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Abstract. The straight line spaces of dimension three or higher which were

considered by the first author in previous papers are shown to be isomor-

phic with a strongly open convex subset of a real vector space. To achieve

this result we consider the classical descriptive geometry studied in various

papers and textbooks by Pasch, Hubert, Veblen, Whitehead, Coxeter,

Robinson, and others, with the significant difference that the geometry

considered here is not restricted to 3 dimensions. Our main theorem (which

is well known in dimension 3) is that any such geometry is isomorphic to a

strongly open convex subset of a real vector space whose "chords" play the

role of lines.

1. Introduction. The axioms, terminology, notation, and results of Geometric

convexity. I [7] will be used. Briefly, we consider a space (*, £), where * is a

set of elements called points and £ is a family of subsets of * called lines,

satisfying the three axioms:

A. Every line is totally ordered so as to be order equivalent to the reals.

B. Every two distinct points of * are contained in a unique line.

C. If a, b, c are three points of * and x E (a, c) and v £ (x, b), then there

exists z £ (a, b) so that v E (c, z).

(As in [7], (a, b) denotes the set of all points x on the unique line L(a, b)

containing a and b such that a < x < b, where < is the order on L(a, b).)

A subset F of * is a flat if whenever x and y are two points of F the line

containing A. A subset A c * is independent if ñ(A — a) $ a for every

a G A. The dimension of a flat F, denoted dim F, is the cardinality of a

maximal independent set A such that ft(A) = F. A plane is a flat of

dimension 2. In general, we use the terminology of elementary geometry, e.g.,

two lines are coplanar if they he in a common plane, etc.

We caution the reader that we use and refer to the total order on lines in a

weak sense. For example, we reverse the order when convenient and also

refer to a map as being order-preserving if it either preserves or reverses the

order on lines. In §§4, 5, and 6 other orders will be considered. To avoid
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confusion or to provide greater emphasis, the notation <l will sometimes be

used to denote the order on L £ £.

If (**, £*) is another space also satisfying Axioms A, B, and C, then

(*, £) will be said to be embedded in (**, £*) if there exists an injective map

/:*-»** such that L £ £ if and only if/(F) is a subset of a member of £*

and / is (weakly) order-preserving on each Une L. It will be understood that a

vector space V is a space (V, £) such that £ is the family of (algebraic)

1-flats.

In §5 it will be convenient to replace the given total order on each L £ £

by Veblen's undefined order relation in [22]. We proceed as follows. For each

distinct triple of points a, b, c, write abc if and only if a, b, and c he on some

line L and either a <l b <l c or c <l b <l a. Then all of Veblen's axioms

of order (Axioms 1-5) hold immediately. The Axiom of Continuity is obvi-

ously a consequence of the least upper bound property for reals, and Veblen's

Axiom 6 is our Axiom C.

It is clear in turn that Veblen's axioms of order enable one to construct a

total order <l on each line L for which there is no first or last element and

satisfying the least upper bound property. Thus, Veblen's axioms of order are

equivalent to our Axioms B, C, and the following order axiom, seemingly

weaker than our Axiom A.

A'. Each line may be totally ordered so that there is no first or last element

and each set bounded above has a least upper bound.

None of the results we use from [7] require anything stronger than Axiom

A'. Some recent work of Doignon [11] shows that our Axioms A and A' are

equivalent for dim X > 2. Our development proves independently that

Axioms A and A' are equivalent for dim * > 3.

Another axiom which will be referred to is the familiar parallel postulate:

P. If L is a line and a: is a point not on L, then there exists a unique line L'

containing x, coplanar with L, and not intersecting L.

Our main theorems are:

Theorem 1.1. If dim * > 3 and (*, £) satisfies Axioms A', B, and C then

(*, £) may be embedded in a space (**, £*) satisfying Axioms A', B, C, and P

so that X is a strongly open subset of X*.

Theorem 1.2. // dim * > 3 and (*, £) satisfies Axioms A', B, and C then

(*, £) may be embedded in a vector space V over the reals so that X is a

strongly open subset of V.

Clearly any strongly open subset of a vector space over the reals satisfies

Axioms A', B, and C. Moulton [17] gives an example of a plane which

satisfies Axioms A', B, and C but is not Desarguesian and, therefore, cannot

be embedded as a subset of a real vector space. Thus, Theorem 1.2 does not
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hold if merely dim X > 2. Veblen [22], Whitehead [23], and Coxeter [10] have

proven Theorem 1.2 under the assumption dim * = 3.

Several authors have developments related to ours but with additional

metric assumptions. For example, Busemann [5, p. 68, Theorem 13.1] proves

Theorem 1.2 in the case dim * = 2 when * is a straight G-space satisfying

the Desargues Property. Also in Geometric convexity. II: Topology [8] the

following theorem, strictly weaker than Theorem 1.2, is proved:

Theorem 1.3. Suppose (*, £) satisfies Axioms A, B, and C and ?T is the

topology on X with strongly open sets as base. If dim * = n < oo then (*, £)

is homeomorphic to Euclidean n-space.

Nitka [18] and Nunnally [19] have results related to Theorem 1.3 but again

with additional metric assumptions.

There are also different purely geometric approaches to convexity, e.g.,

Bryant and Webster [3], [4], and Kay and Womble [15]. Doignon [11] proves

Theorem 1.2 with slightly different hypotheses, and from a substantially

different point of view. Rubinstein [21] outlines a proof of Theorem 1.2 with

an approach similar to ours. Mah, Naimpally, and Whitfield [16] and Kay

and Meyer [14] consider embedding questions for convexity structures which

are more general than the space (*, £) considered here.

Some preliminary results not proven in Geometric convexity. I will be

needed.

Lemma 1.4. If flats F and G meet and p E F - G then F n ñ(G,p) =

fl(F n G,p). Therefore, dim(F n fl(G,/>)) = 1 + dim(F n G).

Proof. Clearly both F n G and/? are contained in F n ñ(G,p). Therefore

fl(F n G,p) c F n ft(G,p). To see the reverse containment fix/ £ F n G

and q with / E {p, q). Define Up = {x: [x,p) n G ¥=0} and Uq = {x:

[x, q) n G ¥= 0). Then by Theorem 5.8 of [7], ñ(G,p) = Up U Uq. If x £ F
n ñ(G,p), without loss assume x £ Up. Then [x,p) meets G in some pointy.

Since x,p E F it follows that.y E F Thus v £ F n G. Therefore, x E fl(F

n G,p) and F n fl(G,/>) c fl(F n G,p).

Theorem 1.5. If two finite dimensional flats F and G meet then

dim F + dim G = dim(F n G) + dim fl(F u G).

