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THE FUGLEDE COMMUTATIVITY THEOREM

MODULO THE HILBERT-SCHMIDT CLASS AND

GENERATING FUNCTIONS FOR MATRIX OPERATORS. I

BY

GARY WEISS1

Abstract. We prove the following statements about bounded linear opera-

tors on a separable, complex Hilbert space: (1) Every normal operator N

that is similar to a Hilbert-Schmidt perturbation of a diagonal operator D is

unitarily equivalent to a Hilbert-Schmidt perturbation of D; (2) For every

normal operator A', diagonal operator D and bounded operator X, the

Hilbert-Schmidt norms (finite or infinite) of NX - XD and N*X - XD*

are equal; (3) If NX - XN and N*X - XN* are Hilbert-Schmidt operators,
then their Hilbert-Schmidt norms are equal; (4) If X is a Hilbert-Schmidt

operator and A is a normal operator so that NX — XN is a trace class

operator, then Trace(NX - XN) = 0; (5) For every normal operator N that

is a Hilbert-Schmidt perturbation of a diagonal operator, and every boun-

ded operator X, the Hilbert-Schmidt norms (finite or infinite) of NX — XN

and N*X — XN* are equal. The main technique employs the use of a new

concept which we call 'generating functions for matrices'.

Let H denote a separable, complex Hilbert space and let L(H) denote the

class of all bounded linear operators acting on H. Let K(H) denote the class

of compact operators in L(H) and let Cp denote the Schatten /7-class

(0 < p < oo) with || • \\p (1 < p < oo) denoting the associatedp-norm. Hence

C2 is the Hilbert-Schmidt class and C, is the trace class.

Consider the following statements:

(1) For every normal operator N and e > 0, there exist a diagonal operator

D and a Hilbert-Schmidt operator Ke with \\Ke\\2 < e for which N st D + Ke

(» denotes unitary equivalence).

(2) For every normal operator N, there exist a diagonal operator D and a

K E C2 for which N = D + K.

(3) For every normal operator A^ and bounded operator X, \\NX — XN\\2

= \\N*X - XN*\U.
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(4) For every normal operator N and bounded operator X, NX - XN E

C2 implies N*X - XN* E C2.

(5) For every normal operator TV and bounded operator X, if NX — XN E

C2 and TV** - XN* E C2, then \\NX - XN\\2 = \\N*X - XN*\\2.

(6) If N is normal, X E C2, and TV* - XN E C„ then Trace(/VZ - XN)
= 0.

In [11] Weyl proved that every selfadjoint operator is a compact

perturbation of a diagonalizable operator, and that the perturbation may be

chosen with an arbitrarily small operator norm. In [8], von Neumann proved

that the perturbation could be chosen to be in the Hilbert-Schmidt class and

with arbitrarily small Hilbert-Schmidt norm. In [1], I. D. Berg generalized

Weyl's result to normal operators, and proved that if the spectrum of the

normal operator is 'thin enough', then the compact perturbation can also be

chosen to be a Hilbert-Schmidt operator with an arbitrarily small Hilbert-

Schmidt norm. He asked whether or not the von Neumann result generalizes

to all normal operators (that is, statements (1) and (2)). These questions

remain open. He conjectured that the full generalization fails and that he

believes a barrier preventing a normal operator from having the repre-

sentation (1) or (2) is that its absolutely continuous part have a spectrum of

positive 2-dimensional Lebesgue measure. At present, not a single such

normal operator is known which can be represented as in (1) or (2).

The 1970s has seen a flurry of deep results on the perturbation theory of

operators and the theory of commutators. Besides Berg's paper [1], some of

the well-known papers relating perturbation theory to commutators are

Berger and Shaw [2], Brown, Douglas and Fillmore [3], Carey and Pincus [4],

and Helton and Howe [7].

The connection between (3)-(6) and the Berg problem (2) is clear from the

next remarks.

The following implications hold true.

^(6)

Their proofs are elementary and fairly well known so we omit them (see [10]

or [9, pp. 154-162]).

We shall prove that (5) and (6) are true ((6) settles a question in the

negative in [9, p. 162]), and we shall obtain as corollaries that (3)<-»(4) and

(2) —» (3). We shall also obtain related results. The above diagram is made

current in the summary at the end of this paper.

Definition. A Laurent operator is an operator of the form M^ acting on

L2(T), where <|>(z) E Lœ(T) and Tdenotes the unit circle.
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Definition. If TV is a normal operator and <J>(z) G L°°(r), then Mf is

called a Laurent part of TV provided M^ has no eigenvectors and there exists a

diagonal operator D such that TV = M^ © D.

Lemma 1. Every normal operator is the direct sum of a diagonalizable

operator and a Laurent part.

Proof. Let TV be any normal operator and let 91L denote the closed linear

span of the set of its eigenvectors. Then 9ÎL reduces TV and TV^ = D is a

diagonal operator with the same set of eigenvectors as TV. Let TV, = TV^x.

Then TV = D © TV, and TV, has no eigenvectors. Using the spectral theorem,

we obtain TV, s M^ acting on L2(/i), with \p E L°°(n), where ju acts on a

finite measure space (this may be accomplished since H is separable).

