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PERSISTENT MANIFOLDS ARE NORMALLY HYPERBOLIC
BY
RICARDO MARE

ABSTRACT. Let M be a smooth manifold, f: M < a C! diffeomorphism and
V C M a C! compact submanifold without boundary invariant under f (i.e.
J(V) = V). We say that V is a persistent manifold for f if there exists a
compact neighborhood U of V such that () ,cz f*(U) = V¥, and for all
diffeomorphisms g: M <> near to f in the C' topology the set Ve =
M ,,czg" (V) is a C! submanifold without boundary C" near to V. Several
authors studied sufficient conditions for persistence of invariant manifolds.
Hirsch, Pugh and Shub proved that normally hyperbolic manifolds are
persistent, where normally hyperbolic means that there exist a Tf-invariant
splitting TM/V = N°V @ N“¥V @ TV and constants K >0, 0 <A< 1
such that:

ICTFY/NIVI < KX» (TF)™"/ NV < KA,
T/ NV - T ™"/ TV Il < KA”

foralln > 0, x € V. In this paper we prove the converse result, namely that
persistent manifolds are normally hyperbolic.

Let M be a manifold, ¥ ¢ M a submanifold and fi: M« a
diffeomorphism satisfying f(¥) C V. Several authors [1}H{9] have considered
under which conditions for every diffeomorphism g nearby f there exists a
submanifold ¥, C M nearby V satisfying g(V,) C V,. This kind of question
arises frequently in ordinary, functional [18] and partial [16] differential
equations as well as in the stability theory of group actions [19], bifurcations
[3] and the construction of diffeomorphisms exhibiting certain persistent
properties [9].

Answers to this problem are usually given in terms of exponential rates of
the iterates of the derivative of f at V. In this paper we shall consider the
converse problem, proving that the persistence of V' (see definition below) is
equivalent to these conditions.

To give the precise statement of the results let us denote by Diff'(M) the
space of C! diffeomorphisms of M endowed with the topology of C!
convergence on compact subsets.

DEFINITION. V is a compact invariant manifold of f € Diff'(M) if it is a
compact boundaryless C' submanifold of M satisfying f(¥) = V. We say
that V is persistent if there exist a neighborhood U of V in M and a
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neighborhood AU of fin Diff!'(M) such that:

(a) For all g € A the set ¥, = N ,cz8"(U) is a C' submanifold of M
and V, = V.

(b) V, is C' near to V if g is C' near to f.

Finally let us say that ¥ is normally hyperbolic if there exist constants
C >0,0<A< 1 and a continuous (Tf)-invariant splitting TM/V = N°V
@ NV @ TV satisfying

I(TF)'/NZVII < CA™ |I(TF) ™"/ NV < CA%,
ICTF)"/ NV ITF) ™"/ TV Il < CAT,
ICTH) "/ NV - ITF)") Tp-ayV Il < CA"
forallx € Z*.

In [9] it is proved that normal hyperbolicity implies persistence. Here we
shall prove the converse, thus obtaining

THEOREM A. A compact invariant manifold of a diffeomorphism is persistent if
and only if it is normally hyperbolic.

This theorem follows from a stronger version given in §2 that states that a
Lipschitz persistent compact invariant manifold (same definition as above
requiring ¥, Lipschitz near to V instead of C! near) is normally hyperbolic.

Recalling that a compact subset A of a diffeomorphism f € Diff'(M) is
said to be isolated if it has a neighborhood U such that N <z f"(U) = A, the
Lipschitz version of Theorem A suggests the following conjecture:

CoNJECTURE. There exists a residual subset B c Diff'(M) such that every
isolated compact invariant manifold of a diffeomorphism in % is normally
hyperbolic.

Hyperbolicity hypotheses (i.e. hypotheses involving exponential rates like
normal hyperbolicity) are widely used in perturbation theory. However, the
generalized feeling that they are good hypotheses in the sense that they are
equivalent to the stability property they seek to grant, has, in terms of
theorems, an incomplete justification. These problems when settled in
Diff" (M) with r > 1 are even harder for several reasons, among them the
lack of a C” closing lemma [14]. This is, for instance, the main stumbling
block to prove a C” version of Theorem A. Such a version would state a C”
persistent invariant compact manifold (obvious definition) is r-normally
hyperbolic in the sense defined in [9].

Finally I wish to thank Jacob Palis for his advice during the preparation of
my thesis [10] (of which Theorem A is part) and to C. Pugh for several useful
talks on Theorem A.

1. Domination and invariant subbundles. Let K be a compact metric space.
Denote by £(K) the set of continuous finite-dimensional vector bundles F on
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K endowed with a Riemann structure, i.e. a continuous map B: F X F—R
such that B/(F, X F,) is an inner product on F, for all x € K. If F € £(K)
let £(F) be the set of continuous vector bundle isomorphisms of F. If
® € £(F) we say that a subbundle E C F is ®-invariant if ®(E) = E. In the
next proposition we give a sufficient condition for the existence of an
invariant complement of E, i.e. a subbundle G C F such that G is ®-invariant
and ®(G) = G. For the statement of the result we need the following
definitions:

DEfFINITION 1.1. F}, F, € £(K) and ®; € £(F), i = 1, 2. We say that ®,
dominates ®,, denoted ®, > ®,, if there exist constants C >0, 0 <A< 1
such that

191/ Frell - 195"/ Fygnnll < CA” (1)
for all x € K, n > 0. Moreover, if ®; > ®, and (1) is satisfied we say that @,
(C, AM)-dominates ®,.

DermNITION 1.2. Let E be a finite-dimensional Hilbert space, £, C E a
subspace and E;' its orthogonal complement. If S C E is a subspace such
that diim S = dim E, and S N E;* = {0}, we define the angle a(E,, S) by
a(E,;, S) = ||L||, where L: E, — E* is a linear map satisfying S = graph(L).

ProPOSITION 1.1. Let F € £(K), ® € £(F), E C F a continuous ®-in-
variant subbundle, F = F / E the quotient bundle and e E(F~ ) be the vector
bundle isomorphism induced by .

If F and E have ®-invariant splittingg F=F & --- ® F,, E=E,
@--- D®E, such that for all 1< i<k, 1< j<1 either &3/1?', (, M-
dominates ®/E; or ®/E; (C, N)-dominates <'I'>/ F,, then there exists a ®-in-
variant continuous subbundle F C F satisfying F @ E = F and such that for all
x €K,

«(Er, E) < Cd?/(1 - N),
where
d = sup(||®/F,|, |®~"/F.ll |x € K}

and C depends only on C and
§=sup{a((F,®- - ®F),,(F, ® - ®F)),

a((E,® - ®E);, (B, ® -+ ®E),)

1<j<k,1<i<1,xeK}.

