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ON REGULAR SEMIGROUPS AND THEIR MULTIPLICATION

BY

PIERRE ANTOINE GRILLET

Abstract. A method is given for the construction of regular semigroups in

terms of groups and partially ordered sets. This describes any regular

semigroup 5 and its multiplication by means of triples (/, g, \) with i E

S/9,, X 6 S/t and g in the Schützenberger group of the corresponding

^D-class. It is shown that the multiplication on S is determined by certain

simple products. Furthermore the associativity of these simple products

implies associativity of the entire multiplication.

We give a general method for constructing arbitrary regular semigroups in

terms of groups and partially ordered sets.

Let S be a regular semigroup. Select a cross-section (>,),e, of % (with

/ = S/^i), a cross-section (<3\)x6A of £ (with A = S/t), and one maximal

subgroup of S in each ^ -class; the union of these subgroups is a set G. Each

element of S can then be put uniquely in the form r¡gqx, with g E G and r¡, g,

qx in the same ^ -class. Our method gives a construction of S in terms of the

groups in G and the partially ordered sets /, A, by showing how the

multiplication of S can be described under that form.

In §1, we define partial actions between the sets G, I, A, denoted by

various symbols as seen below, and show that the multiplication of S can be

described in terms of these and three factor sets a, t, v, by the formula

(/, g, \)(j, h, n) = (i + g(j * X), aitg(J. x)gJ ' \jhx .y-u(x #/)AiM, (X *j)h + n)

where each r¡gqx is now written as a triple (/, g, X).

Necessary and sufficient conditions for such a multiplication to define a

regular semigroup are then given in §3. The main difficulty here is the

associativity of these multiplications; this is studied in §2, where we prove an

Associativity Lemma which is the deepest and most interesting part of the

paper.

Although the result is, technically speaking, a structure theorem for

arbitrary regular semigroups, it is still too technical to be very interesting as

such. Forthcoming papers will show that it must be combined with more
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elementary work and coextension concepts, to obtain a better view of the

structure. Even without these applications, however, it shows that the most

precise construction conceivable for general regular semigroups is possible; it

also predicts the form of the multiplication, and tells us how to go about the

construction. Most importantly, it takes care of the most difficult part of the

construction, which is verifying that the complex multiplication thus obtained

is associative. In some cases, the conditions for this become quite simple and

the theorem can be applied directly also.

The author is indebted to Professors A. H. Clifford and M. P. Grillet for

suggestions which somewhat shortened the proof of the Associativity Lemma.

1. Structure data of a regular semigroup.

1. In what follows, S denotes a regular semigroup. Let (Da)afEA be the

family of all ty-classes of S. In each Da, select an idempotent ea; denote by

Ga the % -class of ea, and by G the union of all the groups Ga (in general not

a subsemigroup of 5). Let / = 5/51, A = S/£; denote the <3l-class of ea by

ia, and its £-class by Àa. When / E /, g E G, X E A, we write / = g to mean

that g E 5 and the ÍR,-class / lie in the same ^-class; and similarly, g = X,

i = X. Note that for each i E / there is a unique ia such that i = /„; and

similarly for G, A vs. the elements ea, Xa. Finally, for each /' E / we select one

r, E S which lies in the 6l-class i and satisfies r¡ £ ea, where a is such that

i = ia; when i = ia, we pick r¡ = ea. Similarly, for each X E A we pick

qx E X, with qx ft ea if X = Xa, qx = ea if X = Xa.

Assume / = ea = X. Then qx ft ea, r¡ £ ea shows that eaqx = qx, r¡ea = r¡;

since also ea = qxq'x = r'¡r¡ for some q'x, r'¡ E S, the following result is

immediate from Green's Lemma:

Proposition 1.1. For each x E S, there exist unique i E /, X E A, g E G

such that i = g = X and x = r¡gqx; in fact i = Rx, X = Lx.   □

Now take x = r¡gqx,y = rfiq^, with / = g = X,j = h = /x; then xy = rklqv

with k = I = p; in the rest of this section we describe what we need to know

in order to determine k, I, v from /, g, X,j, h, /x.

2. The main idea is that we can describe the arbitrary product xy if we

know all the products of a certain type (hereafter called simple products).

These simple products are analyzed in terms of the order relations on / and A

that are induced by the 61 and £ preorders on S. The first type of simple

product is actually the most complicated of all. It is analyzed in

Lemma 1.2. Take X E A, / E /, and write qxr¡ = rmkqv, where m = v = k E

G. Then i = ia implies v < Xa, X = X0 implies m < ia.

Proof. Assume i = ia, so that riea = r¡. Then also qxriea = qxr¡, which
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shows that qxr¡ < ea(£). Taking the £-classes of both sides, we obtain v < Xa.

The other part is dual.   □

When i E I, u E I u G u A, we write / < u to mean i < ia 3 u. We see

that i < u = v implies i < v;j < i < u implies y < u; however, < is not

transitive. We can restate 1.2 as part of

Lemma 1.3. For each i E /, X E A, there exist i * X E /, X * / E A, ta, E G

unique such that i * X = tx¡ =k* i and qxr¡ = r¡tXTXiqXt¡. Furthermore,

i * X < X,X * i < i; i -< Xa implies i * Xa = i, Ty¡ = 1, Xa * / = X^ = i, and

X -< ia implies ia * X = L = X, tx ,  = 1 ; X * ia = X.

Proof. If i < Xa, i.e. i < ia, then r, < e?a(ft) and, hence, r¡ = ear¡; then

q^j = ear¡ = r¡ = r¡lefi, where eß = i; then it follows from the uniqueness in

1.1 that /' * Xa = i, TjLj = lr\, * i — \ß (= Q. The rest of the lemma follows

by duality or by 1.2.   □

3. The next type of simple product is analyzed in

Lemma 1.4. Let g E G, m E / be such that m < g. Then there exist

gm E /, gm E G unique such that gm = gm and grm = rgmgm. Furthermore,

gm < g; if g = 1 (= ea) then gm = m, gm = \; if m = ia = g, then gm = ia,

gm = g; in general, gm = gm = m.

Proof. Say g E Ga. Then m < ia, i.e. rm < e„(ft), so that rm = earm. This

implies grm £ rm: for g has an inverse h in Ga, and hgrm = earm = rm. On the

other hand, grm = eagrm and, hence, grm < e„(ft). If rm = eß then we have

grm = rnkep = r„A: (with n = k = eß, k & G) and, hence, there exist (by 1.1)

unique gm = n E I, gm = k E G such that gm = gm = m and grm = rgmgm;

if, conversely, grm = rnk with n = k E G, then also grm = /"„fce^ for some y

and the uniqueness in 1.1 shows that n = gm, k = gm and y = ß (i.e.

gm = m). This proves the first and last assertions; and since grm < ea(ft), we

have gm < /„ and gm < g. Now take g = ea; then grm = earm = rm = rml

(with 1 = eß = m the identity element of Gß) and by the uniqueness in the

above it follows that gm = m, gm = 1. (We also write this as: \m = m,

lm = 1, whenever defined.) If finally we take m = ia, then grm = gea = g =

r^g and, hence, gm = /„, gm = g.   D

Dually, we have

Lemma 1.5. Lei g E G, v E K be such that v •< g. Then there exist vg E A,

g„ E G unique such that vg = g and qvg — grqpg. Furthermore, vg < g; if

g = 1, then vg = v, g„ = 1; if v = X„ = g, i/ien g = Xa, g„ = g; in general,

vg = g„ = v.   □

The associativity properties of these new operations will be analyzed more

thoroughly in §3. We can already note that 1.4 defines an action of each Ga
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on the principal ideal Ia = {m E I; m < /a} of /. If g, h E Ga, m < ia, we

can calculate g(hrm) = g{rhmhm) = rg(hm)ghmhm (since hm < h = g, so hm

< g), whereas (gh)rm = r(gh)m{gh)m. Thus, (g/i)m = g(hm), which shows

that the action of Ga on our principal ideal is indeed a group action. (The

other action, of /„ on G, satisfies (gh)m = ghmhm.) We can say more:

Lemma 1.6. When m, n E I, m < n, g E G, then gm < gn. Hence Ga acts

on Ia = {m E I; m < ia) by automorphisms.