Proof. The desired relation is trivial if F c G, so assume otherwise, write

G, = G and choose inductively

Px E F - G„     G2 = fl(/>, u G,),

p2GF- G2,     G3 = ñ(p2 U G2),
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and, in general,

p„EF-Gn,   G„+1 - ñ(pn u Gtt).

We have by definition G, c G2 C • • • C G„ c Gn+1. Applying Theorem 6.2

of Geometric convexity. I, it follows inductively that/»,, ...,/>„ are indepen-

dent in F and that if F c G„+1 then fl(F U G) = fl(F u G,) = Gn+1. Also,
assume it has been proven that

dim(F n G„) + dim G = dim(F n G) + dim G„. (1)

By Lemma 1.4,

dim(F n Gn+I) = 1 + dim(F n G„).

Hence,

dim(F n Gn+1) + dim G = 1 + dim(F n G„) + dim G

= dim(F n G) + dim G„ + 1

or,

dim(F n Gn+1) + dim G = dim(F n G) + dim G„+1. (2)

Note that (1) is trivial for n = 1, so mathematical induction implies (1) for all

n. Since dim F < oo it follows that for some n, F c Gn+1. Thus F n Gn+1 =

F and fl(F U G) = Gn+1 so that substitution into (2) yields the desired
relation.

2. Adding ideal points. Throughout §2 we make the assumption that (*, £)

is a space with dim * > 3 satisfying Axioms A', B, and C. The purpose of

this section is to embed such a space in a space ( Y, "D1L) satisfying Axioms

AP, BP, and CP to be introduced later.

Lemma 2.1. If lines A and D are each cop lanar with lines B and C, and

dim ft(A, B, C, D) = 4, then A and D are coplanar.

Proof. The hypotheses of Lemma 2.1 imply that no three of the lines

A, B,C, D are coplanar and that the dimension of the flat spanned by any

three of the Unes A, B, C, D is three. For example, if A, B,C were coplanar,

since C and D are coplanar, it would easily follow that dim ñ(A, B,C, D) =

3. Thus, A, B,C are not coplanar. Since A and B are coplanar and A and C

are coplanar it follows that dim fl(A, B, C) — 3.

Choose b E B with b £ ñ(A, C, D). Thus, dim ñ(A, B, D) = 3 = dim

ñ(A, C, D) and b £ ñ(A, C, D). Therefore ñ(A, B, D) n ñ(A, C, D) does
not contain the point b but does contain the lines A and D. By Theorem 1.5

the intersection of two three flats in four space either coincides with the two

three flats, is empty, or is a plane. Thus ñ{A, B, D) n ft(A, C, D) is a plane

containing A and D, proving A and D are coplanar.
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Theorem 2.2. If dim * > 3 and A and B are two lines in a plane it, and C

and D are two lines not in it but each coplanar with both A and B, then C and D

are coplanar.

Proof. If dim * = 3 this is just 8.62 in Coxeter [10, p. 167], since in

Coxeter's terms, C and D belong to the same bundle by our hypothesis. (See

also Theorem 45 of Veblen [22, p. 372] or §20 of Whitehead [23, p. 19].) If
dim * > 4 and dim ft(A, B, C, D) = 4 then Theorem 2.2 is just Lemma 2.1.

If dim ñ(A, B, C, D) = 3 then ñ(A, B, C, D) = ñ(A, B, C). Choose a line

F £ ñ(A, B, C) coplanar with both B and C. Then, by Lemma 2.1 applied to

the lines A, B, C, E it follows that A is coplanar with F. By Lemma 2.1

applied to the lines A, B, D, E it follows that D is coplanar with F. Then by

Lemma 2.1 applied to the lines A, C, D, E it follows that C is coplanar with

D.

Corollary 2.3. Suppose A, B, C are distinct lines in aplane tt, D and E are

distinct lines not in it such that D is coplanar with each of A and B, and E is

coplanar with each of A, B, and C. Then C and D are coplanar.

Proof. By Theorem 2.2 applied to A, B, D, E it follows that D and F are

coplanar. Either fl(A, E) or fl(F, F) does not contain D, say ñ(A, E)2¡ D.

Hence C and D do not lie in ft(A, F) and Theorem 2.2 applied to A, F, C, D

yields C and D coplanar.

Definition 2.4. Two lines A and B lying in the same plane it define a

system of lines consisting of every line of intersection of a plane through A

with a plane through B as well as all lines in m that are coplanar with one of

the lines of the system that do not lie in it. Such a system of lines is called a

bundle of lines and will be denoted bu(;4, B).

Theorem 2.5. Every two lines of a bundle are coplanar.

Proof. Suppose C and D are two lines in bu(,4, B). Let m = ft(A, B) and

assume that one of C, D is not contained by it, say C <Z. tt. If, in addition,

D <Z m then C and D are coplanar by Theorem 2.2. If D c it, then C is

coplanar with each of A and B and there exists F £ bu(/4, B) not in tt and

coplanar with D. Thus by Corollary 2.3, C and D are coplanar.

Lemma 2.6. Let A ^ B, A ^ C, and L be lines such that C E hu(A, B) and

L E bu(^, B). Then L E bu(A, C). Thus, C E bu(^l, B) implies bu(A, B) C

bu(A, C).

Proof. If C and L both lie in ñ(A, B) the lemma follows from an

application of Corollary 2.3. Otherwise, it suffices to prove that L is coplanar

with C. First, if C and L are both not in the plane of A and B, then C and L

are each coplanar with A and B, which by Theorem 2.2 implies that C and L
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are coplanar. If C c R(A, B) and L <Z_ (A, B) choose F ¡Z ft(A, B) coplanar

with each of A, B, and C. Then the result follows by Corollary 2.3. The

remaining case C £ f\.{A, B) and L c fl(/l, B) is similar.

The following fundamental result is a routine set-theoretic application of

Lemma 2.6. The proof will be omitted.

Theorem 2.7. Suppose C and D are distinct lines in bu(A, B). Then

bu(A, B) = bu(C, D).

Corollary 2.8. Through any point of space passes one and only one line of a

given bundle or else every line of the given bundle.

Definition 2.9. If a and b are two bundles of Unes then through every

point x of space there passes one line of each bundle. If these Unes do not

coincide they define a plane. The system of planes thus defined by the two

bundles a and b is called the sheaf of planes determined by the bundles a and b,

denoted sf(a, b).

By Theorem 2.7 two bundles have at most one line in common. We have:

Theorem 2.10. If a point x does not lie on the line common to bundles a and

b then x lies in a unique plane of the sheaf.