REMARK. It follows from this proposition that if =: F — F is the canonical
projection and I"j = 'n'_li}, j= 1‘,\ ey K, we Pave a ®-invariant contjnuous
splitting F=E® F, @ - - - ® F,and if /F, > ®/E; (?/E; > ®/F) then
o/F,> o/E (®/E, > ®/F).
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PROOF. Let G be the continuous vector bundle on K whose fiber on x € K
is the space of linear transformations L: E* — E,. Let I%(G) be the space of
continuous sections of G endowed with the norm ||n|| = {|[n(x)||| x € K}.
Define ®: T%G) « by

®(n)(x) = @ > n(27'(x)) © (#®/Eg-) '
where 7#: F — E* is the orthogonal projection. Let #: F — F be the canonical
projection. Define
E=EtnaY(F), 1<j<k

Let I* (resp. I'“) be the space of sections 7 E_FO(G) such that n(x)I:"j,x C
D(E, |®/E > &/F) m(x)F,, C B(E,|®/F, > ®/E)) forall x € K. It
is easy to see that

187/l < A, (1)

1B="/T*}l < CA" @
for alln € Z*. If we find n, € I'%(G) satisfying

(%) = ®(mo)(x) + 7@ © (7®/Eg-m)~', X EK,

where 7: F — E is the orthogonal projection, then the subbundle £ C F with
fibers 1:; = graph(ny(x)) is continuous and ®-invariant. To solve (3) observe
that (1) and (2) imply (see [9] for details) that I — & has an inverse that
satisfies

C

s —1
=) <7~

Let £ € T%G) be defined by

{x) = 7® o (#®/E$-1))”, xEK.
Then 5y = (I — &)~ ¢ satisfies (3) and

lImoll <(C/(1 = NIl <(C/(1 = N))a?
where d = sup{||®/F_||, |®~'/F,||| x € K}.

PROPOSITION 1.2. Let F € £(K), ® € £(F) and let Ky C K be a ®-in-
variant compact subset. Suppose that F/K, has a continuous ®-invariant
splitting F/ K, = E, ® F, such that ®/E, > ®/F,. Then there exist a com-
pact neighborhood U of K, and a continuous subbundle E C F/A°, where
N =N 0@ "(V), satisfying ®(E) C E, E/K, = E,

Proor. Take a compact neighborhood U, of K, and let Ay =
N,ez+® "(Uy). If U, is small enough there exists a continuous splitting
F/A, = E @ F such that E/K, = E,, F/K,= F, Let m;: F/Ay— E, my:
F/A,— F be the projections associated with this splitting. Let G be the
continuous vector bundle on Aj whose fiber on x is the space of linear maps
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L: E, > F.If Uc U,is a compact neighborhood of A3, let TY(U) be the
space of continuous sections  of G/A*(U), such that n(x) =0 if x € K,
where A°(U) = N ,ecz+® "(U), endowed with the norm lInll =
sup{[[n(x)||| x € A*(U)}. Define @;: Ee by ®, = m,®/E, &,: Fe by
®, = 7,®/F and &: F°( U) < as d(n)(x) = ;! o n(B(x)) ° ®,.

If U is small enough ® is well defined.

LEMMA 1.1. There exist constants C >0, 0 < A < 1 and a neighborhood
U, c Uo of K, such that for all compact neighborhoods U C U, of K, the linear
map ®: T(U) < satisfies |9 < CA" forall n € Z*.

Proor. There exists ny € Z* such that
197"/ Eg |l - 12"/ Fo groemyll <3
for all x € K. Then, there exists a neighborhood U, of K, such that
197/ E|| - 195"/ Forill <3

forall x € U,. Let U C U, be a compact neighborhood of K, If x € A*(U),
®"(x) € Ufor all x € Z*. Therefore

19575/ EI| - 195%%/ Fomacnll < (1/2)*
for all k € Z*. Then, for some constant C > 0,0 < A < 1 we have
19/ EL|l - 19"/ Fan(ll < CA"
forall x € A*(U), n € Z*, and this implies
&) < CA”

foralln € Z*.

If we find n, € T°(U) such that ®(graph(ny(x))) = graph(ny(®(x))) for all
x € A°(U), the lemma is proved, defining a subbundle E of F/A*(U) by
E, = graph(ny(x)). Let T2(U) = {n €T°|||q|| < &}. It is easy to see that
there exist e, > € > 0 such that for all § >0 we can find a compact
neighborhood Us C U of K, and a map P: I (U) — I'2 (Uj) satisfying:

(2) @~ '(graph(n(x))) = graph(P (nX@~'(x))) for all x € B(A°(Up)).

®) |PO)] < 8.

© (P = ®)my) — (P — ®)my)|l < 8im, — myll for all m,,m, € 2 (Up).

Take 6 < (1 — A)/2C(1 + ¢;). From Lemma 1.1 it follows [4] that 7 — )

has an inverse satisfying ||(/ — ®)" I < €/(1 — A). Moreover, if n € T, and
Q=P-9,

Iz = @)~

<II-9)7'Qm) - -®)~'QO) + I — ®)~'Q0)
< Coe/(1 =N+ C8/(1 —N) <1!ey
hence, (1 — ®)7'Q (T (U)) C T(Up), and if m,, m, € T2(Uy) we have
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1= ®)7'Q(n) = (7= &'l < T I = mll <3lm = mall

By the fixed point theorem for contractions there exists 1, € F?I( Us) such that
(I — ®)'Q(ny) = mo. Therefore P(ny) = mo and, by (a), the proposition is
proved.

PROPOSITION 1.3. Let F € £(K), ® € £(F) and K C K, be a ®-invariant
dense subset. Suppose that for all x € K, there exists a splitting F, = E, ® G,
satisfying:

(@) ®(E,) = Egp P(G)) = Goxy

(b) There exist C >0, 0 <A <1 such that ||®"/E,| - 27"/ Gyl <
C\forall x € 2%, x € K,.

(c) dim E, is constant.

Then the families of subspaces {E,| x € K}, {G,| x € K} extend to ®-in-
variant continuous subbundles E and G of F such that F=E ® G and
®/E > 0/G.

PROOF. Let £ C K — K, be a subset such that each ®-orbit contained in
K — K, intersects = at exactly one point. For each x € = chose a sequence
{x,In €Z*} C K, such that x, » x when n— + oo and the sequences
{G,In€Z"},{E, | n€ L")} are convergent. For x € Z define

G,= lim G,, E = lm E_,
n—+ oo " n—+ oo n
and for each x € K — K, choose x, = ®(x) € = and define
= H-k — -k
G, =2%G,), E =0 *E,).

