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ON THE FREE BOUNDARY OF
A QUASI VARIATIONAL INEQUALITY ARISING

IN A PROBLEM OF QUALITY CONTROL1

BY

AVNER FRIEDMAN

Abstract. In some recent work in stochastic optimization with partial

observation occurring in quality control problems, Anderson and Friedman

[1], [2] have shown that the optimal cost can be determined as a solution of

the quasi variational inequality

Mw(p) + f(p) > 0,    w(p) < ip(p; w),

(Mw(p) + f(p))(w(p) - t(p; w)) = 0

in the simplex/>, > 0, 2"_,/>, = 1. Here/, i// are given functions of p, <p is a

functional of w, and M is a given elliptic operator degenerating on the

boundary. This system has a unique solution when M does not degenerate

in the interior of the simplex. The aim of this paper is to study the free

boundary, that is, the boundary of the set where w(p) < \j/(p; w).

1. Introduction. In the model considered by Anderson and Friedman [1], [2]

one is interested in finding an optimal sequence of increasing inspection times

t, which minimize the cost function

j;(r)=E; Ke-aT< + Cf(9(s))e~as ds
Jo

+ f WiAr"'- + r+'f(9(s))e-°s ds
i= 1 L JT,

(1.1)

here 9(s) is a Markov process with n states 1,2, . . . , n and Ç-matrix (q¡J);

/(/') = c¡ > 0, K > 0, a > 0, and the 77 depend only on the information given

by 9(tx), . . . , 9(t,_x) and the o-fields 9, of the process x(t) which is defined

as follows: Let w(t) + \t be a p-dimensional Brownian motion with drift A,

(1 < /' < ri); then x(t) is the random evolution of these n diffusion processes

in accordance with 9(t). Finally,/» = (/?,, . .. ,pn) is the initial distribution of

9(t), and x = x(0).

The problem of finding

w(x,p) = infJp(T) (1.2)
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96 AVNER FRIEDMAN

and characterizing an optimal sequence of inspections t = t* = (rf, rr\, . . . )

is called a quality control problem. The motivation for this problem is

explained in detail in [1], [2].

It is shown in [2] that w(x,p) is independent of x. Further, the problem of

finding w = w(p) and t* is reduced to the problem of solving a quasi

variational inequality (q.v.i.) of the form

n n-1

Mw + 2 cjPj> 0,       w(p) < K + 2 H*j)Pp
7=1 7=1

Mw + ¿ cjp\lw(p) -Ê-Y. w(ej)p\ = 0 (1.3)

in the set A = {/?, > 0, 2"_,/>, = 1}. Here e} = (6} „ . . ., 5, „) and M is an

elliptic operator degenerating on 3/1. The q.v.i. is solved in [2] under the

assumption that M is nondegenerate in (the interior of) A. In §2 we recall this

fact and also state some other results from [2] in a form which will be useful

for the subsequent sections.

The aim of the present paper is to study the set

CA - j p; w(p) <K + "¿' w(ej)pj\ (1.4)

and the free boundary TA = dCA n A. For this purpose it is convenient to

make a change of coordinates y, = Pj/px and to transform the q.v.i. into a

q.v.i. in the space

*/-! = {(y* • • • , vn);y,- > 0 for 2 < i < n).

Then CA and TA are transformed into sets which we designate by C and T

respectively.

In §3 we find a sharp condition for the set C to be bounded. In §4 we prove

that, when C is bounded, T is a graph, monotone in each variable, i.e., a point

(y2, . . . , y„) belongs to C if and only if.

yj < %(y» ■ • • ,yj-i,yJ+i, ■ ■ ■ ,y„)

where ^ is a finite valued function. In §5 we prove that T is given by

y, = %(y2, • • • ,y,-i,y, + i, • • • ,y„), the *y are analytic, and 3^/o>, < 0.

Some concluding remarks are given in §6.

For a variational inequality (v.i.) for a function u and an obstacle i|/, the

support of the solution is, by definition, the closure of the set {w < \p). The

question of compact support of solutions of v.i. was first studied by Brezis [6].

Recent results on the support of solutions of some q.v.i. have been obtained

in [3] and [4].
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2. The q.v.i. Let

A = \(px,...,Pn);Pi >0, 2 />,- = 1
i = i

and let À !,..., \, be distinct »»-dimensional vectors such that

X2 - X„ X3 - X„ . . . , X„ - X, (2.1)

are linearly independent; this condition implies, of course, that v > n — 1.

