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COMPACTTFICATIONS OF C

L. BRENTON AND J. MORROW1

Abstract. Let X be a compactification of C. We assume that AT is a

compact complex manifold and that A = X - C is a proper subvariety of

X. If we suppose that A is a Kahler manifold, then we prove that X is

projective algebraic, H*(A, Z) » H*(V"-\ Z), and H*(X, Z) = tf*(P"', Z).

Various additional conditions are shown to imply that X = P". It is known

that no additional conditions are needed to imply X = P" in the cases

n = 1, 2. In this paper we prove that if n = 3, X = P3.

0. Introduction. In this paper we continue our study of compactifications of

C" [2], [5], [19]. This introduction will give some definitions and state two of

our most important results. More detailed statements will come in later

sections. We will also state here some theorems which will be useful in our

proofs.

0.1. Definitions. Let A' be a (connected) compact complex manifold and

let A be a (closed) subvariety of X. We say that X is a compactification of C if

X — A is biholomorphic to C-we will see later that A is then necessarily a

connected subvariety of pure dimension n — 1. By a complex homology n-cell

we mean a noncompact complex manifold M of complex dimension n with

HJC(M, Z) = 0, for/ « 0, . . . , 2« - 1, where HJC(M, Z) is integral cohomol-

ogy with compact support.

First, let us make some remarks about dimensions < 2. For n = 1, we

notice that the only complex homology 1-cell is the disk D = [z: \z\ < 1}, or

the line C1. However, D is not compactifiable-if X — A = D, then any

nonconstant, bounded, holomorphic function on D would extend to a non-

constant (bounded) holomorphic function on the compact manifold X. Thus

the only compactifiable homology 1-cell is C1. Now, we will see later that

A = X — C1 is a point, where X is a compactification of C1 (A is a connected

0-dimensional set-see Theorem 1.1). We define a continuous map a: ^-»P1

= C1 u {oo} by a(z) = z if z e C1, a(A) = oo. By Rado's theorem a is

holomorphic. Since a is one-one, a ~ ' is holomorphic and X is biholomorphic

to P1. For n = 2 we have the results of [2], [19]. In particular, tí A = X - C2

is a manifold, then A = P1 and X = P2. Already in the case n = 2, compacti-
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fiable complex homology cells can be different from C2 as the counterexam-

ple in [23] shows.

For n = 3, our best result is Theorem 2.4—if X - A = C3 and A is nonsin-

gular, then X = P3 and A = P2 which is linearly embedded in P3. Our best

general result is given in Theorem 1.1. One of the consequences of this result

is that if X - A = C and if A is a Kahler manifold, then X is algebraic, A is

positively embedded, and H*(X, Z) s H*(P", Z), H*(A, Z) s H*(P"-\ Z)

as rings. This leads us to expect that if X — C = A is nonsingular, then

X = P", A = P"~ ', and A is linearly embedded in P".

We will want to use some criteria for a compact variety to be biholomor-

phic to P". Such results are discussed in [11] and [18]. However, the paper of

Kobayashi and Ochiai [13] gives the most convenient hypotheses. We will

now state those results of theirs that we shall use.

0.2. Theorem [13]. Let X be an n-dimensional compact complex manifold,

and L -> X a positive line bundle. Suppose either that

(1) (c(L)T([X]) = 1, and dim H°(X, L) > n + 1, or that

(2) cx(X) = c(Lk) for some integer k > n + 1.

77zen X is biholomorphic to P".

In this statement c(L) £ H2(X, Z) is the (first) Chern class of L, and c¡(X)

is the first Chern class of X. HJ(X, L) is the /th (sheaf) cohomology group

with coefficients in L, and Lk is the tensor product of L with itself k times.

This notation will be in effect throughout this paper.

We have had helpful conversations with colleagues, too numerous to

mention for thanks. However, we would like to thank David Lieberman for

showing us the Euler sequence on P".

1. General results on compactifications of C. Before we state the results of

this section we make some remarks about P". Let T be the tangent bundle of

P", and 0 its sheaf of holomorphic sections. Let 0(1) be the sheaf of

holomorphic sections of the hyperplane bundle H on P", and let 0 be the

sheaf of holomorphic functions on P". We note that the space of sections of

0(1) over P" can be identified with the homogeneous linear forms on P".

Then there is an exact sequence (the Euler sequence) of sheaves

o^0^(« +i)0(i) f>e^o, (i)

and a corresponding exact sequence of bundles

0^C^(aj + l)H~>T^>0. (2)

In these sequences, (n + 1)0 (1) and (n + \)H are (n + l)-fold direct sums,

and C is the trivial bundle. The maps a and ß are defined as follows. Let

[z0, . . . , z„] be homogeneous coordinates on P". Then vector fields of the

form S7=0^(z)(9/3zi) descend to P" exactly when the /,(z) are homogeneous
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linear forms. The so defined vector field vanishes at [f0, ...,?„] exactly when

(<o(?)> • • • » 4(f)) = (Afo> • • • » Afn) f°r some X £ C So the map a is defined

by

«(/0(z),...,/„(z))=Í)/,.(z)(|-)=y

where we consider y as a vector field on P". The map ß is defined by

J8(l) = (zo,...,zn)£(n+l)r(P',0(l)).