Let P be the projective bundle associated to F and d(-, - ) a metric on P
inducing its topology. If 4, B are subsets of P define

d(A4, B) =sup{d(a,b)la€ A,bE B}.
Suppose that dim E, = m, dim G, = n for all x € K. Let S € £(K) be the
vector bundle whose fiber on x is the set of subspaces (L,, L,) of F, such that
dim L, = m, dim L, = n. For x € K let H, be the set of (L, L,) € S, such
that there exists a sequence {x,|n € Z*} C K satisfying x, > x, G, — L,,

E, — L, when n — + oo. Proving that for all x € K, H, = {(E,, G,)} we are
done. Observe that U , o H,, where

H ={0ePl0cL uL,(L,L)€EH,)}
is a closed subset of P. Moreover, if x € K, and (L,, L,) € H, we have
19"/ Ly - |®~"/®"(L,)|| = CA" (1
for all n € Z*. In particular, L, N L, = {0}; hence F, = L, ® L,. Let
x € K, (L, L)) € H, with (L, L,) # (E,, G,); let us say L, # E,. Then

there exists § € P, N L, such that 8 N E, = {0}. Since (E,, G,) € H,, (1)
implies that d(®"(8), Gpr(x)) — 0 when n — + co. Let y be an w-limit point of
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x. Take a sequence {n |k € Z*} such that lim, ,, n, = +o0 and the
sequences ®™%(L,), ®%(G,), ®*(E,) converge to subspaces L;, L;, S|, S; of
F,. Then (L}, Ly) € H,, (S}, S;) € H, and L N S; # {0}. Since L} ® L; =
F, we must have L,  S|. Take § € P, such that§ C L; and 8 N S| # {0}.
By (1) d(®7"(9), ®"(S])) > 0if n - + 0. Take an a-limit point z of y and
a sequence {m |k € Z*} C Z* such that lim,_,_, n, = + o0 and ®~"%(L}),
Q™" (L3), D™™(S)), ®~™(S;) converge to subspaces Ly, Ly, Sy, S;. Then
(L), L) €E H,, (S{,S;)EH, LN S+ {0}; take 0+ 0, EL{ NSy, 0
# v, € Ly N Sy.Sincev, € L{, v, € L7, (1) implies

197 (o)1 /112" ()Nl < KX"(lloll/llv2]]) (2)
foralln € Z*. Butv, € S,, v, € S,. Hence (1) implies

19" (L)1 /119" (o)l < KA"([[o,]l/ N0y,
clearly contradicting (2).

2. Proof of Theorem A. Let M be a C* boundaryless manifold and V ¢ M
a C' compact boundaryless submanifold. Assume that M is a submanifold of
R". Let NV be a C' subbundle of TM/V satisfying TV @ NV = TM/V. If
7 is a section of NV define the Lipschitz constant of n by

Lip(n) = sup{||n(x) = a()I| /lIx =yl I x,y € V,x # y}.

We say that # is a Lipschitz section if Lip(n) < + co. Let I'g(NV) be the
space of Lipschitz sections of NV endowed with the norm

Inlle = sup{iln(x)ll | x € V'} + Lip(n).

Let Diff'(M) be the space of C! diffeomorphisms with the topology of the C'
convergence on compact subsets.

DEFINITION 2.1. Let f € Diff'(M). We say that V is a Lipschitz persistent
invariant manifold of f if there exists a neighborhood U of ¥ such that for all
0 > 0 there exists a neighborhood QU of f such that if g € AUy there exists
n € T(NV) with ||n|le < § satisfying V, = graph(n), where graph(n) =
{exp,(()|x € V), ¥, = N ,ez-8" (V).

Observe that this definition implies V; = V, hence f(¥) = V. Moreover,
the Lipschitz persistence is independent of the bundle NV.

In this section we shall prove the following proposition, which clearly
implies Theorem A.

PRrROPOSITION 2.1. If V is a Lipschitz persistent invariant manifold of f then V
is normally hyperbolic.

To prove this proposition we shall start showing some properties of the
action of Tf on the Grassmannian bundle of dim V-dimensional subspaces of
the tangent space of M at points of ¥. More precisely, let S, (M) be the set of
dim V-dimensional subspaces of T, M. For x € ¥, S € S (M) define a(S)
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=o0if SNNV+*{0)anda(S)=||L|if SANNV={0}and L: T,V >
N,V is the linear map satisfying graph(L) = S. Let O be the set of diffeomor-
phisms of M that leave V invariant.

LEMMA 2.1. For all 8 > 0 there exist ¢ = €(8) and a neighborhood U =
U(8) of f such that if g€ U, x €V, S € S (V), m EZ* and a(S) < ¢,
a((Tg)™S) < &, then a((TgYS) < 8 forall0 < j < m.

PROOF. Suppose the lemma false. Then there exists § > 0 such that for all
neighborhoods @ of fande > Owecanfindy, €V, S € S,(V)hgeEUN
O and 0 < n < m such that a(S) < ¢, a((Tg)"S) < ¢ and a((T,)'S) > 6.
We can assume without loss of generality that there exists a nelghborhood W,
of y, such that W, N g/(W)) =@ for all 0 < j < m. Let W, = g™ (W,). We
can suppose that there exist C® diffeomorphisms ¢;: W, - {x € R" X
R%|||x|| < 1}, i=1, 2, satisfying ¢(y)=0 and ¢(W,N V)= {x€
R || x|| < 1}. Take L: R" > R%, P: R - R” linear maps satisfying (T,)S
= graph(L), (Tp,)"S = graph(P). We can assume that T,/ T, M is an isom-
etry for i = 1, 2. Hence ||P|| < ¢, ||L|| < &. Let E, be the kernel of L and
E, = E;* its orthogonal complement. Take a C*® function y: R — R satisfy-
ing Y(0) = 1, Y(2) = Ofor || > 1, |¢/(?)| < 2, and [Y(¢)| < 1 for all 1.

Define: B, = {x EEJ|lx|| <3}, i=1,2 By={xER"||x||<i); B
= B, X B, X B,. Let F: B — R" defined by

F(x,, x5 X3) = ‘P(“xl||2/)\)‘P(||x2||2/)\)¢(||x3||2/)\2)Lx2
where A is a positive number. Denoting by F| the partial derivative of F with
respect to the ith variable, it is easy to see that

sup |F/| -0, i=13, (1)
B
sup || F|| < 2e, @
B
sup IFl| -0 3)

when A™!— 0. Now define ¢ = ¢, © g™ o ;" !, Ej = (T9)E,, E; = (To)E,
={x € E||x|| <1},i=1,2, B = B; X B;. TakeH B’ — R" such that

<p(graph(F /B, X B,)) = graph(H). For small values, by (1)-(3), H is well
defined and satisfies

sup || H{l| -0, )
sup | Al < e, (5)
sup [| ]| -0 (6)

when A — 0. Take H: B’ X B; — R defined as H(x,, x,, x;) =
Y(4x;)H (x,, x,). If F’, H’ denote the derivatives of F and H we can rewrite
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(4)(6) as
sup ||F'|| < 2, )
B
sup ||H'| < 2¢, ®)
B’ X B,

F'(0)/B, X B,=L, H'(0)/B’ = P.
Take k € Diff'(M) defined by k(x) = x if x & W, U W,, k(x) = (¢; ! ° (F
+Dog)x) if x € W, k(x)=(p;'°(— H)°@)x) for x € W,.
Follows from (7) and (8) that k is C' near to the identity if ¢ and A are small.
Hence, taking g near enough to f and & and A sufficiently small, it follows that
g = k o g belongs to the neighborhood AU, given by the definition of
persistence. But observe that

m m
2 =(V— U #0n V)) u( U gf(o))

0 0

where D = ¢ '(graph(F)). Then
a(Tg,.(yl)Vg) = a((Tg)"S) > 8,
thus contradicting the definition of .
Now let NV be the quotient bundle (TM/V)/TV and L(V) the vector

bundle on ¥ whose fibers L, (V) are the spaces of linear transformations L:
T,V > N, V. For g € 0 define the vector bundle isomorphism ®,: L(V) <

by @, (L) = Ngo Lo (Tg)"' where Ng: NV < is the vector bundle
isomorphism induced by Tg. Let ® = ®,.

