\      l=\

n — \    oo

f\-f(9(s))ds+ 2 sw./p'«",y(»w)*
•'O 7=1 1=1 Jr,

(5.1)

Then the corresponding q.v.i. are the same as before, except that Mu is

replaced by Mu — au. The proof is essentially the same as in the case a = 0.

Another generalization of the cost functions is when K¡ and /(/) = c, are

replaced by functions K¡(x), g¡(x)c¡ (so that f(9(s)) is replaced by

%e(s)(x(s))f(0(s))). In this case the q.v.i. remains unchanged except that K¡ is

replaced by K¡(x) and c, by g¡(x)c¡.

Consider next a quality control problem with option of repairs, that is, we

allow repairs immediately after inspection. Thus, if 9 (t,) is at state / (/ =

2, . . . , n) one is allowed to repair the machine by restarting at state 1, with

cost Nt. (We assume, for simplicity, that no "partial" repairs are allowed.) We

shall write down the new Jx just in the case corresponding to (1.10) with

n = 3:

- /r'-tJx'(r,a) = E Kx+foT>f(9(s))ds\

Kx+£2f(9(s))ds

Kx + [T3f(9(s))ds+ .

+ 70(t,)=1

«(t2)=1

+ 7
»<T2) = 2

N2 + ElMr^

+ 70(t,)=2

+  ^(t,) = 3

<x2(K2+fy(9(s))ds

+ 79(T3)=2[- • • ] + 79(Tj)=2[- •• ]j+(l -a2)

Kx + r,f(9(s))ds+ .

«3(*2+ fy(9(s))ds +...) + (1- a3)

Kx + [f2f(9(s))ds+..

Kx + r2f(9(s))ds+..
-'o

A2 + £1'X(T|)

N3 + Euiri)
(5.2)
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where 0 < a, < 1 and f2 = a2, f3 = a3. Similarly, one defines Jx(r, a)- We

are assuming here that if the machine is at state 3 then we must repair it. The

differential inequality (4.6) for V(x,p) = infTa J%(t, a) remains the same,

but (4.5) is replaced by

V(x,px,p2) < K(Px,p2)+Pl   min   [ nV(x, ex) + (1 - ju)(A2 + V(x,e2))]
0< u<1 L J

+p2[N3+ V(x,e2)]. (5.3)

5.2. /f(r) in terms of the (p, x)-process. We shall need the following

formula:

Hir)-*» K(p) + iT'tcjPj(s)
J0    j=\

ds

oo   n—\

+ 22 P,(r,)
1=1 <•=]

£',x(t,) K^^'tcjp^ds
'0      /-I

(5.4)

Proof. By (4.4),

Hiry-E*1 K(p)+r'f(9(s))ds

Kl+r^f(9(s))ds
oo   n— 1

+  22  h(r,) = i
l=\   1=1

(by Lemma 3.6)

= Ep- K(p) + fT,f(9(s))ds

oo   n— 1

+ 2   EW-^"1 K,+ (°"f(9(s))ds
i=\ ,=i L       •'o

Applying Lemmas 3.1 and 3.2 to the right-hand side, assertion (5.4) follows.

Similarly to (5.4) we can write the cost function associated with (5.1) in the

form

HW-E'-1 K(p)e-ar> + (%-- 2 cjPj(s) ds
Jo j=xJJ

+ 22 e-^p^E'^
i=\ i-i

•   Kfi-~* + /■%-<" 2 CjPj(s)
J0 y_l

ds (5.5)
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Let

Va (x, p) = inf j; (t),       J> (t) defined by (5.5).
tŒ<£

(5.6)

5.3. V = V(p). We shall prove

Theorem 5.1. If the X, do not depend on x then V(x,p) and Va(x,p) do not

depend on x.

Proof. It is enough to prove the assertion for V.

Define yx: ß->ß by yx(«)(/) = x + «(/)• Then yx: % -> f, is a a-

isomorphism and

pp,*+y (A) = pw (y^A))    for any Aef. (5.7)

Indeed, it suffices to verify (5.7) for cylinder sets, and the verifications in this

case follows from (1.3).

From (5.7) we conclude that

E'-*+r[F(-)]mE"[F(yx-)] (5.8)

for any integrable and ^-measurable function F.

We note, by Theorem 2.2 and (2.9), that pj(t) depends only on the

differences x(v) - x(u) (0 < u < v < /), so that, writing pj(t) = pj(t, u), we

have

pA(> y*w) = pA'' ")■

From (5.4), (5.8) (with v = 0) and (5.9) we see that

(5.9)

H (?) = E"'° K(P) + ryx2cjPj(s)(yx)ds
J0      y=i

+ 2 2 A(T,r»KTx)^AJt(WJ<Tj
/=1 i=\

Ki + I     2 CjPj{s) ds
Jo    j= i

= Ep-° K(P) + p 2 cjPj(s) ds
J0      im. 17=1

oo    n— 1

+ 22 A(f,)£,^f')+J
/=ii=i

Ki+('"'tcjPj(s)ds

where

f,(w) = r,(yxa);

here we have also used the relation

x(T,yx)(yxo>) = u(r,(yxu)) + x.
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Letting d,¡ = a,¡yx, and using (5.8) (with v = x(f,)), we find that

Jpx(r)=EP
= ppfi K(p)+f'tcjPj(s) ds

+ Ï"'2paï!)e',x(î')
i=i »=i K.+f'ïc^s)

J0     y=i
ds

which, by (5.4), is equal to Jp(r), where f = (f,, f2, . . . ). It is easy to check

that f is a sequence of inspection times, i.e., f G â. Hence

H(r) - JS(f) > inf  '&(*) = V(p,p).
•fe«

Since t is arbitrary, we get V(x,p) > V(0,p). Similarly, one can show that

V(0, p) > V(x, p), and the proof of the theorem is complete.

