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QUALITY CONTROL FOR MARKOV CHAINS AND FREE
BOUNDARY PROBLEMS (*)

BY

ROBERT F. ANDERSON AND AVNER FRIEDMAN

Abstract. A machine can manufacture any one of n Markov chains P$

(1 < y < n); the P$ are defined on the space of all sequences x = (x(m)}

(1 < m < oo) and are absolutely continuous (in finite times) with respect to

one another. It is assumed that chains P%> evolve in a random way, dictated

by a Markov chain 9(m) with n states, so that when 0(m) =j the machine

is producing Pp. One observes the o-fields of x(m) in order to determine

when to inspect 0(m). With each product P$ there is associated a cost e,.

One inspects 8 at a sequence of times (each inspection entails a certain cost)

and stops production when the state 9 = n is reached. The problem is to

find an optimal sequence of inspections. This problem is reduced, in this

paper, to solving a certain free boundary problem. In case n = 2 the latter

problem is solved.

0. Introduction. Let A' be a fixed countable subset of the real line. Let 9(t)

(t = 0, 1, 2, . . . ) be a Markov chain with n states 1, 2, . . . , n, and with

transition probability matrix p¡,. With each state /' we associate a Markov

chain P^ defined on the space fl, of sequences (x0, xx, x2, . . . ) where each x¡

varies in X. We assume that the P£ are distinct from each other and

absolutely continuous (in finite time) with respect to one another. Denote by

E''x the expectation corresponding to the random evolution of the Py* in

accordance with the chain 9(t) starting at 9 = / and x.

Let Kx, . . . , Kn_x be given positive numbers. Let c,, . . . , cn be given

nonnegative numbers and define a function f(9) by f(i) = c, if i = 1,

2, . . . , n. Let r = (t,, t2, . . .) be an increasing sequence of "inspection

times" in the sense that t, assumes only nonnegative integer values and each

set (t, < s) (s nonnegative integer) depends only on the coordinates

x0, xx, . . . , xs and on the knowledge of 9(rf) for all 1 < y < ; - 1.

Throughout this paper we shall use the notation

Received by the editors June 13, 1976.

AMS (MOS) subject classifications (1970). Primary 62N10, 90B25; Secondary 60J05, 60J75,
60K30, 90A15, 93E15, 93E99.

Key words and phrases. Markov chain, quality control, stopping time, inspection time, quasi

variational inequality.

(') This paper is partially supported by National Science Foundation Grant MPS 72-04959

A02.

© American Mathematical Society 1979

77



78 R. F. ANDERSON AND AVNER FRIEDMAN

f   g(s) ds = g(a) + g(a + \) + ■ ■ ■ + g(b) (0.1)

where a, b are integers and 0 < a < b.

Consider the cost function

J< (r) = £'•'

+ £'-

n-\

K, + 2 Kj
7=1

2   h(r,)=j
/=1

Jft

1      00

'f{8(s))ds+ 2 2/*<T,>=7p'+'~1/W))*
y=i i=\ "S-i

(0.2)

The problem considered in this paper is to find and characterize a sequence

of inspection times f = (?,, f2, . . . ) such that

Jx (f) = inf y; (T). (0.3)

This is called a quality control problem. The same problem in the case of

continuous-parameter Markov processes was studied by the authors in [1], [2].

The problem was reduced to solving a certain elliptic quasi variational

inequality (q.v.i.). We shall establish a similar reduction also in the present

setting of Markov chains. Analogously to the q.v.i. of [1], [2] we shall obtain

here a "discrete" q.v.i. In the special case where n = 2 we shall solve the q.v.i.

The development of this paper proceeds parallel to [2]. Some of the results

follow similarly to [2], and these will be mentioned only briefly. There are,

however, some novel features in the present Markov chain setting.

In §1 we introduce the random evolution process (x, 9). We choose a

model as in [2, Appendix] which displays very clearly the structure of this

evolution.

In §2 we introduce the /7-process and prove results analogous to Theorems

2.1, 2.2 of [2]. The quality control problem is introduced in §3, where it is

reduced to solving a certain "discrete" q.v.i.

In §4 we solve the q.v.i. in case n = 2 under some monotonicity

assumption.

1. The (x, 9) process. It will be convenient to denote the discrete parameter

of various Markov chains by /; thus the parameter / will take values / = 0, 1,

2.We fix a countable set X of points on the real line and denote by S2,

the space of all sequences to = (x0, xx, x2, . . . ) with x¡ G X. Viewing <o as a

function x = x(t) = x(t, w) on the nonnegative integers with values in X, we

write x, = x(t) = x(t, w), t = 0, 1, 2, . . . .

