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AUTOMORPHISMS OF GLn(R)
BY

B. R. MCDONALD

Abstract. Let R denote a commutative ring having 2 a unit. Let GLn(R)

denote the general linear group of all n x n invertible matrices over R. Let

A be an automorphism of GLn(R). An automorphism A is "stable" if it

behaves properly relative to families of commuting involutions (see §IV).

We show that if R is connected, i.e., 0 and 1 are only idempotents, then all

automorphisms A are stable. Further, if n > 3, R is an arbitrary commuta-

tive ring with 2 a unit, and A is a stable automorphism, then we obtain a

description of A as a composition of standard automorphisms.

I. Introduction. Let R be a commutative ring and GL„(Ä) be the general

linear group of n by n invertible matrices over R. Let A be a group

automorphism of GL„(Ä). This paper concerns the problem of obtaining a

description of A in terms of standard classes of automorphisms.

The standard automorphisms of Ghn(R) may be grouped into three

classes.

(a) Let o be a ring automorphism of R. Then a induces an automorphism

A -» A ° of GLn(i?), where if A = [a0] then A " = [a(a¡/)\. This automorphism

A -» A" is usually composed with an inner automorphism described as

follows: Suppose S is a fixed proper extension of R (see §11) and Q in

GL„(S) satisfies Q~XGL„(R)Q oGLn(R). Then A^>QXAQ for A in

GLn(R) is an automorphism of GLn(R). The composition of these

automorphisms is denoted by ®(Qt„y> i.e.,

*<Q,0>(A)=Q-XA°Q

for A in GL„(R). We call ^<gj0> a a-inner automorphism.

(b) Suppose e is an idempotent of R and I — e + ë. This idempotent

induces a natural decomposition of GL„(R) = GLn(Rx) X GL^R-J where

/?, = Re, R2 = Rë. Let A =(Al,A2) denote the decomposition of A in

GLn(R) relative to this idempotent. The idempotent gives rise to a transpose-

inverse automorphism fle satisfying

üe(A) = {A*,A2)

whereof = (,4 j"1)'.
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156 B. R. McDONALD

(c) For suitable group morphisms x: GL„(i?)—>Center(GL„(.R)), we have

the class of radial automorphisms P% where

PX(A) = X(A)A.

The "automorphism problem" may be stated as follows, "Given an

automorphism A of GL„(R), does there exist suitable a, Q, e and x such that

A = ß  ° <b/n s ° P ?"e       Y<g,o>       * x

The history of this problem is discussed in [6]-[9]. In this paper we show the

automorphism problem has an affirmative answer if R is a connected

commutative ring having 2 a unit and n > 3. More generally, we show that if

R is any commutative ring with 2 a unit, n > 3 and A is a "stable" (see §IV)

automorphism, then A has the above form. We show that over a connected

ring all automorphisms are stable and thus deduce the above result for

connected rings from the more general theorem.

We conjecture that all automorphisms are stable over any commutative

ring. If this is the case, then our arguments would give an affirmative answer

to the automorphism problem when n > 3 and 2 is a unit in R. In any earlier

version of this paper, we had an incorrect proof of the above conjecture.

We now outline the content of the paper. §11 discusses the extension ring S

of R which is needed to split the Picard group of R and thus stabilize the

form of involutions under the action of an automorphism. §111 describes

some common elements in GLn(R) and some of their properties. In §111 we

also state Suslin's theorem on the normality of E„(R) in GLn(R). It is Suslin's

result which allows the extension of the solution of the automorphism

problem from En(R) to GLn(Ä). A short proof of Suslin's theorem is supplied

in the Appendix. §IV describes what is meant by a "stable" automorphism

and shows that all automorphisms of Ghn(R) when R is connected are stable.

§V employs the "Chinese School" approach to the automorphism problem.

For a discussion of this approach see [6] and [7]. In this section it is shown

that the automorphism problem has an affirmative answer if A is a stable

automorphism, n > 3 and R is a commutative ring in which 2 is a unit.

II. Basic concepts and hypotheses. Throughout this paper R will denote a

commutative ring having 2 a unit. All modules over R will be assumed to be

finitely generated and all unadorned tensors, Horn, GL, etc. are to be

interpreted as over R.

Let P be a projective Ä-module. Then P is said to have rank m if for each

prime ideal q of R, the localization Rq ® P = Pq of P at q is a free ./^-module

of dimension m.

If a projective R-module P is of rank 1, then so is P* = Hom(P, R) and,

further, the evaluation map e: P ® P* -» R by e(p®f)=f(p) is an

isomorphism of Ä-modules. Hence, if Pic(R) denotes the set of isomorphism
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classes [P] of rank one projective Ä-modules P, then Pic(/?) is a group under

[P][P] = [P ® P] where [P]~x = [P*]. Further, recall if [P] is in Pic(Ä),

then End(P) ^ R.

Let [P] be in Pic(R). A commutative R-algebra S splits [P] if 5 ® P es S

as 5-modules.