Proof. By Corollary 2.8 there exists a plane m of the sheaf passing through

x, with lines A E a, B £ b containing x and contained in tt. If a second

plane tt* of the sheaf contains x then it* contains some A * E a and B* £ b.

Now A * must coincide with A or else a consists of all lines through x, and B

would be common to a and b, contrary to hypothesis. Similarly, B* = B and

TT*  =  TT.

Corollary 2.11. Every line of bundles a or b, not common to both a and b,

lies in one and only one plane of the sheaf. Thus if a line L lies in two planes of

the sheaf, then L will be common to both bundles a and b.

Theorem 2.12. If a line L is common to bundles a and b then L lies on every

plane of the sheaf sf(a, b).

Proof. Let tt £ sf(a, h), and choose x E it — L and Unes A £ a, B £ b

through x. By Theorem 2.10, tt = fl(A, B). But L is coplanar with each of

A, B so we have fl(L, x) D A (J B and fl(L, x) = fl(A, B) = it, or L c tt.

Definition 2.13. Let Y be the set of aU bundles of lines. A bundle of Unes

is said to be incident with a sheaf of planes if every line of the bundle is

contained in some plane of the sheaf. We denote by 'STL the set of all famihes

M of bundles incident with a single sheaf. Note that there is a natural

identification of each M E 911 with the sheaf defining it. Thus we may

regard 9H as the family of all sheafs of planes. Letting M[a, b) E 9H denote

the sheaf sf(a, b) if a ¥= b, it is obvious that a E M{a, b) and b £ M(a, b).
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Note that a special class of bundles exist, which we shall call proper,

consisting of families of concurrent Unes. If a is such a bundle, then the point

of intersection of all Unes in a will be identified with a. In this manner

* c Y. Each proper bundle of Y, then, has been identified with a point in *,

to be called & proper point. All other points of Y will be called ideal points.

Now suppose L £ £ and consider the sheaf M of all planes containing L.

If u £ L c *, then as a proper point of Y, u is the bundle of all lines through

u. Since each line U E u is contained in the plane fl(L, U) if L =£ U, or in

any plane through L if L = U, then U lies in a plane of A/. Hence u £ A/ so

that L c M. Thus, each member of £ is a subset of a member of 9IL.

Accordingly, any such member of 'DU will be caUed a proper line and all other

members, ideal lines.

Finally, we want to show that if a Une M £ 911 passes through a point of

* then it is proper in the above sense. Suppose M = M(a, b) and that a point

u E * lies on M. Hence u, as a proper bundle, consists of aU lines through u.

Choose A £ a, B £ b passing through u. If A =£ B then A and F determine a

plane tt El M. Since u & M then any line through m which is not in w Ues in a

plane 7r' which contains intersecting lines A' £ a and F' E b passing through

u. It follows that since either A' ¥= A or B' ¥= B one of the bundles a, b

consists of all lines through u. Thus, either A = B, a = u, or b = u. In any

case a and b have a line L in common and m £ L. Then by Theorem 2.12, M

consists of all planes through L and hence L c M.

We can summarize the preceding discussion as follows: Given a space

(*, £) with dim * > 3 satisfying Axioms A', B, and C we have constructed a

space ( Y, 9H) where F is a set and 91L is a family of subsets of Y such that:

(i)*C Y.

(ii) For each L E £ there exists M E <3H such that L <z M.
In addition, we note the property:

(iii) If c¥=d <= M(a, b) then A/(a, b) = A/(c, ¿).

To verify this, first let c E M(a, b) and « E M(a, b). We claim that

u E A/(a, c). For let [/Eu. Then £/ Ues in a plane tt which contains

intersecting Unes A =£ B in a, b not belonging to both a and b. Let C E c

pass through x = A n F. Note that x is contained in a unique plane of the

sheaf M(a, b), namely tt, and that C is contained in some plane of the sheaf

M(a, b). Therefore C c tt and it follows that tt E M(a, c), or « £ M{a, c).

This proves

Lemma 2.14. Suppose a, b, c, u are bundles such a ^ b, a ^ c, c £ M(a, b),

and u E M(a, b). Then u E M(a, c) and M{a, b) C M(a, c).

It is now a routine set-theoretic argument to obtain both M(a, b) c

M(c, d) and M(c, d) c M(a, b) and the proof of (iii).
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The identification of points of * with certain points of Y and the resulting

incidence relationships in * and Y can now be essentiaUy summed up in the

foUowing statement: If x ¥=y £ * then M(x, y) n * = L{x,y).

The space (Y, 9H) satisfies three axioms:

AP. The members of 911 are projectively ordered (see Definition 4.1).

BP. Every two distinct points of Y are contained in a unique Une in 9H.

CP. If a, b, c are three noncoUinear points of Y and u £ M{a, b), v E

M(a, c) with u =£ c and v ¥= b then M(c, u) n M(b, v) ¥= 0.

We defer the proof that space (Y, 9H) satisfies Axiom AP and further

discussion of the concepts involved in this axiom to Theorem 4.1 and §4

below. That space ( Y, 911) satisfies Axiom BP is a consequence of property

(iii) above. Theorem 2.16 contains a proof independent of Axiom AP that

space (Y, 911) satisfies Axiom CP.

Lemma 2.15. Suppose dim * > 4 and M = M{a, b) is the sheaf determined

by the distinct bundles a and b. If c is a bundle containing the distinct lines C

and C* and tt and tt* are distinct planes of the sheaf M with tt D C, tt* D C*,

and neither C nor C* common to both tt and tt*, then c £ M.

Proof. For every C E c we must find tt' E M with C c tt'. Choose

o E C - tt* and o* £ C* - tt. Choose A, A* E a and B, B* £ b with o £

A n F and o* E A* n B*. Clearly Ai-B and ñ(A, B) E M(a, b) so by
Theorem 2.10, ñ(A, B) = tt. Thus, dim fl(o*, A, B) - 3.

Case 1. C Z ñ(o*, A, B). Choose o' £ C - fl(o*, A, B). Choose A' ^ B',

respectively, in bundles a, b such that o' £ A' n B'. (The case A' = B'

involves M(a, b) containing aU planes through A', hence o' £ A' c tt c

fl(o*, A, B) contradicting our choice of o'.) Then dim fl(o*, A', B') = 3 =

dim fl(o, .4', F'). Further fl(o*, A', B') contains A', B', o',A*, B*, C*, and

therefore fl(o', C*), but does not contain o or else fl(o*, A, B) = fl(o*, ^', F')

and fl(o*, A, B) would contain o'. Similarly, fl(o, /!', F') contains fl(o', C) but

does not contain o*. Therefore

tt(A', B') = tt' = fl(o*, A', B') n fl(o, A',B')D fl(o, C*) n fl(o', C) = C.