Let q¡j (1 < i,j < ri) be real numbers satisfying:

qUJ>0   ifi^j,        ÍU,7 = 0. (2.2)
7 = 1

Finally, let K and a be positive numbers and let c,, . . . , cn be nonnegative

numbers. Introduce the elliptic operator in A :

mhp) - \ tnif, - |v,) • (\ - m^
"              dw(p)

+   Z   <7.,,P, —äl-aw(p). (2.3)
r,7'-l °P/

Note that any n - 1 of the p,'s can be taken as independent variables; the

remainingp¡, sayp,o, is then given by 1 - 2,^, p¡.

We shall be interested in the q.v.i. (1.3) in the set A, where ^ =

(0, 0, . . . , 0, 1, 0, . . . , 0) with 1 in they'th component. As easily seen (see [2])

M is nondegenerate in (the interior of) A if and only if condition (2.1) holds.

M is degenerate on all of <$A.

Theorem 1.1 [2]. There exists a unique solution w o/(1.3) such that

w G C(Ä) n Wf¿ (A)   for allí < r < oo. (2.4)

We recall that w(p) > 0 if p G Ä,p =é e„.

From (2.4) it follows that w(p) is continuously differentiable in A. The set

CA, defined by (1.4), is an open subset of A; it is called the domain of

continuation. The set TA =dCA n A (dCA = boundary of CA) is called the

free boundary, and the set

SA = \PGA; w(p) m K + 2 H«j)Pj

is called the stopping set. As shown in [2], the optimal inspections are

performed when a certain processp(t), given explicitly in terms of the process

x(t), exits the set CA; this explains the terminology of CA, SA.

It will be convenient to use Cartesian coordinates y, = pjpx (2 < ; < n);
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here the role of px is incidental; p, may be replaced by any other fixed

variable pk. Since Y s 1 + y2 + • • • +y„ = l+ (p2 + • • • + p„)/px =

\/px, we have/?, =  y ¡I Y (2 < /' < n).

Define 7?„+_, by (1.5) and set u(y) = w(p),yx = 1. Then (see [2]) Mw(p) =

Lw(y) where

1     " 32«(y)        " 3w(y)
Lu(y) = 2    22 Wj ^g^ + 2 *yO0 -j£- - ««(y)      (2.5)

where

fV-(Xi-Xl)-(X,-X1), (2.6)

_2 V*
M->0 = -(\ - xi) • V, + (A7 - xi)yj ■ —p- + 2 iiu - %,) v,. (2.7)

i=i

The q.v.i. (1.3) transforms into

¿«(>0 + y S W> 0.       «00 < * + T "2 V>
7  7=1 r 7-1

ÍL«(y) + i  2. WH-OO - # - 1  2^1 = 0 (2.8)

in R+_,, where

«,. = *(<?,)        (1< y < n - I). (2.9)

Let Ùs be any family of bounded domains with smooth boundary 9 Ûs such

that (Ûs udÙs) c A, ÛSÎA as ô|0. Set

^(p)-Ä-+2^)Py (2-10)
7-1

For any e > 0 consider the elliptic problem

Mwe,s - - (we,s - t)   +2 CjPj- 0   in ß«.
e 7=1

we s = 0   on8ñ6. (2.11)

Since A7 is nondegenerate in the closure of Ûs, this problem has a unique

solution. As shown in [2] (see also [5])

we s —» vv£    as S —» 00,        vve —* w   as e -» 0 (2.12)

uniformly in compact subsets of A. The proof exploits the probabilistic

interpretation of we s as given in [5]. One can also prove that

we s -^ w5*    as e -» 0,       wg -* w   as ô -» 0 (2.13)
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uniformly in compact subsets of A. In fact, the proof (which is similar to the

proof of (2.12) in [2]) exploits the standard representation of wg (as a solution

of a v.i. in (lg with zero Dirichlet data) and the fact that

if t|" = exit time of the process p(t) from fis, then ts* —> oo as 8 —> 0.

