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THE SPECTRAL THEORY OF
DISTRIBUTIVE CONTINUOUS LATTICES

BY

KARL H. HOFMANN AND JIMMIE D. LAWSON

Abstract. In this paper various properties of the spectrum (i.e. the set of

prime elements endowed with the hull-kernel topology) of a distributive

continuous lattice are developed. It is shown that the spectrum is always a

locally quasicompact sober space and conversely that the lattice of open sets

of a locally quasicompact sober space is a continuous lattice. Algebraic

lattices are a special subclass of continuous lattices and the special proper-

ties of their spectra are treated. The concept of the patch topology is

extended from algebraic lattices to continuous lattices, and necessary and
sufficient conditions for its compactness are given.

The spectral theory of lattices serves the purpose of representing a lattice L

as a lattice of open sets of a topological space X. The spectral theory of rings

and algebras practically reduces to this situation in view of the fact that for

the most part one considers the lattice of ring (or algebra) ideals and then

develops the spectral theory of that lattice. (The occasional complications due

to the fact that ideal products are not intersections have been dealt with
elsewhere, e.g. [4].)

The lattice of all ring (or algebra) ideals forms a particular kind of

continuous lattice, namely an algebraic lattice. It should be the case, however,

that more general continuous lattices arise in the study of certain objects

endowed with both an algebraic and a topological structure. Indeed the first

author has shown in a seminar report using the concept of Pedersen's ideal

that the closed ideals of a C*-algebra always form a distributive continuous

lattice with respect to intersection. How widely continuous lattices occur in

such contexts is, at this point, a largely uncharted sea.

We show that the spectrum of a distributive continuous lattice is a locally

quasicompact sober space (see 2.6 for the definition of sobriety). This implies,

e.g., that the space of closed two sided prime ideals of a C*-algebra is locally

quasicompact in the hull-kernel topology. (This is usually proved for primitive
ideals by different methods.)

On the other hand, the question of what topological consequences follow
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for a space X from the lattice theoretical assumption that the lattice O(X) of

open sets is a continuous lattice has received a good deal of attention. In

different terms, Brian Day and Max Kelly have observed (1970) that for

Hausdorff X the local compactness of X is necessary and sufficient [1], (see

also Isbell [9]). We show that if X is sober, then 0(X) is a continuous lattice

iff X is locally quasicompact.

Our main device is the use of the hitherto neglected topology on a

CL-object L which is generated by the sets 7(x) = L \ \x. The join of this

topology and the Scott topology is the CL-topology, and it induces on the set

of primes precisely the hull-kernel topology.

In studying the spectrum of arithmetic lattices (such as e.g., the lattice of

ideals in a commutative ring) the patch topology plays an important role [3],

[1]; indeed for commutative rings this topology makes the set of prime ideals

into a Boolean space. We generalize the concept of the patch topology to the

spectrum of a continuous distributive lattice and derive necessary and

sufficient conditions for its compactness.

We gratefully acknowledge contributions from various members of the

Seminar on Continuity in Semilattices, notably K. Keimel, M. Mislove, and

O. Wyler. The latter part of §§6 and 8 draws from a seminar report of Keimel

and Mislove, and the latter part of §3 from one of Wyler.

The authors are also grateful for support received from NSF.

1. Basic concepts. We give here a brief review of the necessary basics

concerning continuous lattices for the uninitiated reader. On every set L with

a partial order < one may introduce a new relation < as follows: x «>> if

and only if for all up-directed sets D the relation v < sup D implies the

existence of ad E D with x < d. (In a complete lattice L, x « v iff whenever

v < sup A, there exists a finite subset F c A with x < sup F.) This relation,

sometimes called the relation of being "way below", is readily seen to be

transitive, and if L has a least element 0, then 0 <s x for all x. The relation

x < v always implies x < v; the converse fails in general.

Definition. A complete lattice L is said to be a continuous lattice if

x = sup{j £ L: s « x} for all x E L. The following facts are implicit in [7].

Proposition. For a lattice L the following conditions are equivalent:

(1) There is a compact Hausdorff topology on L such that L becomes a

topological semilattice with a basis of subsemilattices relative to the multiplica-

tion (x, v) -» xy = min{x,/}.

(2) L is a continuous lattice.