Because TV, has no eigenvectors, it is clear that the underlying measure space

can have no atoms. However, it is well known [6] that every finite nonatomic

probability measure space can be realized as 1-dimensional Lebesgue measure

on [0, 1] or equivalently, on the unit circle T. In other words, without loss of

generality, we can insure that TV, s M^ acting on L2(T), with <¡> E L°°(T).

Let Dl denote D under this unitary transformation. Then TV ss £), © Af

Q.E.D.
This lemma provides us with a crucial canonical form for the commutator

TV* - XN. Letting X be any operator in L(H), relative to H = <9H © <Dt±,

we obtain

A computation then shows that

DXX - X{D       DX2 - X2Mç

(<,X3-X3D    M^XA-X,M^nx-xn = \m^-x,d   m.x.-xm} O

and

D*Xl - XXD*    D*X2 - *2m;

\m}X,-X,D-     HiX.-X¿\- <">
M.
V

\NX - XN\\l - \\DX, - X,D\\l + \\DX2 - X2MJ>

Clearly then

-XN\\l=\\DXl-XlD\\22 +

+ \\M„X3 - X3D\\22 + ||M^4 - *4MJ2; (I')

and

||TV** - *TV*||2 = \\D*XX - X2D*\\\ + \\D*X2 - X2M*\\22

+ \\M*X3 - X3D*\\\ + \\M;X4 - X4M*\\22.     (IF)

The following theorem relates (I'), (IF) and (I) to statements (3)-(6).
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Theorem 2. (a) For every diagonalizable operator D, and X E L(H),

\\DX - XD\\2 = \\D*X - XD*\\2.
(b) For every normal operator TV, diagonalizable operator D, and X E L{H),

\\DX - XN\\2 = \\D*X - XN*\\2and \\XD - TV*||2 = \\XD* - N*X\\2.
(c) To prove any of the statements (l)-(6), it is necessary and sufficient to

prove the corresponding statement for the special case when TV = M^, where

<í>(z) E Lx{T)andH = L2(T).

Proof. A simple computation proves part (a). It may also be found in [9, p.

147] or [10]. To prove part (c), consider separately each of the statements

(l)-(6). To obtain (l)-(2), use the Laurent decomposition for a normal

operator. To obtain (3)-(5) consider (I') and (IF) and to obtain (6) consider

(I). The proof of part (b) is not so easy. We give the proof next. First of all, it

clearly suffices to prove the first equality, since the second equality follows

from the first one by using adjoints.

In the basis which diagonalizes D, let <*/„>"„, denote the diagonal entries

of D, and let TV = (ify) be the matrix for TV and X = (x,-,) be the matrix for X.

Then

and

\\DX

\\D*X

XNf2=  £
tJ-\

14*., 2
k

Xiknkj\

XN*\\22=  2 d¡Xy 2 *lfc»,
k

where n^ =njk are the matrix entries of TV*. To show that these quantities are

equal, it suffices to show that for every fixed i, we can obtain

2
y=i

djXjj     ¿j xjknkjd¡Xij       2j  xiknkj    ~   2j
k j=\

To prove this, let x(i) = (xn, xi2, xi3, . . .) denote the ith row vector of

(^•)r=.-Let
'xnxi2 '" W /dJ      °N

0   0
andTV('') =

0

A-W =

0 0 \0 N/

Then straightforward computations show that 2°iiKx(/ — ̂ kx¡knkj\2 equals

the square of the /2-norm of the row vector d¡x(í) — x(,)TV, and this equals the

square_ of the Hilbert-Schmidt norm of N(i)X(i) - X{I>N{I). Similarly,

Sylil^ - 2kxikn*\2 = \\NmX® - X®Nm\\l In this case, however, X®
is a rank 1 matrix with its only nonzero row equal to x(,) E I2 (since

X E L(H)). Therefore *<0 E C2. Also TV(,) is clearly normal. In [9, p. 147,

Theorem 8e] and in [10] we showed that under these circumstances, we have
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\\NU)XU) - X{0NU)\\2 = IITV0'***0 - *(/)TV(/)*||2.

Briefly, this is true since TV w is a normal operator and therefore it must be the

uniform limit of diagonalizable operators. The latter equality is true replacing

TVW by a diagonalizable operator, by part (a) of this theorem. Then we can

take the /2-norm limit of these replacement commutators due to the fact that

if A„ -* A uniformly and Y E C2 then An Y -* A Y and YA„ -> Y A in the

Hilbert-Schmidt norm. This proves that the necessary sums are equal, and

thus proves the theorem.    Q.E.D.

Before developing the main technique, we are able to obtain a corollary to

Theorem 2 that bears directly on the problem of I. D. Berg (statement (2)).

Recall that s denotes unitary equivalance and ~ denotes similarity. Berg's

problem asks if for every normal operator TV, there exists a diagonalizable

operator £>, and K E C2 such that TV s D + K. The next corollary shows

that Berg's problem is equivalent to the corresponding problem relative to

similarity.

Corollary 3. If TV is a normal operator and D is a diagonalizable operator,

then N sé D + K for some K E C2 if and only if TV — D + Kx for some

Kx E C2.