Set E" m Ep'°, Ei = Eifi.

Theorem 5.2. If the Xy do not depend on x then

Va(0,p)=inf E» K(p)e-«9+(9e-asJ!icjpJ(s)ds

7=1

+ "í:e-°9pi(9)Va(0,e¡)
7=1

(5.10)

where 9 varies over all 5, stopping times

Proof. From (5.5),

Va(0,p)=inf Ep0 K(p)e-^+fT'e-as'2cJpJ(s)ds
Jo y-i *J

n-\

+ 2*""&-(',)inf 7i(Tl)(7i)
7=1

(5.11)

where r} is the sequence of inspection times beginning with a,2. It is easy to

see that, as t varies in 62, (t'x, . . . , r'n_x) varies over the entire product space

& X ■ • • X &. By Theorem 5.1, we may replace infT- Jx(TJj'i) by inf,.. Jq(t'¡)

in (5.11), and (5.10) then follows.

Formula (5.10) shows that Va(0,p) has the form

Va(0,p)=inf E" Çe-"sf(p(s))ds + e-«%(p(9)) (5.12)

where 9 is any % stopping time. Recall that p(t) satisfies a system of

stochastic differential equations with a Brownian motion that is nonanticipa-

tive with respect to %. The functions /, \p in (5.12) are continuous and

bounded.



56 R. F. ANDERSON AND AVNER FRIEDMAN

Let

P = (Pl,--',Pn);P¡ > 0,   2 Pi =  i
1 = 1

(5.13)

Theorem 5.3. If K(p) = const and a > 0 then Va(0,p) is continuous in p,

This follows from (5.12) by a standard argument, using the fact that the

Pj(t), as solutions of a stochastic differential system, are continuous functions

in bounded times (in suitable norm) of the initial values.

Remark. If the X, depend on x then one can prove the continuity of

Va(x,p)\n(x,p).

We set

K(P)- K(0,P). (5.14)

By iterating (5.11) we can express Va(p) as the infimum of a cost function

expressed only in terms of the /^-process and the r¡, but this cost function is

rather complicated and will not be needed later on.

If we restrict the stopping times 9 in (5.10) to be stopping times which are

invariant with respect to translations of x(t), then by iterating (5.10) any

number of times / and letting / -» oo we obtain

K(P)< ^(7>)=i?f  J"(r), (5.15)

where

J" (t) = E" K(p)e-aT< + r'e-^^Cjp^ds
Jo j=\

+ 2 2V"fr(T,)
/= 1 7- 1

■E' Kie->°<- + /"%-« 2 cjpAs) ds
Jo J=x ^J

(5.16)

and $(, is the subset of & consisting of all inspections with aml which are

invariant with respect to translations of x(t).

6. Existence and uniqueness of solution of the q.v.i. In this section we

assume that a > 0. We also assume that the X¡ do not depend on x and

the vectors Xy - X, (2 < y < n) span the entire space Rm.        (6.1)

We shall denote by — A the infinitesimal generator of the Markov process

(px(t), . . . ,pn_x(t)).   For   simplicity   of   notation   we   identify   p =

(P\< ■ ■ ■ >Pn-i,Pn)(Zl=\P, = 1) with(/7„ . . . ,/?„_,). Let
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0 =    (Pu - ■ ■ ,/>„_,);/>, > 0 (K i < n - 1), 2 p, < 1   .      (6.2)

Theorem 6.1. Assume that (6.1) /¡o/<¿s and" í/ia/ AT(/?) = K (constant). Then:

(i) ITAere existe a unique solution u = u(p) in ß o/ //ie q.v.i. (4.5)-(4.7) wí/A

A/ replaced by M - a, such that u G C(ß) am/ m G W2^ (il) for any \ < p <

oo.

(ii) This solution coincides with Va(p), i.e., u(p) = Va(p).

(iii) Let S = (pG A0; Va(p) = K + 'ÏTjllPjV(e¡)), and let a£ = A/tfing
íí'me o//Ae it7 5 Ay the process p(t) withp(0) — p. Assume that a£ < oo a.s.for

allp G A0,p =7= e„. TJe/ïne P Ay (4.17). 7/ien

K, (/>) = ^ P)       (/> £A0,p* e„). (6.3)

If the 9(t) process goes only to the right then the proof of Theorem 6.1

immediately extends to the case where K(p) is not a constant, but is defined

as in (4.2). In this case the sequence corresponding to q.v.i. (4.35)-(4.37), with

M„_i replaced by M„_¡ — a (a > 0), has a unique regular solution

(Vn_x,...,Vx).

Proof. For any 5 > 0, let

ß„ =   (j»„ • ■ • ,/>„-,);/', > s, 2 pj < l - 8 j.

Given continuous/ > 0 and i/> > 0 in ß, consider the Dirichlet problem

Au + au + e-1(M - i/0+ = /   inßs        (e > 0), (6.4)

u = 0   on 3ß5. (6.5)

Since ¿I does not degenerate in ß6, this problem has a solution u = ueS. The

solution is unique and is given probabilistically (see [3]) by

v(t)
ue,s(p) = >nf  E"

t>e® //'('(><'»+ fr H
f w f(x) Ï

(6.6)

where © is the class of all '%, nonanticipating functions v(t) with 0 < v(t) <

1, and Ts is the exit time of p(t) from ßÄ. In fact, the proof of (6.6) is easily

obtained after writing down Itô's formula for ueSe\p[ — at-f'0(v/e)],

integrated from / = 0 to / = Ts.

