QUALITY CONTROL FOR MARKOV CHAINS AND FREE BOUNDARY PROBLEMS (${ }^{\mathbf{1} \text {) }}$

BY

ROBERT F. ANDERSON AND AVNER FRIEDMAN

Abstract

A machine can manufacture any one of n Markov chains $P_{x}^{\lambda_{y}}$ ($1<j<n$); the P_{x}^{λ} are defined on the space of all sequences $x=\{x(m)\}$ $(1<m<\infty)$ and are absolutely continuous (in finite times) with respect to one another. It is assumed that chains P_{x}^{λ} evolve in a random way, dictated by a Markov chain $\theta(m)$ with n states, so that when $\theta(m)=j$ the machine is producing P_{x}^{λ}. One observes the σ-fields of $x(m)$ in order to determine when to inspect $\theta(m)$. With each product P_{x}^{λ} there is associated a cost c_{j}. One inspects θ at a sequence of times (each inspection entails a certain cost) and stops production when the state $\theta=n$ is reached. The problem is to find an optimal sequence of inspections. This problem is reduced, in this paper, to solving a certain free boundary problem. In case $\boldsymbol{n}=2$ the latter problem is solved.

0 . Introduction. Let X be a fixed countable subset of the real line. Let $\theta(t)$ $(t=0,1,2, \ldots)$ be a Markov chain with n states $1,2, \ldots, n$, and with transition probability matrix $p_{i, j}$. With each state i we associate a Markov chain $P_{x}^{\lambda_{i}}$ defined on the space Ω_{1} of sequences $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ where each x_{i} varies in X. We assume that the $P_{x}^{\lambda_{i}}$ are distinct from each other and absolutely continuous (in finite time) with respect to one another. Denote by $E^{i, x}$ the expectation corresponding to the random evolution of the $P_{x}^{\lambda_{j}}$ in accordance with the chain $\theta(t)$ starting at $\theta=i$ and x.

Let K_{1}, \ldots, K_{n-1} be given positive numbers. Let c_{1}, \ldots, c_{n} be given nonnegative numbers and define a function $f(\theta)$ by $f(i)=c_{i}$ if $i=1$, $2, \ldots, n$. Let $\tau=\left(\tau_{1}, \tau_{2}, \ldots\right)$ be an increasing sequence of "inspection times" in the sense that τ_{i} assumes only nonnegative integer values and each set $\left(\tau_{i} \leqslant s\right)$ (s nonnegative integer) depends only on the coordinates $x_{0}, x_{1}, \ldots, x_{s}$ and on the knowledge of $\theta\left(\tau_{j}\right)$ for all $1 \leqslant j \leqslant i-1$.

Throughout this paper we shall use the notation

[^0]Key words and phrases. Markov chain, quality control, stopping time, inspection time, quasi variational inequality.
${ }^{(1)}$ This paper is partially supported by National Science Foundation Grant MPS 72-04959 A02.

$$
\begin{equation*}
\int_{a}^{b} g(s) d s=g(a)+g(a+1)+\cdots+g(b) \tag{0.1}
\end{equation*}
$$

where a, b are integers and $0 \leqslant a<b$.
Consider the cost function

$$
\begin{align*}
J_{x}^{i}(\tau)= & E^{i, x}\left[K_{i}+\sum_{j=1}^{n-1} K_{j}\left[\sum_{l=1}^{\infty} I_{\theta\left(\tau_{l}\right)=j}\right]\right] \\
& +E^{i, x}\left[\int_{0}^{\tau_{1}-1} f(\theta(s)) d s+\sum_{j=1}^{n-1} \sum_{l=1}^{\infty} I_{\theta\left(\tau_{l}\right)=j} \int_{\tau_{l}-1}^{\tau_{l+1}-1} f(\theta(s)) d s\right] \tag{0.2}
\end{align*}
$$

The problem considered in this paper is to find and characterize a sequence of inspection times $\bar{\tau}=\left(\bar{\tau}_{1}, \bar{\tau}_{2}, \ldots\right)$ such that

$$
\begin{equation*}
J_{x}^{i}(\bar{\tau})=\inf _{\tau} J_{x}^{i}(\tau) \tag{0.3}
\end{equation*}
$$

This is called a quality control problem. The same problem in the case of continuous-parameter Markov processes was studied by the authors in [1], [2]. The problem was reduced to solving a certain elliptic quasi variational inequality (q.v.i.). We shall establish a similar reduction also in the present setting of Markov chains. Analogously to the q.v.i. of [1], [2] we shall obtain here a "discrete" q.v.i. In the special case where $n=2$ we shall solve the q.v.i.

The development of this paper proceeds parallel to [2]. Some of the results follow similarly to [2], and these will be mentioned only briefly. There are, however, some novel features in the present Markov chain setting.

In $\S 1$ we introduce the random evolution process (x, θ). We choose a model as in [2, Appendix] which displays very clearly the structure of this evolution.

In §2 we introduce the p-process and prove results analogous to Theorems $2.1,2.2$ of [2]. The quality control problem is introduced in $\S 3$, where it is reduced to solving a certain "discrete" q.v.i.

In $\S 4$ we solve the q.v.i. in case $n=2$ under some monotonicity assumption.

1. The (x, θ) process. It will be convenient to denote the discrete parameter of various Markov chains by t; thus the parameter t will take values $t=0,1$, $2, \ldots$ We fix a countable set X of points on the real line and denote by Ω_{1} the space of all sequences $\omega=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ with $x_{i} \in X$. Viewing ω as a function $x=x(t)=x(t, \omega)$ on the nonnegative integers with values in X, we write $x_{t}=x(t)=x(t, \omega), t=0,1,2, \ldots$

Let $\theta(t)$ be a Markov chain with n states $1,2, \ldots, n$ defined on a probability space Ω_{0} of all sequences $\omega^{\prime}=\left(\theta_{0}, \theta_{1}, \theta_{2}, \ldots\right)$ where each θ_{i} may take values $1,2, \ldots, n$. Viewing ω^{\prime} as a function $\theta=\theta(t)=\theta\left(t, \omega^{\prime}\right)$, we write $\theta_{t}=\theta(t)=\theta\left(t, \omega^{\prime}\right), t=0,1,2, \ldots$ Denote the transition probability matrix of $\theta(t)$ by $p_{i, j}$.

Let $P_{x}^{\lambda_{i}}(i=1, \ldots, n)$ be n distinct Markov chains defined on Ω_{1} and absolutely continuous (in finite time) with respect to one another. Denoting the transition probability matrix of $P_{x}^{\lambda_{j}}$ by $p_{j, k}^{\lambda_{j}}$ we then have, for each pair (j, k),

$$
\begin{equation*}
\text { either } p_{j, k}^{\lambda_{j}}=0 \text { for all } 1 \leqslant i \leqslant n \text { or } p_{j, k}^{\lambda}>0 \text { for all } 1 \leqslant i \leqslant n \tag{1.1}
\end{equation*}
$$

We are interested in an explicit construction of the random evolution of the $P_{x}^{\lambda_{t}}$ in accordance with the law of $\theta(t)$. First we write down what, intuitively speaking, the transition probabilities should be:

$$
\begin{align*}
& P_{i, x}(\theta(t)=j, x(t) \in B)=\sum_{\rho=0}^{t-1} \sum_{\left(i, \gamma_{1}, \ldots, \gamma_{\rho}, j\right)} \\
& \cdot \sum_{u_{i}+u_{\gamma_{1}}+\cdots+u_{\gamma_{p}}<t}^{\prime} p_{i, i}^{u_{i}-1} p_{i, \gamma_{1}} p_{\gamma_{1}, \gamma_{1}}^{u_{1}-1} p_{\gamma_{1}, \gamma_{2}} p_{\gamma_{2}, \gamma_{2}}^{\mu_{\gamma_{2}}-1} \cdots p_{\gamma_{p},} p_{j, j}^{t-u_{i}-u_{r_{1}}-\cdots-u_{r_{p}}} \\
& \cdot P_{x}^{\lambda_{i}} \otimes_{u_{i}}^{0} P_{x}^{\lambda}\left(u_{i}\right) \otimes_{u_{i}+u_{11}}^{u_{i}} P_{x}^{\lambda}\left(u_{i}+u_{r 1}\right) \otimes \cdots \\
& \otimes_{u_{i}+u_{1}+\cdots+u_{p_{p}}}^{u_{i}+u_{1}+\cdots+u_{x}\left(u_{i}+u_{r_{1}}+\cdots+u_{r_{p}}\right)}(x(t) \in B) \tag{1.2}
\end{align*}
$$

for $i=1, \ldots, n ; x \in X$, where B is any subset of X. Here, the notation

$$
\sum_{\left(i, \gamma_{1}, \ldots, \gamma_{\rho}, j\right)}^{\prime \prime} \quad \text { for } \rho \geqslant 1
$$