Proof. When m < n, then rm < /-„(ft), i.e. rm E r„S; therefore grm E

gfnS, grm < gr„(ft) and gm < gn.   □

Dually, Ga acts on Aa = {v E A; v < Xa) by automorphisms.

4. The last type of simple products is

Lemma 1.7. When m, i E I, m -< /', fAere exist i + m E I, aim E G unique

such that i + m = a¡ and r¡rm = ri + maim. Furthermore, i + m < /'; /// = /a,

then i + m = m, aim = 1 (E Ga); if m = ia = /, //ien / + m = /, aim = 1; in

general i + m = a, m = m.

Proof. Say i = ia. Then m < /„, so that earm = rm, and r, £ ea; hence

'/'■« £ earm = '"m- On the other hand, rirm E rtS, so rirm < r,(ft). If m = eß,

then we have r¡rm = i)^ = /-A:, with j E I, j = eß = k E G, and y, £ are

unique with these properties; as in the proof of 1.4 we see that they are also

unique such that rirm = r,k,j = k,j E I, k E G. We puty = / + m, k = ajm

and have proved the first and last assertions; furthermore rirm < r,-(ft) shows

/ + m < /. Now take i = za, then /-,/•„ = earm = rm = rm\ (where 1 = eß £

Gß) and so / + m = m, aim = 1. Finally take m = ia; then rirm = r,ea and so

i + m = i,aim = 1 (= ea).   \J

Dually, we have

Lemma 1.8. When X, v E A, v -< X, there exist v + X E A, v„x £ G unique

such that v + X = v„ A a/iii <7„<7X =vVyXqf+x. Furthermore, v + X<X;ifX = Xa,

then v + X = v, vp<x = I; if v = Xa = X, then v + X = X, u^ = 1 ; in general,

v + X=vkX = v.    □

Again the associativity properties of these new operations will be investiga-

ted later. We can already note that 1.7 is rather analogous to 1.4; we can

make the analogy more evident if we think of the partial operation + on /

defined by 1.7 as defining for each / = /„ a mapping of Ia (= {m £ /;

m < /a}) into the principal ideal {j E I;j < /}; namely, m \~* i + m. Thus,

ia yields the identity map on Ia. In general, this mapping induced by /' is again

an isomorphism:

Lemma 1.9. For each j E /, j < / = ia, there is a unique m < ia such that

j = /' + m; if similarly k = i + n, then n < m if and only if k < j. Thus
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m h» / + m is an isomorphism of {m £ /; m -< /} upon {j E I;j < /}.

Proof. Since the £-class Xa of r, contains the idempotent ea, and the

ft-class of r, also contains an idempotent, r¡ has an inverse r'¡ in the ft-class ia

of ea. Now assume j < i. This implies r, < r,(ft), and, hence, r, = r¡s =

r/jjS for some s E S. Put r¡rts = rjxq^, with m = ¡i = h E G. Since r/r,i <

/•/(ft), we have m < ia. Hence rj = /-/„^ = ri+mghq^ with i + m = g = m;

in particular, g = m = A, so that g, A lie in the same group, and so i + m =

H = gh E G. By 1.1, / + m is then the ft-class of r}, i.e. j = i + w. This

proves the existence part of the first assertion; the uniqueness clearly will

follow from the order properties. To prove these, we note that n < m in I

implies r„ < r"m(ft), r¡rn < r,/-m(ft) and, taking ft-classes, i + n < i + m

(note that n < m < ia so that / + n is defined). For the converse, we use the

inverse r'¡ of r¡ as above, noting that r¡r¡ = ea: if n, m < za and i + « < i +

m, then /•,/•„ < r,rm(ft) and, hence, r„ = ear„ = r¡r,r„ < r//-,rm = rm(ft), i.e.

n < m.   □

Corollary 1.10. When two 'Si-classes of a regular semigroup lie in the same

ty-class, they generate isomorphic principal ideals in S/ft.    □

This can also be proved directly: by following the same argument as in the

proof of Fares' theorem [4], one will see that in fact two ft-classes of any

semigroup which lie in the same regular ty -class will generate isomorphic

principal ideals in S/ft.

Corollary 1.11. When S is a (0-) bisimple regular semigroup, then S/ft,

S/ £ are (0-) uniform partially ordered sets.    □

The author was advised that this corollary was obtained by G. Hickel in

1967 (he does not seem to have published it). Similar results are well known

for£s[l].

5. Lemma 1.3 and Lemmas 1.4, 1.7 and their duals, provide us with three

factor sets a, r, v and with six actions or partial actions of each of /, A on G,

J, A, as well as two partial actions of G on /, A. Together with the

equivalence relation = on / u G u A induced by 6D, these constitute the

structure data of the regular semigroup S. Our interest in the structure data

stems from the fact that S is completely determined (up to isomorphism) by

its structure data. More precisely:

Theorem 1. Let S be a regular semigroup, and G, I, A and the structure data

of S be as above. Let T be the set of all triples (/, g, X) E / X G X A such that

i = g = X. When (/, g, X), (J, A, p.) E T,put

(/, g, X)(j, A, n) = (i + n, aigmgmTXJhyvvhll,vh + n),
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where m = j * X, v = X *j. This multiplication is well defined on T and makes

T a regular semigroup isomorphic to S.

Proof. Take x = r¡gqx, y = r,A^ £ S (with i,j E I, g, A E G, X, n £ A,

/ = g = X, j = A = n). By 1.3, we know that qxrj = rmTXjqv, where m =

j * X, v = X * j, m = tXj; = v, m -< X, v < j. Then m ■< X = g shows m -<

g, and by 1.4 we have grm = rgmgm, with gm = gm = m; similarly v ■< A

and, by 1.5, q„h — h„qvh, with hp = vh = r. We see that gm = gm = tx>/ = A„

= pA. Furthermore, 1.3, 1.4 tell us that gm < g, vh -< A; hence gm -< i (as

g s 0 and r¡rgm = ri+gmoiJ¡m by 1.7; dually, vh < ft, and q^ =vrKf.qvh+li\

1.7, 1.8 also say that i + gm ^ oigm = gm, vrhli = vh + ju, = vh. Thus we

obtain

xy = r,gqxtjhq^ = ri+gmaigmgmTXJh,,vfhliqph+ll,

with i + gm E I, vh + ¡i E A and

i + gm s aUm = /" = rw = hv = vvhfx = vh + w;

in particular, all the group terms are equivalent and so their product lies in G

and is equivalent to /' + gm and vh + ¡i. This argument also shows that the

multiplication we put on T in the theorem is well defined; furthermore, we

now see that the mapping r¡gqx h» (i, g, X) (/' = g = X) of 5 into T, which by

1.1 is bijective, is an isomorphism.   □

Of course, Theorem 1 is a superficial result which must be completed by a

characterization of structure data of regular semigroups: i.e. conditions on a,

t, v, gm, gm, etc. that make it possible to define a multiplication as in

Theorem 1 and insure that it is a regular semigroup multiplication; we saw

that g(Aw) = (gh)m, (gh)m = ghmhm are necessary conditions of that sort.

One more condition can be obtained from the theorem, and involves only the

two star operations; it expresses regularity:

Proposition 1.12. Let S be a regular semigroup and i E I, X E A. Then

/ n X is an %-class containing an idempotent if and only if i = X (= ea, say),

i * X = ia, X * i = Xa. Hence, for each i E I there is some X £ A (and, dually,

for each X £ A there is some i E I) such that these three relations hold.

Proof. First, / n X is an % -class if and only if i = X, and we may as well

assume from the start that this is the case. Then assume / n X contains an

idempotent e; we can write e = r¡gqx, with / = X = g E G (i.e. g E Ga). With

i *X= m,X* i = v, the equality e = e2 reads: rtgq^ = ri+gm ■ ■ ■ qvg+ji. This

implies / + gm = i, vg + ¡x = ft, which in turn implies, by 1.9 and its dual,

gm = ia (as / + ia = i by 1.7) and vg = Xa, and m = /„, v = Xa by 1.6 and its

dual.