The point of this discussion is that in (2) we have a surjection of a sum of

n + 1 Awe bundles onto the tangent space of P". This is our motivation for

assumptions (h) and (i) in the theorem of this section.

This theorem summarizes our general knowledge about compactifications

of C.

1.1. Theorem. Let X be a connected compact complex manifold with no

exceptional subvarieties, and let A be a Kahler submanifold such that X — A is

a complex homology cell. Then:

(I) X is projective algebraic and A is a positively embedded hypersurface.

(II) 77zere is a continuous mapping tp: X -» P" taking A into a (linearly

embedded) hyperplane H s P"- ' wAz'cA induces ring isomorphisms

*•: H*(P», Z) -> H*(X, Z),

and

tf-WA)*:H*{r>-l)-*H*(A,Z).

(Thus A is a connected, (n — Xydimensional complex manifold.)

(III) If any one of the following holds, then the map of (II) may be taken to be

a biholomorphism:

(a) n < 5.

(b) X is homeomorphic to P".

(c) A is homeomorphic toP"~\

(d) The line bundle [A] of the divisor of A in X admits at least n + 1 linearly

independent holomorphic sections.

(e) The normal bundle N of A for the embedding A c X admits at least n

linearly independent holomorphic sections.

(f) X admits a zero-free meromorphic n-form with a pole of order at least

n + 1 along some hypersurface, or with poles of any orders along any n + 1

distinct hypersurfaces.

(g) A admits a zero-free meromorphic (n — \)-form with a pole of order at

least n along some hypersurface, or with poles of any orders along any n distinct

hypersurfaces.

(h) 77zere is an exact sequence

0 -» L ^ L0 ® • • • 0 Ln^Tx^0
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vvAere íAe bundles L, L0, . . . , L„ are holomorphic line bundles over X. (Tx is

the tangent bundle of X.)

(i) There is an exact sequence

0 -» L -» L0 © • • • © L„_, -» TA -» O

wAere íAe bundles L, L0, . . ., L„_, are holomorphic line bundles over A. (TA is

the tangent bundle of A.)

(j) /I admits a neighborhood U in X biholomorphic to a neighborhood of the

zero section of the normal bundle N of the embedding A c X.

(k) H\A, TA®N--) = 0,/or all v =1,2,_

Proof of (I). Consider the cohomology sequence (over Z) of the pair

(X,A):

. . . -> Hk~\A) -> #*(*, ¿) -* tf *(jr)-t tf *(¿) -» Jf*+I(Jf, A) -> . . . .

(3)
By assumption, #*(*, ,4) = #*(*" - ^) = 0, for 0 < k < 2n - 1. Thus Z s

#°(JQ s H°(A), and v4 is connected. Since A is Kahler, #2(/l, R) * 0. By

(3),
0 * H\A, R) a H\X, R) s //2"-2(Ar, R) a H2n~2(A, R).

Thus v4 is a connected complex manifold of dimension n — 1. Let a £

H2(X, Z) be the Poincaré dual of /I. Let [^4] be the complex line bundle on X

associated to the divisor A. Then the normal bundle of A in X is [/I] \A = N.

The Chern class of A^ is c(N) = 4>(A) where <j> is defined by (3). Let

x £ H2"~2(X). Then (x • a)(X) = <K^)(^) where "•" means cup product.

Since <b is an isomorphism, if x ¥= 0 then <p(x) ¥= 0. Thus x-a^Oifx^O.

This proves that c(N) ¥= 0, and hence N is not topologically trivial. Now we

also know that N is not negative (in the sense of Grauert), because in that

case A would be exceptional and that is contrary to our assumption. In (II),

we will show that c(N) = <b(a) generates H*(A, Z). In particular, H2(A, Z)

= 0(a)Z. Since A is Kahler and 4>(a) is neither 0 nor negative, <i>(a) must be

positive. Accordingly, N > 0 and by Theorem 2.4 in Morrow and Rossi [20],

[^]>0onl. This proves (I).