If these conditions are satisfied, then the topology is unique and is gener-

ated by the sets {s E L: x < s} and {s E L: x < s), x E L; it is called the

CL-topology.
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A function /: L -» L between continuous lattices is a continuous semilat-

tice morphism (relative to the CL-topologies) iff (i) inf f(X) = /(inf X) for all

X Ç L, (ii) whenever D C L is up-directed, then sup f(D) = /(sup D).   Q

Classically, a certain subcategory Z of CL is more familiar to the lattice

theoretician: It is that subcategory whose objects are characterized topologi-

cally by being O-dimensional in the CL-topology, and lattice theoretically by

being (complete) algebraic lattices; as a reminder we formulate for the

record:

Definition. An element k in a partially ordered set L is a compact element

iff k « k. The set of all compact elements of L is called K(L). A lattice L is

called algebraic iff L is complete and satisfies

x = sup{A: E L: k < x and k E K(L)}.   □

The relation between topological and lattice theoretical properties of alge-

braic lattices was amply investigated in [6].

Let CLop denote the category of all continuous lattices whose morphisms /:

L -» L' satisfy (i) sup/(/l) = /(sup A) for all A c L and (ii) x « x' implies

fix) « fix') for all x, x' E L. It is shown in [7] that this category is dual to

CL under the Galois connection of order-preserving mappings, i.e. a function

/: L —> M is a CL-morphism iff its right adjoint g: M-> L defined by
g(m) = inf{x:/(x) > m) is a CLop-morphism.

For a partially ordered set S, the lower set of a subset X is denoted by

IX = {s E S: s < x for some x E X}.

\X is defined dually. We denote j{x} and f(x} by J,x and fx respectively.

In almost all classical theorems representing complete distributive lattices

as rings of sets, one uses heavily the fact that one has an abundance of prime

elements. In a semilattice S an element p is prime if ab < p implies a < p or

b < p. Let PRIME S denote the set of prime elements. Then it has been

shown in [5] that if S is a distributive continuous lattice, PRIME S order

generates S, i.e., x = inf (PRIME 5" n fx) for all x E S \ {1}. Hence such

lattices have an abundance of primes.

2. The spectrum.

Definition. Let L be a complete lattice and let 2 c PRIME L \ {1}. If

Iclwe write As(A') = |In2 (and abbreviate /j2({x}) by /i2(x)). Simi-

larly we set Oz(X) = 2 \ /^(Z) = 2 \ \X. We call /i^*) the hull of * in 2.

The topology of 2 is generated by the sets a2(x) = 2 \ /¡2(x) for all x E L

and is called the hull-kernel topology. If 2 = PRIME L\{1} then 2

equipped with the hull-kernel topology is called the spectrum of L (or the

prime spectrum, if confusion should ever arise), and denoted Spec L. We

denote oSpec L simply by o.   ¡J

In general Spec L may be empty; however if L is a distributive continuous
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lattice, then PRIME L order generates L [5] and hence is substantial.

In this section we develop some of the basic properties of Spec L. Most of

the results are not new, but are developed in a way convenient for us to

utilize. The ultimate aim is to study the representation of L in the lattice of

open sets of Spec L. The reader may wish to bear in mind such analogs as the

representation of Boolean lattices as the compact open subsets of a Boolean

space or the Gelfand transform for commutative Banach algebras.

2.2. Lemma. Let L be a complete lattice, 2 c Spec L.

(a) D {A2(x): x E X) = A2(sup X)for all X c L.

(b) U ¡A2(x): x E X) = h¿X) = A2(inf X)for all finite X c L.
(c) Every hull-kernel closed set e>/2 is of the form /i2(x)/or some x E L.

(d) If L is a continuous lattice endowed with the CL-topology, then for all

compact subsets X c L, U (A2(x): x E X) = h?(X) = A2(inf X).

Proof, (a) is straightforward.

(b) Clearly U{A2(x): x E X) c /i2(inf X). Conversely if p E A2(inf X),

then inf X < p. Since p is prime and X is finite, x < p for some x E X.

Hence/? E (J {A2(x): x E *}.

(c) The family {A2(x): x E L) is closed under arbitrary meets by (a) and

under finite unions by (b). It is therefore the set of closed sets of a topology,

the hull-kernel topology.

(d) Again the containment U{A2(x): x E X) c A2(inf x) is immediate.

Conversely if X is compact and inf X < p E 2, then by "THE LEMMA" [2],

x < p for some x E X. Hence A2(inf X) c U (A2(x): * e -^}-D

Remarks. It follows from Lemma 2.2 that the collection {A2(x): x E L) is

closed with respect to finite unions and arbitrary intersections. Since /i2(0) =

2 and A2(l) =0, this collection forms all the closed sets for the hull-kernel

topology on X. Thus {a2(x): x E L) is the collection of open sets.