LEMMA 2.2, ® is a quasi-Anosov vector bundle isomorphism (i.e. [13] for all
0+# L € L(V) the set {||®"(L)|| | n € Z} is unbounded).

PROOF. Suppose that @ is not quasi-Anosov. Then there exist x € V and
0%# L € Ly(V) such that {||®"(L)|||n € Z} is bounded, let us say by
K > 0. Take a linear map L,: T;V — N;V such that #L, = L, where 7:
TM/V — NV is the canonical projection. Let S = graph(L,) and & = || Lo||
= a(S). Let A(6/2) and €(5/2) be given by Lemma 2.1. Asin [20, Lemma 1.1]
we can find 1 > g, > 0 such that given any finite subset £ C V and a family
of linear maps L,: T,M — T, M, x € Z, such that L (T, V) = T,V and
IL, — Tf/T,M|| < g for all x € 3, then there exists g € U (5/2) satisfying
gV)=1V, g(x) =f(x) and Tg/T .M = L, for all x € Z. Choose n € Z*
satisfying

1-2) <2t s0m ©

and (x, L’) nearby (X, L) and g € O N A(8/3), such that g/(x) # g'(x) for
all —n < j<i<n |®(L)| <K for all |j| < n and ||Ly|| > 8/2 where




270 RICARDO MANE

Ly: T,V — N_V is a linear map satisfying L' = wLg. Let S’ = graph(Lg) and
= = {g/(x)| |j| < n). By the definition of &, there exists a map g: [0, &/3] >
O N A(8/2) satisfying:

go=g
) ar(g' (x)) = g’*(x) for all | j| < n.
©)
]ng/ﬁgj(x)V =(1 - %g)ﬁg forall0 < j < n,

(Ngx)"/Ng,-(,)V=(l - %)(Ng)_2 forall —=n < j < 0.

Q)
(T8)"/T.V = (1 +N(Tg)", (T&)"/T.V =(1+N)(Tg)",

(T "/ TV =(1+M(Tg) "

We claim that for some A, € [0, £/3] we have a((Tg,)~"S") < &(8 /2) and
a((Tg,)'S") < €(8/2). Since a(S’) > /2 this contradicts g, € U(8/2) N
O and the lemma is proved. To find A, we shall use the following property:
Let Ly : TV = NynioyVs Ly Tyni)V = Ny-n(y V' be linear maps such that
graph(Ly") = (Tg)"S’, graph(Ly) = (Tgy)™"S’ and let {vf,..., 9"},
{v;,..., vy} be orthonormal bases of T,V and T,-» V. Then if A €
[0,&/3], 1< <! and ||L{v*|| > e(8/2) (resp. ||Lxv || > €(8/2)), it
follows that || Ly v*|| < €(8/2) (ILy v || < €(8/2)) for all A + &,/6 dim V
< A < g /3. With this property it is easy to find the desired A, as follows:
Suppose that for some j we have || Lyv,*|| < €(8/2). Then || Ly v*|| < &(8/2)
where A; = &,/6 dim V. Now suppose that ||[L¥v*|| > €(8/2). Then || L0," ||
< €(8/2) and ||Lj v*|| < €(8/2). At the end of this method we find A, =
mA,, with 0 < m <2dim V (so Ay € [0, &,/3]). It remains to prove the
property above. For this define the linear maps A,: N,V — Np )V, Py:
NV > TpV, Ox: T,V — Tpu,yV such that

n A)\ PA)
Tg,)"/T.M = .
(ray/Tm=(7 2
Then, if w, = Q5 'v;*,
YT TNQ (1 + Nw + PiLowll  11Qo(1 + Nw; + PoLgwyll

Suppose || Ly v* || > €(8/2). Then, if A > X + g,/6 dim V,
190 (1 + A)w; + PoLow ]l > (A = X)[|@owill — 1Qo(1 + N)w; + PoLiw|I;

hence,
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1

Liv*| <
N S [
(1 - &/3)" loLowll 1LYyl
< - ! . (10)
A— -1 -1
—— = K71 = (e(8/2))
(1 = &/3)
By (9),
iy K~ _
A gy = > 2(e(8/2) 7
(1 — &/3) 6 dim V(1 — &/3)
hence (10) implies

Lo || < &(8/2).

In the next lemma we show that TM /Q(f/ V) (where Q(f/ V) denotes the
set of nonwandering points of f/ V) has a splitting satisfying the domination
conditions required by the definition of normal hyperbolicity.

LEMMA 2.3. There exists a continuous Tf-invariant splitting TM /Q(f/ V) =
TV/Q(f/V)® N° ® N* such that Tf/N* > Tf/ TV > Tf/N*“.

PROOF. If g € O define E;(g) (resp. EZ(g)) as the set of L € L (V) such
that {||@2(L)|| |n > 0} ({||®;"(L)|| |n > 0}) is bounded,
N;(g) = U{L(T,V)IL € E{(g)},
N!(g) = U{L(T,V)IL € E{(g)}

and Per( g) as the set of periodic points of g/ V. In the proof of this lemma we
shall use the following property whose proof will be given later:

LEMMA 2.4. There exist a neighborhood U of f and a dense subset & of
U N O such that for all g € S and x € Per(g) we have N:(g) N N¥(g) =

{0}.

Suppose we show that

N:(f) ® N*(f) =N,V (11)

for all x € Q(f/ V) and that there exist C > 0,0 < A < 1 satisfying
IR/ N (O - ITF) ™"/ Ty VIl < CA7, (12)
INA) ™"/ NI - I(TF)"/ Ty V|| < CA (13)

for all x € Q(f/V), n > 0. Then by Proposition 1.1 the maps x — N (N,
x> N “(f) define continuous Nf-invariant subbundles N°, N* of
NV/SZ(f/ V) such that Nf/N* > If/(TV /U S/ V)) > Nf/N". Hence, by
Lemma 1.1, there exists a continuous Tf-invariant splitting satisfying our
statement. So if we prove (11)~(13) we are done. By [13, Proposition 1.1 and
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Lemma 1.2] there exist a neighborhood QU of f, C > 0 and 0 < A < 1 such
that @, is quasi-Anosov and