Case 2. C c fl(o*, v4, F). If C c fl(^, F) £ M we are done. Otherwise,

choose o" £ fl(o*, yi, F). Let C" be the Une in bundle c containing the point

o". By the argument of Case 1, there exists a plane it" in the sheaf M

containing C". Since o" <£ñ(o*,A,B) and C'jZfl^.F) it follows that

fl(o", ̂ , B) n fl(o*, ̂ , F) = ñ(A, B) and C' £ fl(o", /I, F). Therefore by
the argument of Case 1, with o*, C*, and tt* replaced by o", C", and tt",

there exists a plane tt' in A/ containing C

Theorem 2.16. Space (Y, 911) satisfies Axiom CP.
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Proof. Assume that a, b, c are three noncolUnear points of Y, with

u £ M(a, b), v £ M(a, c), and u i= c, v ¥=b. If dim * = 3 the theorem is

proved in Veblen [22], Whitehead [23, p. 29], or Coxeter [10, §8.8]. We

therefore assume dim * > 4. Let F„ . . ., L10 be the proper Unes in common

between the respective pairs of bundles a, b, c, u, v, if such exist. Since a, b,

and c are noncolUnear, according to Lemma 2.15, there can be at most one

proper line in the bundle c contained in a plane of the sheafs M(a, b),

M(b, u), M(b, v). Hence we may choose C E c distinct from L„ 1 < / < 10,

so that C does not lie on any of the planes of M(a, b), M{b, u), M(b, v).

There exists a proper point o £ C - U ,'= i L¡. Denote by A and F the Unes

of the bundles a and b, respectively, containing o. Then A =£ B, A ^ C, and

B ¥= C by our choice of o and C, and dim ñ(A, B, C) = 3. Similar reasoning

shows that dim fl(F, C, U) = dim fl(F, C, V) = 3 where U £ u and V E v

are lines through o. Since dim* > 4, choose o* £ * - [ft(A, F, C) U

fl(F, C, t/) u fl(F, C, V)]. Let ^*, F*, C*, U*, V* be the lines of bundles
a, b, c, u, v, respectively, passing through o*. Then fl(o*, U, C) contains

U, U*, C, C*, has dimension 3, and does not contain F. Similarly fl(o*, V, B)

contains V, V*, B, B*, has dimension 3, and does not contain C. Therefore,

ft(o*, U, C) n fl(o*, V, B), being the intersection of two three flats in the

4-space fl(o*, A, B, C), is a plane which contains the lines fl(U, C) n

ñ(V, B) = L and ñ(U*, C*) n ñ(V*, B*) = L*. Thus L and L* are coplanar

and distinct (since otherwise L c fl(f, C) would pass through o*, contrary to

the choice of o*) and therefore determines a bundle. Also L c fl(i/, C) E

A/(m, c) and L* c ñ(U*, C*) E A/(w, c). Thus, by Lemma 2.15, the bundle

determined by L and L* is incident with M(u, c). Similarly the bundle

determined by L and L* is incident with M(v, b) and the theorem is proven.

3. Flats and hyperplanes in (Y, 911). In this section we assume the space

(Y, 9IL) satisfies Axioms BP and CP.

Definition 3.1. F is a P-flat if a, b £ F impUes M(a, b) c F. If A c Y

then F-fl(^) = f) {F: F D ^, Fa F-flat) = F-J7ar spanned by A. We remark

that it is easy to verify by Axiom BP that any line in F is a F-flat.

Theorem 3.2. If F is a P-flat andp £ F, then P-ñ(p U F) = U {M(p,f):

/£F}.

Proof. Let W = U {M(p,f): f £ F}. Clearly F-fl(/> u F) D W D p U
F. Thus it suffices to show that IF is a F-flat. To this end let b =¡¿ c E F,

x £ A/(/j, ¿>), and v E A/(/>, c) with x =£p ¥=y. Let z E M(x,y). Axiom CP

applied to triangle pxc and points b, y yields / £ M(x, y) n M(b, c). Either

f¥^b or f=£c. Without loss assume f¥=b. Then Axiom CP applied to

triangle xpf and points b, z yields f* E M(b,f) n M(p, z). Thus zE

M(p, f*) with/* £ F so z £ W. Thus IF is a F-flat.
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Definition 3.3. Aplane is any F-flat of the form F-fl(/> u F) where F is a

line in Y and/> £ F. A 3-space is any F-flat of the form P-ft(p U F) where F

isa plane and/j £ F.

Any line L and point x £ L which lie in a plane determine that plane

uniquely, and similarly, each 3-space is determined uniquely by a plane and a

point not on it, as the next result shows. It is easy to show that in any 3-space

two distinct planes which have a point in common have a Une in common by

application of Axiom CP.

Theorem 3.4. // F is a P-flat, p £ F, G = F-fl(/> u F), and q E G - F,
then G = F-fl(<7 U F).

Proof. By Theorem 3.2 there exists / £ F such that q E M(p,f), so

p E M{q,f). Thus P-ñ(q u F) 3 p. Therefore G D P-ft(q U F) D F-fl(/>

U F) = G.

Definition 3.5. A F-flat He F is a P-hyperplane if P-ñ(p \j H) = Y for

some /? £ #. By Theorem 3.4 this is equivalent to F-fl(/? u H) = Y for aU

P&H.

Theorem 3.6. Given F0 a P-flat and p £ F0 i/te/i i/iere ex/s/s a P-hyperplane

H D F0 wi'fA />£//.

Proof. Let ^ be the family of aU F-flats missing p and containing F0.

Partially order ^ by inclusion. Every chain has an upper bound so by Zorn's

Lemma 'S has a maximal element F*. If F* is not a F-hyperplane then

F-fl(/> u F*) c F. Choose x £ P-fl(p u F*). Let F = F-fl(x u F*). Clearly

F D F* D F0. If p E F then by Theorem 3.4, x E F-fl(/> u F*). Thus/» £ F

and Fef, contradicting the maximaUty of F*. Thus F* is a F-hyperplane.

Theorem 3.7. // H is a P-hyperplane, M £ 911, and M Z H, then M n H

is exactly one point.

Proof. Choose p E M - H. Then M c Y = P-ñ(p u H). Therefore by

Theorem 3.2, if q E M, q ^p, there exists h E H so that q E M(h,p).

Therefore h E M(p, q) = M. Thus, M n H =£ 0. If two distinct points of M

were to lie in H then we would have M <z H contrary to our assumption.

Thus M n H consists of exactly one point.

Theorem 3.8. // F is a P-flat and P-ft(p Li F) is a P-hyperplane for some

p £ F then P-ft(q L) F) is a P-hyperplane for every q £ F.