Recall that p(t) G ß for all / > 0 if p(0) G ß (since p¡(0) > 0 implies

p¡(t) > 0 for all t > 0). Hence, if p(0) G ß then Ts -> oo as o -> 0. It follows

that the cost Ep[ ■ ■ • ] on the right-hand side of (6.6) converges, uniformly

in v G 9>, to the same cost with Ts replaced by oo. Thus,

lim ue<s(p) = ue(p) = inf  J>* (v)       (p G ß), (6.7)
a—»0 v e Í»
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where

Jpt (v) = E" x-i'^M-nk-* (6.8)

The function ue(p) can be extended continuously into ß by the right-hand

side of (6.7). (This follows using the continuity, in bounded times, of the

solution of the stochastic differential system (2.2).)

Notice that no boundary conditions are prescribed for ut, and the conver-

gence in (6.7) is generally not uniform in ß (although it is uniform in compact

subsets of ß).

Now let e —» 0. Setting, for any p G ß,

^f(p(s))e-^ds + ^(p(9))e

where 9 is any "5, stopping time, we claim that

u(p) =inf JP(9),JP(9) = E"
u

, (6-9)

lim ue(p) = u(p)   uniformly in ß. (6.10)
e—»0

By the standard elliptic theory, the function ue satisfies the elliptic equation

in (6.4) in the interior of ß. Let 9e = exit time from the set {ut < \p] (9C may

be infinite valued). Applying Itô's formula to ut(p(t)) between / = 0 and

t" 9e/\Tsf\T(T< oo) we get

ue(p) > Jf (9E ATSAT)- CE»[e-a^T)],

where C = sup xp. Since Jp(9e f\Ts/\T)> u(p), taking 5 -h» 0, T^> oo we

conclude that ue(p) > u(p).

Next, for any stopping time 9, take v = v9 = 0 if s < 9, v = v9 = 1 if

s > 9. For any A > 0 we can then estimate, analogously to [3, Chapter III],

\JP* (v9) - J» (9)\ <T,(£,A),

where

lim  r/(e, A) = tj0(A),    lim r¡0(h) = 0.

Since ue(p) < Jp'e(vg), we deduce thatlim(ue — u) < 0. Together with ue > u,

assertion (6.10) follows.

Lemma 6.2. If the first two derivatives of xp are bounded functions then there

exists a constant C independent of 8, e such that, setting

AueS + aueS =/e8    in Q8, (6.11)

we have

\fe,s\< C,       |Mm|< C   inüs. (6.12)

Proof. Let w = (ueS — \p)+/e. Then w takes its positive maximum in ßs at

some interior point p. At that point also ueS — \p takes its positive maximum.
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Consequently,

¿(\s - <W + »("a - 4>) > °   âtP-

From (6.4) we then obtain the inequality

HP) < /(¿) - Axp(p) - axp(p) < C0,

where C0 is a constant independent of o, e. This implies the first inequality in

(6.12). The second inequality follows by applying the maximum principle to

ueS; at the maximum point p we have Aue8 > 0, (ueS — xp)+ > 0, so that

u(p) < f(P)/a.
If (6.11), (6.12) hold then we can use the elliptic Lp estimates in any

compact subset of ß, and conclude, after taking o —» 0 and e —> 0 and using

(6.7), (6.10), that

ueW&(Q). (6.13)

Next, (6.4) implies that AueS + aueS < / so that, as 5 -» 0, e -» 0,

ylw + aw < /   a.e. in ß. (6.14)

On any compact subset of the open set {p G ß, u(p) < \p(p)} we have

ueS < xp if 5, e are sufficiently small. Hence, by (6.4),

AueS + aueS = f

on such a set. Taking S -> 0, e ^ 0 we conclude that ^4 u + at/ = / on this set.

Thus we have proved that

(u - xP)(Au + au - f) = 0   a.e. in ß. (6.15)

We also have

m < xp    inß. (6.16)

We sum up: ifxp is as in Lemma 6.2 then u is a regular solution, in the sense

<?/(6.13), of the variational inequality given by (6.14)—(6.16).

Let

KP) = 2 Vi.       «K/0 = * + 2* Pj Va (ef). (6.17)
.=1 7=1

From (5.10) we see that

Va{p)-u(p), (6.18)

where u(p) is defined by (6.9) with /, xp given by (6.17). Applying the last

italicized statement we obtain assertion (i) of Theorem 6.1 with u = Va.

In order to prove assertion (iii) of Theorem 6.1 it suffices to show that the

proof of Theorem 4.2 can be carried out with V(x,p) replaced by Va(p). We

already know that Va(p) belongs to C(ß) n ^^"(ß). This is actually

sufficient for establishing (6.3). Indeed, we just have to be a bit careful in

applying Itô's formula. We illustrate it in the derivation of (4.20). Here we

apply Itô's formula (see Remark 7 at the end of §4), integrated from / = 0 to
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t — 0\ A Ts, where Ts = exit time from ßfi, provided/; is in ß5. We then take

o -» 0 and obtain (4.20), provided p G ß. By continuity, this relation holds for

p G ß.

It is now clear how to complete the proof that

Va(P)<J6(T),       Va(p)mJP(r)

(the first inequality is, of course, already known); the second assertion

coincides with (iii). If op are not assumed to be finite valued then one can still

establish (6.3) by the above proof, provided in applying Itô's formula as

above we replace a, A Ts by a, A T& A A and then take 5 -» 0, N -> oo, and

continue in this manner step by step. Thus, if u is any regular solution of the

q.v.i. as in (i) then u(p) = J^r) even when ap may not be finite valued. This

yields the uniqueness of u, and completes the proof of Theorem 6.1. As a

by-product we have obtained

Corollary 6.3. Assertion (6.3) is valid even if the a£ are not finite valued

a.s.

It follows that the minimal sequence of inspections exists and the corre-

sponding stopping times am, are invariant under translation of x(t). Conse-

quently:

Corollary 6.4. 7/(6.1) is valid then, in (5.15), Va(p) = Va(p).

