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QUANTIZATION AND PROJECTTVE REPRESENTATIONS
OF SOLVABLE LIE GROUPS

BY

HENRI MOSCOVICI AND ANDREI VERONA

Abstract. Kostant's quantization procedure is applied for constructing

irreducible projective representations of a solvable Lie group from symplec-

tic homogeneous spaces on which the group acts. When specialized to a

certain class of such groups, including the exponential ones, the technique

exposed in the present paper provides a complete parametrization of all

irreducible projective representations.

Introduction. Refining the Kirillov orbit method for the construction of the

irreducible unitary representations of a nilpotent Lie group, Kostant has

developed a geometric quantization theory of obtaining unitary repre-

sentations for an arbitrary Lie group from symplectic manifolds on which the

group acts as a transitive group of symplectic automorphisms. When applied

to orbits of the coadjoint representation, which possess a canonical symplec-

tic structure, Kostant's quantization procedure goes a long way towards

constructing, in many significant cases, all (or "almost" all) the irreducible

unitary representations of the given group. This method was particularly

successful for solvable Lie groups, in which case it provides both a geometric

criterion for being of type I and, in that case, a complete description of the

unitary dual.

Besides the orbits of the coadjoint representation there are other symplectic

homogeneous spaces for a Lie group G, for instance those which correspond

to noncoboundary 2-cocycles of its Lie algebra g. In fact, when G is

connected and simply connected, all the simply connected symplectic homo-

geneous (/-spaces arise in a canonical way from 2-cocycles in Z2(g) (cf. [2]).

Although we cannot afford to go into details here, it must be said that, by

Kostant's method, a unitary representation of G can be obtained from a

symplectic homogeneous space X only under the additional assumption that

A1 is a Hamiltonian G-space ([3, §5]) and this is tne case if and only if X

covers an orbit of the coadjoint representation of G.

Received by the editors June 3, 1976 and, in revised form, June 22, 1977.

AMS (MOS) subject classifications (1970). Primary 22D12, 22E25.
Key words and phrases. Projective representations, solvable Lie groups, symplectic homo-

geneous spaces, quantization procedure.

© American Mathematical Society 1979

173



174 HENRI MOSCOVICI AND ANDREI VERONA

We have found that when the quantization procedure is applied to a

general symplectic homogeneous space one can still obtain a representation

of G, which is no longer unitary but a projective one. This remark allowed us

to construct irreducible projective representations of a solvable Lie group G

starting from integral 2-cocycles on its Lie algebra g (Theorem 5.4.1) and to

classify some of them in terms of the orbits of G in Z2(g) (Theorem 5.4.4). In

the special case of a nilpotent (or, more generally, exponential) Lie group, our

construction provides a complete classification of the projective dual

(Corollary 5.4.5).

Now let us describe in a few words our construction of projective repre-

sentations. Assume G is a connected and simply connected Lie group. First,

to each cocycle « G Z2(g) we associate a strongly symplectic homogeneous

G-space (Xa, 9a), namely the orbit through 0 in g* under the affine action of

G corresponding to w (cf. [2]). Then, after choosing a polarization b of g at <o,

we attach to each line bundle with connection and Hermitian structure (L, a)

over Xu, with curvature form 9a, a projective representation tr(L, a; ft) of G

whose equivalence class <n,A depends only on the equivalence class / of (L, a).

Under no additional hypothesis, we have nothing to say about 7r/b. It may be

or may not be irreducible; even worse it may happen that ttIX) = 0. However,

if G is assumed to be solvable, the results of Auslander and Kostant [1] allow

us to conclude that 77/t) is irreducible and independent of the choice of the

polarization. Furthermore, G acts naturally on the set of all such isomorphism

classes of line bundles with connection over symplectic homogeneous G-

spaces of the form (Xu, 0U) with <o running through Z2(g), and the map

/r-»77/ = 7r/h is constant on the orbits of G. This construction is particularly

fruitful in the case of an exponential group G, when it yields a complete

parametrization of all equivalence classes of irreducible projective represen-

tations of G by the orbits of G in Z2(g). It should be mentioned that, in

principle, our method of constructing irreducible projective representations

works whenever it is applied to a class of Lie groups which is closed under

central extensions by R and for which the Kirillov-Kostant method of

obtaining the irreducible unitary representations works.

The material in this paper is organized as follows. § 1 contains some known

facts about extensions of Lie groups and algebras we will need later. §2 deals

with the relationship between projective representations and group

extensions. §3 is devoted to the study of the symplectic homogeneous space

associated to a 2-cocycle. The concept of a polarization for a 2-cocycle is

discussed in §4. The construction of a projective representation of a Lie group

G by quantizing a symplectic homogeneous G-space is given in §5. This

section also contains the statements of the main results, while their proofs are

given in the final section.



QUANTIZATION AND PROJECTIVE REPRESENTATIONS 175

0. Notational conventions. In order to prevent misunderstandings we list

below some possibly nonstandard notations to be used in this paper.

0.1. T stands for the group of complex numbers of modulus 1.

0.2. The complexification of a real vector space V is denoted Vc, while the

complexification of a linear (or multilinear) map X is denoted by the same

symbol X, without adding the subscript C.

0.3. If a Lie group G with Lie algebra g acts (smoothly) on the left on a

manifold X, we denote by Lx(g) the diffeomorphism of X defined by g E G;

sometimes, we shall write simply g • u instead of Lx(g)u, for u E X.

The smooth vector field on X determined by x E g is denoted by rx(x);

recall that

'*(*).(/)-5 (/(exp(-íx)-«))U,       fEC"(X).

When X = G with the natural left G-action, we shall omit the subscript G

in the above notation. Further, we shall write R ( g) for the right translation

by g~x E G and l(x) for the left invariant vector field on G corresponding to

x E g.

For g E G, 1(g) denotes the inner automorphism L(g) ° R(g).

0.4. If g is the Lie algebra of the Lie group G, g* denotes the real dual

vector space of g, < , >: g* X g -> R the canonical pairing, Ad*, ad* the

coadjoint representations of G and g on g*.