Proof. One implication is trivial. For the other implication, assume TV — D

+ Kx, with Kx E C2. Then there exists an invertible operator S so that

TV = S*-\D + KX)S*, equivalents

DS* - S*N E C2. (f)

Applying Theorem 2(b), we obtain D*S* — S*N* E C2, or equivalently

TVS - SD E C2. (ft)

By (t)> we obtain

DS*S - S*NS = D|S|2 - S*NS E C2. (ttf)

Applying (ft) to this, we get D\S\2 - S*SD = D\S\2 - \S\2D E C2.

We claim D\S\2 - \S\2D E C2 implies D\S\ - \S\D £ C2, assuming S is

invertible. (The proof of this fact works even if D is an arbitrary operator in

L{H).) Apply the Weyl-von Neumann Theorem [8] to the positive operator

\S\ to obtain \S\ s D{\) + Ke, where 0 < \ < \\S\\ and ö(\,) denotes the

diagonal matrix with the nonnegative diagonal sequence (\„)™=x, and Ke E

C2 with ||a:e||2 < e (e remains to be chosen). Hence |5|2 » D(\2) + K',

where K' E C2. Because S is invertible, \S\ is invertible, and so, bounded

below. Choose e > 0 so that \S\ is bounded below by 2e. Then since

\S\ s D{\) + Kc, we obtain D(X„) a \S\ - /Ç with ||A;'||C2 < e and

A, = || \S\e„ - K;en\\H > || |S|e„||„ - \\K¡e*\\B

>2e- \\K;\\LiH) >2e - \\K¿\\2 > e.

Let D = (Dy) denote the matrix for D with respect to that basis which

diagonalizes   Z)(AJ.   Then   D\S\2 - \S\2D = DD(Á¿) - D(X2)D + DK' -
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K'D, and so D\S\2 - \S\2D E C2 and Ä" E C2 imply DD(X2) - D(X2)D E

C2. Therefore,

00

oo > \\DD(X2) - D(\l)D\\l =  2    l(V - A/)D,|2
'V=i

00 00

-2   (X,+A,)2|(A,-A/)Ö,|2> S   (26)2|(X,-Xy)Z>i/|2
«'</'■■ l 'V=1

= 4£2||/>Z)(A„)-Z>(An)Z)||2,

Therefore D\S\ - \S\D - (£>*/ - K^D) = DD(\,) - D(X„)D E C2. Since

AT/ E C2, we get D\S\ - \S\D E C2, which proves the claim.

Let S = í/|5| be the polar decomposition for S. The invertibility of S

guarantees that \S\ is invertible and U is unitary. Substituting this in (f) we

obtain D\S\U* - \S\U*N E C2. But we now also have that D\S\ - \S\D E

C2. Therefore \S\DU* - \S\U*N E C2. Multiplying by |S|_1, we obtain

DU* - U*N E C2 or equivalently, TV - [/£>{/* E C2, with t/ a unitary

operator.   Q.E.D.

The main construction. In this construction, we use the notation that was

introduced earlier.

By virtue of Theorem 2(c) we devote our attention to M^X — XM^, where

<t> E LX{T) and X E L(L2(T)). In addition, if NX - XN is a trace class

operator and X E C2, then from the matrix computation I, it is easy to see

that (for TV = D © M^) M^X^ — X4M^ must be a trace class operator with

X4 = P^XP^ E C2, and Trace(TV* - XN) = Trace^A^ - X4M¿

(since Trace(Z)X, -*,£>) = 0).

What is the matrix for M^? Let <f>(z) = 2^=_00<i)„z" denote the Fourier

series for <j>. Then (A^)lV- = (A^z7, z') = /r ^>(z)z^-' = ^_,.. The A:th

diagonal (k = 0, ± 1, ± 2, . . . ) in this 2-way infinite matrix is described by

the set of all entries (i,j) for which y — / = k. In other words, the matrix for

Mq is a Laurent matrix. Its entries are constant on the diagonals, and those

constants are the Fourier coefficients of 4>.

Let us now introduce generating functions for matrix operators. They are

related to Schwartz kernels in distribution theory.

Definition. Let X = (xv) E L(L2(T)). The generating function for X is

defined as the formal Fourier series given by F(z, w) = "2°°i=_xXjjZ'wJ.

It is well known in the theory of distribution that since \x¡j\ < 11*11, the

uniform boundedness of x0 allows us to view F as a distribution on C°°(T),

where T2 denotes the torus. In particular, <F, z'm^) = x¡,. It is also well-

known that if 0(z) E C°°(T), then <£(z)F(z, w) (the formal power series

product) is also a distribution on C°°(T2). We need to extend this definition

to include all functions <|>(z) or <¡>(w) in the larger class L°°(T). By way of

motivation, suppose F could be thought of as a function. For example,

suppose F E L\T2) (equivalently * E C2). Then formal computations hold
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true and yield

<t>(z)F(z, w) = (| ^|2¥V)

= 2 ( 2   &%*"**W-2 Í2 **-*W

and, similarly, <j>(w)F(z, w) = 2/t,-(2„^„*/i/_„)z'w/'. Since <<£„> and the

columns of (x¡j) are sequences in /2 (whether or not * E C2), the expression

2„</>„x,v_„ is a well-defined absolutely convergent series. In other words, the

following operation is well defined.