If A' is a topological space, let O(X) denote the lattice of open sets of X.

We consider now the representation of L in 0(2).

2.3. Proposition. Let Lbe a complete lattice, 2 c Spec L. Then the function

a2 from L to the lattice of open sets 0(2) which sends x to a2(x) is a surjective

lattice homomorphism preserving arbitrary sups. The following conditions are

equivalent:

(1) a2 is an isomorphism;

(2) a2 is infective;

(3) 2 is order generating (i.e. x = inf(f x n 2) for all x E L \ {1}).

These conditions imply

(4) L is distributive,

and if L is continuous and 2 = Spec L, then all four conditions are equivalent.
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Proof. The first assertion follows from Lemma 2.2 and the remarks

following it.

The equivalence of (1) and (2) is obvious since o2 is a surjective homomor-

phism. If 2 is order generating, then x = inf /i2(x) for all x E L. This implies

a2 is injective.

Conversely if a2 is injective, then 2 is order generating since always

ct2(x) = a2(inf(|x n 2)). It is well known that a complete lattice in which the

primes order generate is distributive and the converse is true in continuous

lattices [5, 3.1].   \J
This proposition has the important consequence that all distributive continu-

ous lattices can be represented in the form 0(X).

If a: L—> M and t: M-» L, then t is a left adjoint for o (and a is a right

adjoint for t) if for x E L, y E M we have a(x) < y iff x < t(v). If a:

L -* M is a function between complete lattices which preserves arbitrary

sups, then it has a unique left adjoint t: M -» L which preserves arbitrary inf s

and is defined by t( v) = sup{x E L: a(x) < v}. (See the early part of [7] for

an extended discussion of such matters.)

2.4. Proposition. Let o: L -» M be a lattice homomorphism preserving

arbitrary sups and 1. If r: M —> L is the left adjoint for o, then r (Spec M) c

Spec L and t restricted to Spec M is continuous for the hull-kernel topologies.

Proof. Let p E Spec M. Since r(p) «■ sup{x: a(x) < p) and ct(1) = 1,

t(p) * 1. Let st < t(p). Then st < r{p) iff o(st) < p iff o(s)o(t) < p iff

o(s) < p or o(t) < p iff s < t(p) or t < r(p). Hence r(p) is prime. That the

restriction of t is continuous follows from the fact t preserves arbitrary infs.

We omit the details.    □

Proposition 2.4 shows that Spec may be viewed as a contravariant functor

from the category of complete lattices and lattice homomorphisms preserving

arbitrary sups to the category of topological spaces and continuous functions.

Notation. For 2 c Spec L, let L2 denote the inf-complete subsemilattice

generated by 2 u {1}, i.e.,

L2= [MA: A c2}

(where inf 0=1). Note that Lj. is order generated by prime elements, and is

hence distributive.

2.5. Proposition. The function o^: L^> 0(2) has a left adjoint t2: 0(2) -»

L given by t2( U) = inf(2 \ U). The function t2 is an injection, preserves

arbitrary infs, and has image L2. The restriction of a2 and the corestriction of t2

to L2 are mutual inverses.

The following statements hold:

(i) T2(i/) E Spec LiffUE Spec 0(2) iff A = 2 \ ¿7 is an irreducible closed
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set (i.e. a nonempty closed set which is not the union of two proper closed

subsets).

(ii) A is an irreducible closed set iff A — h(x)for some x E Spec L n L2.

(iii) t2 preserves sups of up-directed sets iff L2 contains the sups of all its

up-directed subsets.

Proof. To see that t2 is indeed the left adjoint, observe that inf(2 \ U) > x

iff 2 \ U c fx iff a2(x) = 2 \ fx c U; thus t2(í/) > x iff U D a2(x), which
is precisely the condition that t2 be a left adjoint.

The next assertions will follow if it is shown that the restriction of a2 to L2

is surjective and that t2o2(x) = x for all x E L2. Let U E 0(2). Then

U = aÁy) f°r some y E L. Let x = inf 2 n Ty = inf h(y). Then x E L2

and h(x) = h(y); hence a2(x) = a2( v) = U. Also if x E L2, then x = inf 2

n fx = inf h(x). Thus r2a2(x) = inf(2 \ a2(x)) = inf h(x) = x.