For the remainder of this paper we will let S denote a commutative

extension of R (that is, R is injected into S and R and S have the same

identity 1) such that 5 splits [P] for all [P] in Pic(R).

We give several examples of such extensions:

(a) Suppose T is a multiplicative subset of R containing no zero divisors.

Set S = TXR (the ring of fractions of R determined by T). Then S splits [P]

forallPinPic(/?)if:

(i) R is a domain and /? = /? — {0}. Here T~XR is the field of fractions of

R.

(ii) /? is a domain and T is the complement of a prime ideal.

(iii) R is a ring having all rank one projectives free and T = units of R, e.g.,

R a local ring, a semilocal ring ([1, p. 113] shows that projective modules of

constant rank over semilocal rings are free), a principal ideal domain, or a

polynomial ring over a field in finite number of indeterminants. Here T ~ XR
= R.

(iv) T the complement of the zero divisors provided the zero divisors form

an ideal. In this case, S = T~XR is local.

(v) R a Noetherian ring and T the complement of the zero divisors. Here

S = T~XR may be shown to be semilocal and by the remark in (iii), S splits

each [P] in Pic(Ä).

In each of the above cases, S is a ring of quotients of R. It is sometimes an

advantage to use a ring of quotients (as noted after V.9).

(b) An arbitrary ring R may be embedded in an extension ring S having the

above splitting property. A stronger condition is to force Pic(S) to be trivial,

i.e., all rank one projective 5-modules are trivial-not only those extended

from projective rank one Ä-modules. Consider 5 = TiqRq where the product

extends over all primes q in Spec(Ä) and Rq denotes R localized at q. There is

a natural injective morphism R -> S by r -»</*,) eSpec(Ä) where rq is the image

of r under the canonical morphism R -» Rq. Since Rq is local, Pic(Rq) = 1 is

trivial. It is shown in [4] that Pic: Commutative Rings -» Abelian Groups is

an ultra functor. Thus

Pic(S) = Pic(n^) çIIPic(/?J = 1.

(c) Since by (b) any ring R can be embedded in a ring S which splits each

[P] in Pic(Ä), it may be worthwhile to search for the most efficient ring for

this purpose. In [3], Garfinkel described a generic splitting ring for a fixed [P]
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in Pic(Ä). By a different approach we construct a faithfully flat "minimal"

extension which splits all [P] in Pic(Ä) as follows:

Let P be a rank one projective jR-module. Then [1, II, §5.3, Theorem 1],

there is a finite family {/„...,/,} of Ä with (/,,...,/,) = /? and Pf a free

Rj-module for dimension one for 1 < i < n. ((*)j denotes localization at the

multiplicatively closed set {f?\n > 0}.) Let SP = Rfi © • • • © Rfr Then [1,

II, §5.3, Proposition 3] SP is a faithfully flat extension of R. Further

SP ® P m (Rf¡ ® P) © • • • © (Rfi ® P)

— Rt © • • • © Rr — Sp.

Thus, the projective S^-module SP ® P is free of dimension one and thus in

the identity class of Pic(Sj>).

Let S = 0[P]SP denote the tensor product over all [P] in Pic(Ä). By this

we mean the following: The family (5P|[P] in Pic(Ä)} is a collection of

Ä-algebras. For each finite subset $ of Pic(/?), let B^ = ®lP]SP where [P]

extends over <E>. If <ï> C ty where ^ is a finite subset of Pic(Ä), then there is a

canonical Ä-algebra morphism 5<¡, -> By. Then 5 is precisely the direct limit

S = inj lim Bq. In particular, S, being a direct limit of faithfully flat R-

algebras, is faithfully flat. Let [P] be in Pic(Ä). Then

S ® P ae f     <g>    S0 ) ® SP ® P â f     ®    S0 ) ® SP 2¿ S.
MßWl     i MßMil     '

Thus S splits [P] for each [P] in Pic(R) and S is a faithfully flat extension of

R.
We return to the original setting. Let M be a finitely generated projective

A-module. Let M_= S ® M. Since M is projective [2, p. 279] the canonical

morphism M -> M induced by m -» 1 ® m is injective. Thus, we consider

M c M. Concerning endomorphisms, since EndÄ(A/) is projective,

Endfl(M)-» S1 ® EndR(M) by a -> 1 ® a is injective. Further, since A/ is

finitely generated and projective [2, p. 282], S ® EndÄ(M) ~ Ends(5 <S> M)

= Ends(M) under 1 ® a —> \s ® a. Thus, we consider EndÄ(M)_c

Ends(M). The invertible 5-endomorphisms of M are denoted by GLS(M)

(the general linear group) and

GLR(M) = {ainGLs(M)|oA/ = M).

Let M* = Hom5(A/, S) denote the dual module of M.