Let 9(t) be a Markov chain with n states 1, 2, . . . , n defined on a

probability space ß0 of all sequences w' = (9Q, 9X, 92, . . . ) where each 0, may

take values 1, 2, . . . , n. Viewing w' as a function 9 = 9(t) = 9(t, u'), we

write 9, = 9(t) = 9(t, w'), t = 0, 1, 2, ... . Denote the transition probability

matrix of 9(t) by/7,v.
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Let P^ (i = 1, . . . , n) be n distinct Markov chains defined on fi, and

absolutely continuous (in finite time) with respect to one another. Denoting

the transition probability matrix of P^ by ppk we then have, for each pair

(J, k),

either/$t = 0 for all 1 < i < n orpfa > 0 for all 1 < / < n.      (1.1)

We are interested in an explicit construction of the random evolution of the

P£ in accordance with the law of 9(t). First we write down what, intuitively

speaking, the transition probabilities should be:

P,x(9(t)=j,x(t)GB) = '^* 2
P = 0   (i,yt, .. ., y„j)

yi,i   yi,y,yy„yt yy„y2yy2.y2 FyfjrjJ

■ p$K ^)®;+-ri^k+«ri)® • • •

•3+# •'•'•+%-*&*+<«■ ■ • • +^(x(>) G B)

(1.2)

for i = l, . . . , n; x G X, where B is any subset of X. Here, the notation

2' for p > 1
('.y. y„J)

means that summation is extended over all integers y,, . . . , yp varying from 1

to n such that
i>fc y( # y2# • • • ^ yp_, ¥=j;

for p = 0 it means that i =?= j, i.e., the sum is empty if /' = y, and consists of

one term if /' i= j. The summation

(-1

2*
p = 0

means that p varies over 0, 1, 2, . . . , t - 1 with one exception: if i = j then

there is no term with p = 0 and instead there appears the term

j£l*(x(/)e*);

we refer to this term as the term corresponding to p = -1. Finally, the

notation

2'

means that the summation is extended over all integers u¡, uy¡.uy  such

that

Uj > I,   ml,  > 1,..., ¡L.   > 1,   and   it + it. +'•••+ it,  < t.

The concept of the tensor product

pi (g)0   p2     Jg) . . .  ,g)K+ •"•• + K,-, />"+i .rx  **«, •rJc(u,)v:y ^„[+...+uin     ■fjt(u,+ • ■ • +um)
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used in (1.2) is the same as in [1], [2] (which is taken from [3]) with the obvious

adaptation to the discrete parameter case.

Let ß = ñ0 <8> S2, and denote by 9, and (t1\ll the a-fields generated by the

first t + 1 coordinates of (x0, xx, x2, . . . ) and of {(90, 9X, 92, . . . ),

(xQ, xx, x2, . . . )} respectively.

Theorem 1.1. The Pjx define a Markov process with respect to ^H, and Q.

Proof. It suffices to verify the Chapman-Kolmogorov equation

Pi,x(9(t)=j,x(t)GB)

= 2   IlPi,x(Hs) = l,x(s)=y)P¡AHt-s)=j,x(t-s)GB)    (1.3)
i=i   y

where s is any integer,  1 < s < / — I, and B is any subset of X. The

right-hand side of (1.3) is equal to

n i-1 t—s—\

2 2 2*      2' 2' 2*       2'
1=1     y    fi = 0   (,,„„..., a,,,/)   «, + «„,+ •• +u^<s      „ = 0      (/,0,.ß,j)

2'      p,r KtPiiT1 • • • p^iPir—"wrpt.ßSßißV
U,+ Ußt+ ■ ■ ■  +uÂ<( — s

■ ■ • Pß.jpjr~ui—Uß-px ®° Pxiu,)® ■ ■ ■

®Íí:'.:^-4+-h,)Ws)^)

*,* ®l *&)® ■ • • ®l++-.++\-^Ául+ ■ ■ ■ +v(*0 - J) e *)■       (U)

Summing over^ and combining the two factors P^ as in [2, following (A.7)]

we deduce that the sum over y of the tensor products is equal to

j* ®° ¡% ® • • ■ ®;: : : : :%-*&+... +K, )®?+„ ' ■ +% p^+U/)

® • • • ®î:5Î?;Î ::: :^-p>(j+u,+tt()i+... +Uß)(x(t) g b).

Next we substitute u, + s —» u,. The sum

2'
"¡+"ßi+ ■ ■ ■ +"&,</-j

becomes a sum

2'
u, + ußl + ■ ■ ■ + u& < t,u, > s + 1

where the prime " ' " in the last summation indicates that uß  > I, . . . , u^ >

1.

We next substitute u¡ —> u¡ + ua + • • • + ua + u¡. The last sum becomes

a summation over u¡, uß , . . . , uß subject to

2'
"l + "o, +   '   '   '    +Ua   +Ut+Uß   +   •   ■   ■    +Ußr<l

u,>s+\-ui-ua¡- ■ ■ ■  -u„f
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and the prime " ' " indicates that uß  > 1, . . . , u^ > 1.