means that summation is extended over all integers $\gamma_{1}, \ldots, \gamma_{\rho}$ varying from 1 to n such that

$$
i \neq \gamma_{1} \neq \gamma_{2} \neq \cdots \neq \gamma_{\rho-1} \neq j
$$

for $\rho=0$ it means that $i \neq j$, i.e., the sum is empty if $i=j$, and consists of one term if $i \neq j$. The summation

$$
\sum_{\rho=0}^{t-1} *
$$

means that ρ varies over $0,1,2, \ldots, t-1$ with one exception: if $i=j$ then there is no term with $\rho=0$ and instead there appears the term

$$
p_{i, i}^{t} P_{x}^{\lambda_{i}}(x(t) \in B)
$$

we refer to this term as the term corresponding to $\rho=-1$. Finally, the notation

$$
\sum_{u_{i}+u_{r 1}+\cdots+u_{r_{p}}<t}^{\prime}
$$

means that the summation is extended over all integers $u_{i}, u_{\gamma_{1}}, \ldots, u_{\gamma_{\rho}}$ such that

$$
u_{i} \geqslant 1, \quad u_{\gamma_{1}} \geqslant 1, \ldots, u_{\gamma_{p}} \geqslant 1, \quad \text { and } \quad u_{i}+u_{\gamma_{1}}+\cdots+u_{\gamma_{p}} \leqslant t
$$

The concept of the tensor product

$$
P_{x}^{1} \otimes_{u_{1}}^{0} P_{x\left(u_{1}\right)}^{2} \otimes \cdots \otimes_{u_{1}+\cdots+u_{m}}^{u_{i}+\cdots+u_{m-1}} P_{x\left(u_{1}+\cdots+u_{m}\right)}^{m+1}
$$

used in (1.2) is the same as in [1], [2] (which is taken from [3]) with the obvious adaptation to the discrete parameter case.

Let $\Omega=\Omega_{0} \otimes \Omega_{1}$ and denote by \mathscr{F}_{t} and \Re_{t} the σ-fields generated by the first $t+1$ coordinates of $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ and of $\left\{\left(\theta_{0}, \theta_{1}, \theta_{2}, \ldots\right)\right.$, $\left.\left(x_{0}, x_{1}, x_{2}, \ldots\right)\right\}$ respectively.

Theorem 1.1. The $P_{i, x}$ define a Markov process with respect to Ω_{t} and Ω.
Proof. It suffices to verify the Chapman-Kolmogorov equation

$$
\begin{align*}
& P_{i, x}(\theta(t)=j, x(t) \in B) \\
& \quad=\sum_{l=1}^{n} \sum_{y} P_{i, x}(\theta(s)=l, x(s)=y) P_{l y}(\theta(t-s)=j, x(t-s) \in B) \tag{1.3}
\end{align*}
$$

where s is any integer, $1 \leqslant s \leqslant t-1$, and B is any subset of X. The right-hand side of (1.3) is equal to

$$
\begin{align*}
& \sum_{l=1}^{n} \sum_{\nu} \sum_{\mu=0}^{s-1} \sum_{\left(i, \alpha_{l}, \ldots, \alpha_{\mu} l\right)}^{\prime \prime} u_{i}+u_{c_{l}+}+\cdots{ }_{+u_{q_{q}}<s}{ }^{t-s-1} \sum_{\nu=0}^{* *} \sum_{\left(l, \beta_{1}, \ldots, \beta_{\nu j}\right)}^{\prime \prime} \\
& \cdot \sum_{u_{l}+u_{\beta_{1}}+\cdots+u_{\beta_{2}}<t-s}^{\prime} p_{i, i}^{u_{i}-1} p_{i, \alpha_{1}} p_{\alpha_{1}, \alpha_{1}}^{u_{\alpha_{1}}-1} \cdots p_{\alpha_{\mu_{2}}, l} p_{l, l}^{s-u_{i}-\cdots-u_{\alpha_{\mu}} p_{l, l}^{u_{l}-1} p_{l, \beta_{1}} p_{\beta_{1}, \beta_{1}}^{u_{\beta_{1}}-1}, ~} \\
& \cdots p_{\beta_{r} j} p_{j, j}^{t-s-u_{i}-\cdots-u_{\beta_{r}}} P_{x}^{\lambda_{i}} \otimes_{u_{i}}^{0} P_{x}^{\lambda} \lambda_{\left(u_{j}\right)} \otimes \cdots \\
& \otimes_{u_{i}+\cdots+u_{\alpha_{\mu}}}^{u_{i}+\cdots+p_{x}\left(u_{i}+\cdots+u_{a_{\mu}}\right)}{ }^{u_{i}}(x(s)=y) \\
& \cdot P_{y}^{\lambda_{l}} \otimes_{u_{l}}^{0} P_{x}^{\lambda_{\rho}\left(l_{l}\right)} \otimes \cdots \otimes_{u_{1}+\cdots+u_{\beta_{y}}}^{u_{1}+\cdots+u_{\beta_{y}-1}} P_{x}^{\lambda_{j}\left(u_{l}+\cdots+u_{\beta_{v}}\right)}(x(t-s) \in B) . \tag{1.4}
\end{align*}
$$

Summing over y and combining the two factors $P^{\lambda_{1}}$ as in [2, following (A.7)] we deduce that the sum over y of the tensor products is equal to

$$
\begin{aligned}
& P_{x}^{\lambda_{i}} \otimes_{u_{i}}^{0} P_{x\left(u_{i}\right)}^{\lambda_{x_{1}}} \otimes \cdots \otimes_{u_{i}+\cdots+u_{\alpha_{\mu}}}^{u_{i}+\cdots+u_{\mu_{2}-1}} P_{x\left(u_{i}+\cdots+u_{\alpha_{\mu}}\right.}^{\lambda_{1}} \otimes_{s+u_{i}}^{u_{i}+\cdots+u_{\alpha_{\mu}}} P_{x\left(s+u_{i}\right)}^{\lambda_{\beta_{1}}} \\
& \otimes \cdots \otimes_{s+u_{l}+u_{\beta_{1}}+\cdots+u_{\beta_{v}}}^{s+u_{l}+u_{\beta_{1}}+\cdots+u_{\beta_{j}-1}} P_{x}^{\lambda_{j}\left(s+u_{l}+u_{\beta_{1}}+\cdots+u_{\beta_{\nu}}\right)}(x(t) \in B) \text {. }
\end{aligned}
$$

Next we substitute $u_{l}+s \rightarrow u_{l}$. The sum

$$
\sum_{u_{l}+u_{\beta_{1}}+\cdots+u_{\beta_{\Omega}}<t-s}^{\prime}
$$

becomes a sum

$$
\sum_{u_{l}+u_{\beta_{1}}+\cdots+u_{\beta^{2}}<t, u_{l}>s+1}^{\prime}
$$

where the prime "'" in the last summation indicates that $u_{\beta_{1}} \geqslant 1, \ldots, u_{\beta_{5}} \geqslant$ 1.

We next substitute $u_{l} \rightarrow u_{i}+u_{\alpha_{1}}+\cdots+u_{\alpha_{\mu}}+u_{l}$. The last sum becomes a summation over $u_{l}, u_{\beta_{1}}, \ldots, u_{\beta_{v}}$ subject to

$$
\begin{gathered}
\sum_{\substack{\prime \\
u_{i}+u_{\alpha_{1}}+\cdots+u_{\alpha_{n}}+u_{l}+u_{\beta_{1}}+\cdots+u_{\beta_{s}}<t \\
u_{l}>s+1-u_{i}-u_{\alpha_{1}}-\cdots-u_{\alpha_{\mu}}}} .
\end{gathered}
$$

and the prime " " " indicates that $u_{\beta_{1}} \geqslant 1, \ldots, u_{\beta_{v}} \geqslant 1$.
The effect of the two substitutions is to transform (1.4) into the sum (cf. [2])

$$
\begin{aligned}
& \sum_{l=1}^{n} \sum_{\mu=0}^{s-1} \sum_{\left(i, \alpha_{1}, \ldots, \alpha_{\mu}, l\right)}^{\prime} \sum_{u_{i}+u_{\alpha_{1}}+\cdots+u_{\alpha_{\mu}}<s}^{\prime} \sum_{\nu=0}^{t-s-1} \sum_{\left(l, \beta_{1}, \ldots, \beta_{\nu} j\right)}^{\prime} \\
& \sum_{u_{i}+u_{\alpha_{1}}+\cdots+u_{\alpha_{q}}+u_{l}+u_{\beta_{1}}+\cdots+u_{\beta_{k}}<t} p_{i, i}^{\mu_{i}-1} p_{i, \alpha_{1}} \cdots p_{\alpha_{k}, l} p_{l, l}^{\mu_{i}-1} p_{l, \beta_{1}}^{u_{\beta_{1}}^{-1}} p_{\beta_{1}, \beta_{1}} \cdots \\
& u_{l}>s+1-u_{i}-u_{\alpha_{1}}-\cdots-u_{\alpha_{p}}
\end{aligned}
$$

$$
\begin{align*}
& \cdot P_{x\left(u_{i}+\cdots+u_{a_{\mu}}\right)}^{\lambda_{1}} \otimes_{u_{i}+\cdots+u_{a_{\mu}}+u_{l}}^{u_{i}+\cdots+u_{a_{\mu}}} P_{x\left(u_{i}+\cdots+u_{\alpha_{\mu}}+u_{i}\right)}^{\lambda_{\beta_{1}}} \otimes_{u_{i}+\cdots+u_{l}+u_{\beta_{1}}}^{u_{i}+\cdots+u_{a_{1}}+u_{u_{1}}} \\
& \cdot P_{x\left(u_{i}+\cdots+u_{l}+u_{\beta_{1}}\right)}^{\lambda_{\beta_{2}}} \otimes \cdots \otimes_{u_{i}+\cdots+u_{\beta_{j}}}^{u_{i}+\cdots+u_{\beta_{p}-1}} P_{x\left(u_{i}+\cdots+u_{\beta_{p}}\right)}^{\lambda_{j}}(x(t) \in B) \text {. } \tag{1.5}
\end{align*}
$$