If M = F is a free module with basis {bv . . . , b„] then V is free with basis

{b{, . . . , b„) where b, = 1 <8> b¡, \ < i < n. We write GLS(F) (resp.,

GLÄ(F)) as GL„(S) (resp., G_L„(R)) when viewed as a group of matrices

relative to the basis {Z>,, . . . , b„) (resp., {&,, . . . , b„}).
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III. Elements of GLÄ(F) and GLS(F).

(a) Transvections. Let F be a free Ä-space of dimension n> 3. Let S

denote the extension of R described in the previous section. Let V = S ® V.

Assume 2 is a unit in R.

Let <p: V-» S be a surjective S-morphism. Then V splits as F=¿ Ker(<p) ©

S. If a is in F and <p(a) = 0, define ra<p: K-» V by Ta<(,(x) = x + <p(x)a. The

S-linear map t is called a transvection with vector a and kernel H = Ker(tp).

A vector a in_F is unimodular if the S-submodule Sa of V is an S-free

summand of V. If a is unimodular, then ra>(p is called a unimodular trans-

vection.

III. 1. Lemma, (a) Tflj9 = / z/an<i on// ifa_= 0.

(b) or^a- ' = TmwVa-,for all o in GLS(F).

\C)Ta,<pTb,<p = Ta + b,<p-

(d) If 7a<f is unimodular, then t — tb^ if and only if there is a unit t in S

with ta = b and <p = tip.

Proof. See(II.l) and (II.3) of [6].

_Let B = (o,,. . ., b„} be a basis of V over S. Let B have a dual basis

B* = {¿f, . . . , ¿*} in F* given by b*(bj) = 5^ (8 = Kronecker delta). An

elementary transvection relative to B is a transvection of the form t^ fc. (/ ^ _/)

for some Xin R. We denote the group generated by elementary transvections

relative to B by E¿( V). Observe, relative to B, the matrix of t^ ¿. is / + XEy

where / is the identity matrix and EtJ is the n X n matrix having all zeroes

exceptjor 1 in the (z,y")-position. We denote thematrix / -f^Aü^jDy T0(X).

If C = {c,,. . . ,c„) is another basis for V and a: V-* V is given by

ab¡ = c¡ then

T\¿„Ef  ™  Ta(\b~),b~;o~< =  <"hb,J^a~   •

Hence Eç(V) = oEE(V)a-x.

We next quote a recent startling result by Suslin (see Appendix for a

proof).

III.2. Theorem (Suslin). E¿(V) is normal in GL5(F).

Hence, in_the above paragraph, £¿r( V) = Eg( V). Thus we denote Eg( V)

by only E(V). If we stress matrices, we use E„(S) for E(V).

(b) Involutions. An element a in GLS(F) is an involution if a2 = /. If a is an

involution, then a determines a positive module

P(o) = {xin V\o(x) = x)

and a negative module

N(a) = (xin F|a(x) = -x].
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Since 2 is a unit, o splits the space V by V = P(a) © N(a) (see [6, p. 153])

and, relative to this splitting, o may be realized as a 2 X 2 block matrix

/      0
.0    -/.'

Let P denote a rank one projective Ä-module. We will say that V is presented

byPif

V ^ P © • • • © P       (m summands).

(Since S ® P ^ S, it is clear that the number of summands m = n the

dimension of V.) Thus, V is presented by P if V = P, © • • • © P„ where

P, =s P for 1 < z < «.

Suppose a is an involution in GL(F) and F= P(a)®N(a). Suppose,

further, that P(a) and N(a) are presented by a rank one projective P. Then

P(a) ~ ©2' = 1P and Af(o) =* ©2*=1P. It is clear that s + r = «. We say o

is P-presented of type (s, i)-when the context is clear we will simply say o has

type (s, t).

Let V = P, © • • • © Pn be a presentation of F by a rank one projective

/?-module P. Let 2P denote the set of all o in GL(F) satisfying a\P = I or

0-1,, = — / for each P,, I < í < n. Then, the elements of ~ZP are involutions

and any two commute. The cardinality \LP\ = 2". We call ~2P the complete set

of involutions on the P-presentation of V. If P ^ R and F = Rbx © • • • ©

Rbn for B = {bx, . . . , b„) a basis, we write 1B rather than 1R.

111.3. Lemma. Lei a and t èe z"n GLS(F). Suppose a is an involution. Then

tot _ ' is an involution and

P(tot-x) = tP(o),    N(tot-x) = tN(o).

In particular, to = ot if and only if tTV (a) = N (a) and tP (a) = P (o).

Proof. The proof is straightforward.

Lemma III.3 and an induction argument on the cardinality of the set of

involutions gives the next lemma.

111.4. Lemma. Let {o,}¿„, be a collection ofpairwise commuting involutions in

GLS(F). Then V = Wx © • • • © Ws (s > 1) where a,\Wj = ± I for each i,

1 < z < r, and eachj, 1 < j < s.