Remark. We give another proof of (6.3) which is valid also for more

general xp (of p and Va) than in (6.17). In fact, xp will only be required to be

continuous. We return to the function u defined in (6.9) and let

S0 = {PGti,u(p) = xP(p)},

9p = hitting time of the set S0, givenp(0) = p.

Assume that

Then

9p is finite valued a.e.    (for any/7 ^ e„). (619)

u(p) = E» f^f(p(s))e-'"ds + xp(p(9p))e- (6.20)

The proof is as in [3, end of Chapter III] with minor obvious changes.

Applying result (6.20) with/, xp as in (6.17), we get

Va(p) = E"

n-l■2«
7=1 7=1

Ke-ai> + fV«* 2 CjPj(s) ds + 2 »"^(t,)Va(ef)
J 0 : _ 1 ; _ 1

(6.21)

We now iterate this relation any number of times /; taking /-» 00, assertion

(6.3) follows.
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Approximation of Va. Define successively functions uk as follows: uk(p) =

u(p), where u is given by (6.9) with

f(p) = 2 CjPj,   xp(p) = K + 2 Pju"-1 (ef),
7=1 7=1

if k > 1, and

u°(p) = E'\ fX f(p(s))e-°s ds
0

Theorem 6.5. As k | oo,

"*(/>) I M/0    uniformly inp G ß. (6.22)

Proof.  Taking 0-»oo   in  (6.9)  for u = w1   gives  m1 < w°.  Next,  by

induction,

uk+x < uk. (6.23)

We have

Tim  uk(p) < J£(t)    for any t G S^. (6.24)
Ä—*00

The proof is similar to the proof of the corresponding result in [3, Chapter V,

cf. (3.19)].

We also have

Um uk(p) > Va(p). (6.25)
k—>oo

Indeed, from the definition of uk and from (6.23),

uk(p) >inf E"
u

Ke~a9 + f0f(p(s))e-as ds +2 PA9)^""^^
0 7*«

Iterating this inequality any number / of times and taking / -» oo, we obtain

uk(p) > inf  Jp(t)= Va(p)   (by Corollary 6.4),
Tea,,

which, of course, implies (6.25).

From (6.23)-(6.25) we obtain assertion (6.22) for each/? G ß. Since uk and

Va are continuous in ß and since [uk] is monotone decreasing to Va, Dini's

theorem implies that the convergence in (6.22) is uniform in ß; this completes

the proof of the theorem.

Theorem 6.5 shows that Va(p) can be obtained as lim m*; each uk is

lim uk, and i^* is a limit of solutions uks of a Dirichlet problem of the form

(6.4), (6.5).

7. Explicit solution of the q.v.i. in one case. We shall consider the special

case n = 2, with c, = 0, c2 > 0, and general qtJ, namely: qxx = - a', qX2 =

a', q2X = ß', q22 = - ß', where a' > 0, ß' > 0; the special case ß' = 0 was
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considered in [1]. Set

K = Kx,   c =
(X2 - X,)

2  '
a =

(X2 - X,)'

Setting v = p2/px and

Lu=\ ylu" +

,   ß =

y

ß'

a(l+y)- ßy(l + y) + -¡-^

(X2 - X,)2

u,

the q.v.i. (4.5)-(4.7) reduces to

LV(y) + cy/(l + y) > 0   ifO<y<oo,

K(y) < 7s: + V(0)/(\ + v)   ifO<y<oo,

(7.1)

(7.2)

(7.3)

Theorem 7.1. There exists a function V(y) in C'[0, oo) and b > Osuch that

LV(y) + cy/(\ + y) =0   */0<v<A, (7.5)

V( y) = K+ V(0)/ (l +y)   ifb<y<oo. (7.6)

The pair V(y), b is unique and, further,

LV(y) + cy/(l+y)>0   if b < y < oo, (7.7)

V(y) < K + K(0)/ (1 + v)    z/0 < y < b. (7.8)

Notice that K is a solution of the q.v.i. (7.2)-(7.4) (V"(y) has a jump

discontinuity at v = A). Setting t = (t,, t2, . . . ) = t' for /' = 1, where fj is

defined in (4.17), with/7 = e¡, and using Lemmas 3.1, 3.5, we see that

Rm < C7?-[7fl(i,)=17,(T-2)=1 • ■ • 7ff(fJ=1] = C(T±-S) ^0

if m —> oo. Consequently, Jx(t) < oo.

Proof. We begin by solving (7.5) with b undetermined as yet. Dividing

both sides byy2/2 and multiplying by

exp
/

2(a-¿jy)(l+y)   |       2
dy\

we get

y i +y

= exp{2[(« - ;S)ln v + ln(l + y) - (a/y + ßy)]}

= y2a-2ß(i   + yy-e-2(a/y + ß>y)^

V'(y)y2a-2ß(\ + ^e"»«/^*»

= - [y2cz2a-2^A\ + z)e-2(a/z + /3z)í/z,

•'o
(7.9)
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where we have assumed that

V'(y)y2a-2ß(l +y)2e'2ia^ + ̂ ^0   ifv^O. (7.10)

Hence

V(b) - V(0) = - Cdy    ,l ,„ -î-e2(«/,+/?,)
1 ' W Jo  ' y2«~2ß   {l+y)2

■ [y2cz2a-2ß-A\ + z)e-2(«A+/fc) ¿z. (7.U)
•'o

We now impose two conditions on V(y) at v = A:

F(A) = 7C + K(0)/ (1 + A), (7.12)

V'(b) = - V(0)/ (1 + A)2. (7.13)