I19z/ EZ ()l < KA", (14)
19, "/ E{(8)ll < KA" (15)
forallg € A N O, x € V and n > 0. Moreover, sincg o, is qugsi-Anosoy, it
is easy to see that E;(g) ® EX(g) = L.(V), hence N;(g) + Ni(g) = N,V
forallge A nO, x € Per(g). Let G;(g), G;(g) be the spaces of linear
maps from T, V into N; (g) and N¥(g), respectively. We claim that g € AU N
S and x € Per(g) imply
G:(g) = E{(g), (16)
Gt (g) = E{(g) (17)
Suppose, for instance, that (16) is false. Then dim GJ(g) > dim E;(g).
Therefore,
dim T,V - dim N,V = dim L (V) = dimE?(g) + dim E*(g)
< dim G{(g) + dim G¥(g)
= dim T,V (dim N:(g)) + dim N*(g)
=dim T,V- dim N, V.
Now consider x € Q(f/ V). There exist sequences {g,|Jn EZ*} C S, {x,|n

€ Z*} C V such that x, € P(g,), g, — g and x, - x when n — +co [14].
We can assume that there exist subspaces E*, E~ of L (V) such that

lim E (g,) = E*, (18)
lim EY (g,) = E". (19)

Since E; (g,) ® E; (g,) = L,(V) we obtain
dim E* +dim E~ =dim L (V) (20)

and (14), (15) imply ||®"/E™*|| < KA", |®"/E || < K\" for all n > 0.
Since ® is quasi-Anosov this implies E* N E~ = {0}, which together with
(20) gives L (V) = E* @ E ",hence E* = E:(f), E~ = E*(f); then
E;(f)® E/(f) = L (V). (21)
Moreover, (16)-(19) and the elementary properties
G:(f) =lim G; (g,), G{(f) =lim G;(g,)
prove that

G (f) = EX(f) (22)
Gi(f) = EX (/) (23)

By (21) Ni(f) + N*(f) = N,V and by (21)<23), N:(f) n N¥(f) = {0}.
This proves (11). (12) and (13) follow from (14), (15), (22) and (23).
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PrOOF OF LEMMA 2.4. Let A be a neighborhood of f such that ®, is
quasi-Anosov for all g € O N U. Let & be the set of diffeomorphisms
g € A n O satisfying the following properties:

4)) ﬁg is a C! vector bundle isomorphism.

(II) Per(g) is dense in (g / V).

(III) Every periodic point of g/ V is hyperbolic.

(IV) If x € Per(g) and m is its period, all the eigenvalues of (Tf)"/T .M
are simple and two of them have equal modulus if and only if they are
conjugates.

Now observe that for all g € S, the set of points x € Per(g) such that
N:(g) N ﬁ;‘ (g) = {0} is closed in Per(g). To see this suppose that {x,|n €
Z*} is a sequence contained in Per(g), g € §, and x, — x € Per(g) when
n— + oo. If ﬁ;,(g,,) N 1\7;:(g,,) = {0}, we deduce, as in the proof of Lemma
2.3, that G (2) = E;(g), GL(g) = E%(g) and

lim E; (g,) = E;(g), lim E*(g,) = E*(8g).

Since, clearly, lim G; (g) = G;(g) and lim G (g) = G/(8), it follows that
Ei(g) = G:(g), E“(g) Gi(g). If N’(g) N N"(g) # {0}, these relations
imply EZ(g) N E;(g) # {0}, contradicting the fact that ®, is quasx-Anosov
Suppose then that for some g, € S there exists a € Per( go) satisfying N, (8
NN 2 (g) # {0}. By the prev1ous remark this implies that there exists an open
subset W of Per(g,) such that N,f (go) N N;‘ (go) # {0} for every x € W. To
exhibit a contradiction between this fact and our definition of S we need the
following definitions and Lemmas 2.5-2.7.
DEFINITION 2.2. Let g € §, x € Per(g). We say that

N~XV=A~,1®"' eN[, (24)

are the canonical sphttmgs at x if they satisfy the following conditions:

D (Ty"T, =T, (Ng)"'N N forall 1 < i<k, 1< j< I where mis
the period of x. . . . .

(D) (Tgy"/T,, > (Tey"/ T,, (NgY"/ N, > (gy"/ N, for all 1 < iy < iy <
k, 1< j, <j, < L

() Forall 1 i<k, 1<j<], (Ng)"'/N >(Tg)"/T, or (Tg)"/ T, >
(NgY"/ N

IV F_gr all 1 < i) < i, < k there exists 1 < j < / such that (Tg)"/T, >
(NgY"/N; > (Tg)"/T,,.

LEMMA 2.5. There exists y > 0 such that if g € &, x € Per(g) and (24), (25)
are the canonical splittings at x, then

a((Tl@”' ®T), (T4,®- - ®Tk))<7s

a((M@---&N) , (N, & - ®N)) <y
Jorall 1< i<1< j<
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PrOOF. We shall prove only the first inequality. The second one is proved
applying the same method. From (14) and (15) it follows that there exists
k > 0 such that

1Ly — Loll > & (26)

forallg e U, x €V, L, € Ei(g), L, € EX(g), |ILil| = ||IL,]| = 1. Suppose
that, contradicting the lemma, we can find for ¢ = k/3 a diffeomorphism
g € & and x € Per(g) with canonical splittings (24), (25) such that a(T2%,
T,)<e¢ where T, =T, ®--- BT, T_=T,D - ® T, Suppose,
for instance, that dim T2 < dim T,. Let T’ c T,, T” c T, be subspaces
such that dm 7' =dim7_, T” = (T’ ® T_)'. Take an isometry G:
T.V < such that |G — I|| <2, G(T")=T",G(T)=T_. Let 1< j <!
satisfy (Tg)"/T_ > (Ng)'"N > (Tg)"/T, and L: T, V—>N be a linear
map with ||L||=1,L/T, =0, LG/T" # 0 Then L € E}(g), LG € E(g)
and |[L — G| < ||L||- | — G|| < 2e =2k, contradicting (26).

LEMMA 2.6. There exist C' > 0,0 < A < 1 such that if g € &, x € Per(g)
and (24), (25) are the canonical splittings at x, thenforall 1 < j < [,1 < i<
we have

I(Ng)"/ Nl - (Tg)™"/(Tg)"T|| < C'A"
foralln € Z* or

(Ng)™"/(Ng)"Nj|| - |(Tg)"/ T|l < C'A"
Joralln € Z*.

_ProOOF. Suppose that (Ng)™/ N < (Tg)"/T,foralli < iyand (Tg)"/T, <
(Ng)"‘N if i > i;,. We claim that

I(Ng)" /NIl - I(Tg)~"/(Tg)"T_|| < C'A", @27)
I((Ng)~"/(Ng)"N,| - I(T)"/ T4|l < C'A" (277)

for all n €Z*, where T*=T,®---®T,, T"=T,,,®--- DT,
where C’ > 0 is a constant independent of g € S, x € Per(g) and n € Z*
and A satisfies (14) and (15). If we prove this claim we are done. Let us prove
(27’) ((27”) follows in a similar way). Take v € 1@, w € T’ with ||w|| = 1. Let
% be an orthonormal basis of T_ containing w. Define a linear map L:
T- —»1\7jbyLu =vifu € B and Lu = 0if u € T, . There exists a constant
yY" > 0 depending only on y such that ||L|| < ¥'||L/T~||. Hence |L|| <
Y'||v||. Clearly L € E?(g). Therefore, by (14),

I(Ng)"oll/II(Ng)™wl|| < |@2(L)]| < CA"|IL|| < CyA™|lo].  (28)

Since
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|(Ng)"/ K- |[(Tg) ™" /(Te)"T |

Ng)"v ~
= su M-IL—IveNj,weT‘,||w||=l X
lloll - 11(Tg) " wil

putting C’ = Cy’, (27’) follows from (28).