The left-hand side of (1.3) is equal to

$$
\begin{align*}
& \sum_{\rho=0}^{t-1} \sum_{\left(i, \gamma_{1}, \ldots, \gamma_{\rho} j\right)}^{\prime} \sum_{u_{i}+u_{\gamma_{1}}+\cdots+u_{\gamma_{\rho}}<t}^{\prime} p_{i, i}^{u_{i}-1} p_{i, \gamma_{1}} p_{\gamma_{1}, \gamma_{1}}^{u_{\mu_{1}}-1} p_{\gamma_{1}, \gamma_{2}} \cdots \\
& p_{\gamma_{\rho} j} p_{j, j}^{t-u_{i}-u_{\gamma_{1}}-\cdots-u_{\gamma_{p}} P_{x}^{\lambda_{i}} \otimes_{u_{i}}^{0} P_{x\left(u_{i}\right)}^{\lambda_{\gamma_{1}}} \otimes \cdots} \\
& \otimes_{u_{i}+\cdots+\cdots+u_{\gamma_{\rho}-1}}^{u_{i}+\cdots} P_{x}^{\lambda_{j}} u_{i}+\cdots+u_{\gamma_{\rho}}(x(t) \in B) . \tag{1.6}
\end{align*}
$$

We have to prove that the expressions in (1.5) and (1.6) are equal.
Denote the general term under the summation in (1.6) by

$$
I\left(i, \gamma_{1}, \ldots, \gamma_{\rho}, j ; u_{i}, u_{\gamma_{1}}, \ldots, u_{\gamma_{\rho}}\right)
$$

Then the general term under the summation in (1.5) is precisely

$$
I\left(i, \alpha_{1}, \ldots, \alpha_{\mu}, l, \beta_{1}, \ldots, \beta_{v}, j ; u_{i}, u_{\alpha_{1}}, \ldots, u_{\alpha_{\mu}}, u_{l}, u_{\beta_{1}}, \ldots, u_{\beta_{v}}\right)
$$

Thus it remains to prove the following combinatorial lemma.
Lemma 1.2. For any positive integers s, t with $s<t$,

$$
\begin{align*}
& \sum_{l=1}^{n} \sum_{\mu=0}^{s-1} \sum_{\left(i, \alpha_{1}, \ldots, \alpha_{\mu}, l\right)}^{\prime} \sum_{u_{i}+u_{\alpha_{1}}+\cdots+u_{\alpha_{\mu}}<s}^{\prime} \sum_{\nu=0}^{t-s-1} \sum_{\left(l, \beta_{1}, \ldots, \beta_{\nu} j\right)}^{\prime} \\
& \sum_{\substack{u_{i}+u_{\alpha_{1}}+\cdots+u_{\alpha_{1}}+u_{l}+u_{\beta_{1}}+\cdots+u_{\beta_{s}}<t \\
u_{l}>s+1-u_{i}-u_{\alpha_{1}}-\cdots-u_{\alpha_{n}}}}^{\prime \prime} I\left(i, \alpha_{1}, \ldots, \alpha_{\mu}, l, \beta_{1}, \ldots, \beta_{v}, j ;\right. \\
& u_{l}>s+1-u_{i}-u_{\alpha_{1}}-\cdots-u_{\alpha_{p}} \\
& \left.u_{i}, u_{\alpha_{1}}, \ldots, u_{\alpha_{k}}, u_{l}, u_{\beta_{1}}, \ldots, u_{\beta_{v}}\right) \\
& =\sum_{\rho=0}^{t-1} \sum_{\left(i, \gamma_{1}, \ldots, \gamma_{\rho} j\right)}^{\prime} \sum_{v_{i}+v_{\gamma_{1}}+\cdots+v_{\gamma_{\rho}}<t}^{\prime} I\left(i, \gamma_{1}, \ldots, \gamma_{\rho}, j ; v_{i}, v_{\gamma_{1}}, \ldots, v_{\gamma_{\rho}}\right) . \tag{1.7}
\end{align*}
$$

This lemma is entirely different from the corresponding combinatorial lemma used in [2].

Proof of Lemma 1.2. Each term on the left-hand side of (1.7) corresponding to $\mu>0, \nu \geqslant 0$ appears also on the right-hand side of (1.7) with

$$
\begin{gather*}
\gamma_{k}=\alpha_{k} \quad(1 \leqslant k \leqslant \mu), \quad \gamma_{\mu+1}=l, \quad \gamma_{\mu+m+1}=\beta_{m} \quad(1 \leqslant m \leqslant \nu) \\
v_{i}=u_{i}, \quad v_{\gamma_{h}}=u_{\gamma_{h}} \tag{1.8}
\end{gather*}
$$

The terms corresponding to $\mu=-1, \nu \geqslant 0$ arise when $l=i$, and then there are no α 's and

$$
u_{i}+u_{\beta_{1}}+\cdots+u_{\beta_{n}} \leqslant t, \quad u_{i} \geqslant s+1
$$

These terms also appear on the right-hand side of (1.7) (they are given by (1.8) with no α 's). Similarly, the terms with $\nu=-1, \mu \geqslant 0$ which appear on the left-hand side of (1.7) appear also on the right-hand side. Finally, the term corresponding to $\mu=-1, \nu=-1$ occurs only if $i=j$ and in that case it is precisely the term on the right-hand side of (1.7) corresponding to $\rho=-1$.

It remains to show that each term which appears on the right-hand side of (1.7) with $\rho \geqslant 0$ appears also on the left-hand side and that this correspondence is given by (the one-to-one mapping) (1.8).

Consider the case $\rho>0$. Let

$$
\sigma_{0}=\inf \left\{\sigma ; v_{i}+v_{\gamma_{1}}+\cdots+v_{\gamma_{\sigma}} \geqslant s\right\} .
$$

Suppose first that

$$
\begin{equation*}
v_{i}+v_{\gamma_{1}}+\cdots+v_{\gamma_{o_{0}}}=s \tag{1.9}
\end{equation*}
$$

If $\sigma_{0}<\rho$ then define α 's, β 's and u 's by (1.8) with

$$
l=\gamma_{\sigma_{0}+1}, \quad \mu=\sigma_{0}, \quad \nu=\rho-\sigma_{0}-1
$$

Since $v_{i}+v_{\gamma_{1}}+\cdots+v_{\gamma_{\mu}}=s$ and $v_{i} \geqslant 1, v_{\gamma_{1}} \geqslant 1, \ldots, v_{\gamma_{\mu}} \geqslant 1$, we have $\mu \leqslant s-1$. Similarly, since

$$
u_{\gamma_{o_{0}+1}}+\cdots+u_{\gamma_{\rho}} \leqslant t-\left(u_{i}+u_{\gamma_{1}}+\cdots+u_{\gamma_{o_{0}}}\right)=t-s
$$

and $\gamma_{m} \geqslant 1$, we must have $\nu \leqslant t-s-1$. Therefore in order for the term $I\left(i, \gamma_{1}, \ldots, \gamma_{\rho}, j ; v_{i}, v_{\gamma_{1}}, \ldots, v_{\gamma_{\rho}}\right)$ to appear on the left-hand side of (1.7) we must show that the restriction

$$
u_{l} \geqslant s+1-u_{i}-u_{\alpha_{1}}-\cdots-u_{\alpha_{\mu}}
$$

is satisfied. But this follows immediately from (1.9) and the fact that $u_{l} \geqslant 1$.
If $\sigma_{0}=\rho$ then the given term appears on the left-hand side of (1.7) with $l=j, \nu=-1$.