In view of (7.9), the second condition reduces to

^  ;_L_ e2(a/b + ßb)     ■   f" dz2z2a~2P-U\  + *)«-*«/'"*>, (7-14)
C ¿,2a-2/} c ^0

and, in view of (7.11), the first condition is equivalent to

b  *~ 1 f.2(a/v +By)K = -r^-r V(0) - c(b dy —1-
y,a-2ß     (l+yf

■ (y2cz2a-2^-' (1 + *)**«/* + *> dz. (7.15)
•'o

Substituting K(0) from (7.14) into (7.15) we get

K  = 1_!__ e2(a/b + ßb)
C b2a-2ß-\     1  +  I,

-b
■ (  dz 2z2«-2"-1 (1 + z)e-2(a/z+^>

J0     '     y2a-2ß    (1  + >))2

•  [y dz 2z2"-2ß-1 (1  + z)e-2(«/z + /k) = //(¿) (7.16)

If we solve (7.16) and then define V in 0 < y < A by (7.9), (7.14) and in

A < v < oo by (7.6), then (since (7.12), (7.13) hold) F is a solution in

C '[0, oo) of (7.5), (7.6). Conversely, any solution in C '[0, oo) of (7.5), (7.6)

must satisfy (7.12), (7.13) and, consequently, it is given, for 0 < v < A, by

(7.9), (7.14) with A satisfying (7.16). We now claim:

there exists a unique solution A of (7.16). (7-17)

Once (7.17) is proved, the uniqueness assertion of Theorem 7.1 follows.
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In order to establish (7.17), we introduce the function

«M " -¿5«**//**) \y dz z2«-2*-'(\ + z)e~2^z^ßz).     (7.18)

Then

77(A) = 2
1+0 •'O (l + yY

(7.19)

«W^M25**--^-'))**

-p^ ?'(*) = 6 + 2ßbq(b) - 2aq(b). (7.20)

Clearly

so that

Now,

fb dz z2a~2ß-x (1 + z)e"2^-2a/z

•'o

- 4-   C dz z*>-W+le-2ß* 2Sl e-2a/*+   i' dz z^-2ße-2ßze-2a/z
2« •'o z2 Jo

= (by integration by parts)     j- b2a-2ß+1e-2(a/b+ßb)

-4- (b dz (2a - 2ß + l - 2ßz)z2a-2ße-*a/z + ßz)
¿a Jq

+ (b dz z2a-2ße~2(a/z + ßz)

-'o

= J_     D2a-2ß+\e-2(a/b + ßb) _  Çb dz z2a-2ße-2(a/z + ßz)
2a [ J0

+ 2ß i0 dz (1  +  z)z2a-2¿¡e-2(a/z + ¿
•'0

b-!_ 02(a/b + ßb) Cb fc z2a-2/3g-2(a/z + i3Z)

b2a~2ß •'o

+ -^e2(a/b+mf dz (1 + z)z2a-2ße-2^z + ßzA. (7.21)

Hence

1(b) =
2a
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We now substitute q(b) from (7.21) into —2aq(b) on the right-hand side of

(7.20), and q(b) from (7.18) (with v = A) into 2ßq(b) on the right-hand side of
(7.20), and obtain

A2

1 + Aq'(b) = 2/3
1

¿2a-20

•b

,2(<x/b + ßb)

j    dz(\+ z)z2«-2^-2(„A + ̂  £  _  A

1
¿2« -2/3

e2(a/b + ßb) fb

■¡O
¿z z2a-lße-2(a/z + ßz)

>0.
Hence q'(b) > 0. Next, from (7.19),

177'(A) = 2 <7(¿) + 7T^ <?'(*)
1

(1 + A)'
q(b)

i (1 + bf

= (2b/ (1 + b))q'(b) > 0.

Thus H(y) is strictly monotone increasing. Since 77(0) = 0 and, as easily

seen, 77(A) -» oo if A -» oo, assertion (7.17) follows. It remains to prove (7.7),

(7.8).
Set

l(y) = K+ V(0)/(l+y)- V(y).

Then

i'(y) =

V+y)1
- V(y) = c

2q(b) 2q(y)

(1+y)2       (1+v)2

= (2c/(\+y)2)(q(y)-q(b))<0,

since q' > 0. Noting that 1(0) = 7s:, /(A) = 0, we conclude that l(y) > 0 if
0 < v < A, i.e., (7.8) holds.

To derive (7.7), note that

L(l/(l + y))=-(«-/3y)/(l + v).

Therefore

^ + T^) + Tf7 = Tf7^-^-^^>0
if v > A, since

A - (a - ßb)q(b) = \b + \(b + 2/3A<7(A) - 2a<?(A))

= iA + (A2/(l + A)>7'(A)>0.
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Appendix: Proofs of Theorems 2.1 and 2.2. If T^1 and P2 are Markov

processes then the tensor product Px <8>° Px(u) is defined by the two

conditions: (1) it agrees with Px on *$„; (2) its regular conditional probability

distribution, given *¥„, coincides with P2^ a.e. These two conditions deter-

mine Px <S>° Px(u) uniquely (see [9]). We have

Plx ®°„ PlUA n B) -//*(„)(*U'\B)) dPl (A.1)
J A

if A G ®su, B G %". Using this rule one can prove the associate law for the

tensor product.

We also have, for any Markov process 7*,.,

Px ®° PxU) = Px. (A.2)

We denote by 7^ the Markov process on (ß, f,) corresponding to m-

dimensional Brownian motion with drift X.