Proof of (II). We need to use the Thom-Gysin sequence

. . . -» Hk(a) -» Hk-\A)^Hk+1(A) -» Hk+i(a) -*..., (4)

where a is the boundary of a tubular neighborhood of A (which is the same as

the boundary of the normal disk bundle of A in X). We claim that Hk(a) = 0

for 0 < k < 2« - 1, and Hk(a) = Z for k = 0 or 2n — 1. To prove this claim

we proceed as follows. Let De be the e-disk bundle of A embedded as a

tubular neighborhood of A in X. Then we have the exact sequence (over Z)

. .. -> Hk(X - De, 3A) -+ Hk(X - De)

-» H*(82>.) -* #*+1(* - D„ 3D.) -► . . . ,  (5)
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where dDe is the boundary of De, and thus a = dDe. But Hk(X, A) s Hk(X

- De, 3Z)e). It follows then that Hk(X - De, Wt) = 0 for 0 <k < 2n. This
implies by (5) that Hk(X - De) at Hk(dDe) for 0 < k < 2n - 1. Now 3£>e is

a connected real (2n - l)-manifold, so Hk(dDt) = Z for k = 0 or 2« — 1. By

Lefschetz duality #*(* - Dt) s H2n~k(X - De, dDE). Consequently Hk(X

— De) = 0 for 0 < k < 2n. By the universal coefficient theorem, Hk(X — De)

= 0 for 0 < k < 2/z. It follows then that Hk(dDe) = 0 if 0 < it < 2n - 1, and
Hk(dDe) siZtík = QoT2n — 1. In (4), the map a is given by cupping with

x(o-), the Euler class of the circle bundle a over A. But x(<*) = c(N). From

what we have just proved, cupping with c(N) defines an isomorphism a:

Hk(A) -+ Hk+2(A) as long as 0 < k < 2n - 3. Now H°(A) s Z by the proof

of (I); and hence H2k(A) = [c(N)fZ, for 0 < k < n - 1. In addition, in (4) if

k = 0, we get

O-^tf'iyO-i.tf'to)^_

Accordingly, H1(A) = 0. Using (4) again, we conclude that H2k+l(A) = 0 for

0 < k < n - 2. This proves that H*(A, Z) s H*(P"~\ Z) as rings where the

generator of H*(A, Z) is c(N) £ H2(A, Z).

Next, if a is the Poincaré dual of A in X, then c([A]) = a; and by Poincaré

duality,

(a"-l-a)(X) = (a"-')(A)=l.

Thus H*(X, Z) a íí*(P", Z) as rings, and the generator of this truncated

polynomial ring is c([A]) = a. Let P°° be infinite projective space, which is

the classifying space for complex line bundles. We think of P°° as U ^oP"*

with P" c P"+'. Let T be the canonical line bundle on P00 and let ^: X -» P00

be a continuous map such that \p*T = [A]. Then by the cellular approx-

imation theorem there is a map \p: X —> P°° which is homotopic to \¡/ and so

that \p(X) c P" and \p(A) c P"~ '. Then \p and \pA = »^ are continuous maps

inducing isomorphisms xb*: H*(P", Z) a H*(X, Z) and ^*: H*(P"-\ Z) a

H*(A, Z).

Before proving part (HI) we note some further properties of X and A :

(a) H'(X, 6X) = H'(A, SA) = 0Vi> 0;

(ß) every holomorphic line bundle L on X (respectively on A) is analyti-

cally isomorphic to [A]k (respectively to N*) for some integer k;

(y) in particular, for Kx, KA the canonical bundles we have isomorphisms

Kx s [A]~C',KA s N~Cl + l for some integer c, > 1; and

(5) Hl(X, L) = 0 Vz ̂  0, n for every line bundle L on X, and H'(A, L) =

0 Vz =7^ 0, m — 1 for every line bundle L on A.

Proof of (a)-(8). Since X is projective algebraic (in particular, Kahler) by

part (1), (a) for X follows from the Hodge-Kähler bidegree decomposition

H\X, C) s    ©   H"(X, ß«),
p + q=i
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Hodge-Kodaira duality

h\x, ex) = h°(x, of),

and the conclusion H*(X, Z) = H*(P", Z) of part (II); and similarly for A.

Also from part (II) we have that H2(X, Z) (respectively H2(A, Z)) is isomor-

phic to the integers and generated by the Chern class of the bundle [A]

(respectively N). Thus (ß) for X follows from (a) via the exact sequence

h\x, ex) -^h\x, e*) -* h2(x, z) -* h\x, ex),

and similarly for A. For (y), we have in any case Kx at [A]~c' for some

integer c, by (ß), whence KA at KX\A ® [A]\A a N~c' + l by adjunction. Now

if Ci < 0 then Kx would have a non trivial section (namely aC| for a the

canonical section of the positive divisor A); but this contradicts, via Serre

duality, the conclusion H"(X, 6X) — 0 of (a). Similarly c, = 1 implies that

KA is trivial, contradicting H"~l(A, 6A) = 0. Thus c, > 1 as claimed.