Let V = P, © • • • © P„ be a P-presentation of V where P is a rank one

projective Ä-module. Let 2F be a complete set of involutions on the P-

presentation. As noted, the cardinality of SP is 2" and, further, the number of

involutions of type (s, t) is ("). Finally, employing the isomorphisms between

the P(, it is straightforward to show two involutions in ~ZP of the same type

are conjugate under GL(K).
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(c) Skew-permutations. Let B = (6,, . . . , b„) be a basis for V. Let e in Ä

satisfy e2 = 1. If 1 < z" < n — 1, let t¡¡,'+] denote the 5-morphism given by

</+1 (4) = ebk    for /< =£ /, i + 1,

</+1 {b) = - ¿>,+1,    <„+1 (6,+1) = fy-

We call ijy+j  a skew-permutation of type e. Let //J- denote the set of

skew-permutations of type e on the basis B.

IV. Preservation of involutions. We continue the assumptions stated in §11:

R is a commutative ring having 2 a unit and S is an extension of R splitting

all [P] in Pic(Ä). Further, we assume F is a free Ä-space of dimension n > 3.

Let V denote S ® V.

Let A: GL(F)-»GL(F) be a group automorphism. We say A is a stable

automorphism if, given a basis B of V, here exist rank one projective

Ä-modules P and P satisfying A(2S) = 2,, and A~'(2B) = 2^. That is, A is

stable if a complete set 2B of involutions on a basis 5 is carried via A and

A-1 to complete sets 2/,jind 2^ of involutions on P- and P-presentations of

V for suitable P and P. It is easy to check that each of the standard

automorphisms is stable. It may be that A(2B) = 2^ implies A_1(2B) = 2^,

however, this was not clear to us. The condition A~'(2B) = 2^ is necessary

in the final step of V.7. We conjecture the automorphisms A with A(2B) = 2y>

form a group, thus the second condition is unnecessary (see the remark after

the proof of IV. 1).

Recall a ring R is connected if R has only trivial idempotents, namely 0 and

1.

IV. 1. Theorem. Let R be a connected ring. Then every automorphism A:

GL(V)^GL(V) is stable.

Proof. Let B = {bx, . . . , bn) be a basis for V. Let 2B be a complete set of

involutions on B. Then A(2B) = 2 is a group of 2" commuting involutions.

By III.4, 2 decomposes V = P, © • • • © Ps into a direct sum of projective

/?-modules and if 2 = {ö,} (where 2S = {o,} and Ao, = ô,), then a¡\P = ± I

for each / and y', 1 < i < 2", 1 < j < s.

We claim s = n. If s < n then the decomposition V = P, © • • • © Ps

will carry at most 2s < 2" involutions with restrictions to the P, being ±1.

Since A(2B) has 2" distinct involutions with restrictions ±1 on the P-, we

have a contradiction to assumption s < n.

Suppose s > n, V = P, © • • • © Ps. Then the P, are projective modules

over a connected ring R. Thus for each q and q in Spec(Ä), the local

dimensions of Py coincide, i.e., dim» (Pf)q = dim» (P^)—projective modules

over connected rings have constant rank. Further, none of the P, are locally 0,
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for then they would be 0 globally. Hence, locally, dim» (P,-)? = XP, > 1 for

each q in Spec(P) and 1 < z < s where XP is an integer dependent on P, but

not q. On the other hand, dim» (Vq) = n for all q in Spec(i?). Since free

modules over commutative rings have well-defined dimension, we cannot

have s > n (since

n = dim^(F9)=i^>il=A
;-i ¿=i /

Hence s = n and 2 induces a decomposition V = P, © • • • © P„. The

above paragraph also shows that dimÄ (P,) = 1 for each z and every q in

Spec(P). Hence each P, is a rank one projective module.

We now claim P, ä P, for every z andy. Recall, from III.3, if p is in GL(F)

and o is an involution, then pP(o) = P(a) and pN(a) = N(o~) where ö =

pop~x. Further, p-xP(o)=> P(a) and p~xN(a) = N(a). Hence, p|^(p): P(o)

—>P(ô) and pIa^: N(o)^N(o) are isomorphisms. Thus, the conjugation

classes of involutions on 2S induce 2" isomorphisms of positive spaces (and

negative spaces.) Since A preserves conjugations, A induces 2" isomorphisms

on the positive (or negative) spaces of 2 = A(2B) on V = Px © • • • © P„.

Observe if, for distinct z and./", 1 < i,j < n, we had P, not isomorphic to Pp

then it would not be possible to produce 2" isomorphisms from among sums

of subsets of {P„ . . . , P„}. Hence, P, ^ P^ for all z andj.

Therefore F=P,©---©P„^P©---©P where P = P, and

A(2B) = 2F, i.e., A is a stable automorphism, completing the proof.

In an earlier version of this paper we had an incorrect proof that any

automorphism over any commutative ring having 2 a unit was stable. We

conjecture that this is true. If so, our characterization of stable

automorphisms in the next section will describe all automorphisms when

n > 3 and 2 is a unit.