The above result (2.13) is valid (with obvious changes in the proof) if we

replace the boundary conditions we $ = wg = 0 on 3ß8 by the boundary

conditions we s = wg = g where g is any bounded continuous function such

that g(p) < K + 'ZjZlujPj. Taking, in particular, g(p) = K + SjZlujPj and

going into the y-coordina tes, we conclude:

Theorem 2.2. Let ßfi be a family of bounded domains with smooth boundary

3 Qs such that

(Qdu3Q4)c/C_„   Q,TV-i   asôi°-

Let us be the solution of the v.i. (2.8) in Sls with

1   "~l

us = K + —  2 ">V/   on 3^ä
1    7=1

(where the Uj are given by (2.9)). Then us(y)^> u(y) as 5->0, uniformly in

compact subsets of /?„"*!,.

Notice  that  us G W2'r(Çls)  for  any   1 < r < oo.   Consequently,  us  is

continuously differentiable in Qs.

Later on we shall use the notation

Hy) - * + i 2 «4»    -^ - !' (2J4>
'    7=1

Q= {yGfis;Mfi(y)<^(y)}. (2.15)

3. Boundedness of the domain of continuation. In they-space, the domain of

continuation C is given by

Cm [y GRn+_x;u(y)<^(y)}. (3.1)

In this section we shall prove, under some sharp conditions, that C is a

bounded set. That means that

CA does not intersect the setp, = 0. (3.2)

Notice that since w(0) < K + u(0) = K + ux = ^(0), C contains an /?„+,-

neighborhood of the origin.

We introduce the numbers
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rt-1

Bi = c, + 2 aijuj~ au¡ - olK       (1 < i < n - 1),
7-1

Bn=cn+"Í1qn,Juj-aK. (3.3)
7-1

Theorem 3.1. The set C is bounded if

B¡ > 0   for 2 < (" < n. (3.4)

Proof. From (2.3) we get Mp, = E?=, #,//>, _ <*Pf in terms of they-coor-

dinates we then have

L\Y ) = y \ % ** ~ ay'j

with the usual convention that y, = 1.

It follows that

where

14 = - aK + 1 "2 J 2 <7,-,;V,. - ory,) = | 2 A?, (3-5)
'    y=l       \i-l / /    (=1

ßi - 2 *>">- «", - aK       (\ < i < n - 1),
7=1

Ä, = 2 1n,ñ~ aK. (3.6)
7=1

Hence

1 2 w+ ^4Í¡ (c, + A)y,= i 2 -to (3-7)
7 /-i * ¡=\ * ,-i

by Definition (3.3).

Set

v = us — \p. (3.8)

Then v is a solution, in ñ5, of the v.i.

- Lv < y 2 ^,.       v < 0,
7  <=i

I - Lo - y 2 BpAo = 0,        o = 0 on 3Q4. (3.9)

The assumption (3.4) implies that there exist positive constants R*, y such

that
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Y 2¿to> y   if |V|> R' (3.10)

We shall compare v with the function

z(y) =

N
1 - 9

log \y\

log/?

log \y\

log/?
-A    if/?0 <|y|< 7?,

0   if \y\> R (3.11)

in the open set iïs R = ß8 n {\y\ > R0); here 9 is any number in the interval

(0, 1), and the positive constants N, R0, R are to be determined below, and

7?o > /?*.

We shall show that z satisfies in ßa R the v.i.

and that

Lz < g,       z < 0,       ( - Lz - g)z = 0

g < y,       y as in (3.10),

z < — E =   inf   v    on |y|= Rn,
\y\ = R0

z <0= v   onafiSiJ?on {\y\> R0}.

We begin by noting that

\(L - a)\og\y\\ < const.,    \(L - a)(log|y|/| <

(3.12)

(3.13)

(3.14)

(3.15)

const.

(3.16)

(log|v|)

Consequently, if we set g = - Lz in S2a n {7?0 < \y\ < /?} then

cN
8<lojR~+az   in^n {/?0<|y|< P},

where c is a constant independent of 7?0, 5, N.

Next, the function us is bounded in S2S by a constant independent of 8.