Definition. Let «f>, $ E L°°(T) where «2) = 2„</>„z" and t|/(z) = 1n^nzn,

and let * E L(L2(T)) so that F(z, w) = S^x^V is the generating function

for *. Define the binary operation * as follows

[<Kz) + <Kw)] * f(z, w) -2 (Sfa,*.--,,,- + *„**-„)W-
V  v « '

It is helpful to recognize that * simply denotes the formal product of these

power series and that this same symbol is used to denote formal products in

some computer languages.

Also the reader should take care not to confuse this symbol with the

symbol for operator adjoints.

Note. It is clear that (<f>(z) + \¡/(w)) * F = <í>(z) * F + \¡,(w) * F, where the

sums in this equation are well-defined formal sums.

Let us now compute the generating function for M^X — XM^.

(M*X)iJ - ((t-.)(*!/)), , " 2   4>k-iXkj = 2   *nxi + nj     and
k "

(.XM4>)iJ = 2  xik<t>j~k = 2  4>n*iJ-n-
k "

Also, M* = M+„ where <|>*(z) = 2„^_„z", and (Af*)/V = $,_,.. This gives us

the following information about M*X - XM*.

(Mtx)tj = ((*-,)(**)).. = S *•-***, = 2 ^*,-„,   and

k

So

(A/,* - *AfJ    = 2 *„(*,+„., - **,/-„)   and
n

(M*X - XMt)¡r 2 Uxi-nJ - xiJ + n)-
n

Now regard F(z, w) = SxyzW as a distribution on CX(T2). Then a
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computation shows

xt+nj = (z"F, *V>,       xtJ,„ = <w"F, z V>,

x,_nJ = <z"F, z V>,       x,v+„ = <w"F, zW).

An additional computation shows

(M+X - XM+)   - 2 *„<(*" - w")F, iV) = <(</>(*) - <¡>(»0) * F, z V>,

and

(A/** - XM* )   - 2 *„<(¿" - *")£ ïV) = <(*(*)-#*)) * F, z W>.

This says that í/¡e generating function for M^X — XM^ is (<i>(z) -

(¡>(w)) * F(z, w) and the generating function for A/*,* — XM* is

(<í>(z) - <j>(w)) * F{z, w). (Note, the equalities above are best proven by

computing the last expressions first, in terms of <¡>„ and Xy.)

This completes the construction of the generating function for the

commutators. We now apply them in two settings, namely with regard to

statements (5) and (6). First we prove statement (5).

Fuglede's theorem modulo C2.

Theorem 4. // TV is normal, X 6 L(H), and NX - XN E C2 and N*X -

XN* E C2, then \\NX - XN\\2 = ||TV** - *TV*||2

Proof. By Theorem 2(c) it suffices to prove Theorem 4 when TV = M^

acting on L2(T), with </> E L°°(T), and such that M^ has no eigenvalues. By

the main construction, the assumption on M^ and * is equivalent to the

assumptions that (<i>(z) — <KW)) * F(z, w) E L2{T2) and

(<í>(z) - $(w)) * F(z, w) E L2(T2). Of course, here we are treating those

formal Fourier series in z, w which have square summable coefficients as

functions in L2{T2). Therefore the entries of M^X — XM^ are the

coefficients of (<¡>(z) — <¡>(w)) * F(z, w), and by Bessel's equality, satisfy

\\M+X - XM^W2 = 2 \{M^X - XM^)J
ij

= ffT2\(<Kï)-4>M)*F(z>»)\2-

Similarly,

\\M*X - XM*\\2 = Jf^ | (<¡>(¿) - 4>(w)) * F{z, w)\2.

Now the assumption that M^ has no eigenvectors is needed. It guarantees

that <#>(z) ^ <j>(w) almost everywhere with respect to 2-dimensional Lebesgue

measure on T2. To see this, let E = {(z, w) E T2: $(z) = <i>(w)}. If, on the
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contrary, m X m(E) =£ 0, then ¡Ti Xe(z> w) ^ 0- Fubini's Theorem

guarantees that there exists w0 E T such that 0 =£ ÍXe(z> wo) = m^w0 — m{z

E T: (z, w0) E E). But then x^ (z) is an eigenvector for M^ since M+Xe, =

<¡>(z)xew (z) = <Kwo)Xe„ > which is a contradiction. Therefore we know that

<b(z~) — <¡>(w) ¥= 0 almost everywhere in T2, and thus

(<í>(z) - <p(w))/(<j>(z) — <b(w)) is a measurable function in T2 with modulus 1

almost everywhere in T2.

Using this function we obtain

(•^/.LjW2")-«»))•'(*• «if

'ffr.