The effect of the two substitutions is to transform (1.4) into the sum (cf. [2])

n      s—1 t—s—1

2   2*      2' 2' 2*       2'
1=1    p. = 0   (i,a.„„,/)   »/ + »„,+ ••• +%<*      x = 0      (l,ß.,ß,J)

2 PiT K«, • • • p+jPiTp-frrpß,* ■ ■ ■
», + "«,+   •   •   •   +Uar + Ul+Uß,+   ■  ■  ■   +"&<'

u,>s+l-u,-ua¡- ■ ■ ■  -u^

D„   d'~^~"«i-K-Ui-Ußr-"ßrp\ (g)°   /Ai , (9) .  .   .   6Ö".+ ••• + u<v-i

.  p\ /<>u,+ ■• ■ +u„ p^i <9)<<i + • ' • +"a +";
rx(u,+ • • • +ua ) '"nt • • • +ua"+u,rx(u¡+ ■ ■ ■ +U^ + U,) Wl(.+ • • • +u,%ußl

•p&+... +Ul+Ußi) 9 • • • ®Sî :;:i^-P^+... +v(*<0 s tí).     (i.s)

The left-hand side of (1.3) is equal to

'Í>      Y Y        p"~1p  p^~1p    • • •
¿J •=-! ^-J ^'.'      ^'.Yl^Yl.Yl   ^Yl,Y2

p=°  O'.Y.y9j) «, + «,,+   • • +«yp<í

®;:::::5'-^+...+o(*(0eÄ).       0-6)* 'p 'p
We have to prove that the expressions in (1.5) and (1.6) are equal.

Denote the general term under the summation in (1.6) by

I(i,yx,...,ypJ;ui,uy¡,...,uyi).

Then the general term under the summation in (1.5) is precisely

/(/, a„ ..., a,,, /, /3„ . . . , ß„j; u¡, ua¡.u^, u„ ußx, . . . , uß).

Thus it remains to prove the following combinatorial lemma.

Lemma 1.2. For any positive integers s, t with s < t,

n      s-1 t-s-1

2   2*      2' 2' 2*       2'
l=\    (1 = 0   (/,„,, ...,«„,/)   ", + »«,+ •'•  +%<*      <■ = <)      (l,ßh . . . , ß,j)

2' *('> «1.%' l< ß\<-fir'J'
", + "*,+ ■ ■ ■ + "«,+ "/+ "/?,+ • ■ • +UÂ<'

U, > S + 1 - U,,- U0, -   •   •   •   - «^

"/' "«,»  •  •  • ' "a,' «/. "/¡,>  • • • .  Uß,)

l-\

= 2*      2' 2'        /(»'. yi.Yp.y; »y. «v • • .oY,)-
P = °    (í.Yl.YpvO    »l + «Vi+v + «*<«

(1.7)

This lemma is entirely different from the corresponding combinatorial lemma

used in [2].



82 R. F. ANDERSON AND AVNER FRIEDMAN

Proof of Lemma 1.2. Each term on the left-hand side of (1.7) correspond-

ing to u > 0, v > 0 appears also on the right-hand side of (1.7) with

Y*  =  <*k      0   <   k   <    !*■)>      >V+1  =  l>      Y,,+*+l   = ßm      (1   <   «  <   V),

V, =  M„     15^  =  Uyh. (1.8)

The terms corresponding to u = -1, v > 0 arise when / = i, and then there

are no a's and

u¡ + uß + ■ ■ ■ + uß <, t,       u¡ > s + 1.

These terms also appear on the right-hand side of (1.7) (they are given by

(1.8) with no a's). Similarly, the terms with v = - 1, ¡i > 0 which appear on

the left-hand side of (1.7) appear also on the right-hand side. Finally, the term

corresponding to u = —\,v= —1 occurs only if / = j and in that case it is

precisely the term on the right-hand side of (1.7) corresponding to p = - 1.

It remains to show that each term which appears on the right-hand side of

(1.7) with p > 0 appears also on the left-hand side and that this correspon-

dence is given by (the one-to-one mapping) (1.8).

Consider the case p > 0. Let

a0 = inf{a; v¡ + vy¡ + ■ ■ ■ + vy^ > s).