0.5. If g is a Lie algebra, t(x) and t(x) will denote the interior product and

the Lie derivative with respect to x E g.

0.6. If L is a smooth vector bundle over X, T(X, L) stands for the vector

space of all its smooth sections.

0.7. The Lie algebra of a Lie group M will be sometimes denoted Lie(Af ).

1. Extensions of Lie groups and algebras.

1.1. Let G and K be two connected Lie groups. By an extension of G by K

we shall mean an exact sequence

(M,p) \^>K±>M^G^\

where M is a separable locally compact group and i, p are continuous

homomorphisms.

Let us add some comments on this definition.

(1.1.1) AT being a separable locally compact group, z: AT-» Ker(p) is in fact

a homeomorphism. Owing to this remark we shall identify K to Ker(/>) via z,

viewing z as the inclusion map.

(1.1.2) Since M is separable, the canonically induced map M/K-* G is a

homeomorphism too. This and the connectedness of G and K ensure that M

is also connected.
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(1.1.3) Moreover, M admits a (unique) structure of a Lie group whose

underlying topology is the original one. Indeed, to see this it suffices to note

that M is without small subgroups and then to apply [4, Theorem, p. 169].

When in addition K is central in M, the extension (M,p) will be called

central.

The set of all central extensions of G by K will be denoted &xt0(G, K).

Further, we denote by Ext^G, K) the factor set of &xt0(G, K) with respect to

the usual equivalence relation. The equivalence class of an extension (M,p)

will be denoted [M,p].

1.2. From now on G will be always assumed not only connected but also

simply connected.

Let (M,p) E &xt0(G, K). Since 77,(G) = 0 = ir2(G), the homotopy exact
p

sequence of the fibration M -» G shows that the inclusion map AT °-> M

induces an isomorphism between ttx(K) and ttx(M); therefore M is simply

connected if and only if K is.

Now let L be the simply connected covering group of K, v/ithpK: L —» K

the corresponding projection. We identify irx(K) to Ker(pK).

Given (M,p) E &xt0(G, L) we shall define (M#,/>#) G &xt0(G, K) as

follows: Mft = M/ttx(K) and pf MS^G is canonically induced by p:

M-^G.The map (M,p)^(Mpp$) from &xt0(G, L) to &xt0(G, K) will be

denoted by Qovp while the induced map from Ext^G, L) to Ext^G, K) will

be denoted by Cov#.

Conversely, for (N, q) E &xtQ(G, K) let us define (Ns, q$) G &xt0(G, L) in

the following way: N* is the simply connected covering group of A^ and

c7* = q ° pN, where pN: N* —► ./V is the covering homomorphism. It is easy to

check that Ker(<7*) is isomorphic to L, hence, after identifying them, (#*, <7*)

becomes really an extension of G by L. The map thus defined

(N, q)r^(N*, q*) from &xt0(G, B) to &xt0(G, L) is denoted by Qoé and the

induced map from Ext^G, K) to Ext^G, L) is denoted Cov*.

To conclude this subsection we note that there is no problem in verifying

that Cov„ and Cov* are mutually inverse maps which put in a one-to-one

correspondence Ext^G, L) with Ext^G, K).

1.3. Let f and g denote the Lie algebras of K and G respectively. An

extension of g by f is an exact sequence of Lie algebras and Lie

homomorphisms

(m, ,/,)0 —f-rn-tg^O.

When f is contained in the center of m, the extension will be called central.

The set of all central extensions of g by f is denoted exr0(g, f) and the

corresponding factor set relative to the usual equivalence relation is denoted

ext0(g, I). By [m, \j/] we shall denote the equivalence class of the extension

(m, 4>).
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There is a simple relationship between Ext^G, K) and ext^g, Ï) which we

proceed now to describe. First of all let us remark that, in view of the

previous subsection, there will be no loss of generality in assuming K simply

connected.

Now given (M,p) E &xt0(G, K), by passing to Lie algebras we get a

central extension (m, \p) E exr0(g, f) which we denote tie\M, p). The map

tie*: $xtQ(G, K) -> ext0(Q, f) so defined induces a map Lie* from Ext0(G, K)

to ext0(g, f).

Conversely, to each element (m, \p) G exí0(g, f) we associate a central

extension (M, p) = ties(m, ip) of G by K, as follows: M is the simply

connected Lie group with Lie algebra m and K^> M,p: M^> G are the Lie

homomorphisms whose differentials are f -» m and \p: m -* g, respectively.

We have thus obtained a map tief ext0(Q, f) —» &xt0(G, K), which induces a

map Lie„ from extn,(g, f) to Extn,(G, K).

It is only a trivial observation to remark that Lie8 and Lie* are mutually

inverse maps between exto(g, f) and Ext^G, K).

1.4. By Z2(g) we shall denote, as usual, the vector space of all 2-cocycles on

g relative to the trivial action of g on R.

For each <o G Z2(g) one defines a central extension (mu, \¡/u) of g by R in

the following way: ma is the Lie algebra whose underlying vector space is

R X g, the bracket operation being given by the formula

[(r,x),(s,y)]=(-u(x,y),[x,y]),       r, s E R, x,y G g;    (1.4.1)

the projection i//w: m —> g is just the canonical projection of R X g onto g, and

finally R -» mw is the canonical injection of R into R X g.

Now if «' = <o + dX, with X E g*, then the Lie homomorphism tpx: ma -»

mu, given by

<px(r, x) = (r + X(x), x),       r E R, x G g, (1.4.2)

establishes an equivalence of extensions between (mu, \pa) and (mu-, \f>u.). It

follows that the assignment <o G Z2(g)r->[mu, »//J G ext^g, R) gives rise to a

map [w]i->[mw, i/^] from H2(q) to ext^g, R). It is well known that this map is

in fact a bijection.