Proof. Assume q £ F. If q £ F-fl(/> u F) then by Theorem 3.4, F-fl(? u

F) = F-fl(/> u F) which is a F-hyperplane. If q £ F-fl(/> u F) then also

/> £ F-fl(c7 u F) for otherwise q £ Fand /> E F-fl(? u F) - F so that P-i\p

U F) = F-fl(tf u F) by Theorem 3.4. But since F-fl(/> u F) is a F-hyper-

plane we have F-fl(/> U ? U F) = F. Thus F-fl(# u F) is a F-hyperplane.
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Definition 3.9. If F is a F-flat and P-ft(p U F) is a F-hyperplane for some

p £ F then F is called a codimension-2 P-flat.

It is clear from Theorem 3.8 that if F is a codimension-2 F-flat and q £ F

then F-fl(t7 u F) is a F-hyperplane.

Theorem 3.10. If Hx =£ H2 are P-hyperplanes then Hx n H2 is a codimen-

sion-2 P-flat.

Proof. Choose p E Hx - H2 and q E H2 - //,. Then P-ñ(p \j H^ = Y

= P-fl(q u Hx). Let x £ M(p, q) u Hx u H2. There exist A, £ //, and A2 E

H2 so that x E M(q, hx) n A^(/>, A2)- By Axiom CP applied to triangle xpq

and points A„ h2 there exists /i £ M{p, hx) n A/(<7, A2) c ^1 n ^2- Thus

hx £ F-fl(/>, #, n H2) so x £ F-fl(/>, ?, if", n #2)- Therefore #, n H2 is a
codimension-2 F-flat.

In Theorem 3.11, we assume the space (*, £) satisfies Axioms A', B, and

C. Also (F, 91L) is the space constructed from (*, £) in §2 and proved there

to satisfy Axioms BP and CP.

Theorem 3.11. If F is a flat in X and f E F is fixed then P-ñ(F) =

U{A/(/,x):xEF, x^f).

Proof. Let W = U {M(f, x): x E F, x */}. Clearly P-ñ(F) d W d F.
Therefore it suffices to show that IF is a F-flat. To this end let x, v E F — /,

and let a E M(f, x), b E M(f,y) with a ¥= b. Let c £ M(a, b) and C £ c

passing through /. We want to show that c E IV. If / E M(a, b), clearly

c £ W. Therefore, we may assume without loss that f $ M(a, b). By

Corollary 2.11, since L(/, x) belongs to every plane of the sheaf A/(/, x) =

M (/, a) it belongs to bundle a. Thus A = L(f, x) £ a, and similarly F =

L(f,y) £ F It follows that tt = ñ(A, B) is contained in the sheaf M (a, b)

and is a subset of the flat F. Since c E M (a, b) and C is not in common with

bundles a and b, it follows that C is contained in a unique plane of the sheaf

M (a, 6). Since C 9 / it follows that CctcF. Choose z EC with z ^= /.

Then c E M(f, z) and c E W.

4. Projective order in F. The order already assumed for Unes in * wiU now

be used to construct an order relation S on quadruples of colUnear points in

F (patterned after Coxeter [10, pp. 13-15]). The space * will be assumed to

satisfy Axioms A', B, and C, while F satisfies Axioms BP and CP.

Recall that two sets of collinear points a, b,c, . . . and a', b', c' . . . are in

perspective if there exists a point p such that each of

(a, a', p), (b, b', p), (c, c', p), . . . are collinear triples, and such a relationship

is denoted

p
abc ... Äa'b'c' . . .
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with/? occasionally omitted. The desired properties of S are now stated.

01. If S(ab, cd) then a, b, c, and d are distinct coUinear points.

02. If a, b, c, and d are distinct collinear points then at least one of

S{ab, cd), S{ac, bd) and S(ad, be) holds.

03. If S(ab, cd) then S(ba, cd).

04. If S(ab, cd) and S(ad, bx) then S(ab, ex).

05. If a, b, and c are any 3 distinct collinear points there exists d such that

S(ab, cd).

06. If S(ab, cd) and abed A a'b'c'd' then S(a'b', c'd').

07. (Axiom of Continuity). For any 3 distinct colhnear points a, b, c and

any set U of elements x such that for each x £ U the relation S(ab, ex) holds

there exists x0 such that (i) either x0 = a or S(ab, cx0), (n) for aU x £ (7

either x = x0 or S(ax, bx0), and (hi) if x, =£ x0 is any other element for which

(i) and (U) hold, then -S(ax0, bxx).

Definition 4.1. If a relation S exists for a space (F, 9H) then the Unes of Y

are said to be projectively ordered.

In order to introduce such a relation S in F first begin with a Une L in *.

For convenience we shall use the notation abc if either a <l b <l c or

c <l b <l a (introduced earher); also, let abed be used to denote the oc-

currence of abc, abd, acd, and bed (that is, iff either a <l b <l c <l d or

d <l c <l b <l a). Now for each 4 distinct points on F if any one of the

conditions acbd, dacb, bdac, or cbda holds, write S(ab, cd).

If we do this for each line in * then we immediately have properties 01-05.

For 06, let S (ab, cd) and abed W a'b'c'd'. Since/» ^ a and/> ^ a' then either

aa'p, a'op, or apa', and we assume without loss that acbd holds. By several

applications of Axiom C in * and the corresponding Theorem 3.1 of

Geometric convexity. I [7], we find that aa'p implies either a'c'b'd', d'a'c'b',

b'd'a'c', or c'b'd'a', and similarly for a'ap and apa'. Hence S(a'b', c'd'). To

extend the relation S to any line M in F let x E * — M and write S (ab, cd)

for 4 distinct points a, b, c, d on M provided there exists a line L c * which

meets M (a, x), M(b, x), M(c, x), and M(d, x) at a', b', c', d', respectively,

and S(a'b', c'd') on L. That this relation does not depend on the particular

choice of x and L chosen in * will now be established. Clearly, a different

choice L* for L leads to points a*, b*, c*, and d* as the intersections of L*

with M (a, x), M(b, x), M(c, x), and M(d, x); but since a'b'c'd' =Kxa*b*c*d*

then by 06 for * we have S(a*b*, c*d*) and thus S(ab, cd) holds relative to

L*. Consider x* ¥= x in *, x* £ M, and suppose again that S (ab, cd) holds

for points a, b, c, d on M. We appeal to the following lemma which is basic to

the present development.

Lemma. Suppose p E F, x E * and 4 distinct lines L¡, i = 1, 2, 3, 4, in X

passing through x lie in a plane tt in X which contains M(x, p) n *. There
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exists a line M through p such that M n * = L intersects the L¡ in 4 distinct

points.