Suppose first that

e, + vy¡ + ■ ■ ■ + v^ = s. (1.9)

If o0 < p then define a's, ß's and w's by (1.8) with

Since o, + cl + • • • + a, ™ s and v. > 1, uv  > 1, . . . , uv  > 1, we have
' I 1 ¡n * "1 *ft

]U < s — 1. Similarly, since

tt,      + • ■ ■ + u   < t - (u, + u   + ■ ■ ■ + m   ) = t - s
Yo0+i Yp v    ' Yi Yo,/

and ym > 1, we must have v < t — s — 1. Therefore in order for the term

I(i, yx, . . . , yp,j; v¡, vy , . . . , vy ) to appear on the left-hand side of (1.7) we

must show that the restriction

u, > s + 1 - u¡ - ua¡ - ■ ■ ■ - u%

is satisfied. But this follows immediately from (1.9) and the fact that u¡ > 1.

If o0 = p then the given term appears on the left-hand side of (1.7) with

l=j,v= -\.

So far we have assumed that (1.9) holds. We now assume that (1.9) does

not hold, i.e.,

v, + vy¡ + ■ • • + vy,o > s. (1.10)

If a0 > 0 then we take / = y„o, /i = a0 - 1, v = p - a0 in the definition (1.8).

Since

«/ + "y, + • • •  +  "y„0-'  <s>        ui > ''my* > •"
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we have fi < s — I. Also

vy    , + •••+ U»   < t - (v¡ + vy + ■ ■ ■ + vy ) < t - s
Y„0+l Yp ^   ' Y i Y„0/

so that p — a0 < t - s, i.e., p < r — s — 1. Thus it remains to show that

u, > s + 1 - «,. - ua¡ - • • ■ - kv

But this follows immediately from (1.10).

If a0 = 0 we take / = i and proceed as in the last case. This completes the

proof of the lemma.

Having proved Theorem 1.1, we denote by P'x and E'-x the probabilities

and expectations corresponding to the transition probabilities Pix. Recall that

the probability space is fi and that the a-fields are the fit,.

We shall now extend formula (1.2).

Lemma 1.3. Let A G 9„ t m 0, 1, 2,. .. . Then

j i9M=jdP-x=T     2' 2'

A P = °    O'.Yl.y,j)    ", + »r,+ ' ■ •   +«yp<'

PlTK^'X^PrK1' ■ ■ Pyjti«-%---*>PÏ®l%)

®ï+«rA'+«r.>® ■ " " ®3+& -•♦V-Vi-«* ■ • • +v(/l>'   (L11)

Proof. The proof is similar to the proof of Lemma A.3 in [2]. It suffices to

prove (1.11) for a cylindrical set

A m (*(,,) E fi„ ..., x(tm) € Bm),       t¡ < h <■■< In-

Let

A, = (x(tx) G Bx, . . . , x(lj) G B¡),        1 < i < m,

C,- - (*(/,+ , - ',) e Ä<+„ ..., x(tm - tt) g Bm),

so that A = Am. By the Markov property of the (x, 9) chain and by (1.2) we

obtain, after substituting u¡ + tm_x —» u,,

¡ieU)=jdPix = t p^-'f   79(,_,)=/'i*     2'
JA l=\ JAm-\ v = 0    (i.ß,./}„/)

2'       pirWß.pfoV ■ ■ ■ Pß..pJr
"i+"0¡+ ■ ■ ■ +uß,< '

K-^Ak-^,)® ■ ■ • ®3¡:::::^-_vV'

• P^,+ ...+Uí _,„_,)( Cm_i)dP-

'^(i-

(1.12)
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Using the Markov property we can write the right-hand side in the form

n n 'm-l_'m-2_l '-'rn-1-'

2 /    W,)-* 2 pi/-1     2* 2' 2*
*-l      -4--2 l=\ p. = 0 (k,a.,«„,/) v-0

■    2' 2' 2'      aarW-K'
/

• • -p/r*-'*-*-«-MT'-1"^ ■ • -p^""'-"*-
•P*J      , 60°   P*»'    <5o . . • 6o"*+'  •+".

* xUm-2) y>u.   ';
tp-l

"**W+ • • • + «.„)[(*('«-1  _  '«-l)  e 5m-l)

9«x ::: :£-_.¿_v j$%+... +^-,„_,)(cm-. )] ***•
We now make the substitution uk + fm_2 —> uk which transforms

2' mto 2'
"* + "<.,+   ■   ■   •   +%<'m-l-'m-2 «* + »«,+   ■   ■  •   +"*,<<m- I

»*>'m-2+1

and   then   make   the   substitution   u¡ - uk - ua  — ■ ■ ■ — ua —> w,   which

transforms

2' into 2'
"I + "ßt +   ■   ■   ■   + »ft, < ' "k + »a, +   •   ■   ■   + "a, + "I + »0| +   ■   '   ■   + »ft < '

»/> '».-1+1 -«*-««,-   •   ■  •   "»a,

Using the rules (A.16), (A.17) of [2] we finally obtain

f l$(0.j dPix =  S />*>->   f       79(,m_2) = ,   ¿'S
n     '».-1 _'».-2_ 1

*

yt=l "A»-2 /=1 ,1 = 0

2' 2 2' 2'
(*,«,.a„,/)        " = 0        (l,ß.,M   »i+«„,+ "-+\<'„-i

»*>'»,-2+l

2'
Uk + "a, +  '  •  '   + «^ + «/ + »0, +  •  •  '   + »ft. < '