Ad (i). If U E Spec 0(2), then t2(£/) E Spec L by 2.4. Conversely if

T2(t/) E Spec L, then t2(C/) E Spec L2 (since L2 = t2(0(2))) and hence

U £ Spec 0(2) since the corestriction of t2 from 0(2) to L2 is an isomor-

phism. Now U E Spec 0(2) iff U is prime and U ¥- 2 iff A = 2 \ U is

coprime in the lattice of closed sets and A =£ 0 if f A is a closed irreducible set

(since the lattice of closed sets is distributive).

Ad (ii). A is irreducible and closed if f U = 2 \ A E Spec 0(2) iff t2([/) E

Spec Lnij (by (i)). Let x = t2( U). Then x is the unique element in L2

such that A = A(x) (since a2 restricted to L2 is an isomorphism). The desired

result follows.

Ad (iii). Since t2 is an isomorphism from 0(2) to L2, t2 preserves the sups

of up-directed sets iff the sups of the images of these sets lie in L2 iff L2

contains the sups of all its up-directed subsets,   fj

To this point we have begun with a complete lattice L and derived a

topological space Spec L. We now wish to reverse the procedure. To each

topological space X we associate the complete lattice of open sets 0(X). If /:

X -» Y is a continuous function, then there is induced a lattice homomor-

phism 0(/): 0(7)-» 0{X) which preserves arbitrary joins and 1 defined by

sending U to f~\U). (Compare with the remarks following 2.4.)

2.6. Definition. A space X is sober if it is T0 and every closed irreducible

set has a dense point.

Note that the closure of a point is always an irreducible closed set.

Hausdorff spaces are sober, while any infinite set with the cofinite topology is

a nonsober Tx -space.

For every topological space X, the lattice of open sets O(X) is a complete

Brouwerian lattice (or Heyting algebra). We let Spec O(X) be the space of its

primes in the hull-kernel topology, the set {o(U): U £ 00^)}, where o(U) =

{P E Spec 0(X):  U szl P). (For further information see e.g. [4], but be
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careful in comparing notation.) The importance of sober spaces is that they

are precisely those spaces which can be recovered from their lattice of open

sets as the following proposition specifies (see part (v)).

2.7. Proposition. Let X be a topological space and define £: X —» Spec O(X)

by £(x) ■ X \ {x}~. Then £ has the following properties:

(i) For all U E 0(X) we have

(a) £(£/) = <x( I/)n im | and

(b) U = r\a(U)).
(ii) a: 0(X) —> 0(Spec O(X)) is a lattice isomorphism with inverse V->

r\v).
(iii) £ is continuous and open onto its image.

(iv) £ is injective iff £ is an embedding iff X is T0.

(v) £ is bijective iff £ is a homeomorphism iff X is sober.

(vi) Spec O(X) is sober.

Proof, (i) (a) An open set P £ Spec O(X) is in o(U) iff U Z P; hence

X \ {x}~  is in a(U) n im £ if f U £ X \ {x}_ iff x E U iff X \ {x}~ E

«£0-
(b) An element x E X is in £ "l(a(C/)) iff £(x) E a(U) iff U Z X \ {x}~

iff x E U.

(ii) is a consequence of (i)(b) and the fact that a is surjective.

(iii) follows from (i)(b) and (a), respectively.

(iv) and (v) are immediate from the definitions in view of (iii).

(vi) Since a: 0(X) -> 0(Spec 0^)) is a lattice isomorphism by (ii), it

follows that the induced £': Spec O(Ar)-^Spec(0(Spec 0(^))) is a homeo-

morphism. By (v) Spec O(X) is sober.   □

We abbreviate Spec 0{X) by X; then " is a functor from the category of

(T0 — ) spaces into the category of sober spaces. In fact it is a left adjoint to

the inclusion functor. Specifically:

2.8. Proposition. If S is a sober space then every continuous function f:

X —» S factors uniquely through £^: X —» X.

Proof. By the naturality of £ there is a continuous diagram

IÏ 1/
S     -*      S

îs

but since S is sober, £s is an isomorphism by 2.7(v). Thus the desired

factorization exists. If we had a relation gi-x = £5/, then upon applying the

functor  0 we would derive  0(g)0(£A-)= 0 (£<;/) = 0(f)0{t,x), whence
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0(g) = 0(f) since 0(£x) is an isomorphism by 2.7(ii). But then g = f since

O is faithful on sober spaces,   n

2.9. Definition. We call X the sobrification of X.   □

2.10. Proposition. Let L be a complete lattice,2 c Spec L. If 1 is order

generating, then a closed subset A of 'S, is irreducible iff A = hx(a) = |a n 2

/or iowe a E Spec L, i.e. A = {a}~ n 2/or some a £ Spec L. Hence Spec L

is sober if it is order generating.