Finally we want to prove that if g € $ and x is a periodic point of g/ V'
with period m there exists a subspace N, C T, M that is a (Tg)™-invariant
complement of T, ¥V, and we shall give an upper bound for a((7, V)*, N)).
For this let us say that if g € S and x € Per(g), the multindex o =
(M4« « - s M, my, ..., my) is the signature of x if the canonical splittings at x
are (24) and (25) and satisfy dim N =n, dim T, = m; for all 1 <i <k,
1 < j < I Let A,(g) be the set of periodic points of g/V with signature o
and let A (8) be its closure By Proposmon 1.2 and Lemma 2.6 there exist
splittings NV/A(g) =N, ®--- ® N, TV/A(e) =T, ®--- O T,
satisfying

Ng/N,> Ng/N., Tg/T, > Tg/T;
for all 1 <7 i"<L1<y <j"<kandﬁg/1\7 > Tg/T, or Tg/T; >
Ng/ N forall 1 < i< /I, 1< j< k. By Proposition 1.1 there exist continu-
ous Tf-invariant subbundles N,, . .., N, of TM/ A »(8) such that

Tl®" M @Tk®N|®"' ®N1= TM/Ao(g).
By Lemma 2.6 and Proposition 1.1 there exists y, > 0 depending on vy (given
by Lemma 2.5), C’ and A (given by 2.6) such that
a((TxV)J-’ N®--- O Nl)x) <7
for all x € A,(g). Resuming we have proved the following property:

LEMMA 2.7. There exists v, > O such that for all g € & and every signature
o, there exists a continuous Tf-invariant subbundle N of TM / A -(8) such that

TV/R,(2) ® N = TM/A,(g). «((T,V)*N,) <,
Jor all x € /_\o( 2)-

Let us return now to the situation we were considering before Lemma 2.5:
we have g, € & near to f such that Per(go) contains a subset W, open in the
relative topology in Per(g,) such that Ni(go) N N¥(go) # {0} forall x € W.
Since the set of possible signatures is finite, for some o the set W N A,(g)
contains an open subset W, of Per(gy). Let vy, be the constant given in
Lemma 2.7. Take 8 > 0 and p > O satisfying the following property: If
x € V, S C T,M is a suspace satisfying S ® T,V = T, M, a((T, V)", S) <
2y, vES,yEV,wE N Vand |o|] <p, |w| <p and exp(v) = exp(w):

lx =yl < Blioll, ol < Bliwll.
Let § = min(p, % B). Since g, is near to f we can suppose that g, € Us /2
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(see Definition 2.1). Using g, we shall construct g € Uy, /; such that V; =
{exp h(p)/p € V') where h is a section of NV with Lip(h) > §, contradicting
& € Uys/5. For this take the subbundle N of TM/A,(g,) given by Lemma
2.7. There exist a neighborhood B of A,(g) in M, a C* subbundle N’ of
TM/ B satisfying N'/A,(g0) ® TV/A,(g) = TM/A,(8y), «(T,V)*, N))
< 27, for all x € A,(go) and a diffeomorphism g € Q55 such that g € 5,

g/V=2ge5N'/ A ,(80) is Tg-invariant, Ng = Ng0 and g(exp v) = exp((7g)v)
for all v € N’/A,(g,) small enough, say with ||o|| < r. Denote A = A +(80)
We start the construction of g proving the following property:

LEMMA 2.8. For all 0 # v € N’ /A the set {||(Tg)"v|| |n € Z} is unbounded.

PROOF. Suppose that 0 # v € N’'/A and {||(Tg)™|| |» € Z} is bounded,
say by K. Take w = Av such that KA < r/2. Then d(g"(expw), V) =
d(exp(Tg)'w, V) < KX for alln € Z*, hence g"(exp w) € N ,cz8" (V) if A
is small enough (where U is given by Definition 2.1). Therefore ¥, D {w} U
V, contradicting Definition 2.1.

By the results in [13] or [21] this lemma implies that there exists a
continuous Tf-invariant splitting N’/A = N° @ N* and constants C > 0,
0 < o < 1 such that

I(Tg)"/N:Il < Co”,  |I(Tg)™"/N¢|| < Co”

for all n € Z*. Take x, € W,. The condition N’(g) AN «(8) # {0} implies
that there exists an eigenvalue A of (Ng)™ /N V(m belng the period of x,)
and eigenvalues A}, A, of (Tg)"/ T,V such that Al < [A] < JAy]. Otherwise
E;(g) (resp. Ef(g)) would be the space of linear maps from 7,V in the
subspace N * (N 7) of N V spanned by the invariant subspaces associated to
eigenvalues with modulus smaller (greater) than the modulus of every eigen-
value of (Tg)"/T,V; hence ﬁ;o( g =N+, 1\7;‘0 (g) = N~. Since every period
of g is hyperbolic (because g € &) there exist two possible cases: |A,| < |A| <
|A;] and 1 < [A] < |A,|. Consider the case |A,| < |A| < 1. The other case is
handled with the same method. Let N, C N; be the subspace associated to
the eigenvalue A, and T, C T, V be the subspace associated with A;. There
exists an embedded disc D C V containing x, and satisfying I.D=T,
g(D) c D. We have two possible situations: either every neighborhood of x,
in D contains a wandering point of g,/ ¥ or it does not. Suppose that we have
the second situation. Then A N D is a neighborhood of x, in D. Take
¥ € A N D. By [9] there exists a continuous subbundle N of N’/ D such that
(Tg)"Ng C Ng and Ng, = No. The properties of D imply lim||(7g)"/Ng |l
= 0 forall x € D. Hence Ny C N°/D. Take a C* section £ of TM such that
¢/B is a section of N’, the support of ¢ is contained in a neighborhood
U, C A of a pointy € D satisfying x, & U, &) # 0, U*g/(Uy) N U, =9,
where k satisfies % *'r < 2||§(»)||. Define a section ) of N’V by
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n(x) = 2 (Te)8(s~"(x)).
For all x € A we have
Il <§H(Tg)"£(g-"(x>)u< c? o"l((Te) " (<))l

Suppose that ||§(p)|| < r(1 — 6)/2C forallp € V. Then

Il < r/2 (29)
for all x € V. The condition g/(Uy) N Uy =D forall 1 < j < k implies