Finally, if L ss [A]k is any line bundle on X then, since [A] is positive, (y)

shows that either L is negative (if k < 0) or else Kx ® L_1 is negative (if

k > — c,). Thus (8) for X follows from Kodaira vanishing and Serre duality,

and similarly for A.

Proof of (III). Given part (I), (a) is proved in Van de Ven [25, Theorem

4.3]. Since Kx is negative by (y), (b) is proved in Hirzebruch and Kodaira [11]

under the slightly stronger hypothesis that X is diffeomorphic to P2. The proof,

however, uses only the fact that X has the right rational Pontrjagin classes,

and these are shown to be only topological invariants by Novikov [22] (see

also [18]). Similarly, (c) implies at least that A is biholomorphic to P"_1, so

that (c) implies, for instance, (i), which will be dealt with shortly.

(d) and the implication (e)=>A as P"_1 are (given (I) and (II)) direct

applications of Theorem 0.2(1), while (f) and (g) follow similarly from 0.2(2).

(To see this last fact, let w" be a zero-free meromorphic «-form with pole set

P = 2*=i/>„ P¡ irreducible. Then if m, is the order of the pole along P¡, we

have, by definition,

Kxm ® [P,]-"*.
; = 1

But from (ß), each of the bundles [P¡] is isomorphic to [Af for some integer

/„ and lj > 0 lest the bundle [P¡] be a negative or trivial line bundle on a

compact manifold admitting a nontrivial analytic section. Thus

Now the two alternate hypotheses of (f) imply, respectively, that one of the

m, > n + 1 or that k > n + 1. In either case we have Kx s [A]~c< for

c, > n + 1. Now we can apply Theorem 0.2(1). The proof of (g) => A sP""1

is identical, substituting the normal bundle N for the bundle [A].)
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We shall now show (h) => (j), (i) => (k) => (j), and finally (j) => the conclu-

sion X ss P".

(h) ■* (D- Consider the mapping <$>: A ^> N given by the zero section. We

want to extend ^ to a mapping of a neighborhood of A in X isomorphically

onto a neighborhood of <j>(A) in N. By Griffiths [8, Proposition 1.3], the

obstructions for a formal extension are elements of Hl(A, TX\A <8> N~"),

v = 1, 2, . . . , for Tx the tangent bundle to X. But since A is positively

embedded, such a formal extension always converges in a neighborhood [8,

Theorem II(i)]. Notice we may assume n > 5 by (a). Thus it suffices to show

H](A, TX\A ®N-") = 0,   Vv>0. (6)

Let

0 ̂ > L -> L0 © • • • ©L„^7V^.O

be the exact sequence of (h). Now restrict this sequence to A and tensor with

N ~', where N is the normal bundle of A in X. Taking cohomology, we get

...->#'(¿, L0® N "")©•• • ®HX(A, Ln®N-v)

^HX(A, TX\A ® N~P)^H2(A,L® N~')-*..-..

By property (8) above, the first and last groups vanish provided dim(A') = n

> 3. As remarked above we may assume n > 5 by (a). Consequently, (6) is

proved and, accordingly, (h) implies (j).

Next we show (i) => (k) => (j). By (i) we have the exact sequence

o —l^l0© • • • eiiI_1-»ri<-»o.

As above we can conclude that (k) is true, i.e., Hl(A, TA ® N~") — 0 for

v > 0. (In fact we notice that we have no need to restrict v in either case.)

Now we have

0^TA->Tx\A-*N-»0.

Tensoring with N'" and using (k) and (8) yields H\A, TX\A <8> N~") = 0.

We have already seen that this implies (j)-

(j)=*IsP. Assume (j): 3 a neighborhood U of A mX and a mapping </>:

U -» N, N the normal bundle, which is a biholomorphism onto its image

<j>(U) and which maps A onto the zero section A0. Let TV d A7 be the

associated projectivized bundle and denote by A^ =* N — N the infinity

section. Since N is positive the dual bundle JV — A0 -> Ax is negative, so ^

is exceptional in N. Let ir: Ñ ^> Y blow down yl^. That is, Y is the

topological space N/Ax together with the unique normal analytic structure

for which the quotient map it is analytic (Narasimhan [21]).

Consider the two irreducible normal spaces X — A and Y — tr(A0). These

are both obviously Stein, since A, respectively ir(A0), is positively embedded

respectively in X and Y and neither X - A nor Y - ir(A0) has positive

dimensional compact subvarieties. Furthermore these spaces are "isomorphic
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at infinity"; namely, the map -n ° <j>: U - A -> Y - tt(Aq) is a biholomor-

phism of U — A onto its image, an open set in Y — ir(A0) whose complement

is compact. By [9, Theorems VII C10 and Vil D4], this map extends to a

biholomorphic mapping from X to Y.