Proof. Let L' = M(x, p) n *; locate y and z on U such that yxz, and

determine any point q E Lx, q =£ x. The theorem of Pasch in tt then impUes

that L2 cuts either [y, q] or [q, z] at a point r, say L2 n [y, q] = r. Then L3

also cuts [y, q] or [q, z] at a point j; if F3 n [9, z] = s then applying the

theorem of Pasch to the triangle ( v, z, s), Lx and F2 cut [>>, s] at q' and /•',

respectively. Thus it may be assumed in any case that the Une L(y, q) cuts

F„ L2, L3 at q, r, s. Similarly L4 cuts [ v, ?] or [q, z] at a point t, and it may be

assumed without loss that L(y, q) cuts Lx, L2, L3, L4 at q, r, s, t with the

orderyqrst, and that/; £ [x,j>]. Locate u such that^«^, and determine the

line M = M(p, u). Since F = M n * cannot cut [x, v] and L g tt, the

theorems of Pasch impUes directly that F cuts the open segments (x, q) c Lv

(x, r) c L2, (x, s) c F3, and (x, t) c F4, completing the proof.

Now returning to x ^ x* in * and S(ab, cd) on M, let /? £ M be distinct

from a, Z», c, d. If we let 1^ and F* denote, respectively, the Unes M(u, x) n

* and M(u, x*) n * for u = a, b, c, d then it foUows easily that

ft(La, Lb, Lc, Ld) is a plane containing Fp = M(p, x) n *. By the lemma

there exists a line F in * colUnear with /> which cuts F0, Lb, Lc, and F¿ at

a', b', c', d', and S(a'b', c'd'), so that if any of a, b, c, d E X then aa'x, bb'x,

cc'x, and ¿A/'x hold. Locate z EX such that xx*z. Since La and F* belong to

the bundle a these lines and z are coplanar. By the theorem of Pasch L* cuts

(a', z) at a point a*; similarly, F*, L*, and F* cut (F, z), (c\ z) and (</', z) at

è*, c* and d*. Now apply the Theorem of Desargues to the triangles

(a', b', x) and (a*, b*, x*) which are in perspective with z (in Y). It foUows

that/?, a*, b* are collinear in F. Similarly,/?, a*, c*, and i/* are colUnear in F

and hence a*, b*, c*, d* lie on a line F* in *. Since a'b'c'd' r\za*b*c*d* we

have S (a*b*, c*d*). Hence S is a well-defined relation for quadruples of

points in F.

It is now immediate that Properties 01-05 hold for S. To obtain 06 suppose

Mx and M2 are any two lines in F containing distinct points a, b, c, d and

a', b', c', d' such that S (ab, cd) and abed Äf a'b'c'd'. Then there exists x £ *

- A/, and a line Lx c * cutting M(x, a), M(x, b), M(x, c) and M(x, d) at

ax, bx, cx and rf, such that S(axbx, cxdx). Consider the point of intersection

«0 = Mx n Af2 and choosey E A/(x, u0) n * distinct from x and «0; let F2

be a line in * cutting M (y, a'), M (y, b'), M(y, c'), M(y, d') at o2, ¿>2, c2, d2.

Now consider the correspondence being set up in fl(x,v, F,) between the

projective pencils x and y by means of the center of perspectivity p and the

two axes A/, and A/2: If M(x, u) for u £ A/, is any line through x then let

w' = M(p, u) n A/2 and let the line M(y, u') through v correspond to

M(x, u).  Since this correspondence consists of the product of the two
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perspectivities x tMlp and p ÄMy with respective axes Mx and M2, the corre-

spondence thus defined is a projectivity xAy. But this projectivity has a

self-corresponding line, namely, A/(x, u0) = M(y, u0). By a weU-known

theorem in classical projective geometry (see, for example, the dual of 3.31 in

G. de B. Robinson's 77te Foundations of Geometry [20, p. 28]), which uses only

the Theorem of Desargues in its proof, we conclude that the correspondence

x A v is a perspectivity with a single axis M3. That is, corresponding lines

M(x, u) and M(y, u') in x and v meet at some point u" £ M3. Applying this

to u = a, b, c, d we obtain the points a", b", c", d" on M3. Hence, by

definition of S in F, S(axbx, cxdx) implies S(a"b", c"d"), and thus

S(a2b2, CjfiQ, or S(a'b', c'd').

The remaining Property 07 can be readily estabhshed by the known

properties of the order relation in *. Suppose a, b, c are three distinct points

on M £ 9H and U is any set of points such that if x E U either x = a or

S(ab, ex). Choose p £ * - M and F' £ £ such that L' cuts

M(p, a), M(p, b), M(p, c) at a', b', c'. By making judicious choice of L' it

can be assumed that a'b'c'. For if a'c'b', locate a" such that a'pa"; then

L" = L(a", c') will meet M(p, a), M(p, b), and M(p, c) at a", b" = b' and c"

such that a"b"c", and similarly, for b'a'c'. Locate a* such that a'pa*, and let

segments (p, c') and (a*, b') meet at c*. For each x E U, M(p, x) n * is a

line in * in the plane of L(p, a'), L(p, b'), L(p, c') and must therefore meet

segment (a', b') or [b', a*] at some point x'. If the latter, then either x' = a*,

a*x'c*b', x' = c*, a*c*x'b', or x' = b' and hence either x = a, S(ac, bx),

x = c, S(ax, be), or x = b, denying S(ab, ex). Thus M(p, x) meets (a', b') at

x' for each x £ U, such that the order in * is a'x'b'c'. Let > denote the

unique order on U = L(a', b1) such that a' > b'. If U' = {x' = M(p, x) n

[a', b'\. x £ U} then let x'0 = sup U' and define x0 = M(p, x'0) n M. It is

clear that x0 is the desired point in Property 07.

This now establishes that the space ( F, 9H) satisfies Axiom AP.

5. Proof of Theorem 1.1. In this section (*, £) is a space with dim * > 3

satisfying Axioms A', B, and C and (Y, 9H) is the space constructed from

(*, £) in §2 satisfying Axioms AP, BP, and CP.

Lemma 5.1. If H is a hyperplane in X then H* = P-ñ(H) is a P-hyperplane

in Y. Conversely, if H* is a P-hyperplane in Y which meets X then H* n * is a

hyperplane in X.