2. Projective representations and group extensions. Given a separable

Hubert space H we denote by U(H) the group of all its unitary

automorphisms, endowed with the strong operatorial topology. Further we

denote by PU(H) the projective unitary group U(H)/T, where the circle

group T is viewed as the normal closed subgroup of U(H) consisting of scalar

multiples of the identity operator Id, and we give PU(H) the quotient of the

strong topology; pH: U(H) -* PU(H) stands for the canonical projection. It is

convenient to regard an element of PU(H) as an automorphism of the

projective space PH associated to H.
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By a unitary (resp. projective) representation of G in H we mean a

continuous homomorphism of G in U(H) (resp. PU(H)). Recall that two

projective representations tt¡: G -» PU(H,), / = 1, 2, are said to be protectively

equivalent if there exists a unitary isomorphism U: H, -» H2 such that, if U:

PH, -» PH2 denotes the corresponding isomorphism of projective spaces,

then Û » TTx(g) = w2(g) ° Û. The set of all equivalence classes of irreducible

projective representations of G, which we call the projective dual of G, will be

denoted Gn.

2.1. Let (M,p) be a central extension of the connected and simply-connect-

ed Lie group G by R. A unitary representation p: M —> U(H) will be called

projectable if p(r) = exp{27rz>} Id, r E R. In this case there exists a unique

projective representation p: G ^> PU(H) such that the diagram

P
0->R —> M -        —*■ G -       —►  1

e2nil

1 -► T -     -* U(H)-^-> PU(H) -     —► 1

commutes.

Now let p,: A/-»U(H,), i = 1, 2, be projectable unitary representations

such that p, and p2 are projectively equivalent through the unitary

isomorphism U: H, -» H2. For each m E M one has

PuiPiim)) = P2(/>(»0) = Û ° p,(p(m)) « Û~x = /»„(I/ ° p,(m) ° I/"1);

hence there exists a unitary character x: Af -» T such that

p2(w) = x(m) • t^ ° P\{m) ° U~X>       m E M.

This means that p2 and x ® Pi are unitarily equivalent representations of M.

2.2. We want now to attach to a given projective representation it: G-»

PU(H) an extension (M„,p„) E &xt0(G, R) together with a unitary represen-

tation tí: M -» U(H), and then to relate this construction to that discussed in

2.1.

Consider the topological subgroup N„ of U(H) X G consisting of those

pairs (u, g) which satisfy pH(u) = 77(g). Define T-> Nv to be Pr+(t • Id, 1)

and qv: Nw -* G by ^(w, g) = g. Clearly

is an exact sequence of topological groups and continuous homomorphisms.

Moreover, qv is an open map (since pH is so) hence A^/T is homeomorphic to

G. It follows that A^ is a (separable) locally compact group. Therefore,

(AT., qj E &xt0(G, T).

Let us now define (M„,pJ E &xt0(G, R) to be Qov\Nn, qj. The map
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(u, g)r^u is a unitary representation of A^, which when composed with the

covering homomorphism MT —> N„ gives rise to a unitary representation tí:

Mv -» U(H). It is an easy matter to see that p = m is projectable and that

P =  IT.

Conversely, let (M,p) G &xt0(G, R) and p: A/-»U(H) be a projectable

unitary representation. Put it = p and consider, as above, the associated

extensions (A^, qj E &xt0(G, T) and (M„,p„) E ëxt0(G, R). Define now Sh

M -» A^ by ^(w) = (p(w), p(m)), m E M, and then form the diagram

0-"R-—>M

1 ->T

which, obviously, commutes. Since M is simply connected ^ can be lifted to

a Lie homomorphism O: A/ -» A/"w which makes the following diagram

commutative:

Actually, 0 is an equivalence between the extensions (M,p) and (Mv,p„). In

addition one has p = ñ ° <&.

2.3. Let 7T,: G->PU(H,), i = 1, 2, be projectively equivalent repre-

sentations, via the unitary isomorphism U: H, —» H2. It is not difficult to see

that the isomorphism ^i Nv —> N„ , defined by

*u(u,g) = (U°u°U-\g),       (u,g)ENVi,

establishes an equivalence of extensions between (N„, q„) and (N , ^ ).

Then ^v: Mn —> M„, the lifting of ^v to the simply connected covering

groups, establishes an equivalence of extensions between (M„, pn ) and

(A/^2, pn ). Furthermore, tí, and t}2 ° 0^ are unitarily equivalent repre-

sentations.

2.4. Suppose now that (M¡,p¡) G &xt0(G, R), z = 1, 2, and that p,: M, ->

U(H,), z = 1, 2, are projectable unitary representations whose associated

projective representations p,: G->PU(H,) are projectively equivalent. Then,

by combining 2.2 and 2.3, one can see without difficulty that there exists a

Lie isomorphism 4>: Mx -» M2 which determines an equivalence of extensions
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between (Mx,px) and (M2,p2) and has the further property that p, and p2 ° $

are unitarily equivalent representations.

3. The symplectic homogeneous space associated to a 2-cocycle. In this

section <o will denote a fixed element in Z2(g), g being, as we have already

agreed, the Lie algebra of the connected and simply connected Lie group G.

3.1. To begin with, we shall define a representation tu of g on R X g* by

the formula

T„(x)(r, X) = (0, ad*(x)X + n(x)u),       x E g, (r, X) E R X g*.

The group G being simply connected, there exists a unique representation Tu

of G on R X g* whose differential is r„. An easy computation shows that

Ta ( g)(0, X) = (0, Ad*( g)X),       g G G, X G g*.

On the other hand we observe that Tu must verify a relation of the form

Tu(g)(r,0) = (r,rFa(g)\       g G G, r G R,

with Fu: G -» g* analytic. Since Tu is a representation, one can see that

Fu(gh) = Ad*(g)Fa(h) + Fu(g),       g,hEG. (3.1.1)

Now taking into account the fact that the differential of Tu is ru, one deduces

that Fu has the expression

^(expx)=|    ±(ad*(x))"-\L(x)a>),       x E g. (3.1.2)
n = l     "■

Finally, one obtains

Tu(g)(r,X) = (r,Ad*(g)X+rFa(g)),       g E G, (r, X) E R X g*.    (3.1.3)

Let us denote by Ad* too the natural representation of G on Z2(g).