We conclude from this argument that Y is biholomorphic to the complex

manifold X. In particular, the pointy = ir(A0) is nonsingular. But Moisheson

[17, Theorem 1, p. 139] shows that the only exceptional submanifold which

collapses to a regular point is P"_1, and that the normal bundle to the

embedding must be the tautological (Hopf) bundle. We have by duality then

that A =s A0 » P"~ ' and that N -» A is isomorphic to the hyperplane bundle

7/ — P"-1.

Finally, consider the sheaf sequence

O-e^fAj-fA^-O
where x is multiplication by the canonical section of the divisor A. Passing to

cohomology this gives

0 -» H°(X, 6X) -+ H°(X, [A])^ H°(A, N)^H \X, 6X)^....

But H \X, 8X) = 0 by (a), dim H°(A, N) = n by the conclusion (N -h> A) s

(H -» P""1), and dim H°(X, 6X) = 1 by compactness. We conclude that we

are back in case (d)-dim H°(X, [A]) = n + 1-and the desired result X = P"

follows as before from Kobayashi and Ochiai. Indeed, it is easy to check that

the n + 1 sections a0, . . . , a„ of the bundle [A] map X biholomorphically

onto P", A onto a hyperplane n » P"_1, and X - A onto P" - n ss C, via

x -» the point in P" with homogeneous coordinates [a0(X), . . ., a„(x)].

2. The case n = 3. In this section we give our best results on compactifica-

tions of C3. Below, a surface is any reduced irreducible two-dimensional

analytic space, singularities allowed. An algebraic surface (possibly singular)

is rational if it is birationally equivalent to P2. A nonsingular surface S is ruled

over a curve C if there is a holomorphic mapping it: S -» C whose generic

fibre is a nonsingular rational curve. If S is a (possibly singular) surface we

will use the traditional notation for its numerical invariants: q =

dim H*(S, 05), the irregularity; pg = dim H2(S, 0S), the geometric genus;

A, = dim H'(S, R), the z'th Betti number; A+, A", respectively, the

dimensions of the positive and negative eigenspaces of the cup product

pairing H2(S, R) X H2(S, R) -h> R; and if S is nonsingular, Pm =

dim H°(S, K™), the wth plurigenus, Ks the canonical bundle. For F and G

line bundles on S we will write (F- G) for the integer [c(F) u ¿KG)]^)], c

the Chern class map, (S) the fundamental oriented 4-cycle of S, and similarly

(C • D) for two divisors C and D, etc.

2.1. Theorem. Let X be a nonsingular analytic compactification of C3 such

that the analytic set A = X — C3 has only isolated singularities. Suppose
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b3(X) ¥= 1. Then X is projective algebraic and A is birationally equivalent to a

ruled surface over a curve of genus g = \b3(X).

Proof. Since C3 is connected at infinity, A = X — C3 is connected. By

holomorphic convexity of C3 and Hartogs' theorem it is clear that A has pure

dimension 2. Since the singularities of A are isolated and A is contained in a

3-fold, then A is normal, hence locally irreducible, hence irreducible. As in

the general case the standard sequence

-* H'(C3, Z) -+ H'(X, Z) -t H'(A, Z) -* H' + '(C3, Z) ^ . . .

shows that the natural map <$>: H'(X, Z) -» H'(A, Z) induced by the inclusion

of A into X is an isomorphism for all i < 4. When i = 5, we find H5(X, Z) c

H\A, Z) = 0. Thus H5(X, Z) = H5(A,Z) = 0. By Poincaré duality,

HX(X, Z) = 0. Now the universal coefficient theorem says that HX(X, Z) is

free and is isomorphic to the free part of HX(X, Z). Thus Hl(X, Z) = 0. Next

we claim that H2(X, Z) at H2(A, Z) ä Z and thatp(A), the Poincaré dual of

A considered as an element of H4(X, Z), generates H2(X, Z). For, Z ss

H\A, Z) a H\X, Z) s H2(X, Z), where the last isomorphism is by Poin-

caré duality. But the universal coefficient theorem implies that H2(X, Z) =

H2(X, Z) © T, where Tx is the torsion part of HX(X, Z) = 0. Thus H2(X, Z)

s Z. To see that p(A) generates H2(X, Z), notice that [p(A) ■ a](X) = u(A)

where u E H4(X, Z) and "•" means cup product. Choose u so that 03(A) =

1. If p(A) = kg, where g generates H2(X, Z), then [g- u](X) = \/k. Hence

k = ± 1 and p(A) generates H2(X, Z). Now we have b2(A) = b2(X) = 1, and

b3(A) = A3(AO j* 1. Let W = L4]!,, be the normal bundle of /I. Then the

Chern class c([A]) = p(A), and <£>(/>(/!)) = p(A)\A = c(7V). Thus c(N) gener-

ates H2(A, Z). In [3] the proof of Proposition 6 shows that these conditions

imply that A is algebraic and that N is either positive or negative on A (in

that proof we use only that no tensor power of L is topologically trivial).