-ff,

<¡>(¿) - <¡,(w)

<f>(z) - <í»(w)

1

((<t>(z-)-<t>(w))*F(z,w))

(<t>(F) - <>(w)) ((</>(z~) - <*>(")) * F(z, w))
<¡>(¿) - <¡>(w)

In addition, for every normal operator TV, the derivations 5^ and SN.

commute (the proof is simple algebra). Hence, M*{M^X — XM^) — (M^X

- XMJM* = M+(M*X - XM*) - (M*X - XM*)Mf. The generating
function for the left-hand side of this equality is given by

(4>(z) — <t>(w)) * ((«j>(z) — <¡>(w)) * F(z, w)), which is the same formal Fourier

series as (<P(z) — <p(w))((<b(z) — <j>(w)) * F(z, w)) because of the assumption

that (<¡>(z) - (j>(w)) * F(z, w) is a function in L2(T2). Similarly, the generating

function for the right-hand side of the equality is given by

($(!) - <f>(w)) * ( ($(!) - <¡>(w)) * F(z, w))

= (<¡>(I) - 4>(w))( (Ht) - <t>M) * F{z, w)).

This last equality follows from the assumption that (<t>(z) - <i>(w)) * F(z, w)

is also a function in L2(T2). Hence (<j>(z) - <fr(w))((<ft(z) - <b(w)) * F(z, w)) is

a power series identical to (<i>(z) - <¡>(w))((<j>(z) - <b(w)) * F(z, w)). Thus

o-/
1

*(I) - <t>(w)
(<i,(f) - <i»(w))( (<i»(f) - <t>(w)) * F(z, w))

= fT2\(<t>(z-) - <b(w)) *F(z,w)\2.

Q.E.D.

statement (3). Also statement (3) *-» statement

:nce HM,* - *MJ|2 = ||M** - XM*\\22.

Corollary 5. Statement (2)

(4).

Proof. (2) -» (3): Since (2) -+ (4), then TV* - *TV C2 implies TV**
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*TV* E C2. Therefore, in the case TV* - *TV E C2, we have TV** - XN* E

C2 and Theorem 4 applies to give \\NX - XN\\2 = ||TV** - */V*||2. In the

case TV* - *TV £ C2, assuming statement (2) gives TV** - *TV* £ C2,

hence ||TV* - *TV||2 = oo = ||TV** - *TV*||2.

(3)«-» (4): It clearly suffices to prove (4)->(3). If TV is normal and * E

L(H) so that TV* — *TV E C2, then assuming statement (4) gives TV** —

*TV* E C2 and Theorem 4 gives equality of their Hilbert-Schmidt norms.

Q.E.D.
Remark. It is hoped that distribution theory techniques might be used to

show that if (<K¿) - <Kw)) * F(z, w) E L\T2), then (</>(z) - </>(w)) * F{z, w)

may be viewed in some way as a function. This could lead to proofs of

statements (3) and (4).

We next prove statement (6).

The trace of TV* — *TV. Here we assume TV is a normal operator and X is a

Hilbert-Schmidt operator for which TV* — *TV is a trace class operator. We

shall prove that trace(TV* - *TV) = 0. Applying Theorem 2(c) we see that to

prove statement (6), it suffices to prove it for the special case when TV =

Mç (<f> E L°°(T)) acting on H = L2{T). To reiterate, this is because TV* -

*TV E C, implies M^X4 - X4M^ E C, and trace(TV* - *TV) = trace^*,

— *4Af(j)), where M^ is a Laurent part of TV from Lemma 1 and *4 is as

described earlier in equation (I), with *4 £ C2 when * E C2.

If * E C2, the generating function for *, namely F(z, w), is contained in

L2(T2). Therefore the generating function for M^X — *A/(j> is (<p{z) —

<b(w)) * F(z, w) = (<#>(z) — <p(w))F(z, w) (the ordinary product of functions in

LX(T2) and L\T2), respectively).

We   have   M^X - XM^ = K = (Kg) E C,.   This   implies   (<K¿) -
4>(w))F(z, w) = K(z, w) almost everywhere in T2, where K(z, w) denotes the

generating function for * (since * £ C, c C2, we see that K(z, w) E L2{T2)

and so it is indeed a function having the same Fourier coefficients as

(<X^) — <i>(w))F(z, w)). Then, as before, <f>(z) — <^w) ^ 0 almost everywhere

in T2, and for almost all (z, w) E T2,

K(z, w)
F(z,w) =-'— £L2(T2).

V       ^      tfz) - t(w) K     >

Our program is as follows. We shall assume trace * =£ 0. This will imply

certain facts about K(z, w), whose form we shall have to choose carefully to

be able to relate it to the trace condition on K. We shall then apply a function

theoretic result (which we shall give next) to conclude that * (z, w)/(<f>(I) —

<j>(w)) £ L\T2) in order to obtain a contradiction.

Theorem 6. If<Kx) e L°°[0, 1] then

io,i]x[o,i] |</>(x) - <t>(y)\2
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Note. The author first found a proof in the real case (by applying the

Weyl-von Neumann Theorem to generating functions). Then Hugh Mont-

gomery gave a somewhat involved proof of the theorem for <j> complex-

valued. Then Larry Brown suggested an easy and direct proof when <f> is

real-valued. Finally, the author found a relatively easy proof for the general

complex case.

Proof. By way of motivation, and to illustrate a connection between the

real phenomenon and the planar phenomenon, we present Larry Brown's

proof for the case when <¡> is real-valued. By replacing <|> by a<¡> + b (for some

real numbers a, b), we may assume range <j> c [0, 1). Fix a positive integer n.