So far we have assumed that (1.9) holds. We now assume that (1.9) does not hold, i.e.,

$$
\begin{equation*}
v_{i}+v_{\gamma_{1}}+\cdots+v_{\gamma_{o_{0}}}>s \tag{1.10}
\end{equation*}
$$

If $\sigma_{0}>0$ then we take $l=\gamma_{\sigma_{0}}, \mu=\sigma_{0}-1, \nu=\rho-\sigma_{0}$ in the definition (1.8). Since

$$
u_{i}+u_{\gamma_{1}}+\cdots+u_{\gamma_{o_{0}-1}}<s, \quad u_{i} \geqslant 1, u_{\gamma_{n}} \geqslant 1
$$

we have $\mu \leqslant s-1$ ．Also

$$
v_{\gamma_{o_{0}+1}}+\cdots+v_{\gamma_{\rho}} \leqslant t-\left(v_{i}+v_{\gamma_{1}}+\cdots+v_{\gamma_{\theta_{0}}}\right)<t-s
$$

so that $\rho-\sigma_{0}<t-s$ ，i．e．，$\nu \leqslant t-s-1$ ．Thus it remains to show that

$$
u_{l} \geqslant s+1-u_{i}-u_{\alpha_{1}}-\cdots-u_{\alpha_{k}}
$$

But this follows immediately from（1．10）．
If $\sigma_{0}=0$ we take $l=i$ and proceed as in the last case．This completes the proof of the lemma．

Having proved Theorem 1．1，we denote by $P^{i, x}$ and $E^{i, x}$ the probabilities and expectations corresponding to the transition probabilities $P_{i, x}$ ．Recall that the probability space is Ω and that the σ－fields are the $\overbrace 𠃌 ⿱ ⿰ ㇒ 一 母 ⿱ ⿰ ㇒ 一 丶 ⿰ 亻 寸$ ．

We shall now extend formula（1．2）．
Lemma 1．3．Let $A \in \mathscr{F}_{t}, t=0,1,2, \ldots$ Then

$$
\begin{align*}
& \int_{A} I_{\theta(t)=j} d P^{i, x}=\sum_{\rho=0}^{t-1} \sum_{\left(i, \gamma_{1}, \ldots, \gamma_{\rho} j\right)}^{\prime} \sum_{u_{i}+u_{\gamma_{1}}+\cdots+u_{\gamma_{\rho}}<t}^{\prime} \\
& p_{i, i}^{\mu_{1}-1} p_{i, \gamma_{1}} p_{\gamma_{1}, \gamma_{1}}^{\mu_{\gamma_{1}}-1} p_{\gamma_{1}, \gamma_{2}} p_{\gamma_{2}, \gamma_{2}}^{\mu_{\gamma_{2}}-1} \cdots p_{\gamma_{\rho} j} p_{j, j}^{t-u_{i}-u_{\gamma_{1}}-\cdots-u_{r_{p}} P_{x}^{\lambda_{i}} \otimes P_{x}^{\lambda}\left(u_{\nu_{j}}\right)} \\
& \otimes_{u_{i}+u_{r 1}}^{u_{i}} P_{x}^{\lambda}\left(u_{u_{i}}+u_{r 1}\right) \otimes \cdots \otimes_{u_{i}+u_{r_{1}}+\cdots+u_{p_{p}}}^{u_{i}+u_{r_{1}}+\cdots+u_{r_{p}-1}} P_{x}^{\lambda_{j}}\left(u_{i}+u_{r 1}+\cdots+u_{r_{p}}\right)(A) . \tag{1.11}
\end{align*}
$$

Proof．The proof is similar to the proof of Lemma A． 3 in［2］．It suffices to prove（1．11）for a cylindrical set

$$
A=\left(x\left(t_{1}\right) \in B_{1}, \ldots, x\left(t_{m}\right) \in B_{m}\right), \quad t_{1}<t_{2}<\cdots<t_{m}
$$

Let

$$
\begin{aligned}
& A_{i}=\left(x\left(t_{1}\right) \in B_{1}, \ldots, x\left(t_{i}\right) \in B_{i}\right), \quad 1 \leqslant i \leqslant m \\
& C_{i}=\left(x\left(t_{i+1}-t_{i}\right) \in B_{i+1}, \ldots, x\left(t_{m}-t_{i}\right) \in B_{m}\right)
\end{aligned}
$$

so that $A=A_{m}$ ．By the Markov property of the (x, θ) chain and by（1．2）we obtain，after substituting $u_{l}+t_{m-1} \rightarrow u_{l}$ ，

$$
\begin{aligned}
& \int_{A} I_{\theta(t)=j} d P^{i, x}=\sum_{l=1}^{n} p_{l, l}^{-t_{m-1}} \int_{A_{m-1}} I_{\theta\left(t_{m-1}\right)=l} \sum_{\nu=0}^{t-1} \sum_{\left(i, \beta_{1}, \ldots, \beta_{v}, l\right)}^{\prime} \\
& \cdot \sum_{u_{l}+u_{\beta_{1}}+\cdots+u_{\beta_{2}}<t}^{\prime} p_{l, l}^{u_{l}-1} p_{l, \beta_{1}} p_{\beta_{1}, \beta_{1}}^{u_{\beta_{1}}-1} \cdots p_{\beta_{r} j} p_{j, j}^{t-u_{l}-\cdots-u_{\beta_{r}} P_{x}^{\lambda_{1}\left(l_{m-1}\right)}} \\
& u_{l}>t_{m-1}+1
\end{aligned}
$$

$$
\begin{align*}
& \text { - } P_{x\left(u_{l}+\cdots+u_{\beta_{p}}-t_{m-1}\right)}^{\lambda_{j}}\left(C_{m-1}\right) d P^{i, x} \text {. } \tag{1.12}
\end{align*}
$$

Using the Markov property we can write the right-hand side in the form

$$
\begin{aligned}
& \sum_{k=1}^{n} \int_{A_{m-2}} I_{\theta\left(t_{m-2}\right)=k} \sum_{l=1}^{n} p_{l, l}^{-t_{m-1}} \sum_{\mu=0}^{t_{m-1}-t_{m-2}-1} \sum_{\left(k, \alpha_{1}, \ldots, \alpha_{\mu}, l\right)}^{\prime} \sum_{\nu=0}^{t-t_{m-1}-1}{ }^{*} \\
& \sum_{\left(1, \beta_{1}, \ldots, \beta_{v} j\right)}^{\prime} u_{k}+u_{\alpha_{1}}+\cdots+u_{\alpha_{k}}^{\prime}<t_{m-1}-t_{m-2} \quad \sum_{u_{l}+u_{\beta_{1}}+\cdots+u_{\beta_{5}}<t}^{\prime} p_{k, k}^{u_{k}-1} p_{k, \alpha_{1}} p_{\alpha_{1}, \alpha_{1}}^{u_{\alpha_{1}}-1}
\end{aligned}
$$

$$
\begin{aligned}
& \cdot P_{x\left(t_{m-2}\right)}^{\lambda_{k}} \otimes_{u_{k}}^{0} P_{x\left(u_{k}\right)}^{\lambda_{x_{1}}} \otimes_{\cdots} \otimes_{u_{k}+\cdots+u_{a_{\mu}}}^{u_{k}+\cdots+u_{a_{\mu}-1}} \\
& \text { - } P_{x}^{\prime}\left(u_{k}+\cdots+u_{\alpha_{\mu}}\right)\left[\left(x\left(t_{m-1}-t_{m-2}\right) \in B_{m-1}\right)\right. \\
& \cdot P_{x\left(t_{m-1}-t_{m-2}\right)}^{\lambda_{1}} \otimes_{u_{l}-t_{m-1}}^{0} P_{x\left(u_{t}-t_{m-1}\right)}^{\lambda_{x_{1}}} \otimes \cdots \\
& \left.\otimes_{u_{l}+\cdots+u_{\beta_{v}} t_{m-1}}^{u_{l}+\cdots+u_{\beta_{j}}-t_{m-1}} P_{x\left(u_{l}+\cdots+u_{\beta_{p}-t_{m-1}}^{\lambda_{j}}\right)}\left(C_{m-1}\right)\right] d P^{i, x} .
\end{aligned}
$$

We now make the substitution $u_{k}+t_{m-2} \rightarrow u_{k}$ which transforms

$$
\sum_{\substack{u_{k}+u_{\alpha_{1}}+\cdots+u_{\alpha_{k}}<t_{m-1}-t_{m-2}}}^{\prime} \text { into } \sum_{\substack{u_{k}+u_{\alpha_{1}}+\cdots+u_{\alpha_{k}}<t_{m-1} \\ u_{k}>t_{--1}+1}}^{\prime}
$$

and then make the substitution $u_{l}-u_{k}-u_{\alpha_{1}}-\cdots-u_{\alpha_{k}} \rightarrow u_{l}$ which transforms

$$
\sum_{\substack{u_{l}+u_{\beta_{1}}+\cdots+u_{\beta_{5}}<t}}^{\prime \text { into }} \sum_{\substack{u_{k}+u_{\alpha_{1}}+\cdots+u_{\alpha_{k}}+u_{l}+u_{\beta_{1}}+\cdots+u_{\beta_{5}}<t \\ u_{l}>t_{m-1}+1-u_{k}-u_{\alpha_{1}}-\cdots-u_{\alpha_{k}}}}^{\prime} .
$$