Now, as in Theorem 1.1, the fact that C3 is Stein implies that N is positive;

indeed, [A] is positive on [X]. Thus X is projective algebraic.

Since X is algebraic and bx(X) = 0 we again use the Hodge-Kähler theory

to conclude that HX(X, 0) = 0. We know also that H2(X, Z) is generated by

c([A]) and thus that H2(X, 0) = 0. Now by a result of Kodaira [15, Theorem

3], for any compactification Y of C, H°(Y, KY) = 0. By duality H\X, 0) =

0 (in our case). We now conclude as we did in (8) of §1 that Kx » [^4]~C| for

some e, > 0.

We want to examine the structure of A. Let it: Ä -» A be a resolution of the

singularities of A with exceptional curve C = it ~ ' (singular points) =

Ua_iCa, Ca irreducible. Since A is algebraic, so is Ä. It is easy to show from

properties of the maps wf : H'(A, Z) -> H\Ä, Z) that b+(Â) = b+(A) = 1,

that b3(A) = b3(A), and that the canonical bundle on A is given by
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KA =TT*(N)-C< + 1® (g) [Cay°
01=1

for some nonnegative integers na [3, Corollary 3 and the concluding section].

Hence from Kodaira's equation A+ = 2pg + 1 [14, I, Theorem 3], we have

thatpg(Â) = dim H°(A, KA) = 0.

We claim that indeed Pm(A) = 0 Vm > 0. To see this note that

dim H°(A, Kf) = dim H°(a, Tr*(N)-m{c'-x) ® ® [Ca]_m"°)

< dimH°(Ä,TT*(N)-m(c'-l))

= dim//°(y4,7V-m(c'-1>),

the last equality holding by normality of A. Since N is positive and c, > 0

this last group vanishes unless c, = 1. Then surely K.% = ® a-ilÇ,]"""" nas

no section unless all the na = 0, and in this case KA is trivial, contradicting

Pg(Ä) = 0. Thus Pm(A) = 0 as claimed.

By the criterion of Enriques (see, e.g., [14, IV, Theorem 52] or [1, Theorems

4.1 and 5.2]) the only minimal algebraic surfaces with all Pm = 0 are the

projective ruled surfaces (or P2). Furthermore, any such surface A' has

irregularity q(A ') equal to the genus of its base. But

q(Ä)={-bi(Ä)=2:b3(Ä) ={-b,(A)=\b,(X).

Since q is a birational invariant of nonsingular surfaces we conclude that A is

obtained, by blowing up points, from a surface A' ruled over a curve of genus

g =\b3(X), and hence that A is birationally equivalent to such an A'. This

completes the proof.

Definition. A normal isolated singular point x of a complex surface A is

called rational if the stalk at x of the first right derived sheaf R xir*®A vanishes

for some (hence any) resolution it: A -» A of the singularity of A at x.

2.2. Corollary. Let X be a nonsingular analytic compactification of C3 such

that the analytic set A = X — C3 has only isolated rational singular points.

Then X is projective algebraic and A is birationally equivalent to the complex

projective plane P2.

Proof. Let it: A -+A resolve the singularities of A, with m~x (singular

points) = C. In general (see [3, Lemma 1]) we have a natural exact sequence

0 ^ HX(A, Z)^ HX(A, Z)in¥ HX(C, Z)%H2(A, Z)

%H\A, Z)'"4? H\C, Z)%Tor(H3(A, Z)).

Since the singularities of A are rational, HX(C, Z) = 0. Since also HX(A,Z)

= 0 we conclude that bx(A) = A3(4) = A3(A') = 0. Theorem 2.1 now supplies

the desired conclusion, since a surface ruled over a rational curve is biration-

ally equivalent to P2.
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Remark. It will be noted that in the proof we used only a small part

(HX(C, Z) =■ 0) of the hypothesis of rationality of the singularities. Actually

much more can be said about the surface A. In particular it can be shown

that either A = A = P2, or A = the rational ruled surface S2, or A is derived

from P2 by blowing up 8 or fewer points and H2 = (A, Z) a Z is generated

by the Chern class of a nonsingular elliptic divisor. There are only a few such

surfaces A. They are of interest because among them are examples of singular

surfaces A which are cohomology projective planes (H*(A, Z) = //*(P2, Z)

as graded rings). An example of such a surface is given in [5], and they are

discussed in detail in [4]. It should be emphasized, however, that no compacti-

fication of C3 is known with one of these last-mentioned surfaces at infinity.

2.3. Corollary. Let X be a nonsingular analytic compactification of C3 with

b3(X) j= 1. Suppose that A = X — C3 has only isolated singularities and that A

admits a nonsingular rational divisor D. (That is, D is a Cartier divisor-a

locally principal ideal subsheaf ID c 6A-such that (supp(&A/ID), GA/ID) ¡=k

(P1, 0pi)) Then X is biholomorphic either to complex projective space P3 or to

the nonsingular quadric hypersurface Q3 c P4.