Proof. Immediate from 2.5(ii).

3. Spectra of continuous lattices. In this section we consider specifically the

spectrum of a continuous lattice and subspaces thereof. Although several of

the results are set in a more general context, continuous lattices are really the

motivation.

Recall that in a complete lattice L a set U is Scott-open if fi/ = U and

sup D E U implies d E U for some d E D if D is an up-directed set

(equivalently sup A E U implies sup F £ U for some finite F c A). If L is a

continuous lattice and U = fU c L, then it follows that U is open in the

Scott topology iff U is open in the CL-topology.

Since many of the spaces dealt with in this paper are not Hausdorff, we

adopt the Bourbaki convention that a space is quasicompact if every open

cover has a finite subcover and compact if it is both quasicompact and

Hausdorff. For a continuous lattice the Scott topology is T0 and quasicom-

pact and the CL-topology is compact. In the remainder of the paper a compact

subset of a lattice L means compact in the CL-topology.

Let L denote a complete lattice.

3.1. Lemma. For 2 c Spec L and a filter F of L the following are equivalent:

(1) For all x £ L, 2 n fx c F implies x E F;

(2) For all x E L, x (£ F implies there exists p £ 2 \ F with x < p;

(3) 1(2 \ F) = L \ F.

Proof. Straightforward.   □

3.2. Definition. A filter F c L is called 2-compatible if the equivalent

conditions of Lemma 3.1 are satisfied by F, e.g., J,(2 \ F) = L\ F.   □

3.3. Proposition. (A) If 2 = Spec L and L is distributive, then every Scott

open filter is 2-compatible.

(B) If Irr L \ {1} c 2, then every Scott open principal filter is 2-compatible

(where Irr L denotes the completely irreducible elements).

Proof. Let F be an open filter, x £ F. Let M be a maximal chain

containing x in L \ F. Then p = sup M E L\ F since F is Scott open. It

follows easily that/» is meet-irreducible and hence prime if L is distributive. If
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also F is principal, then/) is completely irreducible. (See Lemma 1.4 of [5].)

3.4. Lemma. Let L be a complete lattice, 2 c Spec L. Let Q c 2. The

following statements are equivalent:

(1) Q is quasicompact.

(2) XQ is closed in the Scott topology.

(3) lô H 2 is quasicompact.

(4) There exists a 2-compatible Scott-open filter F such that a^F) = 2 \ F

= ÏQ n 2.

Proof. (1) <=> (2). A family {a2(a): a £ A} of open sets in 2 is a cover of Q

iff ß C U {<r2(a): a E A) = a2(sup^) iff Q \ h(sup A) = 0 iff sup,4 <2

IQ. Thus Q has the Heine-Borel property iff for each set A c L with

sup A & IQ, there is a finite subset F c A with sup F $ Q. This means

precisely that L \ IQ is open in the Scott topology.

(1)<=>(3). The set (a2(a): a E ^4} is an open cover of 0. iff it is an open

cover of [Q n 2. The equivalence follows.

(2) => (4). Let F = L \ [Q. Then F is Scott-open. Since F = fl {L \ ¿/>:

/? E Q } and each L \ j/> is a filter as p is prime, we have F is a filter. Now

o2(F) = 2 \ F = 2 \ (L \ IQ) = 2 n IQ. Finally if x g F, then x £ 40.
Hence there exists/? E Q c 2 such that x < /?. Since Q c2niô = 2\F,

we have/? £ F Thus Fis 2-compatible.

(4) => (2). By hypothesis L \ F is Scott-closed. To complete the proof we

show IQ = L\ F. Since Q C IQ D 2 c L\ F and F is a filter, we conclude

[Q c L\ F. Let x E L\ F. Since F is 2-compatible, there existsp £ 2 \ F

such that x < /?. But 2 \ F = Ig n 2. Thus/» E ¿0. and nence * ^ ¿C?.   ^

3.5. Definition. A topological space X is called /oca//y quasicompact if

every point has arbitrarily small quasicompact neighborhoods.   □

Note that in the absence of separation the existence of one quasicompact

neighborhood is not sufficient to guarantee local quasicompactness.

3.6. Lemma. Let X be a topological space.

(a) If U, V £ O(X) and Q is quasicompact with U C Q C V, then U « V

in O(X).