We now define functions Pix:

P,x(9(t)=j,x(t)GB)

= 2 2 f duiyexp{-qiUiy])
P-0 (/.y.,.., W)   °

• Jf'~ ""r'rf"y„y2exP{ - ÍY,"7„.2} 1y,.y2

"""•" ^'d^y^M-oy,uyi,y,Jqyi,yi+>

. . . £~+»-™ ^'du^expi-q^Jq^

■ exp{-qAt - «,,Y, - uyuyi- i^ ^ - uyJ)

® • ■ • •%•:":îfc'^àtaI+ • • • +v>(*(o 6 *).   (A.3)

where q¡ = — q¡¿ and Ti is any set in %(Rm). Here we used the same

summation notation as in §2. However, the term in (A.3) corresponding to

p = 1 (when i = j) is understood to be e'qi'P^(x(t) G B).

We shall show later on that the Pix are the transition probabilities of the

random evolution given in Lemma 1.1.

To motivate definition (A.3) we observe that the probability of jumping

from state / to state y in one jump in time / has the density e~q,tqir

/■'-»Í.7,-
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Theorem A. 1. The functions P9x define a strong Markov process with respect

to the a-fields 911,. The finite dimensional distributions of this process coincide

with the finite dimensional distributions of the process constructed in Lemma 1.1.

Proof. We first verify the Chapman-Kolmogorov equation, i.e.,

Pi>x(9(t)=j,x(t)GB)

= 2

where

( duiaexp{-q¡U¡}q,
Jo

■ fS~"'°'duaitaexp{-qaua¡¡a2}qai¡a2

■ ■ ■ ft'"""       '""-'"du^expi - q%u%J}q%rl

■ exp{-qt(s - u,a,-\j)}P> O^,^)® • • •

f     du!ßexp{-qlulßt}q,ßi

• JÍ"     U,ihduMexp{ - qßußii02 } qMi
Jo

■q(KJexp{-qJ(t - s - U,^- u^)}

./A®°    /A'    ,® . .V   wit.i,   nui.)01J"        "i.ß,   x^"iß,)
D^íit '   " tuA-iA

^W •■•+.*,)(*('--o6*) (A.4)

2=2 2*     2'      2*     2
/- 1   M = 0 (i, a., a,, /) « = 0 (/,/3,./}„,)

We bring together all the 7>'s and use (A.l), (A.2). Next, make a substitution

ut,ß, + * -» u,ß and then another one,

u,ul,ß, -» ",,«,  +   «a„a2  + + v + "'.¿v
The total effect is to transform (A.4) into
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= 2 k,í"X„ • • • f-"**■- ■ • ■ -"-^v
Jo        Jo                        Jo

■('-"""-"-'du.J'-"^-«*-* dußtA
Js-U;.a¡--%./ J°

o

• exp{ - ftt/I>a|}?,,„ exp{ - ?a,t/a|>a2K„a2

• • • exp{-9<vuv}9<Vi/exp{-9/M//3i}^]

• exP{-^,^lA}^lA • • • ™P{-4ß«ßj}<Ißj

■ exp{-gj(t - u,a,-«aj)}PÏ<2>^P&m?

+ ■•+«„,     p^i

+ ••• + rç, .l + U/ß, ¡ pV2
+ ■■• + %7+"/./j, + «,8,.i2/*("/.,,,+ • • • +«v/ + ";.o, + '<,81.02)<8> •   •  •

: ::::^:^;: ::: :^:;l+^;^,+... +UßJ(x(t) e b).

(A.5)

We shall denote the general term on the right-hand side of (A.5) by

Ijj (0, s,«„ ..., öl,; s - »,/ - ü,ßl.ß,),

and the general term on the right-hand side of (A.3) by

7"(0, t, y„ . . . , yp).

Then assertion (A.5) reduces to the following combinatorial lemma.

Lemma A.2. The following formula holds:

27,y (0, s, «„ ..., o^; s - «, t - u,fii,..., ß,)

OO

= 2        2'      I'J(0, /, y„ . • •, yp). (A.6)
p=0 ('.y.,y„J)

Proof. Consider first the case where /' ¥=j. Then the left-hand side of (A.6)

is equal to
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2
p=l

p-1     n

2 2        2" 2"
" = 0 1= 1 (,, a„ . . . , «„_„_„ /) (A /3,.A,y)

• 7,y (0, s, ax, . . . , ap_„_,; s - u, t - u, ßx, . . ., ßy)

+ 2
p = 0

oo

+ 2

2'        7y (0, s, a„ . . ., ap)
(«", a„ . . . , ap,y)

2'     r->(s,t,ßx,...,ßp)
p=°l(i,ß./W)

OO 00 00

= 2 Ä„ + 2 bp + 2 C„;
P=\ p = 0 p = 0

(A.7)

here the first 2" indicates the usual restrictions in the definition of 2' plus the

additional restriction that when v = 0 we must take / ^ j. Similarly, in the

second 2" we have the additional restriction that when v = p — 1 we must

take / =7= /'. Note that the terms 7ip and Cp come from those terms on the

right-hand side of (A.6) corresponding to v — - 1, / = y" and u = — 1, / = /,

respectively.

Take p > 0. Combining 7?p with the terms in Ap for which v = 0, we obtain

2'        IiJ (0, s,ax,..., ap)
('.a.,<*pJ)

n

+ 2 2'        tij (°> i, «i,. •., ap_,; * - «, / - «)

= 2 ^/y (0, i, a„ . . . , ap_,; 0, < - w),
/=i
/#7

(A.8)

as easily seen by writing down explicitly the corresponding integrals.

We now add the right-hand side of (A.8) the terms in Ap with v = 1 :

2 2' T Iij(0,s,ax,...,ap_2;s-ü,t-ü,ßx)

n

+ 2^/(0,i,«,, ...,ap_,;0, t - u)
i=i
l+J

= 2 2' 2' /# (0, *, a,,..., a,_2;0,/-«,&),
/=i O'.«,.«p_2,/)(/,¿8„y)

(A.9)
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as easily seen by writing down explicitly the corresponding integrals.