Conversely, assume that m = /' * X = ia, v = X * / = Xa; let g = rxJ E Ga
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(in particular, / = g = X) and e = r¡gqx. By 1.4, 1.7 and their duals, gm = g,

gm = m = ia, aigm = 1, / + gm = /, gp = g, vg = v = Xa, vrg¿ - 1 and vg +

X = X. Therefore ee = r¡grXigqx = e by the choice of g.    □

6. As an application of these results, we show how the Rees-Suschkewitsch

theorem can be derived from the results obtained so far. This is, of course, a

rather picayune application, and we will be able to do much more once we

have the Associativity Lemma and its consequences; but it is interesting that

the progress of semigroup theory does not seem to have shortened its proof

very much. Of course, in all proofs there surely must be a certain amount of

elementary work at the beginning, to show that when S is completely

0-simple, then % is a congruence, and S/% is a rectangular 0-band; but

from there on one has a right to expect any new proof to be smooth and

natural (i.e. even more so than the proof in [3]). For example, coextension

theory does not yield such a proof, despite its obvious power. If the approach

in [5] is followed, one must first take advantage of the fact that % is the

congruence in this case, to show from the coherence theorem in [6] that one

may build from one maximal subgroup, with all <p and x maps the identity;

the approach in [7] is more natural for this, since in that approach it suffices

to compute the Leech category 60(S/%). This done, one obtains the

multiplication under the form (/, g, X)(J, A, ju) = (/', goiXj¡íh, ¡u) (for nonzero

products) . . . and then one has to establish that the factor set oiX.Jti depends

only on X and y (or can be chosen as such), an unpleasant task which surely is

no improvement on the classical proof.

On the other hand, consider applying the above. First we note from S/%

that / and A are discrete with zero adjoined (obviously 0-uniform). We are to

select i0, Xq for the trivial ^-class and /'„ X, for S \ 0. We see that z -< g £

G, implies z = i, or /" = z0; if / =£ z0, this implies g' = g, gi = i. Also, m -< /

implies m = i0 or m = /,, in which case i + m = / and aim = 1. The dual

properties hold in A. Therefore the multiplication in Theorem 1 specializes, in

the case of nonzero elements, to (z, g, X)(y, A, ¡i) = (z, grx¿h, ¡u) (in case

rXJ = e{) or = 0 (in case txj = e0 = 0). The theorem, however, does not (yet)

tell us that all such multiplications are associative; but the regularity of the

sandwich matrix rx¡ is immediate by 1.12.

2. The Associativity Lemma.

1. We saw in § 1 that the multiplication of a regular semigroup is completely

determined by all the simple products (i.e. the values of qxr¡, grm (m < g),

Ire (" ™< #)> rirm (m "< 0» 1A\ (" ~< A))- Now we show that the associativity

of these simple products also determines the associativity of the whole

multiplication. The result is similar to Light's Test, but somewhat more

complicated.

Evidently we cannot start from a regular semigroup, and so must first
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formalize the basic properties of products obtained in §1. Specifically, we

define a regular-like groupoid 5 [in the sense of Ore] by the following four

axioms.

Axiom (R) (Structure and relations). 5 is a groupoid (= set with a

binary operation) together with an equivalence relation = on S, subsets S',

R, S", relations < Q S' X S, < C S" X S, transitive relations < on S'

and < on S ", such that

(R,) u < x = y implies u < y, for all x,y £ S, u £ S" U S";

(Rj) u < v < x implies u < x, for all x £ S, u, v E S", S".

[For example, S could be a regular semigroup, with R = G, S' = (r,; z" £ /},

S" = {qx; X E A), = = <$>, < as in §1 and < defined by r, < r} <=*• i < j,

a\ < % <=* À < ju. In general there is no inconvenience in denoting both

relations by the same symbol because in what follows it will create no

confusion; and similarly for < . Note that < need not be transitive.]

Axiom (D) (Decomposition). For each x E S, there exist á £ S', r E R,

a" E S" such that x = a\rb") and á = r = b".

[In a regular semigroup, this follows from 1.1. Uniqueness is not necessary

for what follows.]

Axiom (P) (Location of products). The following conditions hold for all

a, b' E S', r, s E R, a", b" ES":

(P,) r = s implies rs £ R and rs = r = s;

(P2) a"b' = c'(ud") for some c' £ S',uE R, d" E S" such that c' = u =

d" and c' < a", d" < b';

(P3) a! < r implies ra' = c'u for some c' £ S", u E R such that c' = u =

a' and c' -< r;

(Pj) a" < r implies a"r = ud" for some u E R, d" £ S" such that u = d"

= a" and d" < r;

(P4) b' < a! implies a'b' = c'u for some c' £ S', u £ R such that c' = u =

A' and c' < a';

(P;) a" -< A" implies a"b" = u^" for some u E R, d" £ S" such that

u = d" = a" and ¿" < A".

[In a regular semigroup, (P,) is trivial, and the other conditions follow form

1.3, 1.4, 1.5, 1.7, 1.8, respectively.]

Axiom (E) (Identity elements). There exists E Q S' n R n S" which

spans = (i.e. for each x £ S, x = e for some e £ £■), and for every e E E

and all a' £ S', r E R,a" E 5":

(E,) r = e implies er = r = re;

(Ej) a' = e = a" implies a'e — a', ea" = a";

(E3) a' < e implies a' -< e, a" < e implies a" -< e.

[In a regular semigroup, the set E of all ea has these properties.]

In particular, we see that regular semigroups are regular-like. We also note
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that the definition of regular-like groupoids is self-dual.

In what follows, we use conventions which allow us to locate every element

of S on sight. Namely, all primed (double-primed) letters denote elements of

S' (S"); e denotes an element of E, x, y, z denote arbitrary elements of S,

and all other unprimed letters denote elements of R. Also, it is convenient to

extend the four relations <, < to 5 as follows: x '< y (x '< c') means that

x = a'(rb") for some a', r, b" with a' = r = b" and a' < y (a' < c'); x >!<y

(x 'k d") are defined similarly by b" < y (b" < d") (with A" as above).

2. We can now state the Associativity Lemma.

Theorem 2 (Associativity Lemma). A regular-like groupoid S is a

semigroup if and only if the associative law holds for all products of the following

types:

(1) a'• (rb") ■ x (a'= r = b"); (V) x ■ (a1r) ■ b" (ä = r = b")\

(2) xa' ■ (rb") (a' = r = A"); (2') (a'r) ■ b" ■ x (a' = r = b");

(3) r ■ s ■ t (r = s = t);

(4) r-s-a'(a'< s = r); (4') a" ■ r■ s (a" < r = s);

(5) a" ■ r ■ b' (a" < r, b' < r);

(6) r ■ a' ■ b' (A' < a' < r); (6') a" ■ b" ■ r (a" < b" < r);

(7) a' ■ b' ■ c' (c' < b' < a'); (T) a" ■ b" ■ c" (a" < b" < c");

(8) a" -b' • c' (c' < A'); (8') a" ■ b" ■ c' (a" < b").

It follows from (1), (1'), (2), (2') that a'(rb") - (a'r)b" whenever a' = r =

A". In addition, the associative law also holds in the following cases:

a'-rx       (a' = r); x-r-b"       (r = A");

a' ■ b" ■ x    (a' = A");        x ■ a' ■ b"     (a' = A");

r-b"-x      (r=b")\ x-a'-r       (a' = r).

This follows from (E): in the first case, for instance, we have r = re, where

r = e E S", and so the associativity for a' ■ r • x (i.e. a'(rx) = (a'r)x) follows

from (1). The other cases are similar.

Also note that the conditions in Theorem 2 are self-dual, so that duality

can be used for the proof.

Before we begin the proof, note, finally, that we have to establish the

associative law in S, which by (D) is a nine-variable identity

(a'ra")((b'sb")(c'tc")) = ((a'ra")(b'sb"))(c'tc"),

in terms of the conditions in the theorem, which, except for the first four, are

three-variable identities that involve only the products covered by Axiom (P).