Let Ek - {x S [0, 1]: (k - \)/n < <&x) < k/n), for 1 < k < n. Then U Ek

= [0, 1) (the symbol U denotes a disjoint union) and so *Z"k¡mXmEk = 1.

Holder's inequality yields 1 = (2nk=xmEk)2 < ?Tk_x(mEkf ■ 2*_,1, that is

S^.^w^)2 > \/n. Also if (x,y) £ Ek X Ek, then |<M» - <K>0| < !/«•
Hence

[f-—dxdy>[(-Tzdxdy
•Mo,i]x[o,n |<K*) - «Ky)\ JJUEtxEk |<>(x) - <í>( v)|2

= ¿    (Í -!-¿dxdy>ït    tí —^—rdxdy
*t\ JhkxEk  \<¡>(x) - <¡>(y)\2 *-i J->EkxEk  (l/n)2

= n22   (mEk)2>n2± = n.
k=l "

Since n is arbitrary, we have that

J Jin
dx dy = oo.

'[o,ilx[o,il  |$(x) - «X^)!2

The case when <j> is complex-valued is somewhat involved. By replacing <¡>

by a<¡> + b (for some complex numbers a, b), we may assume range c [0, 1)

x [0, 1) (where Q denotes [0, 1) x [0, 1) viewed as imbedded in C). Let

Qt= [(' - l)/2"> '72") x [0' - l)/2",y/2") for 1 < i,j < 2". Define F>>
= </>_l(Ö!/n))- Hence, for each n, Q = \a,jQ¡tt) and [0, 1) = U,^". There-

fore S,i/w£j") = 1 for each n. In addition, for each n, {Q¡jn)} is a partition of

Ö, and the collection of these partitions is a nested sequence. Therefore for

each n, {E^n)} is a partition of [0, 1) and also the collection of these partitions

is a nested sequence.

The following identities are easily verified: D„ U ijiQa"* x Q!f) =

{(z, w) £ C X C: z = w}. Also, and following from this, n„ U ijVtyH) X

^n)) = {(x,y) £ [0, 1] X [0, 1]: tfx) = <K>0} (call this set F).

If F has positive measure, then clearly

I I -r dx dy > \ \- dx dy = oo.
•Mo,l]x[0,l]    \<b(x) - </>(v)|2 •'•V   |<#>(X) - <|>(.y)|2

Hence, we may assume m X m(F) = 0.
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As before, Holder's inequality yields a useful fact, namely that

.    teumEP)2      ,

2(^">)2>V       l-*-ij ^1<(V<2"1 ^

Note also that (x, y) E E¡jn) X E¡jn) implies <¡>(x), <¡>(y) E Q¡¡"\ and so |<f>(x)

</>(>»)| < diameter Q¡jn) = V2 /2". If we now assume to the contrary that

I I- dx dy < oo,
■Mo, i]x[o, i]   |<í>(jc) - <}>(y)\2

and if for convenience we set F(n) = U «¿s^ X Fjfl), then we have

oo > ff-ï <*e^
•Mo,i]x[o,i]   \4>(x) - <p(y)\2

>ff-z dxdy
•>V>   \<S,{x) - ${y)\2

=     2       ff -"-;dxdy
1 < U < 2"  J JEi,"> - eí"   |<í>(x) - ^( V) |2

> 2   f f —5— ¿* *
W-i JJ*P*4fi (V2/2")

4"     V   /      p(«)\2^  4"        1 1= T 2(^4n))>y^ = 2-

That is

ff XEin)(X'y)      dxdy=ff      _!_ dxdy>X-
■> Ao, i]x[o, i]   |<f>(x) - ci>(.y)|2 •'•'£(-)  |4»(jc) - <t>(y)\2dx 2

for every n. On the other hand,

Xe(")(*,J')      <-!- £L'([0, 1] Xf0, 11)

and

Xe<">(*»>0 Xf(*>>0

W*) - <H>0I2 ~* !</»(*) - *O0l2 "
almost everywhere in [0, 1] X [0, 1] (since m X m{F) = 0). Therefore, by the

Lebesgue dominating convergence theorem,

r XE<">(x>y)     ,   ,    .
I- ox dy —» 0,    as « —» oo,

•% i)x[o,i)   \<b(x) - <b(y)\2

and this is a contradiction, as we showed that these integrals are all bounded

below by 1/2.   Q.E.D.
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Remark. If we view <p as <i>: [0, 1] -» R" (n = 1 in the real case, and n = 2

in the complex case), then Hugh Montgomery has shown that if <j> E

Lj£(0, 1), then it is possible to have, for n > 3,

1
//

dx dy < oo.
II<K*) - «KjOIIr-

Also, it is interesting to note that if we replace the power 2 by the power p

in the integral of the theorem, then Larry Brown's proof for the real case

works for al\p > 1, but the proof for the complex case works only forp > 2.

In addition, by modifying slightly the proof of the complex case, we obtain

the real case for/? = 1.

Corollary 7. If E is any measurable subset of[0, 1] of positive measure and

|<í>| is essentially bounded on E, then

1
//, exe \<¡>(x) - <Ky)\2

dx dy = oo.