Using the rules (A.16), (A.17) of [2] we finally obtain

$$
\begin{align*}
& \int_{A} I_{\theta(t)=j} d P^{i, x}=\sum_{k=1}^{n} p_{k, k^{-t_{m-2}}} \int_{A_{m-2}} I_{\theta\left(t_{m-2}\right)=k} \sum_{l=1}^{n} \sum_{\mu=0}^{t_{m-1}-t_{m-2}-1} \\
& \sum_{\substack{\left(k, \alpha_{1}, \ldots, \alpha_{\mu}, l\right)}}^{\sum_{\nu=0}^{t-t_{m-1}-1}{ }^{\prime} \sum_{\left(l, \beta_{1}, \ldots, \beta_{\nu}, j\right)}^{\prime} u_{k}+u_{\alpha_{1}}+\cdots+u_{\alpha_{k}}<t_{m-1}} \sum_{u_{k}>t_{m-2}+1}^{\prime} \\
& \cdots \sum_{\substack{u_{k}+u_{a_{1}}+\cdots+u_{q_{k}}+u_{l}+u_{\beta_{1}}+\cdots+u_{\beta_{k}}<t \\
u_{l}>t_{m-1}+1-u_{k}-u_{\alpha_{1}}-\cdots-u_{q_{k}}}}^{\prime} \\
& \cdot\left[p_{k, k}^{u_{k}-1} p_{k, \alpha_{1}} \cdots p_{l, l}^{u_{l}-1} p_{l, \beta_{1}} \cdots p_{j, j}^{l_{m}-u_{l}-u_{\alpha_{1}}-\cdots-u_{\beta_{v}}}\right. \\
& \cdot P_{x}^{\lambda^{\prime}\left(t_{m-2}\right)} \otimes_{u_{k}-t_{m-2}}^{0} P_{x\left(u_{k}-t_{m-2}\right)}^{\lambda_{a_{1}}} \otimes \cdots \\
& \otimes_{u_{k}+\cdots+u_{a_{k}}}^{u_{k}+\cdots+t_{m-2}}{ }^{-1} t_{m-2} P_{x\left(u_{k}+\cdots+u_{a_{k}}-t_{m-2}\right)}^{\lambda_{1}} \otimes \cdots \\
& \left.\otimes_{u_{k}+u_{\alpha_{1}}+\cdots+u_{\beta_{v}} u_{m-2}}^{u_{k}+u_{\alpha_{1}}+\cdots+u_{\beta_{1}-1} t_{m-2}^{-t_{m-2}}} P_{x}^{\lambda_{j}\left(u_{k}+u_{\alpha_{1}}+\cdots+u_{\beta_{v}}-t_{m-2}\right)}\left(C_{m-2}\right)\right] d P^{i, x} . \tag{1.13}
\end{align*}
$$

We now apply a slightly different version of Lemma 1.2 whereby instead of $t_{m-2}=0$ we have $t_{m-2} \geqslant 0$. We conclude that

$$
\begin{align*}
\int_{A} I_{\theta(t)=j} d P^{i, x}= & \sum_{k=1}^{n} p_{k, k}^{-t_{m-2}} \int_{A_{m-2}} I_{\theta\left(t_{m-2}\right)=k} \sum_{\rho=0}^{t-t_{m-2}-1} \sum_{\left(k, \gamma_{1}, \ldots, \gamma_{\rho}, j\right)}^{\prime} \\
& \sum_{\substack{u_{k}+\cdots+u_{\gamma_{\rho}}<t \\
u_{k}>t_{m-2}+1}}^{\prime}[\cdots] d P^{i, x}
\end{align*}
$$

where the expression in [\cdots] is the same as on the right-hand side of (1.13). Formula (1.14) is analogous to (1.12), except that $m-1$ has been replaced by $m-2$. Proceeding in this way step by step and setting $t_{0}=0, B_{0}=X$, $A_{0}\left(x\left(t_{0}\right) \in B_{0}\right), C_{0}=A$, we arrive at (1.11) with $m-1$ and t_{m-1} replaced by 0 and t_{0} respectively. But this relation is precisely the assertion of the lemma.
2. The p-process. In view of the assumption (1.1) we have
on all paths for which both the numerator and the denominator do not vanish, and $P_{x}^{\lambda_{j}}=0, P_{x}^{\lambda_{1}}=0$ on all the remaining paths. Let

$$
\begin{equation*}
z_{i, j}(s, t)=\left.\frac{d P_{x}^{\lambda} \otimes_{s}^{0} P_{x}^{\lambda}(s)}{d P_{x}^{\lambda_{x}}}\right|_{t} ^{T_{T}} \quad(s<t) . \tag{2.2}
\end{equation*}
$$

Then we have
on the paths for which the numerator and denominator do not vanish. Clearly $z_{i j}(t, t)=1$.
As in [2] we define

$$
\begin{equation*}
\left.\bar{p}_{i j}(t)=P^{i, x}\left[\theta(t)=j \mid \widetilde{F}_{t}\right] \frac{d P^{i, x}}{d P_{x}^{\lambda_{i}}} \right\rvert\, \sigma_{t} \bar{Y}_{t} . \tag{2.4}
\end{equation*}
$$

We then have (cf. [1], [2])

$$
\begin{align*}
& \bar{p}_{i j}(t)=\sum_{\rho=0}^{t-1} \sum_{\left(i, \gamma_{1}, \ldots, \gamma_{\rho} j\right)}^{\prime} u_{i}+u_{\gamma_{1}}+\cdots+u_{\gamma_{0}}<t p_{i, i}^{\mu_{i}-1} p_{i, \gamma_{1}} p_{\gamma_{1,}, \gamma_{1}}^{u_{1}-1} p_{\gamma_{1}, \gamma_{2}} \\
& \cdots p_{\gamma_{\rho} j} p_{j, j}^{t-u_{i}-u_{1}}-\cdots-u_{r o z_{i, \gamma_{1}}}\left(u_{i}, u_{i}+u_{\gamma_{1}}\right) z_{i, \gamma_{2}}\left(u_{i}+u_{\gamma_{1}}, u_{i}+u_{\gamma_{1}}+u_{\gamma_{2}}\right) \\
& \cdots z_{i j}\left(u_{i}+u_{\gamma_{1}}+\cdots+u_{\gamma_{p}}, t\right) . \tag{2.5}
\end{align*}
$$

We now introduce the probabilities

$$
\begin{equation*}
\overline{P^{p, x}}=\sum_{i=1}^{n} p_{i} P^{i, x} \quad\left(p=\left(p_{1}, \ldots, p_{n}\right), p_{i} \geqslant 0, \sum_{i=1}^{n} p_{i}=1\right) \tag{2:6}
\end{equation*}
$$

and the process

$$
\begin{equation*}
X(t)=\left(x_{x}(t), p_{1}(p, t), \ldots, p_{n}(p, t)\right) \tag{2.7}
\end{equation*}
$$

where $t=0,1,2, \ldots ; x_{x}(t)$ is $x(t)$ with $x(0)=x$ and

$$
\begin{equation*}
p_{j}(p, t)=\bar{E}^{p, x}\left[\theta(t)=j \mid \mathscr{F}_{t}\right] \tag{2.8}
\end{equation*}
$$

Here $\bar{E}^{p, x}$ is the expectation corresponding to the probability $\bar{P}^{p, x}$. As in [2] we have

$$
\begin{equation*}
p_{j}(p, t)=\sum_{i=1}^{n} p_{i} \bar{p}_{i, j}(t) /\left[\sum_{l=1}^{n} p_{l} z_{i, l}(0, t) \sum_{k=1}^{n} \bar{p}_{l, k}(t)\right] . \tag{2.9}
\end{equation*}
$$

Theorem 2.1. The process $X(t)$ is a Markov process, with respect to the σ-fields \mathscr{F}_{t} and the measures $\bar{P}^{p, x}$.