The first step of the proof is to show that the general product in our

regular-like groupoid can be expressed in terms of simple products, just as we
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did for regular semigroups in §1. [This is not a necessary part of the

proceedings, since the results could be added to Axiom (P) instead of derived

from the other conditions; they are easy to verify directly in case S is a

regular semigroup.] What we need is only

Lemma 2.1. Assume (1), (1'), (2), (2') hold and a' = r = a", b' = s = A".

Then

(a) for all x = c'tc" (with c' = t = c"), xa' '< c', xa' '-k a', a"x '< a",

a"x "< c";

(b) (ra")(A'i) '< a" and ¡k A';

(c) b' < r implies (a'r)(b's) = ft with b' = t = f < a';

(c') a" < s implies (ra")(sb") = tf" with a" = t = f" < A".

Proof. Let x = c'tc", with c' = t = c". Then

xa' = ((c't)c")a' = (c't)(c"a')   by (2') (as c' = t = d")

= (c't)(f'(uf"))      with/' = u 3 /", /' < c", f" < a', by (P2)

= c'(t(f'(uf")))      by(l)(asc'=i)

= c'((tf')(uf"))       by (2) (as/' = u = f")

= c'((g'v)(uf"))     with g' = t; = /',g' < t, by (P3)

(as/' -< c" = t, so/' -< /)

= c'{g'(v(uf")))     by(l)(asg' = t;)

= c'(g'((vu)f"))    by(l')(as«=/")

= (c'g')((vu)f")     by (2) (a.svuER,vu = u = v = g'= /", by (P,))

= (h'w)((vu)f")     with A' = w = g', h' < c', by (P4)

(as g' < t = c', so g' < c')

= A'(w((UM)/"))     by(l)(asA' = w)

= A'((w(üzz))/")     by (1') (as/" = t;« £ R ),

where w(um) E R, w(vu) = w = vu by (P,) (as w = g' = ü = vu) and, hence,

A' s w(vu) =/". Then A' < c' shows xa' '< c', /" -< a' shows xa' *< a'.

This proves the first half of (a) and the second half follows by duality.

Next, we have

(ra")(b's) = ((ra")b')s   by (2) (as A' = s)

= ((era")b')s    with e = r = a", by (E)

= (f'ug")s        with/' = u = g",f < e,g" < A', by (a)

= (/'u)(g"i)     by (2') (as/' = M = g")

further
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(ra")(b's) - (f'u)(vf")     with v = f" = g", f" < s, by (P3) (as g" < b'= s)

= ((f'u)v)f"    by(l')(aSü=/")

= (f'(uv))f"     by (1) (as/' = «),

where u = g" = v and so mü £ R, uv = « = u = /' = /" by (P,). Since /' -<

e = a" by (E3) and/" «< j = A', this proves (b).

Finally, assume A' -< r. Then

(a'r)(A'i) = a'(r(A'i)) by (1) (as a' = r)

= a'((rb')s) by (2) (as A' = j)

= a'((c'u)s) with c' = « = A', c' ■< r, by (P3)

= a'(c'(us)) by (1) (as c' = u)

= (a'c')(us) by (2) (as c' = u = j = us £ Ä by (P,))

- (/'ü)(mí) with/' = ü = c',f < a', by (P4) (as c' < r = a')

= f'(v(us)) by (1) (as/' = t>)

where t> = c' = us E R and, hence, f' = v = v(us) E R by (P,). Since also

/' < a' and/' = c' = A', this proves (c), (c') is dual of (c).   fj

3. We now begin to sharpen the associativity properties that form our

hypothesis.

Lemma 2.2. Conditions (1) to (4') imply associativity for the following prod-

ucts:

(1 +) (a'r) ■ (sb") ■ x, with a' = r = s = A",

(2 +) x ■ (a'r) ■ (sb"), with a' = r = s = A",

(4 +) r ■ s ■ x, with x '■< s = r.

Proof. We show (4 + ) first. Assume x '■< s = r, say x = a'ta", where

a' < s. Then:

r(sx) = r(s(a'(ta"))) = r((sa')(ta"))   by (2) (as a' s t = a")

= r((b'u)(ta")) with b' = u = a', b' < s, by (P3)

= r(b'(u(ta"))) by (1) (as A' s «)

= r(b'((ut)a")) by (I') (as t = a")

= (rA')((t//)a") by (1') (as a" = t = u = ut E R by (P,))

= (c'v)((ut)a") with c' = v = A', c' ■< r, by (P3)

(as b' < s = r)

= c'(ü((uí)a")) by (1) (as c' = v)

further
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r(sx) = c'((v(ut))a") by (1') (as a" = ut £ R)

= (c'{v(ut)))a" by (1) (^ c' ~ v = b'= u = ut

a ©(«/) E i? by (P,))

= (c'((vu)t))a" by (3) (as u = u = t)

= ((c'(vu))t)a" by (1) (as c' = v = u = vu E R by (P,))

= (c'(vu))(ta") by (V) (as t = a")

= {(c'v)u)(ta") by (1) (as c' = v)

= {(rb')u)(ta") (as c'v = rb' by definition)

= (r(b'u))(ta") by (2) (as A' = «)

= (r(sa'))(ta") (as A'm = sa' by definition)

= ((f»)fl')(te") by (4) (as a' < s = r)

= (rs)(a'(ta")) = (rs)x    by (2) and the definition of x.

This proves (4 + ). [Dually, associativity holds for products (4' + ) x • r • s,

with x '-k r = s.]

We now prove (1 + ). Assuming a' = r = s = A", we have

(a'r)((sb")x) = a'(r((sb")x))   by (1) (as a' = r)

= a'(r(s(b"x)))    by (2') (as 5 = A")

= a'((rs)(b"x))      by (4 + ) (as b"x   '< b" s s by 2.1(a)

and hence b"x '•< s =r)

= a'(((rs)b")x)        by (2') (as A" = r = s = rs E R by (P,))

= (a'((rs)b"))x     by (1) (as a'~ rs = A")

= (a'(r(sb")))x = {(a'r)(sb"))x    by (1'), (1) (as s = A", a' = r).

This proves (1 + ). Observe that (2 + ) is the dual of (1 + ).   □

Note that we have begun to use conditions (3) to (8'). It does not seem

possible to derive (1 + ), (2 + ) from only (1), (2) and their duals.

Corollary 2.3. Conditions (1) to (4') also imply associativity in the following

cases:

(9a) (a'b') ■ (sc") ■ x, with c" = s = b' < a',

(9b) (a'r) ■ (b"c") ■ x, with a' = r = b" < c",

(9c) (rb') • (sc") • x, with c" = s = b' < r,

(9a') x ■ (a'r) ■ (b"c"), with a' = r = A" < c"j

(9b') x ■ (a'b') ■ (sc"), with c" = s = A' -< a',

(9d) x ■ (rb') ■ (sc"), with c" = s = b' < r.
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Proof. When c" = s = A' -< a', then by (P4) a'b' = c'u with c' = u = V

^ s = c"; hence (9a) follows from (1 + ). The other formulae are established

similarly, or follow by duality.   □

Further sharpening of (6), (7), (8) is given by the next lemma:

Lemma 2.4. Conditions (1) to (8') imply associativity in the following cases:

(10) r ■ x-a', with x'< r:

(6*)r-a' -b',withb' < a';

(7*) a' ■ b' ■ c', with c' < A';

(8' + ) a" ■ A" • c't, with a" < A", c' = t.

Proof. Assume x '< r, i.e. x = A'jA" with A' s s = b" and A' -< r. Then

r(xa') = r((b'(sb"))a') = r(b'((sb")a'))   by (1)

= r(b'(f'(uf"))) where (sb")a' = f'(uf")

with/' = u=f",

/'< e ss, by 2.1(a)

= K(6'/')(«/")) by (2) (as/' a « = /")

= (/-(A'/'))(«/") by (9b') (as/" s « = /' < e s í s 6')

= ((/-A')/')«) by (6) (as/' < A')

= (rb')(f'(uf")) by (2) (as/' = u = /")

as/'(«/") = (sb")a'

= (rA')((iA")a') by definition

= {(rb')(sb"))a' by (9c) (as b" = s = b' < r)

= {r(b'(sb")))a'= (rx)a'     by (2).