Proof. Use the proof of Theorem 6 and in it, replace the domain [0, 1] of $

byF.

Theorem 8. If TV is a normal operator, X E C2 and NX - XN E C,, then

trace(TV* - *TV) = 0.

Proof. Set TV* - *TV = K E C,. Then K has a Schmidt expansion [5].

That is, there exist orthonormal sequences {/„}, {gn) in H and a nonnegative,

real-valued sequence <a„> E /} such that * = 2a„(/„ <8> g„), where the series

converges in the trace norm and /„ <8> g„ denotes the rank one operator

h -* (h, gn)f„. Note that the matrix of /„ ® g„ is (f„(i)ljj)) if </„(0>,°°=i and
(,8„(')}r=\ denote the sequences for/„ andg„ respectively.

The Schmidt expansion provides us with a useful form for the generating

function for *. Since the Schmidt expansion converges in the trace norm to

*, it must also converge in the Hilbert-Schmidt norm. Therefore the generat-

ing function for 2™_iiin(/n ® g„) converges to K(z, w) in L2{T2), as m -> oo.

The generating function for/„ ® gn, the matrix with entries (/„(/)g„(j)), is

VJMJtJÜ)*^ = (S^iOz'X^iXÖ h>>). Define /„(z) = S/»' and
g„(w) = '2jgn{j)wj. Hence the generating function for/„ ® gn is f„(z)g„(w)

and {/„(z)} and {g„(z)} are orthonormal sequences inL2(F). Clearly then

the generating function for ll^=xajn ® gn is ?.™=xaJ„(z)g„(w). Also it is

clear that ^=xaJn(z)gn(w) converges to 2naJn{z)g„(w), in L2(T2). There-

fore, the generating function for * can be written as K(z, w) =

2aJ„(z)gn(w). That is, the Fourier coefficients of 1aJn(z)gn{w) in L\T2)

are the matrix entries of *.

To see the connection between trace * and K(z, w), recall that 2™= \d„Un

<8> g„) —> * in the trace norm as m -» oo, and hence
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trace * = Jim   trace  2  an(fn ® g„)
n=l

= Jim    2  an trace(/„ ® g„).
n=l

Using the fact that the matrix for/„ ® g„ is (/„(/)g„(j)), a simple calculation

using Lebesgue integration on T shows that

trace(/„ <S> g„) = f /„ (¿) g„(z) dm.
•It

Therefore

Also

trace * = lim    Í
m—»oo   ./j. 2 <U,00&,(¿)

n = \

dm.

2   <y/„00&,(f)llz.'(r) <2 aJI/JI^(r)llg„ll^(n

= 2  an < 00

by Holder's inequality, and so 2naJn(z)gn{z) converges in L\T). Therefore

trace * = JY[2na„/„(z)g,,(z)] dm. In other words,

trace K = Í K(z, z) dm.
Jt

If we now assume trace * = fTK(z,z)dm=£0, we can conclude that

jT\K(z, z)\ dm > \fT K(z, z) dm\ > 0. From elementary measure theory, it

follows that there exist e > 0 and a measurable set A c T of strictly positive

Lebesgue measure such that \K{z, z)\ > e on A.

Our next objective is show that there exists a measurable set F c T of

strictly positive Lebesgue measure such that \K(z, w)\ > e/4 on F X F. The

proof of this requires several steps, including the use of Egoroffs theorem,

Lusin's theorem and convergence in measure.

Define *m(z, w) = Zmn=xaJn(z)gn{w), Fm{z) = 2?=m+,a„|/„(z)|2, and

Gm(z) = 2?=m+1a„|g„(z)|2 (recall that (a„) E ll+). Clearly then

\K{I,w)-Km(z,w)\ = 2     aj„(z)gn(w)

oo

< 2     an\fn(z-)\\gn(w)\
n = m+ 1

< 2     a„[\fn(¿)\2 + \g„(w)\2]
n = m+ 1

= Fm{z) + Gn(w).
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Now Fm, Gm > 0 and \Fm{z)dm = 2~+,fl„ = }Gm(w)dm^0 as m -* oo,

since/„(z-), g„(w) E (F2(F)), and <a„> E /|. Therefore Fm(z), Gm(w)^0 in

measure. Therefore there exists some subsequence mk such that F^(z)-»0

almost everywhere in T. Clearly Fm{z) > Fm+X(z) > 0 for all m and all

z E T. The two facts imply that Fm{z) ->0 almost everywhere in 7\ Likewise

^miw) ~*0 almost everywhere in T. If we now apply Egoroffs theorem, we

obtain a measurable set F, and a positive integer m, where m(F \ F,) <

mA/4 and Fm(z) < e/16 for every m > m, and z E F,. Similarly we obtain

a measurable set F2 and a positive integer m2 where m(T\ E^ < mA/4 and

Gm(w) < e/16 for every m > m2 and w E F2. Let m0 = max(m,, m^ and

F0 = F, n F2. Then m{T \ F0) < m{T \ F,) + m(F \ F^ < m/1/2 and

Fm(z) + Gm(w) < e/8 on F0 X F0 for every m > m0. Hence |AT(z, w) -

Km(z, w)\ < Fm(z) + Gm{w) < e/8 on F0 X F0 for every m > m0. In

particular, |AT(z, w) - Kmo(z, w)\ < e/8 on F0 X F0.