Proof. By the theorem and its proof X is algebraic, the line bundle [A] is

positive on X, and Kx s [A]~c¡ for some positive integer c\. Since D is

nonsingular and locally principle the implicit function theorem shows that the

support of D is contained in the set A0 of regular points of A. We have by

iterated adjunction

and

- 2 - (KAa + D); D - (-c, + 1 + d)d(N2), (1)

where d, the "degree" of D, is the unique integer for which c([D]) = d- c(N)

£ H2(A, Z). By (1) d =£ 0. Since [D] has a section it cannot be negative.

Thus d > 0. Next, let u be a Kahler form which represents c([j4]). Since [/I] is

positive, co2 is a volume form for complex 2-dimensional subvarieties of X.

Thus fAa2 > 0. But this implies that (TV2) > 0. Taken together, (1), d > 0, c,

> 0, and (N2) > 0 have only the following solutions:

(i) (N2) - d - 1, c, - 4,

(ii) (N2) = 1, d « 2, c, = 4,

(iii) (N2) = 2, d = 1, c, = 3.

In cases (i) and (ii), Theorem 0.2(2) implies that X =s P3.  In case (iii)

Kobayashi and Ochiai [13] have a similar result for quadrics which allows us

to conclude that X ss Q3.

Remark. If X above is isomorphic to P3 then necessarily the isomorphism

maps A isomorphically onto a hyperplane H, for only such hypersurfaces

generate H2(P3, Z). In case (i) D is a projective line in H and in case (ii) D is

a nonsingular curve of degree 2 in // s P2. If X s Q3, then A  is the
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intersection of X with a tangent hyperplane H in P4 and is biholomorphic to

the space obtained from the rational ruled surface S2 by blowing down the

zero section, and D is the intersection of A with a projective plane P C H

missing the singular point.

2.4. Theorem. Let X be a nonsingular analytic compactification of C3 such

that X — C3 is nonsingular. Then X is biholomorphic to P3, and X — C3 = P2 is

linear subspace.

Proof. By Corollary 2.2, A is birationally equivalent to P2. Since A is

nonsingular and A204) = 1, A must Ae P2, and the positive generator N =

[A]\A of HX(A, 0*) s Z must be the standard hyperplane bundle. But then

KA = N ~3, and from the relation

KA = (Kx ®[A])\A

and the fact that restriction of [A] to A induces an isomorphism HX(X, 0 *)

= HX(A,6 *), we conclude that

Kx=[A]-\

The desired result now follows from the theorem of Kobayashi and Ochiai as

before.

2.5. Remark. Theorem 2.4 also follows from Theorem l.l(III)(a), and

Corollary 2.2.

3. Open questions. We close by listing some of the open questions which the

foregoing suggests. These questions are "open" in the sense that we do not

know the answers to them, and are listed more or less in order of apparent

difficulty. First the case n = 3.

1. Is the condition b3(X) ¥" 1 in Theorem 2.1 redundant? This would fail to

be the case only if C3 could be compactified by a singular surface derived

from an elliptic Hopf surface, or from a surface of type VII0, for instance one

of the kinds recently discovered by Inoue, Hirzebruch, and Bombieri [12], [1,

part 6]. Of course if X is assumed Kahler, then b3(X) is even.

2. If the surface A at infinity has only rational singularities (which must be

rational double points by local embedding dimension) then Corollary 2.2

shows that A3(A^) = 0 and that A is derived from a rational ruled surface.

Conversely, does b3(X) = 0 imply that A has only rational singularities?

More generally, is it true that if X is any compactification of C3 by a normal

surface A then the sheaf R xtt*Ic vanishes identically, where Ic c 0^ is the

ideal sheaf of the exceptional curve C in a resolution it: A -* A of singulari-

ties? (It is easy to show that at worst Rx-n„Ic is supported on a single point

and has complex dimension 1 there. It follows that if b3(X) = 0 and A has

only isolated singularities, then X is algebraic, A is rational, and each singular

point except at most one is a rational double point. That one exception, if it

occurs, is a topologically rational (HX(C, R) = 0 for C cias above) mini-
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mally elliptic double or triple point; these are enumerated in [16].)

3. Throughout §2 can C3 be replaced by any Stein homology cell? (The

answer is yes in Corollaries 2.2 and 2.4, but in Theorem 2.1 it is not clear that

the canonical bundle on X is negative under weaker hypotheses on X — A.)