V. Classification of stable automorphisms. We assume the hypothesis on R

and 5 as given in §§II and IV and on V as given in §IV.

Let A: GL(F) -» GL(K) be a stable group automorphism. Let B be a basis

of V. Then there is a rank one projective P-module P with A(2Ä) = 2P. If

V = s ® V = S ® (P, © • • • © P„ )       (P ~ P„ 1 < i < n)

= (S ® P, ) © • • • © (S ® Pn) = P, © • • • © P„,

where P,, = S ® P„ then since S splits Pic(i?), each P, is a free S-module of

dimension one. Let P, = Sb¡ and P = {è,,...,6n}. The group of involutions

2j> when considered as elements of GLS(F) becomes a complete set 2^ of

involutions on B.

Let B = {¿»,, . . . , £„}. Consider the involutions of type (1, n — 1) in 2B,
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namely o,, . . ., o„ where a¡(b¡) = - b¡ and o,(¿>7) = è, if / j*j. A proof

analogous to the proof of Theorem 3.2 of [5] shows that o„ . . . , an where

ô, = A(ö,), 1 < i* < », are of type (t, n — t) on B where r = l or r = n — 1.

Let p: V -» F be a permutation matrix given by p(b¡) = ba(í) where a is the

cycle (1, 2, 3, ... , n). Then o, = p'-'o,^'"1)"1 for 2 < i < n. Then the

basis B and the ö, may be indexed so that a¡ = A(p)'~xäx[A(p)'~x]~x for

2 < i < ». Therefore, after reindexing B = {bx, . . ., b„), define t in GL5(F)

by T(^) = b¡ for 1 < i < ». We have

tA(o,)t_1 = ao,

where a = ± /.

To summarize,

V.l. Theorem. 77zere w a r in Ghs(V) with

A(o,) = aT_1o,T

for 1 < i < » w/iere a = ± /.

Define involutions ^ (z <j) on 5 by ^¡j(bk) — — bk if k = i,j and

%(bk) = bk if k =£ i,j. Then (t//i;/|l < z <j < «} is a set of (![) conjugate,

pairwise commuting involutions of type (2, n — 2) in 2B. Further, ^-^ = fe

and iky = o,o).

V.2. Theorem. There is a t z>z GLs(F) wz'i«

A(^) = r" V

for 1 < z < j < n.

Proof. Consider

A(t^) = A(o,o/) = Ao.Ao, = (aT"'o,T)(aT"Io,T)   by V.l

=  a2T_10,0,T =  T~VyT-

The construction of the form of the automorphism A now follows the

approach of the "Chinese School" (see the discussion in [6, p. 154] or [7]).

This approach or variations was employed in [5], [6], [10] and [11]. In [6] we

noted that from this point, the arguments could be carried through for any

commutative ring having trivial idempotents (see [6, p. 155, first line]).

By localization techniques we now remove this restriction on idempotents.

Commutative algebraic techniques of localization have not been extensively

employed in the characterization of the automorphisms of the classical

groups. However, since the images of involution have been determined, these

techniques will be shown to apply.

The following lemma is well known.
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V.3. Lemma. Let q be a prime ideal in R. If a is in R, let (a)q denote the

image of a under the canonical morphism a: R -» Rq. Then (a)q = Ofor all q in

Spec(P) if and only if a = 0. In particular, b = a in R if and only if

(b)q = (a)q; a is a unit if and only if (a)q is a unit (both statements for all q in

Spec(R)).

If B = {bx, . . ., b„) is the basis of V determined in the proof of V.l and

T(b¡) = b„ 1 < z < n, then set X(o) = tA(o)t_1 for o in GL_(F). Then A:

GL( V) -> GL( V) is a group automorphism and A(o,) = a„ A(^) = ty for

the involutions o, and tf/«, 1 < z < j < n. Thus, without loss of generality, we

may assume when necessary that the original automorphism A fixes the

involutions o, and \py.

V.4. Lemma. Let a, b, c, d be elements of R. If

a    ftJ
c    d

then a = d = 0 and c = — b~x

= —I   and -b
-d

= I

Proof. Prove the result for a local ring-see Lemma 3.3 of [5]-and apply

V.3.

V.5. Theorem. There is a t in GLS(K) with

A(u',+i) = T~l^+iT

for 1 < i < w — 1 where r/,* + 1 denotes the skew-permutation defined in III(c).

Proof. The proof is based on V.3 and the proof over a local ring as given

in [5, Theorem 3.4, p. 383]. We sketch the proof to illustrate the remark prior

to V.3.

By the above remark (before V.4) we may assume Ai/-,-, = \¡>y. When e = 1,

denote t},.%, by T/,.,+1.

Since the \¡/¡¡+x commute with r/12 for z = 1 and 3 < / < », we have

^,i+i = Ai/',i,+1 commuting with Atj12 for i = 1, 3, 4, . . . , n. Thus, since 2 is

a unit, a computation shows if n = 3 or n > 5 then

At/12 = rj>3.a„];

while, if n = 4, then

The identities

Atj12 =
w

y

(At,12)2= Ai//12 = ^x2,    (Ar,12A^23)2= / (a)
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imply from V.4 that c = - d   ', a = d — 0, a? = 1 and, if n = 4, x = y = 0,

w2 = z2= 1.