We next apply Lusin's theorem to obtain information about AT (z, w). The

functions /,(*), . . . ,/mo(i), g,(w), . . . , gmo(w) E L2(F). If we apply Lusin's

theorem to each one of these functions we see that for each such function,

there is a set in T on which the function is continuous and whose complement

has arbitrarily small measure. Hence we can insure the existence of a

measurable set B c T on which/,(z), . . . ,fm (z) are continuous for all z £ B

and gx(w), . . . ,gm (w) are continuous for all w E B and furthermore m(T\

B) < mA/2. Therefore 2™L,aft/„(z)g„(w) = ATmo(z, w) is continuous on F X

B.

Now we have m(T \ (F0 n B)) < m(T \ E0) + m(T \ B) < mA/2 +

mA/2 = mA. From this it follows that m{A n F0 n B) > 0. From

elementary measure theory we can obtain a closed set F c ^4 n F0 n F of

strictly positive measure. Hence |AT(z, w) — Km{J, w)\ < e/8 on F X F,

ATmo(z, w) is continuous on F X F, and |AT(z, z)| > e on F, with F closed and

mF > 0. Therefore for every z E F, lA^z, z)\ > \K(z, z)\ - e/8 > e - e/8

= 7e/8. That is, \Km¡¡(z~, z)\ > e/2 on F. °

We now employ the continuity of ATmo(z, w) on F X F. For every z0 E F,

|ATmo(z0, z0)| > e/2 and the continuity of ATmo(z, w) on F X F implies that

there exists an open interval TV(z0) containing z0 such that |ATm(z, w) —

A"mo(*o> ¿o)! < «/8 on [TV(z0) n F] X [TV(z0) n F]. The collection (TV(z): z

£ F} forms an open cover of F. Since F is closed and contained in T, it is

compact. Therefore, we can extract a finite subcover TV(z,), . . . , N(zk). But

mF = w(UÍ_,(TV(z„) n F)) < 2*_,/w(TV(z„) n F). Since mF > 0, there is
some n0 such that m(N{zn) n F) > 0. Set F = N(z„) n F

We claim that F accomplishes our objective, namely that |A"(z, w)\ > e/4

on F X F and mE > 0. To see this we apply the last remarks. Since F c F,

we have that |AT(z, w) - ATmo(z, w)\ < e/8 on F X F. Also, |ATmo(z, w) -

ATmo(zno, zno)| < e/8   on  E X E,   by   the  construction  of  TV(zno)   and   F.
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Furthermore, since zn<¡ £ F c F, we have that |ATmo(z„o, zn)\ > e/2. The last

three   inequalities   imply   that   for   every   (z, w) E F X F,   |AT(z, w)| >

|A-mo(z-, w)| - e/8 > \Kmo(z-„o, zj - e/8 - e/8 > e/2 - e/8 - e/8 = e/4.

That is, we have |AT(z, w)\ > e/4 on F X F and mE > 0.

The rest of the proof is straightforward. By Theorem 2c, it suffices to prove

Theorem 8 for the case TV = M^ (<i> E L°°(T)) where M^ has no eigenvectors,

and * is any Hilbert-Schmidt operator contained in L(L2(T)). Suppose

M^X - XMç = K E C,. Let F(z, w) denote the generating function for *

and let AT(z, w) denote the special generating function of AT, namely

lLaJn(z)gn{w) considered earlier in this proof. Then by earlier remarks, the

generating function for M^X — *Af<¡), which is (<i>(z) — <j>(w))F(z, w), is the

same as the generating function for K, which is A^z, w). That is, (<#>(z) —

$(w))F(z, w) = K(z, w) almost everywhere in T2. Also we have seen that

since Mq has no eigenvectors, <f>(z) — </>(w) ̂ 0 almost everywhere in T2.

Hence F(z, w) = AT(z, w)/(<#»(z) - <|>(w)) E L\T2). Substituting z for z, we

obtain K(z, w)/(<¡>(z) - </>(w)) E L\T2).

We now prove Theorem 8 by contradiction. If we assume to the contrary

that trace * j= 0, we can apply the previous result that there exists a

measurable set F with mE > 0 and e > 0 such that |A"(z, w)\ > e on F X F.

Finally, if we identify T with [0, 1] in the usual way, then we can apply

Corollary 7 to obtain

|A-(z-,w)|2
00  >

"   /T2

K(z>w)

J JT2    ó(z) — <b(w)        J if
EXE    \$(Z) - 4>(W)\2

>e2f( -—-r = oo,
J Jexe  |cf>(z) - <i>(>v)|2

which is a contradiction.   Q.E.D.

Addendum. The author has recently proved that statement (3) (equiva-

lent^ (4)) is true. That is, the Fuglede Commutativity Theorem Modulo the

Hilbert-Schmidt class holds true. In fact, for every normal operator TV and

* E L(H), || TV* - *TV||2 = ||TV** - *TV*||2.

In summary, statements (3)-(6) are true. In this paper, the following

implications were proven to hold true.

(l)t^       Î
^(2)

~   (6)
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