I > O —él I(Te)e(z =" O)I

> DI = Co**1/(1 = 6)-r(1 — 6)/2C >0 (30)
and it follows from the definition of n that
(Tg)n(x) + &(g(x)) = n(g(x)) (31
for all x € A. Given p € R take g such that
g €U, (32)
g(exp v) = exp( pé(g(x)) +(Tz)v) (33)

for all x € A, v € N] with |v|| < pr/2. If |p| is small there exists g
satisfying (32) and (33). By (33) and (31) we have

g(exp un(x)) = exp( ué(g(x)) +(Tg)n(x)) = exp pn(g(x)).
Hence,

8" (exp pm(x)) = exp pn(g"(x)) (34
for all n€Z, x € A. This and (29) imply that the distance between
g"(exp pn(x)) and V' is < pr/2 for all n € Z. Therefore, by Definition 2.1,
this proves that exp un(x) € ¥ for all x € A. Now take |A|| < ¢, < ¢ < [A|
and K > 0 satisfying [|[(7g)"| > Kc"||v|| for all n €Z*, v € Ny, and
lg”(») — 8" (xp)ll < Kc} for all n € Z*. By the condition g"(y) & U, for
all n > 1 and (30),

7(2"(»)) =(Te)™(»).
Hence

In(g"ONI— W(Tg)"n(»)I| c\"
20) - Gl ~ 1700 576l *Ler) MO

Now let h € To(NV) such that V; = {exp h(p)/p € V'} and |||l < 8. We
claim that exp pn(y) € V;. This follows from (34), which gives g” (exp pn(»))
= exp pn(g”(y)) for all n € Z. Hence if p is small enough, g”(exp un(»)) €
U (U given by Definition 2.1); thus exp un(y) € V;. Take z, € ¥ such that
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exp h(z,) = g"(exp un(»)) = exp un(g"(»)). Observing that the g-orbit and
g-orbit of x, are the same we obtain A(g"(x,)) = 0 for all n € Z. Therefore,

1h(z) = h(s" Gl IAGz,)
o= Gl 2 — &0l
1
Z 1o = e DI/ TRGEI + 1870) = 2" Gl /1A
1 1
> BU+ 12 0) = 2 G/~ BO+ (/o) /alnOl)

Since by (30) [|n(»)|| > O, taking n — + co we obtain Lip(n) > 1/28 = §,
contradicting (32). This completes the proof when x, is in the closure of
Per(go) — {xo}-

It remains to consider the case when £(g/¥V) N D is not a neighborhood
of x, in D. This case is considered in the next lemma.

LEMMA 2.8. There exists a neighborhood V' of f such that if g € V N S,
x € Per(g) and m is the period of x, then for every eigenvalue \, of (Tg)"/ T,V
and every eigenvalue \ of (Ng)"/N,V if we have |\,| < ]\| < 1 (A, > |A| >
1), then every embedded disc D C V such that g™(D) Cc D (g~"(D) c D)
and T, D is the subspace of T,V associated to \,, is contained in ¥(g/ V).

Lip(n) >

PROOF. If the lemma is false we can find g € U, where § = 1/28 (B and
p satisfying the same properties as in the previous proof), and x € Per(g)
with an eigenvalue A, of (Tg)"/ T,V (m the period of x) and an eigenvalue A
of (Ng)"/N,V such that, for instance, |\,| <|A| < 1 and there exists an
embedded disc D c V satisfying g”(D), T, D is the subspace associated to
the eigenvalue A\, and D — Q(g/V) #J. Take y € D — Q(g/V), a neigh-
borhood U, of y satisfying g"(Uy N V) N Uy # for all n € Z and a disc
D, C M containing y such that lim, ,, || g"(z) — g"(»)|| =0forall z € D,
and there exist k > 0, ]A| < ¢ < || satisfying

Il g"(z) — g"WIl > Ke"||z = y]| (35)
foralln € Z, z € D,. Moreover, if [A|| < ¢; < c there exist K; > 0, such that
llg"(2) — g"(x)Il < Kielllz — x| (36)

forallz € D,n € Z*. Choose g € Uy withg(g ' (y) =y EDy— V,y #y
and g(p) = g(p) forallp & g~'(Uy).

The condition g"(Uy) N U, =< for all n € Z implies that {g"(y)In €
Z*} U {g (g7 '(»)In €Z*} is a g-orbit. Hence y € V,. Let h € T(NV)
satisfy V; = {exp h(p)Ip € V). Let z, € V be such that h(z,) = g"(»).
Using (35), (36) as in the previous proof, we conclude | A||c > 1/2p, contra-
dicting g € Us.

PROOF OF PROPOSITION 2.1. Define NV (NV) as the set of v € T, M such
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that Lm|[(TYV|| - [(TH) "/ TVl = 0 EmlI(TN) "ol - (T Ty-no V|
= (). Observe that when x € Q(f/ V), NJV, NV are the fibers at x of the
subbundles N°, N* of TM /Q(f/ V) given by Lemma 2.3. We want to prove
that the maps x — N}V, x — NV define continuous subbundles of TM/V
satisfying all the conditions required by the definition of normal hyperbolic-
ity. Clearly (THNV = Nj,V, (THNSV = Ny,,V for all x € V. Let us
prove that for all x € ¥V, N3V 0 NV = {0}. Let =: TM/V — NV be the
canonical projection. Let v € NV N N2V and ¢ = wv. If 0 # v we can take
a linear map 0+ L: T,V — {Avl XA € R}. Then L € E;(f) N E¥(f), con-
tradicting Lemma 2.3. Now let us show that T,M = T,V @ NV & NV for
all x € V. We start with the following proposition:

LEMMA 29. Let my: TM/V > TV, @m: TM/V — NV be the projections
associated to the splitting TM/V = TV @ NV. There exists 8§ > 0 such that if
x € V,v € T.M and || n(Tf)'| < 8||7(TH)|| for all n € Z* then v € NV
eTV.

PRrROOF. By Proposmon 1.3 there exist a neighborhood U of Q(f/V) and a
continuous subbundle N* of TV /A, where A° = N ,50f "(U), satisfying

(Tf)N s C N¥, 37
N*/Qf/V) = N°. (38)

From these relations it follows that 1\7; C NV for all x € V (in fact it is
possible to prove I\A’ 3 = NV, but we shall not need this property) Moreover,
we can assume that there exists a contlnuous subbundle N* of TM /A’ such
that N"/Q(f/ V)= N*and N“®N° & TV/AN = TM/N. Let o*: TM/N®
- N°, o% TM/A° — N*, =° TM/A* - TV/A° be the projections
associated to this splitting. Define 7 =74+ x° and for x EA’, ¢ >0
define the cones

S, (x) =(v € T.M/||7%|| < ell*o])}.
There exist m € Z*, ¢ > 0 satisfying

(T)S,(x) C S./(f(x)),

ICTA) ™ol /ICTH)™wll > 2l0ll/liwll
forall x € Q(f/V), v € S,(x),0% w E NS ® TV. Let U, C U be a neigh-
borhood of Q(f/V) such that if Aj= N ,-0f "(Up) then these relations
remain true for all x € A, v € S,(x), 0 # w € N & T, V. From (37) and
(38) it follows that there exist C > 0,0 < ¢ < 1 satisfying