Hence E < N0 where A0 is a positive constant independent of 8, 7?0. We now

take A = A0 + 1, so that (3.14) is reduced to

9

N

1 - 9

I log P0 \

I log*  J
logPp

logP
< 1. (3.17)

Since

dz N9

z\y\    V-»)\y\ laogp/Oogiyi)1-*    ]o^R

we have 3z/3|y| > 0 if \y\ < R, 3z/3|y| = 0 if \y\ = R. Also z(y) = 0 if
\y\ = R. It follows that z < 0 if /?0 < \y\ < /?, and z (extended by zero to



102 AVNER FRIEDMAN

\y\ > R) is continuously differentiable in {|y| > /?„}. Thus z is a  Wx'2

solution of (3.12) in Í2S R provided we define

z = 0   if \y\> R. (3.18)

From (3.16), (3.18) we see that (3.13) is satisfied if

-^-+az<y. (3.19)
log7?o

The assertion (3.15) is obvious, and thus it remains to verify (3.17), (3.19).

Since z < 0, (3.19) would follow from

4 * * (3-20)
We now choose first R0 sufficiently large so that RQ > R* and (3.20) holds.

Then we choose R sufficiently large so that (3.17) is satisfied.

Having completed the construction of z satisfying (3.12)—(3.15), and recall-

ing (3.9), (3.10), we can now employ the standard comparison theorem for

v.i. and conclude that z < v in Í2¿ R . Hence us — ̂  = v = 0 in Us R. Noting

that R was independent of 8, and taking 8 —> 0, we obtain, after using

Theorem 2.1, w — ̂  = 0if|y|>7?, i.e., the set C is contained in the set

where \y\ < R.

We shall next show that condition (3.4) is sharp.

Theorem 3.2. 7/77, < Ofor some j, 2 < y < n, then C is unbounded; in fact,

there exists a cone

Kv = {y e 7?„+_,;y,. < Wjfor 2 < i < n,i *j),   t, > 0,       (3.21)

and R > 0 such that C contains the region

Kv r) (\y\> R). (3.22)

Proof. Since P, < 0, we have

]_

Y
y 2 P,v,< 0   in some set /?„ n (\y\ > R). (3.23)

From the v.i. for v = u — $ we have

Y
- Lv < ± 2 P;v,< 0   a.e. in Ä, n (|y\ > R )•

/=i

Since also v < 0 in this domain, the strong maximum principle gives v < 0 in

this domain.

4. The shape of the free boundary. We shall need the assumptions:

P, > 0   for 2 < i < n, (4.1)

qjX =0   for2 < y < ». (4.2)
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Theorem 4.1. 7/(4.1), (4.2) hold then

3((« - i/0/ Y)/dyj >0   for2<j < ». (4.3)

Corollary 4.2. 7/(4.1), (4.2) hold then, for any j, 2 < j < n, there exists a

function ^j(y2, ■ ■ ■ ,yj-X,yJ+x, ■ ■ ■ ,y„) such that the following is true: A point

y = (y2, . . . ,y„) belongs to C if and only if

yj < *,(y2, . . . , yj_ „ yj+ „ . . . , y„). (4.4)

Indeed, this assertion means that, for any y = (y2, . . . ,yn) G C, the point

y' = (y2, . . . ,y,_i,y,',y/+„ . . . ,y„) belongs to C ifyj < yy Now, at the point

y we have u — \p < 0 and therefore also (u — \¡>)/ Y < 0. Because of (4.3) we

then also have (u - $)/ Y < 0 at y', i.e., u — i/> < 0 aty', which implies that

y'GC.
Remark. The functions ^ need not be finite valued. If, however, (3.4) is

satisfied then C is a bounded set and, consequently, the ¥. are finite valued

functions.

Proof of Theorem 4.1. Set v = us — \p and introduce the function z by

v = ehz where h = -log Y. The function z is continuously differentiable in

Cs and twice continuously differentiable in Cs. We have

jte        */_§£. __l\        32u hl   32z 1    3z      J_   dz_     _2_
3y, I 3y,-       Y )'     3y,3y,.      *  \ 3y,oy, ~  y   3y.       Y   9y, +  y 2z

Hence, in Cs,

1 ^, /   32z        J_ j)z_     X _3z_     _2_   \
2 ,£2 WA 3y,3^      Y  3y,. " y  3y,      Y2 ')