Proof. Let p E X — H. Choosing q E H, Theorem 3.11 implies p £

U {M(q, x): x E H) = H*. Also, P-ñ(p u H*) D P-t\p U H) D fl(/> U

H) = X and thus P-ñ(p u H*) D F-fl(*) = F. Therefore H* is a F-

hyperplane. For the converse, suppose H* is a F-hyperplane and consider

F = H* n * =£0. It is clear that F is a flat in *; if F were not a hyperplane
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F would be contained properly by a hyperplane H in *. Now F-fl(F) c F-

ñ(H*) = H*. Choose / £ F and let v E H*; M(f,y) contains x ¥= f in *

and hence v E M(f, x) c F-fl(F), or #* c F-fl(F). It then follows by the

first part that P-ñ(H) = H*. But if p £ # - F then /? E #* n * = F, a

contradiction. Therefore H* n * is a hyperplane in *.

Theorem 5.2. There exists a P-hyperplane H in Y with H n * = 0.

Proof. Let H0 and Hx be disjoint hyperplanes in * (see Theorem 9.8 of

Convexity. I [7, p. 304]). Then G = P-ñ(H0) n P-ñ(Hx) c F - * is a codi-

mension-2 F-flat in F. Fix/7 E H0, q E Hx, s such tnaipsq and let H2 be the

hyperplane P-ft(s \j G) n *. For each t E M = M(p, q), t $ G, so define

the F-hyperplane if, = F-fl(r u G). Further, define the set U = {f: 3i' E H,

D *, ?' E Hx, s' E H2 3 ps'q't'}. Note that S(/>tf, 5/) then follows. By

Property 07 there is t0 E M such that for aU t E U either / = t0 or 5(/7i, #0).

If H,on X¥=0 choose ¿ó E #,o n * and let /' be such that q't'0t'. Since

F-fl(f u G) is a F-hyperplane, Af meets P-ñ(t' u G) at t and f' E F-fl(f u

G) = F-fl(r U G) = Ht. Hence t' E Ht C\ X and ps'q't', so t E U and either

r = i0 or 5(/7f, gtf0). But pq't'4' impUes S(pt0, qt), in contradiction. Therefore

Ht¡¡ is the required F-hyperplane.

The proof of Theorem 1.1 may now be completed. Define ** = F — H,

where H is the hyperplane guaranteed by Theorem 5.2 and for each M £ 9IL

define M* = M - M n H, and put £* = {A/* ̂  0: M E 91L} (thus each

line in ** is a Une in F with one point missing). By standard arguments in the

foundations of geometry Axioms B and P are immediate. We let L*(x,y)

denote the unique Une in ** passing through x i=y. To obtain Axiom A',

define for each three distinct points a, b, c on M* £ £ * the order relation

abc iff S(ac, bm)

where m = M n H. Veblen's axioms of order then foUow directly from

01-05 (it is necessary to use such properties of S as S(ab, cd) impUes

S(cd, ab) as proved in Coxeter [10]). One may define the total order < on

M* such that a < b < c in the obvious manner. It foUows that Veblen's

Axiom 3 yields the property that M* has no first or last element and that our

07 yields the least upper bound property for M*. Thus Axiom A' has been

verified.

Finally, to obtain Axiom C, let axb and xyc hold. Then the lines L*(a, x)

and L*(b,y) meet H at/7 and q, respectively. Assuming for the moment that

p ¥= q then b & L*(x, c) u L*(a, y) and y £ L*(a, x) u L*(b, c). Let Unes

L*(x, y), L*(a, y), and L*(b, c) meet M(p, q) at s, t, r, and put M(a, y) n

M(b, c) = z. Note that since M(p, q) c H, r, s, and t lie on H. We observe

that
y b

bxap A qstp    and   xy es A pqrs.
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The relations axb and xyc imply S (ab, xp) and S(xc, ys), so by Property 06

S(tq, sp) and S(pr, qs). Thus, S(sq, rp) and S(sp, qt), so applying 04 we find

S(sq, rt). Again, S(qt,ps) and S(qs, tr) imply S(qt,pr). Hence S(pr, qt) and

S(qs, tr), and from

b y

pqrtAayzt   and   qtsrAbzcr

it follows that S(az, yt) and S(bc, zr). That is, ayz and 6zc, as desired. The

proof for the case p = q foUows by examining the possible order relations on

a single line.

The final property needed is that the two orders we now have on each line

L* in ** and the corresponding Une F = F* n * in * agree. Let a, b, c £ L

and suppose abc in *. Choose x E * - F and a' such that axa' in *; since

the intersection d of M (a, b) with H does not lie in *, L' = M (x, d) n *

does not meet segment [a, b] of the triangle (a', a, b), so L' meets [a', b] at d'

and [x, c] meets [a', b] at c' such that a'd'c'b. Then by definition of S,

S(a'c', bd'), and by 06, since a'bc'd'%xabcd, we have S(ac, bd). Hence abc

holds in **. Conversely, if abc holds in ** and a, b, c E X, then a, b, c are

distinct points on some line F and one of bac, abc, or acb holds in *; the only

one of these compatible with the hypothesis (by the above) is the desired

relation.

6. Proof of Theorem 1.2. Completing the proof of the main Theorem 1.2

amounts to essentially coordinatizing the elements of the space ** con-

structed in §5 by the elements of a field (if dim * < oo). A nondimensional

approach will be taken so that even though the development proceeds as in

some 3-dimensional treatments (see, for example, Hartshorne [13] and

Coxeter [9]), certain aspects are different.

Recall that ** is a space satisfying Axioms A, B, C, and the paraUel

postulate P. Thus, ** is what we might term an affine space, with aU the usual

properties of points, lines, planes, 3-spaces, their determination and intersec-

tional properties, and properties of paraUeUsm. In particular, it can be shown

that parallelism is a transitive relation on the family of all Unes.

Fix point 0 £ ** as origin and consider the group GL(**) of aU bijective

linear (line-preserving) transformations on **, with identity denoted by 9,

and consider the normal subgroup dil ** consisting of those transformations

having the property that each Une is paraUel to its image. (That dil ** is a

subgroup of GL(**) foUows from the transitive law of paraUeUsm.) Further,

let tran ** be the subgroup of translation-those elements r of dil ** such

that either t possess no fixed points or t = 0-and sim **, the subgroup of

similitudes-those elements of dil ** which fix 0. It can be easily checked that

tran ** is a commutative normal subgroup of dil **. (It is weU known that

for projective spaces in general sim ** is neither commutative nor normal in
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dil **.) Thus, for any S E dil ** and t E tran **, SrS ~ ' £ tran **.

Note that each element r ¥= 9 of tran ** has the property that for aU

x £ **, L*(x, t(x)) is paraUel to a fixed line F in **, caUed the axis of t.