The proof is similar to the proof of the corresponding result in the Appendix of [2] except that now we use Lemma 1.3 instead of Lemma A. 2 of [2].
3. The quality control problem. Using the notation (0.1), we introduce the cost function (0.2) and, more generally, the cost

$$
\begin{align*}
J_{x}^{p}(\tau)= & \bar{E}^{p, x}\left[K(p)+\sum_{l=1}^{\infty} K\left(\theta\left(\tau_{l}\right)\right) I_{\theta\left(\tau_{l}\right) \neq n}\right] \\
& +\bar{E}^{p, x}\left[\int_{0}^{\tau_{l}-1} f(\theta(s)) d s+\sum_{l=1}^{\infty} I_{\theta\left(\tau_{l}\right) \neq n} \int_{\tau_{l}-1}^{\tau_{l+1}-1} f(\theta(s)) d s\right] \tag{3.1}
\end{align*}
$$

where $K(p)=K_{i}$ if $p=\left(p_{1}, \ldots, p_{n}\right), p_{1}=\cdots=p_{i-1}=0, p_{i} \neq 0$; if the process $\theta(t)$ is such that $p_{i, j}(t)=0$ whenever $j<i$ then no restrictions are made on the K_{i}, but if the process $\theta(t)$ can go in both directions then we require that $K_{1}=K_{2}=\cdots=K_{n-1}$. Here $\tau=\left(\tau_{1}, \tau_{2}, \ldots\right)$ is a sequence of inspection times, i.e.,

$$
\begin{equation*}
\tau_{1}=\sigma_{1}, \quad \tau_{m+1}=\tau_{m}+\sum_{l=1}^{n-1} I_{\theta\left(\tau_{m}\right)=l} \sigma_{m, l}\left(\phi_{\tau_{m}}\right) \quad(m \geqslant 1) \tag{3.2}
\end{equation*}
$$

where $\sigma_{1}, \sigma_{m, l}$ are stopping times with respect to \mathscr{F}_{t} with nonnegative integer values, and ϕ is the shift operator: $\phi_{s} x(t)=x(t+s)$. It is understood that $\tau_{m+i}=\infty(i \geqslant 1)$ on the set $\tau_{m}=\infty$. Also, in (3.1), $K\left(\theta\left(\tau_{l}\right)\right) I_{\theta\left(\tau_{1}\right) \neq n}$ and $\int_{\tau_{l}-1}^{\tau_{l+1}^{-1}} f(\theta(s)) d s$ do not appear whenever $\tau_{l}=\infty$. We shall denote by \mathbb{Q} the class of all sequences of inspection times. We are interested in the problem of characterizing $\bar{\tau}_{p} \in \mathbb{Q}$ such that

$$
\begin{equation*}
J_{x}^{p}\left(\bar{\tau}_{p}\right)=\inf _{\tau \in \mathbb{Q}} J_{x}^{p}(\tau) . \tag{3.3}
\end{equation*}
$$

Denote by $A_{x, p}$ the generator of the Markov process occurring in Theorem
2.1. Thus, $A_{x p}$ is defined by

$$
\begin{equation*}
A_{x, p} u(x, p)=\bar{E}^{p, x}[u(x(1), p(p, 1))-u(x, p)] \tag{3.4}
\end{equation*}
$$

where $p(p, t)=\left(p_{1}(p, t), \ldots, p_{n}(p, t)\right)$.
Using the Markov property one can establish, by induction on $t(t=1$, 2, ...), Dynkin's formula

$$
\begin{align*}
& \bar{E}^{p, x}\left[u\left(x_{x}(t), p(p, t)\right)\right]-u(x, p) \\
&=\bar{E}^{p, x}\left[\int_{0}^{t-1} A_{x_{x}(s), p(p, s)} u\left(x_{x}(s), p(p, s)\right) d s\right] . \tag{3.5}
\end{align*}
$$

We can now proceed as in [2] to reduce the problem of characterizing an optimal $\bar{\tau}_{p}$ as in (3.3) to the problem of solving the following quasi variational inequality (q.v.i.) for a function $V(x, p)$:

$$
\begin{equation*}
V(x, p) \leqslant K(p)+\sum_{j=1}^{n-1} p_{j} V\left(x, e_{j}\right) \tag{3.6}
\end{equation*}
$$

where e_{j} is the j th unit vector $(0,0, \ldots, 0,1,0, \ldots, 0)$,

$$
\begin{gather*}
A_{x, p} V(x, p)+\sum_{j=1}^{n} c_{j} p_{j} \geqslant 0, \tag{3.7}\\
{\left[A_{x, p} V(x, p)+\sum_{j=1}^{n} c_{j} p_{j}\right]\left[K(p)+\sum_{j=1}^{n-1} p_{j} V\left(x, e_{j}\right)-V(x, p)\right]=0} \tag{3.8}
\end{gather*}
$$

where the p_{j} vary in the set $p_{j} \geqslant 0, \sum_{j=1}^{n} p_{j}=1$ and x varies in X.
Let

$$
\begin{align*}
S=\left\{(x, p) ; x \in X, p=\left(p_{1}, \ldots, p_{n}\right), p_{j}\right. & \geqslant 0, \sum_{j=1}^{n} p_{j}=1, \\
V(x, p) & \left.=K(p)+\sum_{j=1}^{n-1} p_{j} V\left(x, e_{j}\right)\right\} . \tag{3.9}
\end{align*}
$$

Define the \mathscr{F}_{t} stopping times:

$$
\begin{align*}
& \sigma_{*}^{p}=\text { hitting time of the set } S \text { by } X(t)=(x(t), p(p, t)), \\
& \sigma_{*}^{l}=\sigma_{*}^{p} \text { when } p=e_{l}, \\
& \bar{\tau}_{1}^{p}=\sigma_{*}^{p}, \bar{\tau}_{m+1}^{p}=\bar{\tau}_{m}^{p}+\sum_{l=1}^{n-1} I_{\theta\left(\bar{\tau}_{m}^{p}\right)=l} \sigma_{*}^{l}\left(\phi_{\tau_{m}}\right), \\
& \bar{\tau}^{p}=\left(\bar{\tau}_{1}^{p}, \bar{\tau}_{2}^{p}, \bar{\tau}_{3}^{p}, \ldots\right) . \tag{3.10}
\end{align*}
$$

Theorem 3.1. Let $V(x, p)$ be a solution of the q.v.i. (3.6) - (3.8). If the σ_{*}^{p}
are finite valued then

$$
\begin{equation*}
V(x, p)=\inf _{\tau \in \mathbb{Q}} J_{x}^{p}(\tau)=J_{x}^{p}\left(\bar{\tau}^{p}\right) \tag{3.11}
\end{equation*}
$$

The proof is similar to the proof of the corresponding result in [2] and will therefore be omitted.

In the special case where

$$
\begin{equation*}
p_{i, j}=0 \quad \text { if } 1 \leqslant j<i \leqslant n \tag{3.12}
\end{equation*}
$$

the q.v.i. reduces to a sequence of simpler q.v.i. analogous to (4.35)-(4.37) in [2].

Another type of simplification of (3.6)-(3.8) occurs when

$$
\begin{equation*}
p_{x}^{\lambda_{i}(s), x(t)}=p_{x}^{\lambda_{1}(0), x(t-s)} \equiv p_{t-s}^{\lambda_{1}} \quad \text { if } 0 \leqslant s<t . \tag{3.13}
\end{equation*}
$$

In this case the numbers

$$
\bar{P}^{p, x}\left[p_{j}(p, t) \in B ; 1 \leqslant j \leqslant n\right]
$$

do not depend on x and, consequently, the process

$$
\begin{equation*}
p_{j}(p, t) \quad(1 \leqslant j \leqslant n) \text { with measures } \bar{P}^{p, 0} \tag{3.14}
\end{equation*}
$$

is a Markov process. We shall denote its generator by A_{p}.
Denote by R_{i}^{*} the (countable) range of the process $\left(p_{j}\left(e_{i}, t\right) ; 1 \leqslant j \leqslant n\right)$ and let $R^{*}=\bigcup_{i=1}^{n-1} R_{i}^{*}$.

One is interested in the quality control problem mainly for the initial values $p=e_{i}$. In case (3.13) holds it then suffices to solve the q.v.i. in the set R^{*} only. Thus we have to solve a "discrete" q.v.i.

In the next section we shall solve the discrete q.v.i. in a case when $n=2$.
4. Solution of the discrete q.v.i. in case $n=2$. We assume that (3.12), (3.13) hold and that $n=2$. Thus $p_{2,1}=0, p_{2,2}=1$. To rule out a trivial case, we assume that $p_{1,1}>0, \mathrm{p}_{1,2}>0$.