4. We have considered compactifications of C3 for which the surface at

infinity has only isolated singularities. The classical statement of the com-

pactification problem [10, problem 27] inquires more generally about com-

pactifications X for which A = X — C3 is irreducible (i.e., b2(X) = 1). Are

these equivalent? That is, does A irreducible imply A normal? (Cf. the result

in dimension 2: If X is a compactification of C2 with b2(X) = 1 then A is

nonsingular-and hence laP2 (Remmert and Van de Ven [24]).)

5. In fact only two compactifications X of C3 with b2(X) = 1 are known:

P3 and Q3 (cf. [25, Theorems 4.3 and 4.4] as well as Corollary 2.3 above). If

these are the only ones, Questions 1-4 above become moot. Is this the case?

6. Finally, suppose we remove all restrictions on the analytic set A at

infinity. In dimension 2 we know that every compactification X of C2 is a

rational projective algebraic surface, and each component of A = X — C2 is a

locally irreducible rational curve. The appropriate analogue in dimension 3

seems to be the following:

3.1. Conjecture. Let X be a compactification of C3. Put A = X - C3.

Then

(i) X is a projective algebraic 3-fold with H'(X, 6X) = 0 Vz > 0 and

H°(X, Kg) = 0Vm>0, and

(ii) each component of A is a (possibly singular) locally irreducible surface

birationally equivalent to a projective ruled surface.

The status of this conjecture is this: If A is assumed normal and if

b3(X) 7e 1, this is precisely our Theorem 2.1. H°(X, Kx) = 0 is always true

by Kodaira's result [15, Theorem 3], while H'(X, &x) = 0 is true at least in

the algebraic (equivalently, Kahler) case. The question of algebraicity in the

general case is completely open. As for the structure of A, little is known

except conversely that projective surfaces ruled over curves of any genus can

occur, as is seen by modifying P3 by monoidal transformations centered at

points and on nonsingular curves in (the proper transforms of) a hyperplane.

We proceed now to compactifications of C", n > 3. We are guided by the

conjecture mentioned in the introduction and suggested by our Theorem 1.1.

3.2. Conjecture. P" is the only compactification of C by a submanifold.

A proof of this conjecture would appear to have two steps, which we list as

separate questions.

7. Is every such compactification of C" projective algebraic? (If not, is it at

least Moisheson?)

8. Is Conjecture 3.2 true with the additional assumption of algebraicity?

Finally, we mention some connections between these questions and other
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topics of independent interest in complex analysis.

3.3. Relation to the local theory of singular points of analytic spaces. In part

(III)O) of Theorem 1.1 we exploited the natural duality between the concepts

pseudo-concave and pseudo-convex to relate global properties of a compacti-

fication X of C to local properties of the isolated singular point obtained by

blowing down the infinity section in the projectivized normal bundle to the

hypersurface A at infinity. Dual in this sense to Question 7 is

9. Let A' be a complex manifold, A c X an exceptional submanifold (i.e., A

can be collapsed to a point). Suppose that the normal bundle to the embed-

ding is not topologically trivial. Then is A necessarily projective algebraic?

And dual to 8:

10. Let A" be a projective variety, nonsingular except possibly at a single

point x E X. Suppose that

(i) X is topologically nonsingular at x, and

(ii) X admits a resolution it: X ^> X of the singularity at x with ir~x(x)

nonsingular.

Then is X necessarily (analytically) nonsingular at *? (This question is

closely related to the possible existence of nonstandard complex structures on

complex projective space.)

3.4. Relation to value distribution theory. By definition a compactification of

C is a 1-1 mapping <f> of C into a compact manifold X such that </> "behaves

nicely at infinity". This is precisely the situation studied in the Nevanlinna

theory. Especially relelvant seems the topic of order of growth of analytic

objects as in [6] et al. But except for Kodaira's proof in [15] of rationality of

compactifications of C2, only algebro-topological and differential-geometric

techniques have thus far been brought to bear on the subject of this paper.

Perhaps further progress could be made along the following lines.

11. Let X c P" be a compactification of C which is a nonsingular

projective variety. Suppose that the set A = X — C is the intersection of X

with a hyperplane in P^ and consists of nonsingular components meeting

transversally. It is easy to show that there exists a meromorphic n-iorm w on

X with no zeros or poles on C. A trivial Nevanlinna type argument shows

that u cannot be holomorphic (integrate « A <*> over large balls in C to

obtain a contradiction). Can a refinement of this argument show that the

order of the pole must be "large" on some component of A (cf. part (f) of

Theorem 1.1)?

12. Let V be an affine variety (e.g. V = C), X a nonsingular projective

variety, which is an analytic compactification of V. What is the smallest

number X (if any) such that among all such mappings V —> X the image of V

has order of growth X at infinity. This can be regarded as a GAGA type

question related to the conjecture of Serre recently proved by Quillen regar-

ding algebraic vector bundles on C. In particular one can ask, are there any
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other algebraic structures than  the standard one on the open complex

manifold C?
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