», > tm- | + 1 - Uk - U„, -   •  •  •   - U^

[p*y'p*,a, • • • par W • • Pjj- «-""

■Px\,^)®0uk-.„-ipX-.„-,)®---

-"ßr

>r+--tl;--C72fî(uk+...+u^lm_2)®---

v*X*fi :::%-Cr1 ^»*+».,+ • ■ ■ +»P,-^)(cm-2)R'>- (U3)
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We now apply a slightly different version of Lemma 1.2 whereby instead of

tm_2 = 0 we have tm_2 > 0. We conclude that

f iM=JdP-x = s pu*-* [   i9il^2)=k    S*        Y
A *-l A"'l p = 0 (fc,y|.w)

2' [   •    •    '     ]¿P''''
«t + ■ • •  + uy  < 1

uk>tm.2+\ (1.14)

where the expression in [ • • • ] is the same as on the right-hand side of (1.13).

Formula (1.14) is analogous to (1.12), except that m - 1 has been replaced by

m — 2. Proceeding in this way step by step and setting t0 = 0, B0 = X,

-^oW'o) G ^o)> Q = ^' we ari"ive at (1-1 O with m - 1 and tm_x replaced by

0 and t0 respectively. But this relation is precisely the assertion of the lemma.

2. The /7-process. In view of the assumption (1.1) we have

dPx'    gr   _     PxJ,x(l)Px*(\),x(2) •  •   ■ P^U-\),xQ)

dP?   ^'      Px'muPx'wm» ■ ■ ■ riu-MxU) i2-1)

on all paths for which both the numerator and the denominator do not

vanish, and P¿> = 0, P£ = 0 on all the remaining paths. Let

dP?90,P)M tge

dP$
Then we have

,        . Px\s),x(s+l)PxJ(s+l)Ms + 2) '   '   ' PxJU-\),x(t) .      ^     . ,„ ..
zv(s, t) = —--r---        (s < t)     (2.3)

Px'U),x(s+l)Px'U+l),x(s + 2) '   "   ' Px'U-l),x(t)

on the paths for which the numerator and denominator do not vanish. Clearly

ziJ(t,t)= 1.

As in [2] we define

p¡A0 = p¡'x[H0=J\"\]^-\í\- (2-4)

We then have (cf. [1], [2])

Pi/')-2* 2' 2' PiTfyrMtKy,
P = °    O'.Yl.Ypj)    »,+ »v, +  • • ■   + «y, < '

• • • Py„jPj'7U,~Uy'~       "\,(^ ui + my,Ky2("' + my,' u¡ + my, + wy2)

• • ■ ziAui + »„+•"+ %. t). (2-5)

We now introduce the probabilities

p?<* = 2 /7,P'>     Ip = (/7„ ... ,/>„),/>,. > o, ¿ ft = i)    (2:6)

*«(*. 0 - ^-TTT^ I"7'        (* < 0- (2-2)
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and the process

X(t) = (xx(t),px(p,t), ...,Pn(p,t)) (2.7)

where t = 0, 1, 2, ... ; xx(t) is x(t) with x(0) = x and

Pj(p,t)= Ë»-X[9(t)=j\%]. (2.8)

Here Ep,x is the expectation corresponding to the probability Ppx. As in [2]

we have

Py(P. 0=2  PAyC),
(=1

2 p,M0,0 2 Ä,*(0
/=i *=i

(2.9)

Theorem 2.1. TÄe process X(t) is a Markov process, with respect to the

o-fields 9t and the measures Ppx.

The proof is similar to the proof of the corresponding result in the

Appendix of [2] except that now we use Lemma 1.3 instead of Lemma A.2 of

[2]-

3. The quality control problem. Using the notation (0.1), we introduce the

cost function (0.2) and, more generally, the cost

J>{T)mE» K(p)+ 2  K(9(r,))Ie(Ti^n
/=i

+ Ep* fT'-if(9(s))ds + I W„ (T'^f(9(s))ds
Jo ,= x JT,-i

(3.1)

where K(p) = K¡ if p = (px, . . . ,pn), px = • • • = ft_, = 0, ft ¥= 0; if the

process 9(t) is such that p¡j(t) = 0 whenever/ < /' then no restrictions are

made on the K¡, but if the process 9(t) can go in both directions then we

require that Kx — K2 = • • • = Kn_x. Here t = (t,, t2, . . . ) is a sequence of

inspection times, i.e.,

n-\

Tl   -   °\>      Tm+X   =   Tm   +    2   h(rm) = lCmj(<t>rm) («   >    1) (3'2)
l=\

where a,, oml are stopping times with respect to 9t with nonnegative integer

values, and <j> is the shift operator: <j>sx(t) = x(t + s). It is understood that