In general, if « > 3, an analogous argument shows

Ailu+X=[a\i\...,aji2x]

where a}') =J.

Define p: K-» Kby

jtf) =
and

0
_¿0)-

6(í)

0
©[^2,...,^]

n-\

n 6(,)
l = i

b» I < / < » - 1,

P(6„) = £.

Then p ~~ tyyP = ^ and p ~ xa¡p = a¡. Further,

p-1(A^+.)P = [^'),---,^i]
0       1

- 1     0 ©[aft>2,..., «<'>].

To complete the proof it must be shown:

(1) ap = ajp for ally and k,

(2) a}') = aj' + X) for all possible choices of i.

Since r/,i+1 commutes with each y\jJ+x where 1 < j < i — 2, i + 2 < j <

« — 1, then At/11 + 1 commutes with Ati,v+1 for y over the same index set. This

shows of0 = a^ = • • • -a/5, and «/£, = • • • = a«. Thus

0       1
- 1     0 © b(i)I,n-i-rA%+, - a«/,., ©

Since (t},_„ tj,,+i)3 = / we have (Ar/,_, ,At/,, + 1)3 = /. This shows

^-»aW-l,   (a('V'-'>)3= 1,   (*»6tt-»)3- 1.

Localize these equations at a prime ideal q. Then [Z>(X)]9 and [a(A)]„ are 1 or

- 1 for X = i, i — 1. The first equation shows [¿(,-1)], = [a^]q, the second

shows [a('\ = [a(,_1)]?, etc. By V.3, these elements are equal to a common

value e where e2 = 1. Thus

P_1A(r/,-,+ 1)p= iti% I»

completing the proof.

As in the discussion prior to V.4, A may be adjusted by a conjugation by p

and we may assume without loss of generality that

A(o,) = o„   A(^) = t^,    and   A(t/,.,+1) - t,¿+1

for some e in R with e2 = 1.
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>[!,..., 1]

We next compute the image of an elementary transvection rb¡ b. under the

action of A.

In the above proof it was necessary to construct a transforming matrix p. It

is not clear that this construction, if performed locally, could be lifted to the

global context. Hence, localization techniques occur only in the final step.

However, if we consider At6 b, and localize at a prime q in Spec(P), then

the argument in the proof of (3.5) of [5], shows

*%*-[! \

where either (b)q = 1 and then (a)q = 0, or (b)q = 0 and then (a)q = -1

(This proof also shows that e in V.5 satisfies (e)q = 1 for all q in Spec(P).

Hence, e = 1.)

Further, b2 = b, a2 = - a and ab = 0. Set/ = b and/ = - a. Then/and

/ are orthogonal idempotents with (/ + f)q — 1 for all q in Spec(P ). Hence,

/ + /=!•
This partition of 1 by 1 = / + / determines a ring decomposition of R,

R = Rx © R2, where Rx = Rf and R2 = Rf and, in turn, natural correspon-

ding decompositions of V = Vx © V2, S = S, © S2 and GL„(P) = GL„(P,)

X GL„(P2) (GL(F) = GLÄ,(K,) X GLR2(V2)).

We shall be "careless" and denote the identity of R, Rx and R2 all by 1, i.e.,

1 =<1, 1). The context will indicate in which ring the element 1 is the

identity.

Thus,

AK,éî) = i
- i »[1.....1], >[i,...,i]}.

Let c, = /b, for 1 < i < n and d¡ = fb¡ for 1 < i < n. Therefore

A(f¿„*?) = (r-c2,cr,rd¡id.).

The remainder of the proof proceeds in a fashion analogous to (3.5) of [5]

where the conjugating matrices are selected in either GL„(P,) (i.e., GL^F,))

orGL^^ii.cGL^^).

V.6. Theorem. 77zere is a r - t, X t2 in GLS(F) = GL5i(F,) X GL^I^),

A(%y) = ( Tf V _ t. jC.T„ T2- 't^Tj ),

wAere {c,} (resp., {d¡}) is the basis of Vx (resp., V2) induced by the basis

{bj}-and an analogous statement for {c¿*}, {d*} and {b*}.

It is more convenient, due to the decomposition of R, to describe the

theory and results in a matrix context. Thus, V.6 states that there is a matrix
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P =<P„ P2> in GL„(5) = GL„(5,) X GL^SJ such that

A(7^(1)) = p-'<t;,.(-i), r,(i»J> = (PriTJi(-\)Pl,P2-%(i)P2)

where 7^(1) is the matrix of an elementary transvection t6 6. (see discussion

after ULI).

The above may be viewed as the composition of two automorphisms. First

the application of an inner automorphism <Ï>F where <&P(A) = P~XAP.