Explicitly, (Ad*(g)a)(x,v) = a(Ad(g-')x> Ad(g-')>0, for g G G, a G

Z2(g), x,y E g.

Starting from (3.1.2) one can easily see that

^•(«^(exp x) = Ad*(g)Fa (g~x ■ exp x ■ g),       g G G, x G g,

which, when combined with (3.1.1), leads to the formula

FM-(,)»W = Ad*(g)Fw(g-'%),       g,hEG. (3.1.4)

Consider now the linear map Du: R X g* -» Z2(g), given by Da(r, X) = dX

+ ru. One has

A, ° t„(x) = t(x) o Z>u,       x G g.

As xr-»ß(x) from g to gI(Z2(g)) is the differential of the homomorphism Ad*:

G -» GL(Z2(g)), it follows that

£>u°Pu(g) = Ad*(g) = Z)w,       gGG, (3.1.5)
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which is equivalent to

Ad*(g)a>-œ = d(Fa(g)),       g G G. (3.1.6)

3.2. We maintain the above notation. In addition, let us denote: G (a) = { g

e G; Fu(g) - 0} and g(w) = {x E g; t(x)w = 0}. The formula (3.1.1)

implies that G(w) is a (closed) subgroup of G and that G(w) = (g G G;

Fu(hg) - Fw(h) for any /z G G}. Therefore, Fw factorizes through a map/w:

G/G(w)^g*.

Since Lie G(u>) = {x E g; exp ta G G(w) for any r G R} and, on the other

hand, exp tx G G(w) for any t E R if and only if t(x)w = 0 (cf. (3.1.2)), one

gets

LieG(w) = g(w). (3.2.1)

Furthermore, we observe that, in view of (3.1.6), one has

Ad*(g)w = w   for any g G G(u>). (3.2.2)

Now set Xu = G/G(u>) and let qu: G -» Xu be the canonical projection.

From the definition of g(to), (3.2.1) and (3.2.2), we infer that there exists a

unique G-invariant closed 2-form 9U on Xu such that (q*(9a))x = w, where

1 G G is the unit element.

To simplify the notation, when no confusion can arise, we shall write

shortly X, q, 9, F, f instead of Xu, qa, 9U, Fa, /„, respectively.

For each x G g let us define fx E C°°(X) by

f*(q(g)) = (F(g),x),        g EG.

It is an easy matter to see that the vector field rx(x), defined as in 0.3,

satisfies the following relations:

Lx(g)*rX(x)u = ^(Ad(g)x)g.„,       g G G, u G X; (3.2.3)

rx(*)«g) = -1*(L(g),(Ad(g-x)x)),       g EG. (3.2.4)

3.2.1. Proposition. (Xu, 9u) is a strongly symplectic G-space.

Proof. Precisely, we shall prove that

i(rx(x))9 = dp   for any x E a, (3.2.5)

To this end, let us note first that, since q* is injective, it suffices to check that

q*(t(rx(x))9) = q*(df*),        x E g.
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Now let g G G and x G g. One has, for any y E g,

({4*«rX(x))9))g,L(g)j) = {{(rx(x))9)q(g),Lx(g), <> q¿y))

=   eq(g){rx{x)q(g), Lx(g).   o  q¿y))

= {Lx(g-x)*9q(x))(rx(x)q(g),Lx(g), o qÁy))

= 9qm{Lx(g~%rx(x)q(g), q,(y))

= 9q(l)(-q,(Ad(g-x)x),q,(y))

= o>(y,Ad(g-x)x).

On the other hand,

{(q*(df* ))g, L(g)j) = (d(f* o q)g, L(g)ty) = | <P(g exp ty), x)\imQ

= ft <Ad*(g)P(exp (y), x)\t=o + | <F(g), x>|/=o

= (Ad*(g)(t(y)u), x) = W(/, Ad*(g-')x).

This proves our assertion.

3.2.2. Remark. In contrast with the construction given in [3] for the case

when w is a coboundary, the map xh»/x is no more a Lie homomorphism

with respect to the Poisson bracket on C°°(X). However, it satisfies

[fx,fy]= fXJ,] - <»(x,y),       x,yEQ. (3.2.6)

3.3. We shall say that co is an integral 2-cocycle if the cohomology class

[9U] E H2(XU, R) is integral. This integrality property is preserved by the

action of G on Z2(g). Indeed, if w' = Ad*(g)w with g G G, then from (3.1.4)

it follows that G(w') = I(g)G(u), hence 1(g) induces a diffeomorphism i(g):

Xa -» Xu. such that i(g)*9u. = 9a. This means that i(g) is an isomorphism of

symplectic spaces. In particular, it preserves the integrality condition.

The subspace of all integral 2-cocycles in Z2(g) will be denoted Zq(q).

4. Polarizations.

4.1. A complex subalgebra b c gc will be called a polarization of g at

w G Z2(g) if it satisfies:

(i) b is a_maximally isotropic subspace of gc relative to co;

(ii) b + b is a Lie subalgebra of gc;

(iii) b is AdGG(w)-stable.

If, in addition, b fulfils the condition

(iv) z'w(x, 3c) < 0 for any x G f),

it is called a positive polarization.

By n we denote the nil-radical of g. Set G(w|n) = {g G G; Fu(g)\n = 0}.
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Now we shall say that the polarization b is nil-admissible if it has the

property:

(v) b n nc is a maximally isotropic subspace of nc relative to <o|nc x nc

and it is AdcG(«|rt)-stable.

From now on b will be a fixed polarization of g at w. Consider the Lie

subalgebras of g: b = b n g and e = (f) -f- rj) n g. Then it is easily seen that:

g(«) C b c e; (4.1.1)

bc = b n I and ec = b + f¡; (4-'-2)

(4.1.3) b is the orthogonal subspace of e relative to w and thus the

canonically induced 2-form ¿> on e/b is nondegenerate.