Tm+, = oo (i > 1) on the set rm = oo. Also, in (3.1), K(9(T¡))I9(Ti>)&n and

/ ?l'f ' f(9(s)) ds do not appear whenever r¡ = oo. We shall denote by & the

class of all sequences of inspection times. We are interested in the problem of

characterizing r  G & such that

Jp (tp) = inf   Jp(r). (3.3)

Denote by A     the generator of the Markov process occurring in Theorem
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2.1. Thus, AXJ) is defined by

AXJ>u(x,p) = Ë»'x[u(x(l),p(p, 1)) - u(x,p)] (3.4)

wherep(p, t) = (px(p, t), . . . ,p„(p, /))•

Using the Markov property one can establish, by induction on t (t = 1,

2, . . . ), Dynkin's formula

Ep'x[u(xx(t),p(p,t))]-u(x,p)

= Ep-: f    ̂ (.^"(^W'Mi. J)) ds
Jo

(3.5)

We can now proceed as in [2] to reduce the problem of characterizing an

optimal f as in (3.3) to the problem of solving the following quasi variational

inequality (q.v.i.) for a function V(x,p):

n-\

V(x,p)< K(p)+ 2 PjV(x,ej) (3.6)
7=1

where e, is they'th unit vector (0, 0, . . . , 0, 1, 0, . . . , 0),

AXJ,V(x,p)+ 2  cjpj>0,
7 = 1

Ax,pV(x>P) +   2    CjPj
i-\

n-\

K(P)+ 2 PjV(x,ef)- V(x,p)
7=1

(3.7)

= 0    (3.8)

where the ft vary in the set ft > 0, 2"=, ft = 1 and x varies in X.

Let

5 =    (*,/>); x G X,p = (px, . . .,pn),pj > 0,  2  ft = 1,
I 7=1

V(x,p) = K(p)+ "S  Py^*, ej)\. (3.9)

Define the S, stopping times:

op = hitting time of the set 5 by X(t) = (x(t),p(p, t)),

a I = op when/7 = e,,

n-\

*f  =  <^+l  =  T¿  +   2  7ff(í,) = /0-¿(<f>f,),
/=1

f = (ff> *?> *?, • • • )• (3.10)

Theorem 3.1. Let V(x,p) be a solution of the q.v.i. (3.6) - (3.8). If the ap
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are finite valued then

V(x,p)= mfJpx(7) = Jp(Tp). (3.11)
re«

The proof is similar to the proof of the corresponding result in [2] and will

therefore be omitted.

In the special case where

ftv = 0   if 1 <J < i < n (3.12)

the q.v.i. reduces to a sequence of simpler q.v.i. analogous to (4.35)-(4.37) in

Í2].
Another type of simplification of (3.6)—(3.8) occurs when

PXxU),xU)= PxXoixU-s)^ PÏ-s   ifO< s <t. (3.13)

In this case the numbers

Pp-x[Pj(p, t)GB; \<j<n]

do not depend on x and, consequently, the process

Pj(p, t)       (1 < y < n) with measures Ppfi (3.14)

is a Markov process. We shall denote its generator by Ap.

Denote by R* the (countable) range of the process (ft(e„ t); 1 < j < n)

and let/?* = U"~XR*-

One is interested in the quality control problem mainly for the initial values

p = e¡. In case (3.13) holds it then suffices to solve the q.v.i. in the set R*

only. Thus we have to solve a "discrete" q.v.i.

In the next section we shall solve the discrete q.v.i. in a case when n = 2.

4. Solution of the discrete q.v.i. in case n = 2. We assume that (3.12), (3.13)

hold and that n = 2. Thus p2X = 0, p22 = 1. To rule out a trivial case, we

assume that/7,, > 0, p, 2 > 0.

Let

Pjx' = pîUj,    p}1 = p£hj (4-1)

where pfc, is the transition probability matrix of P^. Denote by N the set of

y"s for whichpp =£ 0, and let

h-fr/ft       U^H)- (4-2)
ince

2   pfm 1        (/= 1,2), (4.3)
ye/v

we must have

2   Pf% = 1- (4.4)
;£JV

Since p2x = 0,p22 = 1, we have

Pi.iO) = Pi,i>   P\AX) = Pi.2>       ¿u(0 = 0,/3"2j2(/) = 1,
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Hence, (2.9) for ; = 1 simplifies to

.        ,. PlPl.l ,        ¿v PlPl,2 +P2Mx(l)-x(0)
P^P'  l>  =    n    -I-  n   .,- '     ^^  '' =        n    -Í.  n   „- •