(b) If X is locally quasicompact, then O(X) is a continuous lattice such that

for U, V E 0(X) the following are equivalent;

(1) t/<< V.

(2) There exists a quasicompact Q C X with U c Q C V.

Proof, (a) Note that in 0(X) sups are unions. If % is a collection of open

sets and V c U %, then U c Q C Ux u • • • U Un since Q is quasicom-

pact for some i/„ . . ., U„ E Gll. Thus U « V.

(b) Let V £ O(X), x £ V. There exists a quasicompact neighborhood Q of
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x such that Q c V. Then x E int(g) c V and int(ß) « K by part (a). Thus

V = U {U E 0(X): U « V). Hence 0(X) is a continuous lattice.

Again (2) implies (1) by part (a). Conversely assume t/« V. For each

x E V, pick Qx quasicompact such that Qx c V. Then (J {int Qx: x E V)

covers V; hence there exist Qx, . . . , Qn such that U C int Qx u • • • (J

int Q„. Thus if Q = Qx u • • • U Q„, then Q is a quasicompact set such that

U CQ CV.   D

3.7. Proposition. Let L be a complete lattice, a, b E L, and 2 c Spec L.

The following statements are equivalent:

(1) There is a quasicompact set Q in 2 with a2(a) C Q C o2(6);

(2) There is a 2-compatible open filter F in L with b E F, F n 2 c hx(a).

Thus 2 is locally quasicompact iff for p E 2 and x < p, there exists a

2-compatible open filter F such that x £ F and inf(F n 2) < p.

Proof. (1) => (2). As in the proof of 3.4, F = L \ IQ is an open 2-compati-

ble filter. The relations b E F and F n 2 c h^(a) are straightforward.

(2) => (1). By 3.4 Q = 2 \ F is quasicompact. Also <r2(a) = 2 \ A2(û) c 2 \

F=ßandß = 2\F= a^(F) C a2(t¿>) = 02(6).

Now assume 2 is locally quasicompact,/» E 2 and x £ p. Then/» £ a2(x).

Thus there exists v £ L and a quasicompact set Q c 2 such that p E ox(y)

C Q C o-2(x). By what we have just shown there exists a 2-compatible open

filter F in L with x £ F, hx(y) D F n 2. Hence inf(F n 2) > /. Since

p E Oz(y), inf(F n 2) i p.

Conversely let/» £ a2(x). Then x ^ /»; hence there exists a 2-compatible

open filter F such that x £ F and v = inf(F n 2) i£ p. Now F n 2 c A2( v),

so by the first part of the proposition we have the existence of a quasicompact

set Q such that/» £ o2( v) C ß C <t2(x).   □

We turn our attention now to the case that L2, the inf-complete semilattice

generated by 2, is actually a continuous lattice. Note that the hull-kernel

topologies on 2 defined by L and L2 resp. agree since A2(x) = A2(inf(2 n

|x)). Hence we may pass back and forth between them.

3.8. Theorem. Let L be a complete lattice, 2 c Spec L. The following

statements are equivalent:

(1) L2 « a continuous lattice;

(2) 0(2) is a continuous lattice;

(3) [3'] Spec L2 = Spec L n L2 is a locally quasicompact [sober] space;

(4) 0(Spec L2) is a continuous lattice.

Furthermore 2 is locally quasicompact iff the above equivalent conditions hold

and whenever x «.y in L2, then there exists in L2 a 2-compatible open filter F

in L2 with v E F c |x.
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Proof. The equivalence of (1) and (2) follows from the fact that a2

restricted to L2 is an isomorphism by 2.5.

In the next few paragraphs we work entirely in the lattice L2.

The implication (3)<=>(4) and the fact that if 2 is locally quasicompact,

then (2) follows are both consequences of 3.6(b).

Let us assume 2 is locally quasicompact and show one implication in the

last paragraph. Let x < v in L2. Let U = {w: x < w) and let K = L2 \ U.

Since U is open in the CL-topology, K is compact. For each t £ K, y ^ /

(otherwise / E U). Since 2 order generates L2, there exists /> E 2 such that

t < p but v ^ /». By 3.7 there exists a 2-compatible open filter Ft such that

y £ F, and inf(F, n 2) fi /». But again since 2 order generates L2, inf(F, n

2) = inf Ft = zt. Since t 4 p, z, < t. Thus for each t E K, L2 \ \zt is a

CL-open set around /. Since K is compact, there exists zx, . . . ,zn such that

PI •=, ]z¡ c U. Then if F = f~| ?-1 Fz., F is a 2-compatible open filter and

V E F c |x.