Moreover, if tranL ** denotes the set of aU translations with axis F we find

that tran¿ ** is a subgroup of tran **, a normal subgroup of dil **, and that

{9} and (tran¿ ** — {9}: L is a line through 0} partitions the full group of

translations. It also follows that these coaxial subgroups are isomorphic (see

Lemma 6.1 below).

We adopt the notation rab for the unique translation which takes a to b

and aab with a =£ 0, b i= 0, and a, b, 0 colUnear, for the unique simihtude

which takes a to b. If we consider the translation aabra~b for any t £

tran ** and let t(0) = 0', aa b(W) = 0" then it foUows that

°aj>™a,b   = T0,0-

The convention of setting oabra~b = 9 whenever a = 0 or b — 0 wiU be

followed.

The next lemma is fundamental to the development and may be proved

using Desargues' Theorem (see Hartshorne [13]). We omit the proof here.

Lemma 6.1. If t' E tran¿ ** and t" E tranM ** are fixed, r' ^=9 and

t" t¿= 9, then an isomorphism

<f>: tranL ** -» tranM **

may be defined as that map which takes a member t E tranL ** into the

member arr"o~x £ tranw *, where aT denotes the similitude which takes t'(0)

to t(0).

Corollary 6.2. If t" is any member of tran ** and u, u', v, w are collinear

with 0 such that w = t0 ut0 „(0) then

(v«T"a«>)(a"',»T"CT«>) = a«>T"ou>-

Proof. Apply Lemma 6.1 with 0, u, u', v, w on F and t' = t0„-, t, = t0„,

T2 = t0>ü. Hence aT¡ = au,u, aTj = a„-„ and aT¡T2 = au>. The desired result

follows upon substitution into the equation «^t^ • tfj^ = <i>(TiT2)-

Next we construct a division ring R from the above stated group properties

of tran ** and sim **. First refine the previous notation for elements of

tran ** and sim ** as follows:

t* = To*   and   ax = ol¿

where 1 is any fixed element in ** distinct from 0 and 0, 1, À are colUnear.

Put R = F*(0, 1) and define the operations + : ** X ** -> ** and • :

R X X* -^ X* by writing

rx+y m TxTy^      T\x =  0  T*0-l.
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In particular, if we restrict the above operations to F X F they become

binary operations on F.

Lemma 6.3. For each X, ¡i ¥= 0 in R, oX/1 = a^^.

Proof. Observe that the translation o^t'o^1 maps 0 to A/x; thus o-^t'o^,1

= tx>1 = 0at'1o-a~1. Now apply this equation to the element 0, proving that

<V(1) = **(/*) = ffA»M0)-

At this point, all the algebraic properties which make F a ring and ** an

F-module follow routinely from the previous results. For example, to show

that for aU X, /i £ F and x £ **, (A/x)x = A(/xx) simply apply Lemma 6.3:

—(Ait)*  _   _     _X— — 1   _   _   _  -.JC- — 1_— 1   _   ^   «-M**»-1   _  ^A(iix)
T - °AMT  °V    - °A<VT °V   °A      - a\T    °\      - T ■

To  show  that  (A + /i)x = Ax + ¡lx   for  each  A, ii £ R,  x £ **,   apply

Corollary 6.2 with u' = I, u = X, v = p, and w = tV'XO) = A + ¡i:

(vX-'Ko/V1) = o-a+^tX+V
which is equivalent to

ta*t/« = t(a+m)*

orT^ + /« m TQi + tix,

The ring properties for F follow directly from the vector properties by

restricting the elements of ** to F c **. To show that F is a division ring,

first note that 1 is a unit for F, then define for each A ¥= 0 the inverse element

A-1 = 0-^"'(1). It then readily foUows that AA_1 = A~'A = 1. Hence F is a
division ring.

The proof of Theorem 1.2 will be complete when we estabüsh the foUowing

result.

Lemma 6.4. The space (**, £*) is an R-module such that £* is precisely the

family of I-flats defined algebraically. Moreover, R is an ordered division ring

such that for each three collinear points x, y, z in the order xyz there exists

0 < A < 1 in R with y = (1 — A)x + Az. Further, the order in R is complete

and the multiplication is commutative, making R the field of real numbers.

Proof. We have already proved that ** is an F-module and that F is a

division ring. The algebraic 1-flats are sets of the form F(x, v) = {(1 — A)x +

Ay : A £ F } for each x =£y in **. If z = y — x then we see that

F(x,y) = {x + Az: A E F} = {rxox(z): X £ F}.

But the latter is easily seen to be a translation of the line F*(0, z) and thus

F(x,y) = L*(x, y) E £*.

The next step is to show that F has an order compatible with the order <r

as defined by the relation xyz for x,y, z E R. Define the positive set P on R

as simply those points A for which either 0A1, A = 1, or 01A. By geometric
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properties of parallelograms it foUows that for x £ F, 1, x, x + 1 and

2 = 1 + 1 are the vertices of a paraUelogram and F*(l, x + 1) cuts [x, 2] at a

point .y such that xy2. Hence, it foUows that since F*(l, x + 1) is paraUel to

F*(0, x), F*(l, x + 1) meets [0, 2] at 1 and 012 holds. Let a, ß E P. If 0)81
then since similitudes obviously preserve order we get aa(0)aa( ß)aa(l) or

0(aß)a. Similarly, if 01)8 then 0a(aß), and if ß = 1 then aß = a. Using the

fact that either Oal, a = 1 or Ola it foUows that either 0(aß)l, aß = 1, or

0l(aß). Therefore aß £ F, and simüarly, ßa E P. By applying the similitude

aa-t to the cases Oal, a = 1, or Ola we find either Ola-1, a-1 = 1, or 0a_1l.

Hence a^1 E P. Also, since translations preserve order, if y £ F then t'(y)

= 1 + y £ F. Thus, a~lß £ F and then 1 + a~lß E P so that a(l + a~lß)

= a + ß E P. This proves that F is an ordered division ring; we use the

notation a < ß iff ß — a E F. It is obvious that the two orders we now have

on F as an element of £ * are either identical or inverse to one another.

Consider the relation xyz for three coUinear points in **. The translation

t~x maps x,y, z to 0, y' = v — x, z' = z — x in the order Oy'z', and let

a = az.y\ since a(l) = A for some A E F then a = ax and a maps 1 to A and

z' toy' so that F*(l, z') is parallel to L*(X,y'). Hence Oy'z' impUes 0A1 and

0 < A < 1 in F. But y' = ct(z') = ax(z') = Az', so y - x = X(z - x), or y =

(1 - A)x + Az.

We have shown that F is an ordered division ring. By the least upper

bound property of <r and thus of < , F is complete, and therefore,

Archimedean. The commutative law for multiplication now foUows from

Theorem 1 of Fuchs [12, p. 126].
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