ICTA Il /(TN wll > C(1/0) lloll/liwll (39)
forall x € Aj, vE S,(x), 0% wE 1\7; @® T,V. Take § > 0 such that v &

S.(x) for all x € V and v € T, M such that ||7v| < 8||mev|l. Now suppose
that y € ¥, v € T, M satisfy ||7(Tf)'v|| < 8||mo(Tf) || for all n € Z*. We
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want to prove v € NV © T, V. Suppose v & NV @ T, V. Hence if f"(y) =
x € Ay we have (Tf)"v & NJV © T, V. Write (Tf)"v = v’ + v” where v’ €
N{,v" € N; ® T, V, v # 0. By (39) we have

ICZF) N /ICTS) ") > C(1/a)10'lI/ N0 (40)
foralln € Z*. Then

7 (TF)"™* "ol| = |7 (TF)" (0" + o")|| < |7 (Tf)"'|| + II(TF)"0"|I.
Since v’ € ﬁ; C S,, we obtain
l7= (TF)"0')| < ella“(Tf)"0'|| = ellm*(Tf)" (v + 0")]| = ellw“(Tf)"" "ol);

hence,

I(Zf)"o"||
I (TF)"* o)
This inequality, together with (40), gives

il (G

e (TF)" ] <(s * I )””"(Tf )l

llwes (TF)™* ™ol <[8 + WIIW“(TJ’)M"‘OII-

Hence (Tf)"*™v € S,,(x) for large values of n, thus contradicting the defini-
tion of 6.
Using this lemma we shall prove

NV+NV+TV=TM
for all x € V. Together with the property NJV N NV = {0}, this relation
proves

NVONVOSTV=TM
for all x € V. Suppose that for some x we have NV + NV + T,V # T .M.
By Lemma 2.4, x & Q(f/ V). Let 8 > 0 be the number given by Lemma 2.9
and % the neighborhood of f given by Definition 2.1. Let W be a neighbor-
hood of x such that f*(W)n W= for all n €Z and let g € AU be a

diffeomorphism satisfying g(y) = f(») for all y in a neighborhood of ¥ — W,
g(x) = f(x), g(f~'(x)) = x and

dim((Tg)(NL 1V © T-i(n V) N(NV @ T, V)) < dim V;  (41)

let h € T(NV) such that V, = {exp h(p)|p € V}. Since h € T, given any
basis {v}, . .., y} of T, V, there exist {w,, ..., w,} C N,V such that

h(exp Av;) — h(x)
-

lim inf
A—=0

for 1 < i < /, where exp: TV — V is the exponential mapping of the Rie-
mann manifold V. The condition ||kl < & implies ||w;]|/||v;]| < & for all
1< i<l Foralln €Z", by the invariance of ¥,, we have
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h(exp Amo(Tg)"(v; + w;)) — h(g"(x))

Y =0.

—a(Tf)" (5, + w)

lim inf
A0

Since ||h]| < 8 we obtain

l7(Tg)" (v + w)ll < 8||m(Tg)" (v; + W)l
But g satisfies (7g)" /(T M) = (Tf)" and (Tg)~"/T .M = (Tf)~"/ T M for
all n € Z*. Therefore, by Lemma 2.9,

{(Te)(oi + w)li=1,....1} C NV @ TV,
{o+w|li=1...,I}CNYVOTV.
Let S be the space spanned by {v, + w;]i =1,...,/}. Then
dim((Tg)(NYV @ T.V) N(NV & T.V)) > dim S = dim V,

contradicting (41).

Now we know that NV @ NV @ T,V = T,M for all x € V. Our next
step is to show that the maps x - NV, x - NV define continuous subbun-
dles of TM / V. For this define, as before, G; (G)) as the set of linear maps L:
T.V>a(NV)(L: T,V - w(NZV)). It is clear that

G, ®G!=L. (V)
forall x € V and
G; = E{(f), (42)
G = EX(f). G
Then ®: L (V)< (defined as in the proof of Lemma 2.3) is a hyperbolic
vector bundle isomorphism and the maps x — E{(f), x - EX(f) define
continuous subbundles of L,(¥) [13, Proposition 1.1]. From this and (42",
(‘}2”) it follows that thg maps x — w(1~V; V), x = w(NV) define a continuous
Nf-invariant splitting NV = N°V @ N"V satisfying
Nf/N*V > Tf/ TV > Nf/N*V.
From Proposition 1.2 it follows that there exist coPtinuous subbundles NV,
N'V invariant under Tf and satisfying #(N°V) = N*V, #(N*V) = N*V and
Tf/N*V > Tf/TV > Tf/N°V. (43)

From this it follows easily that the fibers at x € V of N°V and N“V are the
spaces NV, NV defined before.

It remains to prove that there exist constants C > 0,0 < A < 1 satisfying
ICTF)"/ NV < CA%, (44)

I(TF)™"/NgV|| < CA" 45)
for all n € Z*, x € V. Let us prove (45). If we show that {||(Tf)™| | n €
Z*} is unbounded for all 0 # v € N*¥, x € Q(f/ V) it follows [13, Propo-
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sition 1.1] that there exist C, > 0, 0 < A, < 1 satisfying ||(Tf)™"/NV| <
CAT for all x € Q(f/ V), n € Z*. Then it is easy to see that {||(Tf)"| |n €
Z*} is unbounded for all 0 # v € N“V. Applying again [13, Proposition 1.1},
there exist C > 0, 0 < A < 1 satisfying (45). Hence let us suppose that for
some x € Q(f/V) there exists 0 % v € NV such that for some K > 0,
I(THv|| < K||v|| for all n € Z*. It is not difficult to show that there exist
C,>0,0 <A, < 1,and r > 0 satisfying

1" (1) = fTCN/UCTF) Wl < CAT Xy = xoll/llwll
forall x, EV,i=1,2,0%w€EN.Vand n €Z" such that ||x; — x,|| <
8 (n), where 8(n) is so small that || f/(x) — f(xp)| < r for all 0 < j < n, if
X, x, satisfy ||x, — x,]| < 8(n). Then if y € V and ||y — x| < 8(n), we
conclude that

n n WMy — x n n
1/ (y) = 1)l < CAf —lwll'll(Tf) ol < KCAT|ly — x|l.
Take 8§(1) > r, > 0 satisfying KC\A'r, < §(1) for all n € Z*. Defining K=
KC,, we obtain

1/ (y) = ")l < KA[]ly = x|

for alln € Z* and y € V such that ||y — x|| < r,. Since x is nonwandering
this implies that x is periodic and there exists an eigenvalue A of (Tf)"/ NV
(m the period of x) with |A| < 1. Since Tf/N“V > Tf/TV it follows that
(TfY"/ NV > (Tfy"/ T,V and this proves that | u| < |A| for every eigenvalue
| 4| of (Tf)"/ TV, and now it is easy to approximate f by g € & such that
g2(») = f(») for every y in the orbit of x and such that (ﬁg)"‘/ ﬁxV has an
eigenvalue A’ with |]A'| <1 such that |p| < |X| for all eigenvalues of
(Tg)"/T,V, thus contradicting Lemma 2.9.
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