Let D0 and E0 denote the connected Lie subgroups of G which correspond

to the subalgebras b and e respectively. Since b is stable under AdGG(co), D0

and E0 are normalized by G(w). It follows that D = D0G(u>) and F =

F0G (w) are subgroups of G.

With this notation, we shall say that f) is a closed polarization if FU(E)

(= FU(E0)) is a closed set in g*.

4.2. The notation being as in 1.4, let (mu, \pj E ext0(Q, R) and (Mw,pu) =

Êz'e^m^, \l/u) G &xt0(G, R) be the extensions associated to the fixed 2-cocycle

a?. We shall identify m* to R X g* in the obvious manner. Since R c mu is

central, the coadjoint representation of mw factorizes through a representation

of g in m* = R X g*, which is just ra. It follows that one has

Ta(p0(m)) = Ad*(m)   for any m E Ma. (4.2.1)

Define vu E m*   as being (1, 0) G R X g*. Since there is no danger of

confusion, we shall drop in the sequel the subscript w in mu, ipw, va, Mu,pu.

We will now list some facts which can be verified in a straightforward way:

4>*(ui) = dv; (4.2.2)

(4.2.3) f) c gc is a polarization of g at w if and only if fj = \p ~ x(b) c mc is a

polarization of m at v (in the sense of [1]);

(4.2.4) b is a positive polarization at w if and only if f) is a positive

polarization at v;

(4.2.5) let D, E be the groups associated to the polarization b as above, and

let D, E denote the groups associated to b as in [1,1.5]; then D = p~X(D) and

É = p-X(E);

(4.2.6) the polarization f) is closed (resp. nil-admissible) if and only if lj

satisfies the Pukanszky condition (resp. is strongly admissible).

These remarks together with Proposition 1.5.1 and Proposition 1.5.4 in [1]

give the following consequences:

(4.2.7) with the above notation, D is closed in G and D0 is its identity

component;
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(4.2.8) if b is a closed polarization, then F is closed in G and F0 is the

identity component of F.

Furthermore, one has

(4.2.9) if b is a closed polarization at w, then FU(D) is a linear variety in g*.

Indeed, from (4.2.1) and (3.1.3) we deduce that {AdM(d)v; d E D] =

{(1, Fw(d)); d E D) c R X g*, and our last claim is now a direct

consequence of Proposition 1.5.6 in [1].

Finally, let us observe that, in view of (4-2.6) and Proposition II.2.5 in [1],

one has

(4.2.10) if G is solvable, any nil-admissible polarization of g at w is closed.

4.3. From now on we shall suppose that f) is a positive, closed polarization

of g at w. Since the 2-form w|e X e is Ad*-£>-invariant and i(_y)(<o|e X e) = 0

for anyj> G b, w induces an F-invariant 2-form on E/D which, by (4.1.3), is

nondegenerate. In particular, there exists on E/D an F-invariant volume

element. Therefore, the modular function AD of D coincides with the

restriction to D of the modular function A£ of F. We pick now a function

ß E CX(G), strictly positive and such that ß(l) = 1 and ß(ge) =

A£(e)AG(e)~ xß(g) for any g G G, e G F. Then, for each g G G we define the

function ßg G CX(G/D) by ßg(qD(a)) = ß(g-xa)ß(ayx, a E G, where qD:

G -» G/ D is the canonical projection.

4.3.1. Lemma. If x E b, g, a E G, then (qD)^(L(ä))fx) ßg = 0.

Proof. Actually, the stated formula is valid even for x E e. Indeed, one has

(qD),(L(a\x)ßg = —(ßg(qD(a-exp tx)))\t=0

ß(g   xa- exp ta)

ß (a ■ exp tx)

d l ß{g~1*)
* dt\     ß(a)

t=o

= 0.

r = 0

Before finishing this subsection, let us fix one more notation: p will stand

for the quasi-invariant measure on G/D which corresponds to ß and to a

choice of a left Haar measure on G. Recall that, for any/ G CC(G/D) and

g G G, one has

f     ßg(u)f(g-xu)dp(u) = [     f(u)dp(u). (4.3.1)
JG/D Jg/D

5. Projective representations constructed by the quantization procedure.

Throughout this section w will be an integral cocycle in Z2(g), b will denote a

closed, positive polarization of g at «, D, E will be the associated closed

subgroups of G; X = Xu, q = qu, 9 = 9U, F = Fu have the same meaning as

in 3.2.

5.1. As in [3], let tc(X, 9) denote the set of all equivalence classes of
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complex line bundles with connection and invariant Hermitian structure over

X, with curvature form 9. Since a is assumed to be integral, tc(X, 9) is

nonvoid (cf. [3, Proposition 2.1.1]). Pick I E tc(X, 9), (L, a) E t and \etprL:

L -^ X denote the corresponding projection. Now let 6De(A') be the group of

diffeomorphisms of X which leave I unchanged, and let S (L, a) be the group

of all diffeomorphisms of L which commute with the scalar multiplication

and preserve both the connection form and the Hermitian structure. Then,

according to Theorem 1.13.1 in [3], one has an exact sequence of groups

l->T-»S(L,a)-»öDf(;!0->l, (5.1.1)

where the injection T -> & (L, a) is defined by the scalar action of T on L,

and the projection S (L, a) -* ty^X) is given by e\-*ê, ê denoting the unique

diffeomorphism of X such thatprL ° e = ê ° prL.

Consider now the projectionpD: X = G/G(w) -* G/D with fibre £)/G(u>).

Since F induces a diffeomorphism of D/G(w) onto F(D), (4.2.9) implies that

D/G(u) is connected and simply connected. Note also that 9 vanishes on the

fibres of pD. These two remarks ensure that the parallel transport along the

curves which are completely contained in the fibres of pD depends only on

their extremities. Thus, for any two points u, v E X such thatp^u) = pD(v),

one can define unambiguously an isometry Puv: Lu -* Lv, namely that given

by the parallel transport along any curve contained in p¿l(pD(u)) with initial

point u and end point v.