¿^-dir«.-i(Í P;y,V* = - 2 -to
7-2       °>7 '   7 = 2 "   \i=\ I ,= 1

Applying 3/3y/ and setting w, = -r— , we get
oy/

ñ 2 /W/
3^       2 3vy,       2 2 4

2 ̂ ^^"oy~3y~ ~ T ~3y~     T2 "' + T2™'' " T1*

^V       /9w'       ! 1 2    \
+ 2 ft^-^- - y w> - y w'+ Y2) ~ aw'

Here and in the following calculations the summation index always varies

from 2 to n, unless otherwise specified.
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We can rewrite the system (4.5) for 2 < / < n in the more compact form

\ 2 WK 9^ + ft • V w, - aw, + 2 Qi.jWj m-B,- Q,z     (4.6)

with suitable g¡, Q,-, Q¡. We shall now compute the Q, p Q, without impos-

ing, as yet, the restrictions (4.1), (4.2). We shall prove that

Q, --ft,. (4-7)

Qlj-Qij -?/,!»• (4-8)

We begin with

ß/--yi2 *w/ + £ 2 *» + £ 26,- y 2 !;•  (4-9)

Noticing that since

n    I    n \ n I n        \ n

2   2 ik.jyk - ak, lyjYk)- - 2 ft, iyJ i + 2 y, = - y 2 ft, \y*
j=2\k=\ I k=\ \ j=2      j k=\

we have

2*, - - 2(aj - A.)- Ai>7 + 2(*, - A,)y,- X'+y V' - y 2 ft.y,
7 7=1

(4.10)

and

36/ A. + 2\y,       2(\-Ài)yy-\
2 ^ = -(x,-x,)• x, + (x,-x,)•      f     - ¿áKi  Yl,yj

2 (x, - x,)y,• (x, + 2 V,) - 2 ft ,y, - Kft ,.  (4.ii)
7=1y2

Substituting from (4.10), (4.11) into (4.9), we obtain

a = - yj 2 w, + ^ 2(\ - x,). (X, - X,) - -j-2 2(x, - A,)- X,y,

+ T7I 2(\ - M- (a, +2Vi) - y 2 ft.y, + y (a, - x,). x,
' 7='

- ̂ i-(\ - x,). (x, + 2 V,.) - -pj 2(\ - X,)y,- X,

+ 7? 2 (A, - A,)y7 • (X, + 2 V/) + y 2 ft i y, - ft i = 2 4-y 2 ft i y,- _ ft i =
' z /=i

Clearly J5 + Jx0 = 0, J4 = y9. Substituting
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A1 + 2A^ = 2(\-A1)y, + A,y (4.12)

into J4 + J9 we obtain

Jx + J4 + Jg = y, + 2J4 = A 2 (A, - X,)y, • X,.

Adding this to J2 + J3 + 78 we end up with

yï2(Ay-X,)yy(\-XI).

Adding this to /6 + J7 and substituting (4.12) into J7, we obtain the sum zero.

Hence Q, = Jxx= - qlx.

Next, if / ^ j,

1 1 a6,
ß/j - ji 2 w, - 7 w + -^

i
2 w, - 7 w + (A7 - x\)yj ■ ( 7 - ^i (Ai + 2 Ví))

+ -or 2 (ft,,- ft,iy>)y*
°y/ /t=i

= ji 2 íW; - -p, (a, - a,) • (x, + 2 \y,) - 7 w

1 5
+ 7 (xj - A0 yA + (ft, ~ *. i^) = 2 J,-

i=\

Substituting (4.12) into J2 we get

A + J2 - - y (A7 - Ai)y/ • Aiy

y
= 1 (x, - x,)y, • (X; - X.) - ± (Xj - X,)y, • X, = -(J3 + J4).

Hence Qu = Js = ?/, - 9/> xy}.
Finally,

db,
z, ¡¿¡¡y i - 7 z /%p# - 7 M/iV/ - 7 ¿ t>¡ +

Using (4.10) we find that

Qi, 1 = ~l 2 fW/ + 72 /w - 7 2 /w - 7 M/iV/ - 7 2 6,- + £
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Qu = -pj 2 W/ + -p^ 2 wi - y 2 wi

- yP/iV/ + y(Xy - X,) • X,yy

- -¿j 2 (x, - x,)y, • (Ai + 2 Vi) + 2 ft xv, - (X, - A.) ■ A>
y 7=i

+ 7 (X, - x,) • (x, + 2 V,-) + 7 (X, - \)y, ■ \

-^l(X,-X,)y/(X1+2Vi)

+ äü" l*.^' " 2 ft,iy/yJ - 2
dy/ \        fc-i        /   k=\

Using (4.12) in y6 we get

h + h- -7j2(x,-x,)y,.x, = -y5.