This proves (10). Note that, dually, associativity holds for

(10') a"-x-r,   withxkr.

Now assume A' < a'. Then

r(a'b') = (re)(a'b') where r = e, by (E)

= /-(e(a'A')) by (2') (as r = e E S")

= r((ea')b') by (8) (as e E S", b' < a')

= {r(ea'))b' by (10) (as ea' ,<e = r, by (P2),

whence ea' '■< r)

= ((«)a')6' = (ra')b'    by (2') (as r = e E S").

This proves (6*).

Similarly, assume c' < A'. Then
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a'(b'c') = (a'e)(b'c') where a' = e, by (E)

= a'{e(b'c')) by (2') (as a' = e E S")

= a'((eb')c') by (6*) (as e E R, c' < A')

= a'((f'(rf"))c')     where eb' = f'rf", f' = r = f",

f <e,f" < A', by (P2) (ase ES")

= a'(f'((rf")c'))     by (1) (as/' = r = /")

= «'(/'( *'(«")))    where (rf')c' = g'(*g") with g'= s = g",

g'< e, = r, by 2.1(a)

= a'{(f'g')(sg"))     by (1) (as g' = s = g")

- (*'(/'£ '))(*")     by (9b') (as g's,s^?1Ef3/

by (E3), so that g' < f)

= ((*'/') s') (sg") by (7) (as ̂ /Kes a')

= («'/')( g'(^")) by (2) (as g' = í = g")

= (<f)((<fV) (as g'(^") = (rf'W by definition)

= ({a'f')(rf"))c' by (9a) (as/" = r = f < a')

= (a'(f'(rf")))c' by(2)(as/'s rs/")

= (a'(eA'))c' (as/'(r/") = eA' by definition)

= ((fl'e)A')c' by (1) (as a' = e E R )

= (a'b')c',

which proves (7*).

Finally, assume a" •< A", c' = i. Then

<z"(A"(c'0) = a"((b"c')t) by (2) (as c' = t)

= {a"(b"c'))t by (10') (as A"c' "< c' = t by (P2))

= ((a"b")c')t by (8') (as a" < A")

= (a"A")(c7) by(2)(asc' = /),

which proves (8' + ).   □

4. We now establish more associativity formulae which, like (10), have a

comparatively high number of variables.

Lemma 2.5. Conditions (I) to (8') imply associativity in the following cases:

(11) a' -A' -x,withx< A';

(12) (ra") ■ A' • x, with r = a", x '< A';

(13) (ra") -s-x, with r = a" < s, x '< s;

(13') x ■ r ■ (a's), with s = a' •< r, x '-< r;
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(14) a' ■ (A'r) • (c's), with V = r,c' = s, c' < A';

(14') (ra") ■ (sb") ■ c", with r = a", s = A", a" < A";

(15) (ra") ■ (sb") ■ (c't), with r = a", s = A", c' = t, a" < A".

Proof. Assume x '< A', say x = c'rc" with c' = r = c" and c' < A'. Then

a'(b'x) = a'(A'(c'(rc"))) = a'((b'c')(rc"))   by (2)

- {a'(b'c'))(rc") by (9b') (as c" = r = c' < A')

= ((a'A')c')(rc") by (7*) (as c' -< A')

= (a'A')(c'(rc")) = (a'b')x    by (2).

This proves (11).

Now assume r = a" and x '< A', say x = c'sc" with c' = s = c" and

c' -< A'. Then

(ra")(b'x) = (ra")(A'(c'(,c"))) = (ra")((A'c')(5c"))   by (2)

= {(ra")(b'c'))(sc")    by (9b') (as c" = s ^ c' < A')

= (r(a"(b'c')))(sc")   by (2') (as r = a")

= {r((a"b')c'))(sc")   by (8) (as c' < A')

= {(r(a"b'))c')(sc")   by (10) (as a"b' '< a" = r by (P2))

= (r(a"b'))(c'(sc"))   by (2) (as c'= s = c")

- ((ra")A')(c'(jc")) - ((ra")A')A:    by (2') (as r = a").

This proves (12).

Now assume r = a" ~< s, and x '•< s, say x = c'tc" with c' = / = c" and

c' < s. Then

(ra")(sx) = (ra")(s(c'(tc"))) = (ra")((.c')(/c"))    by (2)

= ((ra")(sc'))(tc")      by (9d) (as c" = t = c' < s)

= {r{a"(sc')))(tc")      by (2') (as r = a")

- (r((a"í)c'))(íc")     by (5) (as a" < s, c' < s)

= ({r(a"s))c')(tc") by (10) (as a"s '< a" = r by 2.1(a))

= {((ra")s)c')(tc") by (2') (as r = a")

= ((ra»(c'(/e")) by (2) (as c' = t = c")

= ((ra")s)x,

which proves (13). Then (13') follows by duality.

Next, assume s = c' ■< A' = r. Then
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(a'(A'r))(c'j) = ((a'b')r)(c's)   by (2) (as A' s r)

« (a'A')(r(c'i))   by (13') (as s = c' < r, and

a'b'"<b' =rby 2.1(a))

= (a'b')(d't) where r(c's) = (er) (c's)  (with r = e)

= </r with f = ci' < e, by 2.1(c)

(hence also d' < e = r = b' by (E3))

= {(a'b')d')t        by (2) (as J' = t)

= (a'(b'd'))t        by (7*) (as d' < A')

= (a'(f'v))t where A'<f « f'v,f ~v = d', by (P4)

(as d' < A')

= a'((/'o)/) by (2 + ) (as/' = v = d'= t)

= a'((b'd')t) (as/'e = AV by definition)

= a'(A'(rf'/)) by (2) (as d' = t)

= a'(b'(r(c's))) (as d't = r(c's) by definition)

= a'((b'r)(c's)) by (1) (as A' = r).

This proves (14). Then (14') follows by duality.

Finally, assume r = a" < A" = s, c' = t. Then

(ra")((sb")(c't)) = (ra"){s(b"(c't)))   by (2') (as 5 = A")

= ((ra")i)(A"(c'/))    by (13) (as r = a" < s and

b"(c't)< b" =s by 2.1(a))

= (w/')(A"(c'0) where (ra"> = (ra")(se) (with s = e)

= uf with u =/' < e, by 2.1(c')

(as a" < s)

= u(f"(b"(c't)))        by(2')(as«=/")

= u((f"b")(c't)) by (8' + ) (as c' = / and/" -< e = i

= A" by  (E3))

= (M(/"A"))(e'/)        by (9b) (as u = f" < A")

= ((uf")b")(c't) by (2') (as u=f")

= (((ra")i)A")(c'z)     (as uf" = (ra")s by definition)

= ((ra")(,A"))(c'/)      by(l').

This proves (15).   □
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The last lemma brings us four more formulae:

Lemma 2.6. When (I) to (8') hold, so does the associative law for the following

products:

(16) a' ■ x ■ (A'r), with A' = r;

(W)(ra")-x-b",withr = a";

(17) (ra") ■ x ■ (b's), with r = a", A' = s;

(\i)a' -x-b".

Proof. We put x = c'tc" throughout, with e' = t = c". If we assume

A' = r, then

a'(x(b'r)) = a'{{c'(tc"))(b'r)) = a'(c'((tc")(b'r)))   by (1)

= (a'c')((ic")(A'r)) by (11) (as (/c")(A'r) '< c" = c',

by 2.1(b))

- (f'("f"))((tc")(b'r))    where a'c' = f'uf" with / = u = f"

and/" < c', by 2.1(a)

= f'((uf")((tc")(b'r)))     by (1) (as/' =s u = /")

= f'{{{uf"){tc"))(b'r))    by (15) (as u=f" <c' = t = c",

b' = r)

= f((vg")(b'r)) where (uf")(tc") - vg" with

ü = g"=/",by2.1(c')

(as u = /" < c' = / = c")

= C/>g"))(£V) by (1) (as/' = f" = v = g")

= (/'((«/")(ic")))(A'r) (as vg" = («/")(ic"))

= ((/'(«/"))(^"))(^>) by (1) (as/' = « a /")

= ((a'c')(ic"))(A'r) (as/'«/" = a'c' by definition)

= (a'(c'(/c")))(A'r) = (a'x)(b'r)     by (2) (as c' = t = c")

which proves (16). Then (16') follows by duality.