Second the application of a "transpose-inverse" automorphism fy "based" at

an idempotent/. Namely, if A* = (A ~ ')' and if 1 = / + / is a partition of 1

by orthogonal idempotents, then

üj{A) = {(AfY,Af).

Then, the above may be written as

A(^.(i)) = (v<ï>e)(7;.(i))
where P, = (20* anc* Pi = Of- F°r convenience we will agree to apply first

the inner automorphism $ß and second the transpose-inverse automorphism

Üj when both appear in compositions.

If o: R -» R is a ring automorphism, then o induces a group automorphism

A ->A° on GL„(P), where if A = [a¡j] then A" = [a(a0)]. A pair (Q, o>,

where Q is in GL„(S) and Ô-1GL„(P).2 c GL„(P) and o: R -+ R a ring

automorphism, determines a group automorphism of GLn(R) by A ->

Ö ~ '/4 "(2- We denote this automorphism by i,<e,0>-

We continue the above notation and conventions in the next theorem.

V.7. Theorem. Let A: GL„(R) -» GL„(P) be a stable group automorphism.

Let A = A|£W be the restriction of A to the group En(R) of elementary

matrices. Then there is a ring automorphism o: P. —» R, a Q in GLn(.S) and an

idempotent f in R such that

Ä - % o $<ßo>.

Proof. We sketch the argument-it is analogous to the proof of (3.6) of [5].

Initially, localize and use the argument in (3.6) [5] and previous discussion

to conclude

PA(r12(X))p-' = {T2X(ßxyx, TX2(ß2)) = Qj(TX2(ßx + ß2)).

Define o: R -» R by o: X -^ ß (ß = ßx + ß2). By basic commutator relations

(see [5] or [6]) the other elementary transvections may be generated and

PA(Tu(X))P-x = SIj(Tu(o(X))).

Computations analogous to the methods in the proof of (3.6) of [5] show o is

an injective ring morphism.
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A straightforward induction on n will show that all matrices of the form

I * '

.0 1

are in E„(R). Since transposition carries elementary transvections to

elementary transvections, En(R) is stable under transposition. Hence, all

matrices of the form

"  1 0"

1

are in En(R). Hence,

pa(t;.(X))p-' = QX^OKX))) = (Tß(ßxy\i) (i, Tv(fi2))

is in En(R) where a(X) = ßx + ß2 in R = Rx X R2. Finally, Suslin's Theorem

(III.2) implies A(T0(X)) is in E„(R).

Applying the arguments of this section to A-1, we have_A_1: E„(R)^>

En(R) and A-1 is an automorphism of En(R). Further, A-1 induces an

injective morphism ô": R -* R with oö = öo = 1. Hence, o is a ring

automorphism of R. It is for this step that we need A~'(2B) = ~ZP in the

definition of stable automorphism.

Before the final description of A, we introduce a third class of

automorphisms of GLn(R)-radial automorphisms. An automorphism A:

GL„(P)-»GL„(P.) is called a radial automorphism if there is a group

morphism x: GL„(P.)->Center(GLn(P)) such that A(A) = xi.A)A for all A

in GL„(P). The radial automorphism determines x uniquely. Thus A is

denoted by P .

The following theorem characterizes the stable automorphisms of GL„(P).

Since this is the principal result of the section, we state the complete

hypothesis.

V.8. Theorem (Characterization of stable automorphisms). Let V be a

free R-space of dimension n > 3. Let 2 be a unit in R and S be a splitting ring

of Pic(P). If A: GL„(P.)->GL„(P) is a stable group automorphism of

GL„(P), then there exist:

(a) a transpose-inverse automorphism fy;

(b) an inner automorphism with isomorphism o, 7<g, „>, where Q is in GLn(S)

and a: R —» R is a ring automorphism;

(c) a radial automorphism Px, such that

A-Q,o$        0jpx.
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Proof. Let {bx,. .., b„] be a basis of V with corresponding dual basis

{/>,*,..., 6*} of V. Let A\EÁR)=üf°<S><Q!,,y by V.7. Consider the

automorphism Â of GL„(P) where Â = ^¿0> ° Úf ° A. Then k(A) = A for

any A in En(R).

Let B be in GL„(P) and rb b. be an elementary transvection relative to

{bx,...,bn}. Then, by 111.1(b)," '

B%b;B~   = TBb„bj>B-'-

By the definition of A,

Â(tm/) = tm/   and   Â(TBb.j,.B-,) = rBbhbfB-,

by Suslin's Theorem (III.2) and (V.7). On the other hand,

Â(P%yp-1) = Â(P)Â(t6/>^)Â(P)-1= TÂ(B)éi>^A(B)-'.

Since Bb¡ is unimodular, by 111.1(d), A(B)b¡ = \Bb¡ where A, is a unit in R.

Thus

Â(P)p-'(è,.) = X,2>,    for 1 < z < n.