Define now an equivalence relation on L as follows: a ~ b if pD(u) =

pD(v) and Puv(a) = b, where u = prL(a) and v = prL(b). The corresponding

quotient space will be denoted L/D, while pD: L -* L/D will stand for the

canonical projection. It is perfectly clear that prL factorizes through a map

prL/D: L/D —» G/D such that the diagram

Prd ÍPrL/D

X->G/D
Pd

commutes. Moreover, prL/D: L/D —» G/D is a complex line bundle with

Hermitian structure < , ) inherited from the Hermitian structure of L.

5.2. Let all notation be as above. Consider the vector space TD(X, L, a)

consisting of all sections í G T(X, L) such that V¿s = 0 for any tangent

vector | with (/>/>)„£ = 0. It is an easy matter to see that for any two points u,

v G X with pD(u) = pD(v) one has Puv(s(u)) = s(v); hence s determines a

section sD E T(G/D, L/D).

5.2.1. Lemma. The map s*-^sD establishes a one-to-one correspondence

between TD(X, L, a) and T(G/D, L/D).
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The proof is straightforward, so we will omit it.

5.3. Consider now the subspace %(L, a; b) of TD(X, L, a) consisting of

those sections s E T(X, L) which satisfy:

vq,<.m¿c)s = °   for any x G ^ and8 G G; (53.1)

[     \\sD(u)f dp(u) < n. (5.3.2)
JG/D

Take then the obvious scalar product on %(L, a; b) and let H(F, a; b)be the

associated Hubert space.

We intend to define a projective representation of G on H(F, a; b). To this

end let us consider g G G and note that, in view of Remark 4.4.2 in [3] and

our Proposition 3.2.1, Lx(g) E tyt(X). Choose then an element e G &(L, a)

such that ê = Lx(g) (see 5.1) and define pe: H(L, a; 6)-» H(L, a; b) by

Pe(s) = (ßg °pD)l/2(e o s ° Lx(g)-X),       s G %(L, a; f,).

We shall prove that pe(s) satisfies (5.3.1) and

/     \\Pe(*)D{«)\fMu) = [     \\sD(u)\\2 dp(u), (5.3.3)
JG/D JG/D

which means that pe G U(H(L, a; b)). Indeed, keeping in mind Lemma 4.3.1,

we have

V<,,(i(^)Pe(i) = q*(L(a).x)(ßg °PD)'/2(e ° 5 o Lx(gyx)

+{ßg°pDy/2vqAmAeosoLx^y')

= (qD\{L(a\x)(ßg)X/\e ° s ° Lx(g)~x)

+ (ßg°PD)i/2(e°vq.aws)s) = o>

for any x G f) and a E G. This proves that pe(s) satisfies (5.3.1). On the other

hand, (5.3.3) is a direct consequence of (4.3.1).

Now if e' is another element of &(L, a) such that ê' = Lx(g), then, by

(5.1.1), e' = te with t E T, whence pe. = rpe. Thus pe determines a well-

defined element in PU(H(F, a; b)) which will be denoted m(L, a; b)(g). One

sees without any difficulty that g\-^ir(L, a; b)(g) is a homomorphism of G in

PU(H(L, a; b)). Moreover, the following result, whose proof we defer until

the next section, holds true.

5.3.1. Proposition. tt(L, a; b) is a projective representation of G on H(L, a;

i».

Clearly, if (L', a') is another representative in the class (, then tt(L', a'; b)
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is projectively equivalent to m(L, a; b). Owing to this fact we may denote the

equivalence class of ir(L, a; b) by 7rw.

5.4. We shall state in the remainder of this section our main results. The

group G will be assumed in what follows not only connected and simply

connected as before, but also solvable. The proofs of the results stated below

will be given in §6.

5.4.1. Theorem. Let w G Zo(g).

(i) The set of positive, nil-admissible polarizations ofg at u is nonvoid.

(ii) For any positive, nil-admissible polarization b of g at w and any I =

[(L, a)] E tc(Xa, 9a) the projective representation tt(L, a; b) is irreducible.

(iii) // b and b' are two positive, nil-admissible polarizations of g at w and

I E tc(Xu, 9J, then irtt = ttw.

The choice of the polarization b being thus immaterial, we may denote the

class wef) G Gn simply by <nt

We shall define now an action of G on the set tG = Uutc(Xu, 9U), w

running over Zo(g), as follows. For g E G, « G Zo(g) and I = [(L, a)] E

tc(Xu, 9U) let g~x • I denote the equivalence class of the pull-back of (L, a)

by the diffeomorphism i(g~x): (Xg.u, 9g.w) -> (Xu, 9U), where g ■ to stands for

Ad*( g)to (see 3.3). It is an easy matter to see that (g, t)*-+g~l- I is a

well-defined action of G on tG.

5.4.2. Theorem. Let Î, V E tc. Then mt = mz if and only if there exists

g G G such that i' = g"1 • i.

In other terms, the map l\-^tTt from tG to the projective dual Gn of G

factorizes through an injective map from £G/G into Gn.

To state our next result we need two more definitions.

We shall say that w G Z2(g) is a type I cocycle if the simply connected Lie

group Mu with the Lie algebra mu (see 1.4) is of type I.

5.4.3. Lemma. Any type I cocycle to G Z2(g) is integral.

Obviously, if to is a type I cocycle then Ad*(g)to is also of type I, for any

g G G. Thus £G = Uatc(Xu, 9J, to running over the set Z,2(g) of all type I

cocycles in Z2(g), is a G-stable subset of tG.

Finally, the set of all equivalence classes of irreducible projective represen-

tations m of G such that the associated group M„ (see 2.2) is of type I will be

denoted by G,n.

5.4.4. Theorem, (i) i E tG if and only if-rrl E G,n.

(ii) The map tr->irt induces a bijection between tG/G and G,n.

In the special case of exponential Lie groups the above result provides a

complete parametrization of the projective dual.
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5.4.5. Corollary. Assume G exponential. Then each u E Z2(g) is of type I,

and the set tc(Xa, 9a) reduces to a single element í(ío). Furthermore, the map

03r^>TT^a)from Z2(q) to Gn factorizes through a bijection of Z2(q)/G onto Gn.