Now assume r = a", A' = j. Then

(ra")(x(b's)) = (ra")((c'(tc"))(b's))

= (ra")(c'((tc")(b's)))      by(l)

= ((ra")c')((tc")(b's))     by (1) (as r = a", and

(ic")(A's) k c" s c', by 2.1(b))

further
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(ra"Xx(b's)) = (f(uf"))((tc")(b's))        where (ra")c'   [= (ra")(c'e),

where c = e] = f'uf"

with/'= u=f"

and/" -< c', by 2.1(b)

- {(f'(uf"))(tc"))(b's)     as in the proof of (16), above

= (((ra")c')(tc"))(b's)      (as (ra")c' = f'uf")

= {(ra")(c'(tc")))(b's)      by (2) (as c'= t = c")

= ((ra")x)(b's),

which proves (17).

Finally,

a'(xb") = a'((c'(/c"))A") = a'(c'((tc")b"))   by (1)

= a'(c'(t(c"b"))) by (2') (as / = c")

= a'(c'(/(c"(eA")))) with e = A", by (E)

= a'(c'(/((c"e)A"))) by (1') (as A" = e £ Ä )

= a'(c'(t((f'(uf"))b"))) where c"e - f'uf" with

/'-"=/",

/' < c",f" < e,

by (P2) (as e E S")

= a'(c'(t(f'((uf")b")))) by (1) (as/' s » = /")

= a'(c'(í(/'(ug")))) where («/")A" = üg" with

t, = g"=/",by2.1(c')

(as/" -< e = A")

= a'{c'{(tf')(vg"))) by (2) (as/' = f" = v = g")

= a'(c'(( g'w)(vg"))) where i/' = (e,/)/' (with / = e,)

= g'w, withw = g' =/',

g' < e„ by 2.1(c) (so, g' -< e,)

(as/' -< e" = t)

= a'(c'(g'(w(t;g")))) = a'(c'(g'((>vt,)g")))    by (1), (1')

(as g' = w, v = g")

further
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a(xb") = (a'c')(g'((wv)g")) by (11) (as w =f = v, so

g = g" =wv E R by (Px), which

shows g'((wv)g") '< ex =t = c)

= (a'c')((tc")b") (as the above shows (tc")b"

= g'((wv)g"))

= (h'(ph"))((tc")b") where a'c' = h'ph" with

h'=p = h" < c', by 2.1(a)

= h'((ph")((tc")b")) by (1) (as h'= p = A")

= h'{((ph")(tc"))b") by (14') (asp = h" < c' = t = c")

= (h'((ph")(tc")))b" by (1) (as 2.1(c') implies

(ph")(tc") = qk" with q = k" = h"

= h'; since A" -< t)

= ((h'(ph"))(tc"))b" by (1) (as A' = p = A")

= ((a'c')(/c"))A" (as a'c' = A>A")

= (a'(c'(/c")))A" = (a'x)b"   by (2),

which proves (18).   □

5. We can now complete the proof of the Associativity Lemma: i.e. show

that (1) to (8') imply the associativity of any product xyz. Putting x =■ a'ra",

z = A'iA", with a' = r = a", b' = s = A", we have

x(yz) = (a'(ra"))(y((b's)b"))

= a'((ra")(y((b's)b"))) by (1) (as a'= r = a")

= a'((ra")((y(b's))b")) by (1') (as A' = s = A")

= a'(((ra")(y(b's)))b") by (16') (as r = a")

= (a'((ra")(^(A'J))))A"      by (18)

= (a'(((ra")y)(b's)))b"      by (17) (as r = a", A' = s)

= ((a'((ra»)(A'*))A"     by (16) (as A' £ i)

= (a'((ra")y))((b's)b")     by (1') (as A' = s £ A")

= ((a'(ra"))>')((A'i)A")     by (1) (as a' s r s a")

= (xy)z.

This completes the proof.
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3. Applications to regular semigroups.

1. We saw in § 1 that the multiplication of any regular semigroup S can be

described in terms of the partially ordered sets / = 5/ft, A = S/t and the

set union of groups G, if we know the structure data (Theorem 1): more

precisely, all regular semigroups can be described as in Theorem 1, but we

still lack necessary and sufficient conditions that the multiplications con-

structed in that way yield regular semigroups, or, in other words, we still lack

a characterization of the structure data of regular semigroups.

We do know some necessary conditions, however. First we know what the

structure data must consist of; this must be listed here. First, we must start

from sets /, A, G and an equivalence relation = on the disjoint union

/ u G u A; in addition, we know that /, A carry order relations, and that

each class modulo the restriction of = to G is a group; furthermore, each

class modulo = intersects /, G, and A. By selecting one element ia E I and

one element X,, £ A in each equivalence class (in particular, ia = Xa), we can

define relations -< on / X (/ u G u A), A X (/ u G U A) by

i -< m <=> z < ia = u,       X ■< u <=> X < Xa = u.

We see that i -< u = v implies i -< v, i < j -< v implies j •< v, and simi-

larly for A. The structure data then consists of this and eleven partial

mappings:

(g, m) h-» gm, G X /-»/, defined wheom < g;

(m, g) \-> gm, I X G —> G, defined when m •< g;

( g' v) H* vg, GxA^A, defined when v < g;

(»S g) H» g,> A x G -> G, defined when v < g;

(i, m) \-^> i + m, I x I -* I, defined when m -< i;

(i, m) h» aim, I X I —» G, defined when m •< i;

(v, X) K v + X, AxA-)A, defined when v < X;

(v, X) h-»v„¿, AxA-»/, defined when v < X;

(z',X) K/*À, /xA->/, always defined;

(i, X) H> X * z, / X A -» A, always defined;

(i, X) h» ta„ /xA^C, always defined.

Furthermore, we saw in §1 that these maps must always satisfy certain

conditions. These are of three kinds. The first type of conditions prescribes

compatibility with = and the order relations < ; these are:

m = gm = gm ■< g, whenever m -< g;

v = g„ = vg < g, whenever v < g;
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m = a¡m = i + m < i, whenever m •< i;

v = vr¡x = v + X < X, whenever v < X;

i * X = tXí = X * i,   i * X < X,   X * i < i,   for all i,X.

This was seen in 1.4, 1.5, 1.7, 1.8, 1.3. To this we add the following part of

1.9:

when / < z, there exists m ■< i such that i + m = /;

when n < X, there exists v < X such that v + X = ¡i.

This says in effect that the order relations on /, A do not contain more pairs

than necessary.

The second group of conditions consists of normalization properties which

have also been seen in 1.4, 1.5, 1.7, 1.8, 1.3; in these conditions (and in what

follows) the identity elements of the groups which make up G are all denoted

by 1 (this creates no confusion, as their location is always clear from context).

These conditions are:

1 m = m, \m = 1,   when m < \;       gia = za, g'« = g,   when g = za;

H = v,\v = 1,   when v < \;       Xag = Xa, gK = g,   when g = Xa;

ia + m = m, a¡ m = 1, i + ia = i, a,, = 1,   when m < ia = z;

v + Xa = v,vVrK = l,Xa + X = X, vK<x = 1,   when v < Xa e= X;

i * Xa = i, rK¡ = l,Xa* i = Xß = i,   when i < Xa;

L * A = '/s — a. T\,i„ = 1, X * za = X,   when X < ia.

The last group consists of the regularity properties established in 1.1 :

when i = za, some X = z satisfies i *X = ia,X* i = Xa;

when X = \, some i = X satisfies z * X = z'a, X * z = Xa.