Next we add to the right-hand side of (A.9) the terms in Ap corresponding

to v = 2 and obtain

n

2 2' 2     i¡j (0, s, ax, . . . , ap_3 ■ 0, t - a,ßly ß2\
l~\ (/,a,,...,ap-3,/)(/>/ii,fe7)

Proceeding this way step by step, we obtain, after adding the terms in Ap

with v = p — 2,

2     2' 2' l¡j(0,s,ax;0,t -ü,ßx,..., ßp_2).
1=1 (i, ce,, l) (I, ßx, ..., ßp_2J)

Adding the terms in A  with v = p - 1, i.e., the sum

i"lA''ß.ßp-iJ)
llj(0,s;s-ü,ßx,...,ßp_x),

we obtain

'-'('.A.A-1.7)
l¥*i

We finally add the terms in C  and obtain

lij(0,s;0,t-ü,ßx,...,ßp_x).

Ap + Bp + Cp = 2'       IiJ(0,t,ßx,...,ßp)       (p>0).
('. ß,.ß„j)

Since, obviously, BQ + A0 = I'J(0, t), assertion (A.6) follows in case i ¥=j.

The proof for / = y is similar.

Having proved the Chapman-Kolmogorov equation, it follows that the P9x

define a Markov process with respect to <D\il. Since the Feller property can

easily be verified, the process satisfies the strong Markov property not only

with respect to 911, but also with respect to 9H,.

It remains to prove that the one dimensional distributions of this process

and of the process constructed in Lemma 1.1 are the same. For this we simply

compute the expectation of

exp Vi >(t)+('f(9(s))ds + x
Jo

+ thHO

(for any ju, G Rm, ¡j^ G R ') using the respective probabilities, and check that

the results are the same.

We shall henceforth denote by P9x the measures of the Markov process

constructed in Theorem A.l.



QUALITY CONTROL PROBLEMS 71

Lemma A.3. For any A G %,

00

S/e<o=jdPix   =2*        2'       /\t,«P{-**t,}

• f '"UiyidUy„yeXp{ - lyVy.yJqy^
Jo

•'o

• «p{-^(/ - «„„-«Yp_„Yp - *,J)F* ®i.A>

® • • • ®^¡í ::; í^-^X,* • • • +«,>*>• (A-10)

Proof. It suffices to establish (A. 10) for a cylinder set

A = (*(/,) 6i„..., x(/M G Bm)),

0 < f, < t2 < ■ ■ ■ < tm_x < tm = t.

Set

A = (x(tx) GBX,..., *(/,) G Ti,),

C, = (x(ti+x - t,) G Bi+X, ...,x(tn- t,) G Bn).

Using (A.3) and the Markov property, and then substituting u,ß + fm_] -»

M/y8 , we find that

\l9(ù-jdP'x   =2/     W,)=/2*        2'       exp{a,/m_,}

•P  ¿"/,,s-exP{ ~ ?/"/,/}, R/s,
J'm-\

■ p-"'■<" dußißexp{-qßußxßi}qßitß2
Jo

■ ■ ■  p"** Uß"'ß'du^exp{-ßvu^}qßJ
Jo

■ exp{-$(/m - ultßi- ußJ)}

•3S¡í:-ífcít:,*-^* - • • ♦v^^-»^ (A-U)
Using the Markov property we obtain, after employing (A.3),
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ílm=jdP''x   = 2 /    Wo

n       oo oo

•2 2*      2'      2*     2'
/= 1   p. = 0 (A:, *,,..., v /) p = 0 (/, /8., ßyJ)

■ p"'   'm~2 <A<fc   exp{ - ft«*,a,H,a,
■'O

•'o

_   _ jfW«.-,-*« ^ ^expi -?^,,} V

• exp{-?,(/„_, - /m_2 - q^- u^)}

•^(«,.1+ ■ • ■ + «^[W'm-i - 'm-2) 6 Bm-x) • - • ]•

Now substitute uka¡ + tm_2 -^ uka¡ and then

«/./», -+ "*,«, + »a„a2 + • • • + V,<v + \,i + «gv

Using the rule

P?>[(x(t) G A)*%() ®° ^u)(x(r, ) € *,,..., x(T„) € Bh)]

= P?'®0u + lPxlu + t)[x(t)GA,x(t+ TX)GBX, ...,x(T+ Th) G B„]

(u < Tx < ■ • • < Th),

(A.12)

^X| ®° *îto[(*M e ^Ä)(x(r, ) G 7?„ . . ., x(Th) G Bh)]

= /»> <8>°u /**u,[*(0 G ,4, *(í + Tx ) G Bx, . . . , x(t + T„) G Bh]

(u<t)

(A.13)

(whose proof for A = 1 is given in [1]; for general A the proof is similar), and

then applying Lemma A.2 (with a slightly different notation), we obtain

relation (A.l 1) with m — 1 replaced by m — 2. Proceeding in this way step by

step and setting t0 = 0, 7J0 = R\ A0 = (x(t0) G B0) and C0 = A, we finally

arrive at the expression (A. 11) with m - 1 and tm_x replaced by 0 and /„ = 0,

i.e., (A. 10) holds.

Proof of Theorem 2.2. Set

ptj(t) = P'-X[9(t) =j\%] ^ \%. (A.14)

Proceeding analogously to [1, Proof of (2.7)], but applying Lemma A.3, we
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find that/7,v(/) is given by (2.7). Summing on y in (A. 14), we get

m AT>i<x

S/wO-^rlí- (A-15)
/=i dP?

Substituting dP'x/dP} from(A.15) into (A.14), assertion (2.8) follows.