6. Proofs.

6.1. Returning for the moment to the general case when G is not necessarily

solvable, let u E Z2(q), b be a closed, positive polarization of g at u, and

X = Xv q = q„, 9 = 9a, F = Fa, m = mu, M = M0, p = pa, v = va, D, E,

i), D, E be the associated data (see 3.2, 4.1, 4.2). Set Y = M/M(v), where

M(v) = {m E M; Ad*(m)v = v) and let q: M-* Y be the canonical

projection. Then dv induces a Af-invariant 2-form a = au on Y such that

(Y, a) is a symplectic A/-homogeneous space (see [3]). In view of (4.2.1) and

(3.1.3), M(v) = p~x(G(u>)), so that p: M^G induces an isomorphism p:

(Y, a) -» (X, 9) of symplectic spaces which has the additional property

p(Ly(m)u) = Lx(p(m))p(u),       m E M, u G Y.

Assume now a integral and let i = [(L, a)] E tc(X, 9). Of course, (L, a)

can be viewed also as a line bundle with connection and invariant Hermitian

structure over Y, the projection being this timep-1 °prL; when regarded as

such, its equivalence class in tc ( Y, a) will be denoted I. According to

Theorem 5.7.1 in [3], there is a unique character tj = t/e: M(v)^*T whose

differential is 27rz>|m(z') (m(z') being Lie M(v)), such that I = [(L, à)], where

L = M X C is the line bundle over Y associated to the principal bundle q:

M-» Y with structure group M(v) and to the representation 17: M(v)—>T =

U(C), and á is the "push-down" of the 1-form (a,, (\/2m)(dz/z)) on M X C,

8V being the left invariant 1-form corresponding to v G m*. In more detail,

M Xn C is obtained as the orbit space (M x C)/M(v), where the action of

M(v) on M X C is given by: n • (m, z) = (mn~x, t/(/i) • z), n G M(v), (m, z)

E M X C. The projectionprL: L -> Y is the map [m, z]\->q(m), where [m, z]

stands for the orbit of M(v) through (m, z), while the linear and the

Hermitian structure on L are those determined by the usual ones on C.

As it is known, tj extends to a unique character x = Xe 0l T> whose

differential is 27rz'j'|b. Now let p(x, b) be the holomorphically induced unitary

representation of M corresponding to the polarization I) and to the character

X (see [1]).

6.1.1. Lemma. 77ze unitary representation p(x, fj) of M is projectable and the

corresponding projective representation p(x, b) of G is projectively equivalent to

ir(L,a; b).

Proof. Recall first that the Hubert space H(x, b) on which p(x, b) acts

comes from the vector space %(x,b) of all C °°-functions /: M-* C

satisfying:

(i)f(md) = xi.d)~ lf(m) for any m E M and d E D;
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(ii) l(x)f + 2tri(y, x)f = 0 for any x E f»;

O») !M/ó\Km)\2 dp(mD) < oo,

where ß is the volume element on M/D corresponding to p via the

isomorphism

M/D^G/D

induced by p: M -» G (cf. (4.2.5)). The action of p(x, tj) on H(x, tj) is
expressed by the formula

(p(x, b)(m)f)(m') = (ßpim)(qD(P(m'))))l/2f(m- W),       m, m' G M.

There is no problem in verifying that p(x, b) is projectable so that we do

not insist on this point. In order to prove the second assertion, let us note first

that (L, ä), when regarded as a line bundle with connection and Hermitian

structure over X (the corresponding projection being p ° pr¿), is obviously

equivalent to (L, a). Thus, for our purposes, there is no loss of generality in

assuming (L, a) = (L, ä) as line bundles over X. Now for each/ G %(x, tj),

let sf: X -* L be the section

■*/(?(/>("0)) = [m,f(m)],       m E M.

By a routine computation one checks that sfE %(L, a; b) and that the

assignment fr->sf gives rise to a unitary isomorphism U: H(x, tj) —» H(L, a; tj).

Let g G G and choose m G M such that p(/w) = g; m defines an element

em E &(L, a) by em([m', z']) = [mm', z'\, and clearly

sp(x,i,yg)/= (ßg °Pß)1/2(^m "vM?)"1).     / e X(x, 5),

which means that

Û o p(x,ij)(g) = „(L, a;t))(g) o Û.

This proves both the fact that tt(L, a; b)is indeed a projective representation,

as asserted in Proposition 5.3.1, and the claim of the present lemma.

6.2. In the rest of this section G will be assumed solvable. All the notation

remains as above.

6.2.1. Proof of Theorem 5.4.1. It suffices to combine (4.2.3), Lemma 6.1.1

and Theorems II.3.2, III.4.1, IV.5.7 from [1].

6.2.2. Proof of Theorem 5.4.2. Let us begin by proving that if t G

tc(X, 9) (with X = Xa, 9 = 9J and V E tc(X', 9') (with X' = Xa,, 9' = 9J
are related by the equality V = g~ ' • t, then trr = 7i>

Note first that u' = Ad*( g)to, therefore, after choosing a positive, nil-

admissible polarization fj of g at u, b' = Ad(g)b will be a polarization of the

same type at u'. Further, pick (L, a) E t; then (U, a') — i(g~x)*(L, a) E V.

All the data concerning to', f)', V will be denoted by the same symbol as those
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attached to <¿,b, i, but affected by an accent. This convention will be valid all

over this section.

Put X = F(g); then, by (3.1.6), to' - to = dX. Let q>x: m-»m' and $A:

M -> M' be the corresponding Lie homomorphisms, as in 1.4. Now choose

m E M such thatp(m) = g and let A = <px*v' - Ad%(m)v. Then

W) = tf *' = tf(f*«') = **«'>
while

d(Ad*M(m)v) = Adjoin)* = Adj^m)**« = ^*(Ad^(g)to) = W,

so that dA = 0, which means that A is a character of m. Hence bm = Ad(m)f)

is a polarization for yx*v' — Ad%(m)v + A. Since M is connected and simply

connected, A gives rise to a character Xa °f M whose differential is 2mA.