2. Conversely, assume that /, A, G and all the above satisfy these compati-

bility, normalizaiton and regularity conditions. Let T = {(i, g, X) E I X G X

A; / = g = X). We can try to define a multiplication on T as in Theorem 1;

namely, put

(*. g> ̂ )U h> M) = (i + gm, °i,gmgmrXjhpvyhtti, vh + u)

where m=j*X,v = X*j.

Lemma 3.1. When the compatibility and normalization conditions hold, the

multiplication above on T is well defined. Furthermore, with this multiplication,

T is a regular-like groupoid.

Proof. When (z, g, X), (j, A, p) E T and m=j*X, v = X*j, the compati-

bility conditions imply: m ~ rXJ = v; gm is defined since m ■< X = g, and
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gm = gm = m; then gm < i, so that z" + gm and aigm are defined and

z + gm s a, gm = gm = m. Similarly, A,, r„A and vh + ¡i are defined, and

equivalent modulo = . In particular, the five group terms lie in the same

group ( = equivalence class), so that their product is defined and again lies in

that same equivalence class. Thus the multiplication on T is well defined.

The verification that T is a regular-like groupoid involves a certain amount

of straightforward computations which shall be left to the reader; it is based

upon the normalization properties. Define the following subsets of T:

S'={r, = (z,l,Xa);z = l=Xa},

R =  { [ 8]  = (»«» g, K)'> 'a^g = K}>

S" = {qx = (ia,l,X);ia = l=X).

Define r, < r, by z < /, qx < q by X < ¡i; we can extend = to T by saying

x=y when the components of x are equivalent to those of y; and define

r¡ < x by r, < ea = x, qx < x by qx < e„ = x, where ea = (za, 1, Xa) = rL

= HI = 1\- Then Axiom (R) holds.
Now take g £ G, X E A, g = X. We have

[ g]l\ = ('« + gm, oktgmgmrKti\yvyX^, v\ + X),

where g = X = ia, m = ia * Xa, v = X„ * za. It follows from the normalization

conditions that m = ia, v = X„, and then ia + gm = za, a^gm = 1, gm = g,

T\..4 " Mr " 1> w,u = 1 and »-I + X = X. Hence, [g]6/A = (za, g, X).

Similarly, r,([g]6/a) = (z, g, X), whenever i = g = X, and this establishes

Axiom (D).

The rest of the proof is similar. To verify (P), one uses the normalization

conditions to show:

[g][h] =[gh]<   wheng = A;

9\f¡ = ('* à,tXi/,x*0;

[g]rm = (gm, gm, Xa),   when m < g;

<¡v[ g] " (»«» &. "f )>   when » < g>

rirm = (' + m, aI?m, X„),   when m < i;

qrq\ = (»«> «va» ** + A).  when ^ < ^;

then (P) follows from the compatibility conditions.

Axiom (E) is similar. Define E to be the set of all ea. Then (E^, (E2) follow

from the six formulae above by judicious specialization, while the rest of the

axiom is obvious.   □

In view of this lemma, we can use the Associativity Lemma (Theorem 2) to

obtain necessary and sufficient conditions that T be a semigroup. These

conditions fall into two groups. Conditions (4) to (8') (i.e. the associativity in
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cases (4) to (8') of Theorem 2) will be written later; we note that any two

consecutive elements in any of these cases multiply to one of the simple

products encountered in §1, and hence the corresponding associativity condi-

tions are conditions that one would in any case think of considering first; for

this reason we call them the obvious associativity conditions.

The remaining conditions, (1) to (3), are trivial, and follow from the

normalization properties. This is clear for (3) in view of the formula [g][A] =

[gA] above. Condition (1) is verified as follows. Take i = g = X and x =

(j, h, p) E T. Then

(/-,([ g]<lx))x = (', g, X)(j> h> M) = (' + gm, oi¡gmgmTXJhrv,h¡ll, vh + p),

with m=j*X,v = X*j. Similarly,

([ g]lx)x = (/a, g, X)(j, A, p) = {gm, gmTXJh„vphll, vh + p)

= (gm,k,vh + p)

with m, v as above; / = ia. When this is multiplied on the left by r, =

(/, 1, Xa), one obtains

(/ + 1/j, aiMinTKgmkiVikl,h+ll, fr + (vh + p.)),

with k as above, n = gm *Xa, £ = Xa* gm. Since gm = m < X = Xa, the

normalization properties imply n = gm, £ = Xß = m, \n = gm, I" = 1, t^^

= 1, ££ = 1, £k = Xp, v(lcph+li = 1 and £k + (vh + p) = vh + ju (as vh + p =

v = m = Xß). Hence

/•/(([ g]l\)x) = (' + gm, aigmk, A + p) = (r,([ g]qx))x.

Condition (2) is verified similarly, and (1'), (2') follow by duality.

We can now state

Theorem 3. With I, G, A as above, assume that the compatibility, normaliza-

tion, regularity and obvious associativity conditions are satisfied. Let T =

((/, g, X) E / X G X A; z = g = X} wz'íA the multiplication

(', g, A)(y. h, p) = (i + gm, aiigmgmTXJhpvphll, vh + p),

where m = j * X, v = X *j. Then T is a regular semigroup. Furthermore, the

structure data of T is precisely the given data. Conversely, every regular

semigroup can be constructed in that fashion.

Proof. The converse is Theorem 1; hence we only have to continue the

proof. The results obtained so far show that, under the hypothesis of the

theorem, T satisfies all the requirements of the Associativity Lemma, and so

is a semigroup. [This is by far the sharpest part of the theorem.] We now turn

to regularity.
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When x - (i, g, X) E T, put R (x) = i. When z E T, then R (xz) = z" + gm

for some m < z" and, hence, Ä(xz) < R(x). Conversely, assume R(y) <

R (x); say, y = (j, h, p), j < z. We shall show that this implies y = xz for

some z E T; more precisely, we shall show that r, E xT andy E r¡T.

By the regularity conditions, there exists/? £ / such that X = p,p * X = z'a,

X * p = X„, where i'sg = X = ^ = Xa. With u E G, u = X„, we have

(/, g, X)(p, u, Xa) = (/ + gm, vigmgmTXj,upvmX, vu + Xa),

where m = p * X = za, z> = X */> = Xa; hence the normalization conditions

imply i + gm = i, oigm = i, gm = g, u„ = u, vm¡K = 1 and vu + Xa = Xa.

Hence (i, g, X)(p, u, Xa) = (i, gTx¡pu, Xa); in the group of all «EG with

u = za we can find one u such that (i, g, X)(p, u, Xa) = r,. Thus r, £ xT.

Considering nowj» = (j, A, /¿) with/ < z, we first have/ ■» i 4- m for some

m < i, by the compatibility condition; there m =j = h = p. Taking v E G,

v = A, we have (using the associativity in T)

we can always find t> so that this is.y, and so.y E r/T. [This can also be shown

as we did for r, £ xT, without implicitly using the associativity.]

Thus we have shown that y £ x T if and only if R(y) < R (x). In particu-

lar, x ft y if and only if R (x) = R (y); and T/ft s / (as partially ordered

sets). Dually, T/t = A. If now we take ¡6/, X £ A such that i = X,

1' * A = i<* (— 0. X * / = X, then we see, as in the proof of 1.12, that (/, u, X) is

an idempotent of T for some u (the calculation is the same, of course). The

regularity conditions then show that every ft-class of T (and, every £-class)

contains an idempotent; and T is a regular semigroup.

We also have some information about the structure data of T. Up to the

obvious isomorphisms and identifications, / and A are as given, which

immediately implies that x = y if and only tí x tf) y, so that ea is a suitable

choice of idempotents and G is as given (identifying g and [g]). That this

yields for T the very some structure data as we started with (up to these

isomorphisms and identifications) is then obvious on the formulae qxr¡ —

r, g x[tx ¡\qx ( (., etc., established before.    □

3. Theorem 3 is, strictly speaking, a full structure theorem for regular

semigroups, which constructs them in terms of groups and partially ordered

sets, by means of mappings satisfying explicit conditions. However, as a

structure theorem, it leaves much to be desired, since it needs no less than

eleven actions and factor sets, satisfying seven compatibility conditions, six

normalization conditions, the two regularity conditions, and the nine obvious

associativity conditions, some of which we shall see are rather technical.