Let us assume L2 is a continuous lattice and prove the converse. Let/» £ 2

and x £ p. Since L2 is a continuous lattice there exists w < x such that

w 5É /». By hypothesis there exists a 2-compatible open filter F such that

x £ F c îw. Hence w < inf(F n 2) and so inf(F n 2) & p. Again by 3.7

applied to L2, 2 is locally quasicompact.

We now complete the remaining implications.

(1) => (3'). Let /» £ Spec L2. Since o2 restricted to L2 is an isomorphism,

a2(/») £ Spec 0(2). Thus t2o2(/») £ Spec L by 2.5(i). But again by 2.5 t2 is

the inverse for the restriction of a2 to L2; thus rxox(p) — p. Hence Spec L2

C Spec L n L2. The other inclusion is immediate.

Let x « y in L2. By basic properties of continuous lattices there exists an

open filter F with v £ F c |x. By 3.3(A) F is compatible for Spec L2 (note

that L2 is distributive since it is order generated by primes). Thus it follows

from the last paragraph of the theorem that Spec L2 is locally quasicompact.

Since 2 order generates L2 by 2.3 L2 —» 0 (Spec L2) is an isomorphism.

Hence Spec(L2)->Spec(0(Spec L2)) is a homeomorphism. Since by 2.7(vi)

the latter is a sober space, so is Spec(L2).

(3') => (3). Immediate.

(4) => (1). Since 2 order generates L2, so does Spec L2. Hence by 2.3

L2 -» 0 (Spec L2) is an isomorphism and the result follows.   □

Finally we specialize to the case that L is a continuous lattice and L2 is a

CL-subobject of L, i.e. a compact subsemilattice.

3.9. Proposition. Let L be a continuous lattice, 2 c Spec L. The following

are equivalent:

(1) L2 is compact, i.e., a CL-subobject;

(2) L2 is closed under sups of up-directed sets;
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(3) a2: L -> 0(2) is a CLop-morphism.

(4) t2: 0(2) -» L is a CL-morphism.

Proof. The results of §3 of [5] imply the equivalence of (1) and (2) (see

Proposition 3.8 there for more details about this situation).

The equivalence of (3) and (4) is known from [7].

The equivalence of (2) and (4) follows from 2.5(iii).   □

We consider now conditions under which 2 is locally quasicompact for this

case. The equivalence of (1) and (3) in the following result was first estab-

lished by O. Wyler (unpublished seminar report).

3.10. Proposition. Let L be a continuous lattice, 2 c Spec L. The following

conditions are equivalent:

(1) 2 is locally quasicompact, and ax: L^> 0(2) is a CLop-map.

(2) Whenever x <S.y in L, there exists an open filter F with y £ F c fx such

that 2 \ F is quasicompact. If2 = Spec L, then (1) and (2) are equivalent to:

(3) For every open filter F of L the set (Spec L)\ F is quasicompact.

Proof. (1) =» (2). Let x <y in L. Since L is continuous, there exists z with

x < z <Ky. Since a2 is a CLop-mapping, ox(z) < a2(v) in 0(2). Since 2 is

locally quasicompact, by 3.6(b) there exists a quasicompact set Q such that

o"s(z) CÖC o2( v). By 3.7 there exists a 2-compatible open filter F, in L

with v E F, and (F, n 2) c \z. By basic properties of continuous lattices

there exists an open filter F2 such that z £ F2 C |x. Then if F = F, n F2, F

is an open filter, F c |x, y E F, and F n 2 = F, n 2 (since F, n 2 c \z

and \z c F2). Since F, is 2-compatible and open, by 3.4(B) 2 \ F = 2 \ F, is

quasicompact in 2.

(2) => (1). Let /» £ a2(a). Then a Ü p. Hence there exists b < a such that

b & p. By hypothesis there exists an open filter F such that a £ F c fo and

2 \ F is quasicompact. Thus we have /» E a2(Z>) c a2(F) = 2 \ F c <*2(fl).

So 2 is locally quasicompact.

Let x «: v and again pick an open filter F such that y £ F c |x and 2 \ F

is quasicompact. Then a2(x) c ö2(F) = 2 \ F c o"2( v). By 3.6(a) we have

o-2(x) < a2( v). Thus a2 is a CLop-morphism.