Let now 17 and x be the characters of M(v) and D respectively, associated

to I, as in 6.1. Since v' = (Ad%(m)v + A) ° <pxx, whence M'(v') —

$x(I(m)M(v)), we can define a character 17' of M'(v') by putting tj' = (xA ■

(x ° /(w-1))) ° ^'lAfXy'). Consider now the diagram

M ' X C -» M X C

|"' 4"
y = M'/M'(v')       -»      M/M(v) = y

/i ip

X' = G/G(u') -*        G/G(u) = X

where the top horizontal arrow is given by [m', z]r-*[/(m_1) ° ®xx(m'),

XA(w')z], the middle horizontal arrow is induced by I(m~x) ° O^-1: AT -> Af

and the top vertical arrows are determined by projections onto the first

factors followed by projections onto quotient spaces. The fact that this

diagram commutes, which can be easily verified, together with the

discussion about line bundles in 6.1, imply that, by composing the left vertical

arrows, one obtains a line bundle with connection over X' which is equivalent

to (U, a'). This means that tj' is precisely the character associated to V.

Denote for simplicity Dm = I(m)(D) and Xm = X ° lim~l)\T>m. Since D'

= $A(Dm), one can see that x', the extension of tj' to D', is given by the

formula

x'•* ((xaIÂ0x«WVU5')-
Furthermore, p(x', b') = p(((XaIÂJxJ ° (^'l-D'X f)') is, by [1, Proposition
1.5.13], unitarily equivalent to p^XaIAJx™, t)m) ° $\U, consequently

p(x'> V) ° $x is unitarily equivalent to p((xAlAn)Xm> 5m)- At this moment we

observe that p((xAIÂJXm> U is unitarily_ equivalent to p(x„, \m) ® Xa.

through the unitary isomorphism of H((xA|ÂJx„> jL) onto H(x„, t)m) given

by/^Xa "/• Using [1, (IV.2.2)] for instance, p(x», bm) is seen to be unitarily
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equivalent to p(x, ft)- Summing up these last remarks it follows that

P(x'> I') ° $a is unitarily equivalent to p(x, tj) ® Xa- To conclude this part of

the proof, that is to get ttia = ww, it is enough to invoke Lemma 6.1.1.

Assume now, conversely, that ■nl = 77>, that is ir(L, a; ft) and ir(L', a'; b')

are projectively equivalent, where u, to' G Zg(g), b (resp. ft') is a positive,

nil-admissible polarization of g at to (resp. w') and i = [(L, a)] E tc(X, 9),

V = \(L', a')] E tc(X', 9'). From Lemma 6.1.1 and 2.4 we deduce that there

exists an equivalence of extensions <J>: Af-> M' with differential <p: m—»m'

such that p(x, ft) and p(x\ ft') ° $ are unitarily equivalent. But p(x', t)') ° $ is

unitarily equivalent to p('x, 't)), where 'x is the character of 'D = <ï>~ X(D')

given by 'x = x' ° (^I'-Ö) and 'ft = (¡D_1(f)'), hence, by [1, Theorem IV.5.7],

there exists m G A/ such that cp*?' = Ad*í(m)i' and tj =

tj' ° ((<!> o /(/7j))|M(í')). Now, looking at the construction of the line bundle

with connection associated to a character, which has been recalled in 6.1, it is

easily seen that V = p(m)~x • Î.

6.2.3. Proof of Lemma 5.4.3. The notation being as agreed, let us recall

that (A', 9) and (Y, a) are isomorphic symplectic spaces. But then, in view of

Theorem V.5.2 in [1], the cohomology class of a is integral, hence u is

integral.

6.2.4. Proof of Theorem 5.4.4. The first claim results from Lemma 6.1.1

and 2.2. To prove the second claim it suffices to show that an arbitrary

irreducible projective representation tr of G whose class belongs to G:n is

equivalent to a projective representation of the form tt(L, a; ft). To this end,

consider the "unitary lifting" p = m: M = A/„ —>PU(H) (cf. 2.2). In view of

[1, Theorem V.3.3], there exist v E m* and a character tj of M(v) with

differential 2m>|m(z') such that, if we choose a positive, strongly-admissible

polarization ft of m at v and denote by D its corresponding "D "-group and by

X the corresponding extension of tj to D, then p is unitarily equivalent to

indM(r¡, ft), the holomorphically induced representation of M associated to tj

and ft (see [1]). Since R is central in M, the very definition of indM(f), ft)

ensures us that

indM(tj, b)(r) = exp{2m(v, r)}ld,       r G R;

on the other hand, p being projectable, we have

indM(tj, b)(r) = exp{2w}Id,       r ER.

Now, according to §1, we can assume m = m,,, for a suitable to G Z2(g).

Define X G g* by <X, x> = <>, (0, x)> and u' = u + dX. Further, let <px:

m -> m' = m,,,, be the isomorphism associated to X. Clearly, v = v' ° <px, where

v' = va,. Then

indM (tj, ft) ~ indM. (r,', ft') ° <DA,
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where A/' is the connected and simply connected Lie group with Lie(Af') =

m', $x: M -* M' is the isomorphism whose differential is <px, ft' = (px(tj),

tj' = tj o (<&xx\M'(v')). But indM.(t]', ft') is just the representation of A/' we

have denoted p(x', ft'), where x' = X ° ($a_1|^') and &' = «fv(íí')- Letting

(L', a') denote the line bundle with connection over Xu, associated to tj', one

sees that tt(L', a'; ft') is projectively equivalent to it.

6.2.5. Proof of Corollary 5.4.5. Since a central extension by R of an

exponential group is again an exponential group and since such a group,

when connected and simply connected, is of type I, it follows that Z2(g) =

Z2(g) and Gn = G/1. Let now u E Z2(g). Because Ma(va) is connected and

simply connected, tc(Xu, 9a) consists of only one element. The rest of the

proof is merely a simple consequence of Theorem 5.4.4.
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