Using (4.12) in Jxx we obtain J2 + Jxx = - ^(\ - X,)y, • X,, which together

with y4 + /10 add up to zero. Substituting (4.12) in Jg we also find that

J-, + Js + J9 = 0. Hence Q,, « J3 + Jn » 9/_, - «?,_ ,y,.
We now make use of the conditions (4.1), (4.2) and deduce that

0/,,-ft, >0   if/*y

0/,/=ft/<0, (4.13)

2 Qu = 2 fty = 2 fty = 0 (4.14)
7 = 2 7 = 2 7=1

and the right-hand side of (4.6) is

- B, - Q,z = - B, < 0. (4.15)

Since conditions (4.13) - (4.15) hold, a fairly standard maximum principle

for coupled elliptic systems can be applied [4, Theorem 2.1] to conclude that

w, > 0   in Q; (4.16)

we use here the fact that the w¡ are continuous in Cs and vanish on 3Q, and

this is true because u - \p and its first derivatives are continuous in Q and

vanish on 3Q. (We should point out that Theorem 2.1 in [4] deals with the

case where the leading part in (4.6) is aw,, but the proof of the theorem

extends to any nondegenerate principal elliptic operator.)

Taking 8 -» 0 in (4.16), assertion (4.3) follows.

Remark 1. If C is bounded then, by Theorem 3.2, condition (4.1) must

hold. Hence, if qj , = 0 for 2 < j < n and if C is bounded then the assertion
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of Corollary 4.2 regarding the shape of C is valid.

Remark 2. If for some j, 2 < y < n, 77, < 0 then assertion (4.4) of

Corollary 4.2 is false for this j. Indeed, this follows immediately from

Theorem 3.2.

Remark 3. Corollary 4.2 can also be stated in terms of the shape of CA. We

again stipulate that the role of px can be given to any other variable p,; if

qj ¡ = 0 for ally ¥= i then an assertion similar to Corollary 4.2 is valid.

5. Regularity of the free boundary.

Theorem 5.1. 7/(4.1), (4.2) hold then the free boundary T is analytic.

That means that one can represent T locally by analytic functions y, =

0/t„ . . ., T„_2).

Proof. We write the v.i. for v = u — i/< in the form

- Lv < f,       v<0,       (-Lv-f)v<0 (5.1)

where f(y) = "2/]=xBjyi. Without loss of generality we may assume that

f(y) = 0 implies V f(y) ^ 0. We shall now use an argument of Caffarelli and

Rivière [8] to show that

if y° £ T then/(y°) > 0. (5.2)

Suppose (5.2) is false for some y°. Denote by tr the hyperplane passing

through y° and perpendicular to V f(y°), and denote by 77 the half space

bounded by 77 such that / < 0 in 77. Then 77 n /?„* , is contained in C and

therefore Lv = f < 0, v < 0 on 77 n 7?„-i- Since, however, v(y°) = 0, the

strong maximum principle gives V v(y°) =£ 0, which is impossible, because

y°GT.

The assertion (5.2) shows that f(y) > 0 on T. Therefore the regularity

theorem of Caffarelli [7] for the free boundary of a v.i. can be applied to (5.1).

Since the set C has the shape given by Corollary 4.2, we deduce that each

point of T is a point of positive density with respect to the stopping set

S = Rn+_, \ C. Appealing to [7] we then conclude that T is analytic.

Lemma 5.2. If (4.1), (4.2) hold then T does not contain any line segment

parallel to one of the yj axes.

Proof. By Theorem 5.1, w is a C00 function in C u T. Suppose T contains

a line segment / parallel to the y2 coordinate axis. Then the functions

wj = (3/3y7)(t>/ Y) (j 7*= 2) vanish along /. Hence

-I-w, - .57-W) - 0   along IJ * 2, (5.3)

so that also
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3
-r- w2 — 0   on /, v = normal to T at /. (5.4)
ov

Now, vv2 satisfies in C equation (4.6) for 1 = 2, and each Wj is > 0. By the

strong maximum principle, vv2 > 0 in C and, since w2 = 0 on T, dw2/dv =£ 0

on T. This contradicts (5.4).