Let

$$
\begin{equation*}
p_{j}^{\lambda_{1}}=p_{i, i+j}^{\lambda_{1}}, \quad p_{j}^{\lambda_{2}}=p_{i, i+j}^{\lambda_{2}} \tag{4.1}
\end{equation*}
$$

where $p_{k, l}^{\lambda_{k}}$ is the transition probability matrix of $P_{x}^{\lambda_{k}}$. Denote by N the set of j 's for which $p_{j}^{\lambda_{i}} \neq 0$, and let

$$
\begin{equation*}
\mu_{j}=p_{j}^{\lambda_{2}} / p_{j}^{\lambda_{1}} \quad(j \in N) \tag{4.2}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{j \in N} p_{j}^{\lambda_{i}}=1 \quad(i=1,2) \tag{4.3}
\end{equation*}
$$

we must have

$$
\begin{equation*}
\sum_{j \in N} p_{j}^{\lambda_{1} \mu_{j}}=1 \tag{4.4}
\end{equation*}
$$

Since $p_{2,1}=0, p_{2,2}=1$, we have

$$
\bar{p}_{1,1}(1)=p_{1,1}, \quad \bar{p}_{1,2}(1)=p_{1,2}, \quad \bar{p}_{2,1}(t)=0, \bar{p}_{2,2}(t)=1,
$$

Hence, (2.9) for $t=1$ simplifies to

$$
p_{1}(p, 1)=\frac{p_{1} p_{1,1}}{p_{1}+p_{2} \mu_{x(1)-x(0)}}, \quad p_{2}(p, 1)=\frac{p_{1} p_{1,2}+p_{2} \mu_{x(1)-x(0)}}{p_{1}+p_{2} \mu_{x(1)-x(0)}}
$$

Defining

$$
T_{j}^{1}\left(p_{1}, p_{2}\right)=\frac{p_{1} p_{1,1}}{p_{1}+p_{2} \mu_{j}}, \quad T_{j}^{2}\left(p_{1}, p_{2}\right)=\frac{p_{1} p_{1,2}+p_{2} \mu_{j}}{p_{1}+p_{2} \mu_{j}}
$$

we can write the generator $A_{p}\left(p=p_{1}, p_{2}\right)$ in the form

$$
\begin{align*}
A_{p} g(p) & =\bar{E}^{p}[g(p(p, 1))-g(p)] \\
& =p_{1} \bar{E}^{e_{1}}[g(p(p, 1))-g(p)]+p_{2} \bar{E}^{e_{2}}[g(p(p, 1))-g(p)] \\
& =\bar{E}^{e_{1}}\left[\left(p_{1}+p_{2} z_{1,2}(0,1)\right)(g(p(p, 1))-g(p))\right] \\
& =\sum_{j \in N} p_{j}^{\lambda_{1}}\left(p_{1}+p_{2} \mu_{j}\right)\left[g\left(T_{j}^{1}\left(p_{1}, p_{2}\right), T_{j}^{2}\left(p_{1}, p_{2}\right)\right)-g\left(p_{1}, p_{2}\right)\right] \tag{4.5}
\end{align*}
$$

where we have used the facts

$$
\bar{E}^{e_{1}}[g]=\bar{E}^{e_{2}}\left[g z_{1,2}(0,1)\right] \quad(g=g(p(p, 1))), \quad z_{1,2}(0,1)=\mu_{x(1)-x(0)}
$$

and the notation $e_{1}=(0,1), e_{2}=(1,0)$.
Define

$$
y=p_{1} / p_{2}, \quad g(y)=g\left(p_{1}, p_{2}\right)
$$

Then, as easily verified,

$$
\begin{equation*}
A_{p} g\left(p_{1}, p_{2}\right)=L_{y} g(y) \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{y} g(y)=\frac{1}{1+y} \sum_{j \in N} p_{j}^{\lambda_{1}}\left(1+y \mu_{j}\right)\left[g\left(T_{j}(y)\right)-g(y)\right] \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{j}(y)=\frac{p_{1,2}}{p_{1,1}}+\frac{\mu_{j}}{p_{1,1}} y \quad(j \in N) . \tag{4.8}
\end{equation*}
$$

We shall impose the monotonicity condition

$$
\begin{equation*}
T_{j}(y)>y \quad(j \in N) \tag{4.9}
\end{equation*}
$$

that is

$$
\begin{equation*}
\mu_{j} \geqslant p_{1,1} \quad(j \in N) \tag{4.10}
\end{equation*}
$$

This condition implies that

$$
\frac{p_{1}(p, t)}{p_{2}(p, t)}>\frac{p_{1}(p, s)}{p_{2}(p, s)} \quad \text { if } t>s
$$

It is easily verified that

$$
\begin{equation*}
A_{p} p_{2}=-p_{1,2} p_{2} \tag{4.11}
\end{equation*}
$$

We shall need Dynkin's formula

$$
\begin{equation*}
\bar{E}^{e_{1}}[g(p(\tau))]-g(p)=\bar{E}^{e_{1}}\left[\int_{0}^{\tau-1} A_{p} g(p(s)) d s\right] \quad\left(p(0)=e_{1}\right) \tag{4.12}
\end{equation*}
$$

where g is any function defined on the discrete set R^{*} and τ is any bounded T_{t}, stopping time.

Let b be any positive number and let τ_{b} be the first time such that $\left(p_{1}(t) / p_{2}(t)\right) \geqslant b$. (Notice $p_{1}\left(\tau_{b}\right) / p_{2}\left(\tau_{b}\right)$ is not necessarily equal to b.) Applying (4.12) with $g\left(p_{1}, p_{2}\right)=p_{2}$ and $\tau=\tau_{b} \wedge m(m>0)$ and using (4.11), we conclude that

$$
\bar{E}^{e_{1}}\left[\tau_{b} \wedge m\right] \leqslant C
$$

where C is a constant independent of M. Taking $m \rightarrow \infty$ we conclude that

$$
\begin{equation*}
\bar{E}^{e_{1}}\left[\tau_{b}\right]<\infty \tag{4.13}
\end{equation*}
$$

Notice that the proof of (4.13) does not exploit the monotonicity assumption (4.9).

We now assume for simplicity that $c_{1}=0$ (but $c_{2}>0$), and set $c=c_{2}$, $K=K_{1}$.

Recalling (4.6), (4.7), the q.v.i. (3.6)-(3.8) can be written in terms of the function $V(y)=V\left(p_{1}, p_{2}\right)\left(y=p_{1} / p_{2}\right)$ in the form

$$
\begin{gather*}
L_{y} V(y)+\frac{c y}{1+y} \geqslant 0 \quad \text { in } \hat{R}, \tag{4.14}\\
V(y) \leqslant K+\frac{V(0)}{1+y} \quad \text { in } \hat{R}, \tag{4.15}\\
{\left[L_{y} V(y)+\frac{c y}{1+y}\right]\left[K+\frac{V(0)}{1+y}-V(y)\right]=0 \quad \text { in } \hat{R}} \tag{4.16}
\end{gather*}
$$

where \hat{R} is the (discrete) range of $p_{1}(t) / p_{2}(t)$ when $p_{1}(0)=0, p_{2}(0)=1$.
Theorem 4.1. Let (4.1), (4.9) hold. Then there exist a unique $b \in \hat{R}, b>0$ and a unique function $V(y)$ defined on \hat{R} such that

$$
\begin{gather*}
L_{y} V(y)+\frac{c y}{1+y}=0 \quad \text { if } y \in \hat{R}, 0 \leqslant y<b \tag{4.17}\\
L_{y} V(y)+\frac{c y}{1+y}>0 \quad \text { if } y \in \hat{R}, y>b \tag{4.18}\\
V(y)=K+\frac{V(0)}{1+y} \quad \text { if } y \in \hat{R}, y \geqslant b \tag{4.19}\\
V(y)<K+\frac{V(0)}{1+y} \quad \text { if } y \in \hat{R}, 0 \leqslant y<b \tag{4.20}
\end{gather*}
$$

Notice that $V(y)$ is then a solution of the q.v.i. (4.14)-(4.16). In view of (4.13), $\tau_{b}<\infty$ and therefore Theorem 3.1 can be applied to conclude that

$$
\begin{equation*}
V(0)=\inf _{\tau \in \mathbb{Q}} J_{x}^{1}(\tau)=J_{x}^{1}\left(\bar{\tau}^{1}\right) . \tag{4.21}
\end{equation*}
$$

The optimal inspection is then to inspect at time τ_{b} (given that $p(0)=(0,1)$); let $p(t)$ start again at $p(0)=(0,1)$ and again inspect at time τ_{b}, etc.

Proof of Theorem 4.1. Suppose b is such that (4.17), (4.19) hold. By

$$
E\left[K+\frac{V(0)}{1+y\left(\tau_{b}\right)}\right]-V(0)=E\left[-\int_{0}^{\tau_{b}-1} \frac{c y(s)}{1+y(s)} d s\right]
$$

or

$$
\begin{equation*}
V(0) E\left[\frac{y\left(\tau_{b}\right)}{1+y\left(\tau_{b}\right)}\right]=K+c E\left[\int_{0}^{\tau_{b}-1} \frac{y(s)}{1+y(s)} d s\right] \tag{4.22}
\end{equation*}
$$

Setting

$$
\begin{gather*}
H(b, d z)=P\left[y\left(\tau_{b}\right) \in z\right], \tag{4.23}\\
L(b, d z)=\sum_{s<\tau_{b}-1} P[y(s) \in z], \tag{4.24}
\end{gather*}
$$

we then obtain from (4.22) an expression for $V(0)$:

$$
\begin{equation*}
V(0)=\frac{K+c \int \frac{z}{1+z} L(b, d z)}{\int \frac{z}{1+z} H(b, d z)} \equiv Q(b) . \tag{4.25}
\end{equation*}
$$

Notation. For any $b \in \hat{R}$ we denote by \hat{b} the number in \hat{R} immediately to the right of b.