Pi + P2M*(l)-x(0) Pi + P2rix(.\)-x(0)

Defining

_,, . PiPi.i _,2, ,      PiPu + Pilh-

*<*»**'7¿H¿¿ S.(^Ä)"  ft+A*. '
we can write the generator ^4  (/? = /7,, /72) in the form

¿,s(p)-I«[*(Kp.i))-s(p>]

= p,£"[ g(/7(/7,   1))  - g(/7)]   + p2£'»[ g(p(p,   1))  - g(p)]

= £•■[(/»,+ p^u(0, \))(g(p(P, 1)) - *(/>))]

=   2   Pp(Px + P2Hj)[g{T/ (Pl,P2), T2(Pl,p2)) - g(Px,p2)]    (4.5)
yew

where we have used the facts

E"[g] = £*i gZ,,2(0, 1)]    (g = g(/7(/7, 1))),    z1>2(0, 1) = ux(1)_x(0)

and the notation <?, = (0, 1), e2 = (1, 0).

Define

y=P\/Pi-.     g(y) = g(PvPi)-

Then, as easily verified,

^(/7„/72)= Lyg(y) (4.6)

where

VW = TTT 2 p/'O + w,)[s(7}(v)) - g(y)j       (4-7)
1      -^ y e N

and

7} 00 = 4^ + ~y     (j^*)- (4-8)
Pl.l       Pl.l

We shall impose the monotonicity condition

Tj(y)>y        (JGN), (4.9)

that is

^ >/>,,,        (ye A). (4.10)

This condition implies that

Pi(P. 0       Pi(P> s)
—1-7  > —I-7     if í > 5.
P2(P. t)       p2(p, s)
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It is easily verified that

ApP2

We shall need Dynkin's formula

-P\,iPv

Ee'[g(p(r))]-g(p) = E«  jT   ' Apg(P(s))ds

(4.11)

(p(0) = ex)    (4.12)

where g is any function defined on the discrete set R* and t is any bounded

9, stopping time.

Let b be any positive number and let Jb be the first time such that

(P\(t)/p2(t)) > b. (Notice px(rb)/p2(Tb) is not necessarily equal to b.)

Applying (4.12) with g(px,p2) = p2 and t = rb /\ m (m > 0)and using (4.11),

we conclude that

Ee'[rb Am] < C

where C is a constant independent of M. Taking m -> oo we conclude that

>]< oo. (4.13)

Notice that the proof of (4.13) does not exploit the monotonicity assumption

(4.9).
We now assume for simplicity that c, = 0 (but c2 > 0), and set c = c2,

K = a:,.
Recalling (4.6), (4.7), the q.v.i. (3.6)-(3.8) can be written in terms of the

function V(y) = V(px, p2) (y = px/p2) in the form

LyV(y) +
cy

1 + y
> 0    in R,

V(0)
V(y) < K+ -r^—      in/?,

E,V(y) +
cy

1 + v
K +

1 + v

V(0)

1 + v
v(y) 0   in/?

(4.14)

(4.15)

(4.16)

where /? is the (discrete) range of px(t)/p2(t) when/7,(0) = 0,p2(0) = 1.

Theorem 4.1. Let (4.1), (4.9) hold. Then there exist a unique   b G R, b > 0

and a unique function V(y) defined on R such that

lyV(y) +
cy

iyV(y) +

\+y

cy

1 + y

= 0   //y G R, 0 < y < b,

> 0    if y G R,y > b,

V(y) = K +
V(0)

1 +y
if y G R,y > b.

V(y) < K +
V(0)

1 +y
if y G R, 0 < y < b.

(4.17)

(4.18)

(4.19)

(4.20)
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Notice that V(y) is then a solution of the q.v.i. (4.14)—(4.16). In view of

(4.13), Tb < oo and therefore Theorem 3.1 can be applied to conclude that

V(0)= infyx1(T) = y;(Tl). (4.21)

The optimal inspection is then to inspect at time Tb (given that/7(0) = (0, 1));

let/7(f) start again atp(0) = (0, 1) and again inspect at time tb, etc.

Proof of Theorem 4.1. Suppose b is_such that (4.17), (4.19) hold. By

Dynkin's formula we then get (with E = E'\ P = Pe',y(t) = px(t)/p2(t))

or

K +

V(0)E

V(0)

i+y{rb)

y(rb)

i+y(rb)

V(0) = E

= K+ cE

I
T4-l

/„

T„-l

cy(s)

i +y(s)

y(s)

ds

\+y(s)
ds

Setting

H(b,dz)= P[y(rb)Gz],

L(b,dz)=    2     P[y(s)Gz],
S < Tb - 1

we then obtain from (4.22) an expression for V(0):

K+cjj^L^dz)

(4.22)

(4.23)

(4-24)

(4.25)

Notation. For any b G R we denote by b the number in /? immediately to

the right of b.