By the same argument, one can find a <5 with

A(B)B- ' (6, + 6,) = 5 (è,. + bj)   for i *= j.

Hence, for z ^ j,

8(bi + bj) = k(B)B~x(bi + bj) = Â(B)B~xbi + A(B)B~xbj

= A,.¿>; + Xjbj.

Hence all A, equal a common value, say XB. Thus A(P)P_1 = XBI. Let x:

GLn(P)->Center(GLn(P)) be defined by x(B) = XBI. It is straightforward

to show x is a group morphism. Hence A(P) = x(^)B, i.e., 4>^e' CT> ° fy » A =

Pr Thus, A = &j ° $<ß a> ° P , completing the proof.

If R is a connected commutative ring, then Qf is either ñ, or ß0, i.e.,

tij(A) = Ö,(yl) = A* = L4"1)' or fi/,4) = ß0L4) = ,4. Since, by VI.l, all

automorphisms of GL„(P) are stable when R is connected, we have the

following corollary.

V.9. Corollary. Let R be a connected commutative ring having 2 a unit. Let

A: GL„(P)—>GL„(P) be a group automorphism where n > 3. 77zeAz A =

Œ, ° $<ßo> ° Px or A = $<ßo> ° Px where fi,, $<Ôj0> tf«í/ Px satisfy conditions

in V.8.

Recall an P.-submodule T of the extension ring S is invertible if there is an

P-submodule T of S with 77" = R. If <?F = TV where g (above) is in

GL„(S) and T is an invertible P-submodule of S, then the automorphism

A -+ Q - XAQ has the property that Q ~ XGL„(R)Q Ç GL„(P).
In general,  the argument in  [6,  pp.   157,   151-152] will show that if



170 b. r. McDonald

ß-'GLn(P)ß ç GL„(P) then QV = PF where P = {a in S\aQbx is in V)

where (¿>,, . . . , b„) is a basis for V. If 5 is constructed as a ring of quotients

(see example (a) of §11), it is possible to show B is an invertible P-submodule

of S [6, p. 152].

Appendix. The purpose of this Appendix is to provide a short proof of

Suslin's result that En(R) is normal in GL„(P). The original proof was

communicated by letter to H. Bass by Suslin in the spring of 1976. The steps

below are Suslin's with several of the arguments supplied to me by David

Wright. We give only a direct proof that En(R) is normal in GL„(P) when

n > 3 (which is needed in this paper). Suslin, by the same techniques, showed

the elementary congruence subgroup En(R, A) for A an ideal is normal in

GL„(P). Further, Suslin's letter provided the proof (which is more involved)

that E„(k[Xx, ...,X„]) = Shn(k[Xx, ..., X„]) when A: is a field and n > 3,

i.e., the AT,-analogue of the Serre Conjecture.

Lemma A. Let a =(ax, . . . , a„)' and ß =<¿„ . . . , b„). Suppose one of the

b¡ is equal to 0 and ßa = *2.b¡a¡ = 0. Then I + aß is in E„(R).

Proof. Without loss of generality, we may assume b„ = 0. Then

I + aß

1 a,

1      0 :

0     ••        On-X

1

1
1 0

0

nb\      ■ • ■      anbn-\     !

and each matrix on the right is in E„(R).

Lemma B.  Let a =(ax, . . ., a„)  be unimodular and ß =*(bx, . . . , b„}.

Suppose ßa ' = 0. Then, there exist a¡j in R satisfying

0 = 2 au(ajei - aiej)
• <j

where e, is the row (0, 0, . . ., 1, 0, . . . , 0) where 1 is the ith position and

zeroes elsewhere.

Proof. Since a = <a„ . . . , a„> is unimodular, (ax, . . . , an) = R. Thus,

-a.

1

0

Jn-\

1      0

0

-a, n-l

1

0

-b„-x     1
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there exist {sx, . . . , s„) with 2s,<2, = 1. Then, for a fixed/,

bj = (2,s¡a,)bj = SjOjbj + 2 ¿M

= Sjl 2 (-*,■«,■)) + 2*M
\ i+j I        ¡¥=j

since jßa' = 2a,¿>, = 0. Set a0 = Sjb¡ - s¡bj. Then ß = 2i<Jaij(ajei - a,e,).

Theorem (Suslin). If n > 3, then En(R) is normal in GL„(P).

Proof. Suppose A is in GL„(P) and Ty(X) is an elementary transvection.

Then AT¡j(X)A~x = I + Xaß where a is the zth column of A and ß is the/th

row of A~x. Since AA "' = I, we have ßa = 0. Suppose ß ={bx, . . . , è„)

and a =<a,, . . ., a„)'. By Lemma B, ß = 'Zi<jaiJ(ajei — a¡ej). Apply Lemma

A to 7 + Xa(aiJ(aJe¡ — a¡e)) (since n > 3) and conclude this element is in

En(R). Then

I + \a/? = u [7 + Aa^^e,. - a,e,))]
<<j

is in £„(P).
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