Lemma 4.2. For any $b \in \hat{R}$,

$$
\begin{equation*}
L(\hat{b}, d b)=P\left(y\left(\tau_{b}\right)=b\right) . \tag{4.26}
\end{equation*}
$$

Proof. The left-hand side is equal to

$$
\begin{align*}
\sum_{s<\tau_{b}-1} P(y(s)=b)= & \sum_{s<\tau_{b}-1} P(y(s)=b) \\
& +\sum_{\tau_{b}-1<s<\tau_{b}-1} P(y(s)=b) \tag{4.27}
\end{align*}
$$

The first sum on the right-hand side is equal to zero (by the definition of τ_{b}). Since $\tau_{b}-\tau_{b} \leqslant 1$ by the monotonicity assumption, and $\tau_{b}-\tau_{b}=1$ if and only if $y\left(\tau_{b}\right)=b$, the second sum on the right-hand side of (4.27) is equal to

$$
\sum_{s=\tau_{b}} P(y(s)=b)=P\left(y\left(\tau_{b}\right)=b\right)
$$

and (4.26) follows.

We also have the relation

$$
\begin{equation*}
L(\hat{b}, d b)=H(b, d b) \tag{4.28}
\end{equation*}
$$

however this relation will not be needed.
Lemma 4.3. The following formula holds.

$$
\begin{equation*}
\int \frac{z}{1+z} H(b, d z)=p_{1,2} \int \frac{1}{1+z} L(b, d z) . \tag{4.29}
\end{equation*}
$$

Proof. Since $L_{y}(1)=0$,

$$
L_{y}\left(\frac{y}{1+y}\right)=-L_{y}\left(\frac{1}{1+y}\right)=\frac{p_{1,2}}{1+y}
$$

by (4.11). Hence, by Dynkin's formula,

$$
E\left[\frac{y\left(\tau_{b}\right)}{1+y\left(\tau_{b}\right)}\right]=E\left[\int_{0}^{\tau_{b}-1} \frac{p_{1,2}}{1+y(s)} d s\right]
$$

Recalling (4.23) and (4.24), (4.29) follows.
Using Lemma 4.3, we can rewrite the expression $Q(b)$ introduced in (4.25) in the form

$$
\begin{equation*}
Q(b)=\frac{K+c \int \frac{z}{1+z} L(b, d z)}{p_{1,2} \int \frac{1}{1+z} L(b, d z)} \tag{4.30}
\end{equation*}
$$

Our plan now is to show that there is a unique b which minimizes $Q(b)$ and then show that the function V defined by (4.17), (4.19) also satisfies (4.18), (4.20). The uniqueness of the minimal b implies the uniqueness assertion of Theorem 4.1.

For any $b \in \hat{R}$, we compute from (4.30)

$$
\begin{array}{r}
Q(\hat{b})-Q(b)=\left[c \int \frac{z}{1+z} L(\hat{b}, d z)-c \int \frac{z}{1+z} L(b, d z)\right] \\
+\left[K+c \int \frac{z}{1+z} L(b, d z)\right] \frac{1}{p_{1,2}}\left[\int \frac{1}{1+z} L(b, d z)\right. \\
\\
\left.-\int \frac{1}{1+z} L(\hat{b}, d z)\right] \\
 \tag{4.31}\\
\hline\left[\left(\int \frac{1}{1+z} L(\hat{b}, d z)\right]\right.
\end{array}
$$

By the strict monotonicity of the y-process

$$
\begin{equation*}
\int_{z<y} h(z) L(\overline{\bar{y}}, d z)=\int_{z<y} h(z) L(\bar{y}, d z) \quad \text { if } y<\bar{y}<\overline{\bar{y}} \tag{4.32}
\end{equation*}
$$

Hence

$$
\int \frac{1}{1+z} L(\hat{b}, d z)-\int \frac{1}{1+z} L(b, d z)=\frac{1}{1+b} L(\hat{b}, d b)
$$

Since $b \in \hat{R}$ and the y-process is monotone, $P\left(y\left(\tau_{b}\right)=b\right)>0$ so that, by Lemma 4.2, also $L(\hat{b}, d b)>0$. It follows that
$\operatorname{sgn}[Q(\hat{b})-Q(b)]$

$$
\begin{align*}
& =\operatorname{sgn}\left[c b \int \frac{1}{1+z} L(b, d z)-c \int \frac{z}{1+z} L(b, d z)-K\right] \\
& =\operatorname{sgn}\left[c \int \frac{b-z}{1+z} L(b, d z)-K\right] \tag{4.33}
\end{align*}
$$

Let

$$
\begin{equation*}
S(b)=\int \frac{b-z}{1+z} L(b, d z) \tag{4.34}
\end{equation*}
$$

Then, using (4.32),

$$
\begin{align*}
S(\hat{b})-S(b) & =\int \frac{\hat{b}-z}{1+z} L(\hat{b}, d z)-\int \frac{b-z}{1+z} L(b, d z) \\
& =\int \frac{\hat{b}-b}{1+z} L(b, d z)+\frac{1}{1+b} L(\hat{b}, d b) \tag{4.35}
\end{align*}
$$

The right-hand side is larger than $(\hat{b}-b) L(b, d 0)=\hat{b}-b$. Hence $S(b)$ is strictly increasing on \hat{R} and $S(b) \rightarrow \infty$ if $b \rightarrow \infty$.

From (4.33), (4.34) we then conclude that there is a unique b in \hat{R} such that

$$
\begin{array}{ll}
Q(\hat{y})-Q(y)<0 & \text { if } y<b, y \in \hat{R} \\
Q(\hat{y})-Q(y)>0 & \text { if } y \geqslant b, y \in \hat{R} \tag{4.36}
\end{array}
$$

The point b is then the unique minimum of $Q(y), y \in \hat{R}$.
We next define $V(y)$ for $y \geqslant b, y \in \hat{R}$ by (4.19) and for $0<y<b, y \in \hat{R}$ by (4.17) (using iteration and the strict monotonicity of the y-process). It remains to show that (4.18) and (4.20) hold.

To prove (4.18) we compute

$$
L_{y}\left(K+\frac{V(0)}{1+y}\right)=\frac{c y}{1+y}-\frac{V(0) p_{1,2}}{1+y}
$$

Thus, (4.18) would follow from

$$
\begin{equation*}
c b-V(0) p_{1,2}>0 \tag{4.37}
\end{equation*}
$$

If we prove that

$$
\begin{equation*}
L_{y}\left(V(y)-K-\frac{V(0)}{1+y}\right)<0 \quad \text { if } y \in \hat{R}, y<b \tag{4.38}
\end{equation*}
$$

then by the maximum principle (which holds, since the y-process is monotone) and the fact that

$$
V(y)-K-\frac{V(0)}{1+y} \begin{cases}=0 & \text { if } y=b \\ <0 & \text { if } y=0\end{cases}
$$

it follows that (4.20) holds. Since the left-hand side of (4.38) is equal to $c y-V(0) p_{1,2},(4.20)$ is thus a consequence of

$$
\begin{equation*}
c y-p_{1,2} V(0)<0 \quad \text { if } y \in \hat{R}, y<b \tag{4.39}
\end{equation*}
$$

Thus, to complete the proof of the theorem it remains to prove (4.37), (4.39). Inserting $V(0)$ from (4.25) (or rather (4.30)) into (4.37), (4.39) we find that these two inequalities reduce to

$$
\begin{aligned}
& c b \int \frac{1}{1+z} L(b, d z)-\left(K+c \int \frac{z}{1+z} L(b, d z)\right)>0 \\
& c y \int \frac{1}{1+z} L(b, d z)-\left(K+c \int \frac{z}{1+z} L(b, d z)\right)<0 \quad(y<b)
\end{aligned}
$$

but these inequalities clearly follow from (4.33) and (4.36).

References

1. R. F. Anderson and A. Friedman, A quality control problem and quasi variational inequalities, Arch. Rational Mech. Anal. 63 (1977), 205-252.
2. \qquad , Multi-dimensional quality control problems and quasi variational inequalities, Trans. Amer. Math. Soc. 246 (1978), 31-76.
3. D. W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. I, Comm. Pure Appl. Math. 22 (1969), 345-400. MR 40 \#6641.
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Department of Mathematics, Northwestern University, Evanston, Illinois 60201

[^0]: Received by the editors June 13, 1976.
 AMS (MOS) subject classifications (1970). Primary 62N10, 90B25; Secondary 60J05, 60J75, 60K30, 90A15, 93E15, 93E99.