Lemma 4.2. For any b G R,

L(b,db) = P(y(Tb) = b). (4.26)

Proof. The left-hand side is equal to

2     P(y(s)mb)m    2     P(y(s)=b)
s < Tb - 1 s < rb - 1

+ 2 P(y(s) = b). (4.27)
T6-l<i<T¿-l

The first sum on the right-hand side is equal to zero (by the definition of rb).

Since t¿ — rb < 1 by the monotonicity assumption, and r¿ — rb ■» 1 if and

only if y(TA) = b, the second sum on the right-hand side of (4.27) is equal to

S   P(y(s) = b)=P(y(rb) = b),

and (4.26) follows.



R. F. ANDERSON AND AVNER FRIEDMAN

We also have the relation

L(b,db) = H(b,db);

however this relation will not be needed.

Lemma 4.3. The following formula holds.

í TÍ~zHib'dz) = p^f TT~zL{b'dz)-

Proof. Since L„(l) = 0,

(4-28)

(4.29)

Mi+w    Mi+yJ-1+2
by (4.11). Hence, by Dynkin's formula,

y(T>)

i+7K) ■MrJo

1 Pl.2

1 +y(s)
ds

Recalling (4.23) and (4.24), (4.29) follows.

Using Lemma 4.3, we can rewrite the expression Q (b) introduced in (4.25)

in the form
K+cfj^L^dz)

P\AmL(^dz)

Our plan now is to show that there is a unique b which minimizes Q(b) and

then show that the function F defined by (4.17), (4.19) also satisfies (4.18),

(4.20). The uniqueness of the minimal b implies the uniqueness assertion of

Theorem 4.1.

For any b G /?, we compute from (4.30)

Q(b) - Q(b) =■ j cf  j±-z  L(b, dz) - cf  jj-j L(b, dz)

Pm\ TT7 L(b'dz)

' + c/íf7L^'*>]¿[/lT7L<*'*)

By the strict monotonicity of the ^-process

f     h(z)L(y,dz)m[     h(z)L(y,dz)    ify<y<y.        (4.32)
Jz<y Jz<y
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Hence

/ TT7 L^*) -/ TT7 L^dz) ' Ú~b L^db^

Since b G R and the y-process is monotone, P(y(rb) = b) > 0 so that, by

Lemma 4.2, also L(b, db) > 0. It follows that

sgn[ß(6)- Q(b)]

= sgn[c£> f  T-jr7 L(b, dz)-c f  j±-z   L(b, dz) - K

= sgnic f ^-j L(b, dz)- K . (4.33)

Let

S(b)=f  f^f L(b,dz). (4.34)

Then, using (4.32),

$(b)-S(b)mf  A_L£ L(b,dz)-f  ^j L(b,dz)

= í 7T7 L{b'dz) + TTT L{b'db)-      (435)

The right-hand side is larger than (b — b)L(b, dO) = b - b. Hence S(b) is

strictly increasing on R and S(b) —» oo if Z> ̂ oo.

From (4.33), (4.34) we then conclude that there is a unique b in R such that

ßCv)- ßOO<0   ify<b,yG R,

Q(y) - Q(y) > o   \fy > b,y G R. (4.36)

The point b is then the unique minimum of Q(y),y G R.

We next define V(y) foxy > b,y G 7? by (4.19) and for 0 < y < b, y G R

by (4.17) (using iteration and the strict monotonicity of the y-process). It

remains to show that (4.18) and (4.20) hold.

To prove (4.18) we compute

Ak  ^l\   _^l_   V{0)Pi-2
Ly\K+   \+y J \+y~        \+y      '

Thus, (4.18) would follow from

cb - V(0)pX2> 0. (4.37)

If we prove that

lA v(y) - k - j~ I < ° ify G R<y < b        (4-38^
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then by the maximum principle (which holds, since the y-process is mono-

tone) and the fact that

P(0)   Í =0     ify-6
V(y\-K-— y

U> 1 +y \ <0    if y = 0,

it follows that (4.20) holds. Since the left-hand side of (4.38) is equal to

cy - V(0)px2, (4.20) is thus a consequence of

cy - plj2K(0) < 0    if y G R,y < b. (4.39)

Thus, to complete the proof of the theorem it remains to prove (4.37), (4.39).

Inserting V(0) from (4.25) (or rather (4.30)) into (4.37), (4.39) we find that

these two inequalities reduce to

cbf TT7 L(6'dz) ~{K + CI TT7 L(6'dz)) > °'

cyf TT7 L{b'dz) ~(K+Cf TT7 L(¿>'dz)) < °     {y< b);

but these inequalities clearly follow from (4.33) and (4.36).
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