If we use the fact that the free boundary is analytic, then we can extend the

proof of Lemma 5.2 to the case where / does not actually lie on T but is just

tangent to T at some pointy0. (The relations (5.3), (5.4) are then valid aty°.)

We can therefore assert:

Theorem 5.3. Let (4.1), (4.2) hold. Then, for any j, 2 < j < n, T can be

represented in the form

yj - ?/j» ••-.y,-1»y,+1. • • - >yJ (5-5)

for (y2, . . . , y■■_,, yJ+,, . . . , yn) in some bounded domain Aj, and

—— < 0   for each i;        i = 2, . . . ,j - \,j + 1, . . . , n.        (5.6)

6. Concluding remarks.

Remark 1. In the special case where

q¡j = 0   whenever/ < /', (6.1)

a more general quality control problem was studied in [2] in which K was

replaced by Kx, . . . , Kn. The corresponding q.v.i. is then replaced by n - 1

q.v.i. for functions wn_,(p„_»pn_t+x, ...,/>„) (p, > 0, 2J.B_,p^ = 1):

« 3vv _ "

+   2   ij.kPj-^- > -  2 OP/.
j,k-n-i °Pk j = n-i

n-\

wn-¡ < AV, +    2    P/W,(e,),
j = n-i

\M„_iwn_i+    2    SP/] (w--.- - Kn-i -    2    P/^7)   =°      (6-2>
\ j—n-i        }\ j=n-i j

where e¡ = (p, . . . ,p„) = (1, 0, . . . , 0). It is natural to assume in this quality

control problem that

Kx> K2> ■■ ■  > Kn. (6.3)

We now define the 2?. as in (3.3), but with K = Kx, uy = Wj(ef), so that, in

view of (6.1),
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n-X

p, = ct + 2 aijuj~ aui ~ aK\    (i < i < » — i),
7 = '

Bn = cn - aKx. (6.4)

The results of §§3-5 extend immediately to the q.v.i. (6.2). Taking note of

condition (6.3) we conclude that under exactly the same conditions on the i?.

as in §§3-5 we have precisely the same assertions for the continuation regions

C = C„_, and for the free boundaries T = r„_, of the q.v.i. (6.2), I < i < n
- 1.

Remark 2. In case n = 2 the system (4.6) consists of just one equation. If

#2,i 7e 0 then q2X > 0 so that Q,, = q22 - q2 ,y2 < 0 and  — B, — Q,z =

— 7i2 + q2 ,z < 0 since B2 > 0, z < 0. Thus the maximum principle gives

w¡ = w2 > 0. We conclude that, if n = 2, the results of §§4, 5 remain valid

without imposing the restriction q2 , = 0.

Remark 3. Denote by wa(p), Jp(r; a) and u.a the functions w(p), Jp(t),

Uj as functions of the parameter a, a > 0, and set

*T-c,+ 2ft,«,,o- (6-5>
7=1

It is clear that Jp(r, a)V%(T. °) as «i° and that

wAP)îwo(P)>       uj,Juj,o   asa^O. (6.6)

Suppose

Uj 0 < oo    for 1 < j < n — 1. (6.7)

Then clearly,

Bf > 0 implies P, > 0   if a is sufficiently small, (6.8)

so that the results of §§3-5 can be applied by imposing the simpler conditions

B* > 0       (2 < i < ri) (6.9)

provided a is sufficiently small.

We claim that (6.7) is true if either (6.1) holds or

ft,„ = 0,       ft„>0   for 1 < l< Ji - 1. (6.10)

Indeed, as shown in [2], any one of these conditions implies P[9(t) ^ h] —>0

as / -» oo. Hence, by the Markov property,

P[9(t) ¥= n] < e~yt    for some y > 0.

This implies that Jp(f, 0) < B < oo where f = (f,, f2, . . . ), f, = /, and B is a

constant independent of p, x, and (6.7) follows.

Remark 4. In case (6.1) holds, the system (4.6) for the unknown functions,

say w¡, is not coupled and we can get additional results by applying the

maximum principle first to wn, then to %_,, etc. For instance, if Bn > 0 then
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wn > 0; if also Bn_x > 0 then also h>„_, > 0.
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