To prove (2.9), we write

Pj(t) = Ep'x[9(t)=j\%]

n AJ>''X

= 2 PiE'-'lHt) =J\%] %p* \% (A.16)

Now

¿p"1'   hPldP^v
and

dpi,x dpi,x      dP^       dP^

rfP,JC ¿P*       dP*       ¿P'*

Noting, by (A.15) and by (2.6) (plus Girsanov's formula), that

dPhx A dP^

we obtain an expression for (dPp'x/dP'-x)\%. Substituting it into (A.16) and

expressing also pj(t) = E'-X[9(t) = j\%] from (2.8), the right-hand side of

(A.16) reduces to the right-hand side of (2.9).

Proof of Theorem 2.1. For/7 = (px,p2,. ■ ■ ,p„) with/7, > 0, 2/>, = 1, we

write

Py(Pi.P2. • • • >P„, t)mpj(t) = Ep-X[9(t) -J\9,].

We   shall   need   the   following   "randomized"   Chapman-Kolmogorov

equation:

Lemma A.4. The following relations hold:

pv(t) = 2 PíMpiA* - S)Z'AS> ')> (AH)
/=1

where ßij(t — s) has the same meaning as ptJ(t — s) except that (0, x(0)) has

been shifted to (s, x(s)).

The proof is similar to the proof of (A.4).

Lemma A.5. The following relations hold:

pAP\> • • • >Pn> 0 " 2 Pi(Pv • • • ,P„, 5)
i = i

PiA1 -s)
(A. 18)

27_!/>,(/>„ . ■ • ,p„,s)zu(s, í)2"fc=,/7a(í - s)
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Proof. By (2.9) and Lemma A.4,

PAP\> • • ■ >Pn> 0

= 27=i/7,2;=,/J,,,(^)4(/ - s)zitq(s, t)

' 27_,/7/z,/(o, OlL&.iPtAtâA' - s)ztA*> ') '
Thus it remains to verify that the right-hand sides of (A. 18) and (A. 19) are

equal. This is achieved by multiplying both expressions by the product of the

denominators and verifying that the coefficients of p^(t — s)prk(t — s) on

both sides are equal.

Let

T = {*,(/) G A,pj(px, . . . ,p„, t) G Bj, 1 < y < n),

f = [xx(,)t G A,pj(px(px, . . . ,p„,s), ...,

Pn(Pi, ■■ -,pn,s),t - s)G Bj, 1 < y < «}.

Lemma A.5 implies that

r = f.
Now,

(A.20)

pp-x[t\%] = 2 PiP^m^s]
dP>

and, since

we have

; = 1
dPpx 9.,

dPr

dPp>;
9. m l 2 PiziAs) ™—=-tt

i=i ^q=\PiAs)

p»*w.] = 2 PtP'^m] yn s7f;:(J).,..
-=i ^i=\Pt^As)^k=iPi,k(s)

Using (A.20) and the Markov property of the (x, 9) process, we get

?>ï=iPizu(Q> s)2nk=iPi,k(s)
pp'x[m] = 2Pi —

2/i'>[/»w=rPr-j:W[f|^]].
r= I

The inner sum is equal to '2%xP'(s)Pr'x(s\t). Substitutingp'r(s) from (2.8),

we obtain, after using (2.9),

Pp'x[T\%] = 2
r=l

2->  v»

PiPiAs)

, = i 27=1 p,zu (0, s)1nk m, Plk (s)

= lPr(Pv-,Pn,s)PrxM(T)
r=\

=   ppip.P„,s),x(s)sY)

>r,x{s)l (f)
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which completes the proof that (Pj(px, . . . ,p„, t), 1 < y < ri) is a Markov

process.

We proceed to compute the differentials of pj(px,... ,p„, t). We shall use

here the model given in Lemma 1.1. Accordingly, we may resort to Itô's

calculus. Using the rule

4- f'du     f'~"'"du      f'-"'?'-""« dudtJ0dU'^JQ dU^J0 ™>

• • • J0 y'J

.   /•,-*,,,- -«Wp-WJ^, Uyi¡y2, ..., H, , UyJ

Jo

-fSt""^
Jr'_";.n_"n.T2_ - " '  ~"y'-'-''l(u,       u           . . . . «L

1 \ui,y,' "ti.tj."tp-i.y,,'
0

' - ul.y, - MY„y2
Ti-l.Tp/'

we find that

dp,j(t) = (XJ-Xl)pIJ(t)-dx(t)

+ {ïIa.-^-Him'-n'Kw -•MO + SM.C)}*

= &■-Wy(0-<k(') + M\ - a^)^ + 2 ?,//,, (0
i=i

d/.  (A.21)

Using (A.21) and Itô's formula we obtain, from (2.9), after some tedious
calculation,

dpAO = 2 q,jpM dt + pAoU - 2 V/(o)
/=i \     /=i       /

•(dx(/)-2V/(0^)» (A22)

which agrees with (2.2) if

y(t) = x(t) -ft \p,(s) ds
Jo l=\

(A.23)

is a Brownian motion. In order to complete the proof of Theorem 2.1 it

remains to prove that y(t) is an w-dimensional Brownian motion. For

simplicity we shall take m = 1.

Now, from the martingale formulation of [8] we have that

exp èx(t)-^2t-^f'f(9(s))ds
Jo

(for any £ G R ' )
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is a martingale with respect to 9H,, P*1*. Differentiating once and twice with

respect to £ and substituting £ = 0, we deduce, respectively, that

X(t) ~X/(Ö(M)) ***'    (X(t) ~f0f{9(u)) dU) ~ '*

are martingales with respect to 911,. Conditioning the martingale relations

with respect to 9S and using the relation Pll'x[9(u) =y] = Pj(u) and the

Markov property of both the (x, 9) and the (x,p) processes, we find thaty(t)

and y2(t) — t are martingales with respect to 9t', hence y(t) is a Brownian
motion.
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