Forthcoming papers will show that part of the trouble is inadequate presenta-

tion, namely there are better ways to present the operations + and * and the
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partial actions of 6 on / and A, than by giving a longish list of technical

conditions. At any rate, Theorem 3 is not likely to be very useful as a

structure theorem.

All the same it gives us extremely valuable new information about regular

semigroups.

Many classes of regular semigroups have been constructed. These construc-

tions are mostly in terms of one ft-class (partial semigroup), for the many

bisimple examples, or the band of idempotents, in the orthodox cases;

constructions in terms of groups and partially ordered sets are obviously more

desirable, but not so common. Theorem 3 shows that this last type of

construction, the type that describes most of the structure, is possible in

general.

In addition, the theorem also tells us how to obtain such a construction;

and, by showing that only the obvious associativity conditions need be

considered, it takes care of the most difficult part of the construction, leaving

only parts which we have seen are entirely straightforward. Thus it should

prove a most valuable method of constructing regular semigroups.

We shall see in the next section that this method is still useful in the case of

other types of constructions. The essential part of the theorem is, of course,

the most difficult: that is, the Associativity Lemma.

4. We complete this section by giving the nine obvious associativity

conditions, with various comments and an example showing their possible

use. The reader must keep in mind that the fact that only these conditions

must be considered is rather more important than the conditions themselves.

The nine conditions are obtained, either by straightforward calculation, or

by means of the formulae qxr¡ = rimX[rx>,]qXmi, etc. (then using associativity

in cases (1) to (3)). These calculations are left to the reader. Each condition

splits into three conditions that hold in /, G, A respectively, some of which

are trivial. The conditions are:

(4,)   (gh)m = g(Am), (4G)    (gA)m = ghmhm,   where m < g = A;

(4a)   y{gh) = (vg)h, (4G)    (gA)„ = g„A„g,   where v < g = h;

(5,)   gm* v = gp(m * vg),     (5A)    vg * m = (v * gm)gm,

(5G) rPSm(gm)p.gm = (gp)m'%,m,  where v< g,m< g;

(6/) g(m + n) = gm + gmn,

(6G: gm+nom,n = ogm^(gm)n,   where« < m < g;

(6A) (î+v)g = Çgp + vg,

(6'c)    "{,,.?£+, - (&.)«"&..*.   where | -< v < g;

(1,) m + (n+ p) = (m + n) + amj>,
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O a)   °m*+Pa*j, = om+»,w(v)P'   where/» < n < m;

Pa)   (É + ") + A = Kx + (" + A),
(7'g)   ^í,^í+,,a - Kft)ftt*r+x>   where I < v < X;

(8,)    (i + m) * X = (z * X) + rK,(m * (X * /)),

(8<î)      Ta,, + m ( a,,m)x . (í + m) =  <V. A,tx.,C" • (A * <»(T*.'' '   T* • V"'

(8A)    (X * /') * m = (X * (z + /M))ai)#n,   where m < i;

(8J)    (i * X) * * ̂ ¿(i * (r + X)),

(8g)      (^a)' * T" + X,<  =  T",' . \(TX,<)r . (' . X)U(" . (i • X)KA . /'

(8A)    (v + X)* i = (v * (i * X))tx, + (X * i),   where »- -< X.

These formulae carry implications that both sides are defined in the

indicated circumstances; for instance, (8/) carries the implication that, when

m -< i, then also m * (X * i) -< i * X.

A good case can be made that, despite appearances, these associativity

conditions are the very simplest that can be given in this situation. One sees

that each expresses a compatibility relationship between two of the structure

data maps: e.g. (4/) relates the multiplication in G with its action on /, etc. It

is clear that all these relationships must be accounted for, and very doubtful

that in this general situation any of them is a consequence of the others. In

addition, they were derived from so-called simple products, which do indeed

give the simplest multiplications (the reader should convince himself of that

fact by calculating products such as r¡rj, grp without the hypothesis that

j < iJ < g).
Nevertheless we see on these conditions that the usefulness of Theorem 3

as a structure theorem for arbitrary regular semigroups is necessarily limited.

If, indeed, conditions (4), (6), (7) and their duals are satisfactory, however, the

conditions tying the star operations do not give a very adequate way of

coping with these operations in general; it can be seen at the beginning of §1

that these operations must be investigated more thoroughly than we have

done; also, a certain amount of complex structure is still hidden in these

operations, for instance the location of the idempotents of S in / X A, so that

they are, in effect, possibly the most important part of the structure data.

There are, however, some situations where Theorem 3 can be used

efficiently. The first case is when the subgroups of S are trivial; in this case,

conditions (4) to (8') simplify sufficiently to give adequate descriptions of all

the structure data, including the star operations. As an example of this, we

consider the case where S is a bisimple semigroup with identity and trivial

group of units, of type w; i.e. 5/ft = / is the descending chain of integers
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0 > 1 > 2 > • • • > n > n + I > ••• (the usual order on integers is used

hereafter).

In this case, we select z0 = 0, and Xq E A arbitrary. We note that / * Xq = z

for all i, by the normalization conditions; this implies that z0 is the only / with

/ * Xq = z0, in particular, the £-class X0 contains only one idempotent; since

Xo was arbitrary, it follows that S is a left inverse semigroup. For each X there

is, therefore, precisely one XS E I such that X8 * X = 0, X * XS = X„; this

defines a mapping S: A-»/. We now investigate the + and * operations,

noting that by Theorem 3 we can write S as I X A with multiplication given

by (i, X)(J, p) = (i + (/ * X), (X * j) + p), with + and * defined everywhere.

Conditions (7) show that both + operations are associative. We remember

from 1.9 that m h» i + m is an isomorphism of / upon {i, i + 1, . . . }; since

there is only one such isomorphism, the operation + on / is the usual

addition of nonnegative integers. Dually, A is a right cancellative semigroup

under +. [It is easily seen that A is just the ft-class of the identity element

(0, X0) of S. Furthermore, 1.9 need not be quoted, because by Theorem 3 the

conditions on the structure data will imply that fact: hence we can also verify

it directly from the conditions.] Now define a mapping 9: A —» A by X9 =

X* 1. It follows from (8A) that X * z = X9' for all z" (with X*O = X0° = Xby

the normalization conditions). On the other hand, XS * X = 0, and then (87)

shows / * X = 0 whenever i < XS, whereas (XS + k) * X = 0 + (k * Xq) = k

whenever k > 0. From these descriptions it is then easy to translate the

associativity conditions into conditions on S, 9; one finds that S must be a

homomorphism, (X + p)9 = X + p$ whenever p ¥= Xq (with Xq9 = Xq), and

(X9)8 = XS - 1 when X ¥= \. This provides an alternate proof for the struc-

ture theorem of these semigroups (Corollary 2.2 of [2]).

A specially important instance of the case when all subgroups of S are

trivial is when S is a band. This is of importance because orthodox semi-

groups are frequently constructed in terms of their band of idempotents, but

the structure of general bands is still far from being well understood. The

later refinements of this theory will bring no further light on that case, so that

Theorem 3 is so far the best that can be obtained by our methods. It is hoped

that a later paper will discuss that case in more detail.

The last case of interest is that of orthodox semigroups. In this case, the

star operations can be described in terms of the multiplication of idempo-

tents: if z £ /, X £ A, then there are idempotents e = (j, g, X), f = (/, A, p)

and knowledge of ef allows the description of / * X, rXi and X * z in terms of

the rest of the structure data. In the general case, one can see that this

description is sufficiently complicated that it makes a poor structure theorem.

Still, it shows that orthodox semigroups can be explicitly constructed in terms

of groups and their band of idempotents; the knowledge that such construc-

tions exist is not to be neglected, even when the theoretical construction is
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impracticable in that situation, as shown by the coextension theory; for it is a

good inducement to find a practicable construction. In one case, inverse

semigroups, the remark above does yield to a practicable construction, which

is the subject of a forthcoming paper.
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