(3) => (2). This follows from the basic property of continuous lattices that

x < y implies the existence of an open filter F with v E F c |x.

(1) => (3). Let F be any open filter in L. Then L2 n F is an open filter in

L2. By 3.9 L2 is a CL-subobject of L, and L2 is distributive since it is

generated by primes. Since 2 = Spec L, by 3.3(A) we have L2 n F is 2-com-

patible in L2. Applying 3.4 to L2 we have 2 \ F is quasicompact.   □

We close this section by considering two cases in which L2 is a CL-subob-

ject of L (and hence allow the application of 3.8, 3.9, and 3.10).
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3.11. Proposition. Let L be a continuous lattice, 2 c Spec L. If 2 u {1} «

compact in L, then L2 is a compact CL-subobject of L, and Spec L2 = 2.

Proof. That L2 is a compact CL-subobject of L follows from [5, 2.10].

Now since 2 u {1} is closed in L2 and order generates it, we have Spec L2 c

PRIME L2 c 2 u {1} [5, 2.9].   □
We consider the above case in more detail in §6.

3.12. Theorem. Let L be a distributive continuous lattice. Then Spec L is a

locally quasicompact sober space and o^: L-* 0(Spec L) is an isomorphism.

Proof. By 2.7 of [5] Spec L order generates L (since the distributivity of L

implies that irreducible elements are prime). Hence L2 = L. The theorem

now follows from 3.8 and 2.3.   □

This theorem allows us to represent every distributive continuous lattice in

the form O(X) for some locally quasicompact sober space X. This generalizes

the representation of Gierz and Keimel [2].

We refer the reader to Example 2.25 of [5] for a situation where L2 need

not be a CL-subobject even if 2 = Spec L.

4. Core-compact spaces. In this section we investigate a converse problem to

that studied in §3: Starting from a space X, how do we recognize that 0(X) is

a continuous lattice?

4.1. Definition. A space X is said to be core-compact if for every open set

U,pE U, there exists an open set V with p E V c U such that every open

cover of U has finitely many members which cover V.   □

4.2. Proposition. Let X be a topological space. The following statements are

equivalent.

(1) X is core-compact;

(2) For every open set U,p E U, there exists an open set V with p £ V C U

such that every filter which has V as a member has a cluster point in U;

(3) 0(X), the lattice of open sets, is a continuous lattice.

(4) For every open set U, p £ U, there exists a Scott-open set H c 0(X)

such that U E H and D ysH V is a neighborhood of p in X.

Proof. (1)<=>(2). It is straightforward to show that for V c U, every open

cover of U has finitely many elements which cover V if and only if every

filter which has V as a member has a cluster point in U.

(1) <=> (3). For open sets V and U with V <z U, every open cover of U has

finitely many elements which cover V if and only if K« U in the lattice

O(X). This equivalence now follows from the definition of a continuous

lattice.

(3) =*• (4). Let U be an open set in X, p E U. Since 0(X) is continuous,

there exists V £ O(X) such that /» E V, V < U. Then H = [W £ O(X):
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K« W) is a Scott-open set in O(X) containing U. Then we have/» E F c

n weH w.
(4) => (1). Let U be an open set in X, p E U. Then there exists a Scott-open

set H c O(X) such that D w<eh W is a neighborhood of/» and t/ E H. Let

F E 0(A) such that/» E F c D weH W. Let % be an open cover of t/.

Since ÎH = H, U ^l EH. Again since Tí is Scott-open, there exists a finite

f C % such that U f E 77. Thus FcUl   D
Spaces satisfying the equivalent conditions of 4.2 have been investigated in

the literature. They are called semilocally bounded by Isbell [9], quasi-locally

compact by A. S. Ward [11], and spaces satisfying condition (C) by Day and

Kelly [1] (where their condition (C) is precisely equivalence (4) in 4.2).

Let L be a continuous lattice endowed with the Scott topology. Isbell

showed that the set of continuous functions from X to L, Lx, is a continuous

lattice with respect to the pointwise order iff X is core-compact [8]. Day and

Kelly showed that X satisfies (4) of 4.2 iff / X 1^: Y X X-* Z X X is a

quotient mapping for all quotient maps /: Y -> Z. Their results give im-

portant additional equivalences in order that a space be core-compact.

We point out that condition (2) of Theorem 3.8 of the preceding section is

by 4.2 the condition that 2 be core-compact.

4.3. Definition. If j: X —»• Y is an embedding of topological spaces, then

we call/ strict if U-*j~\U): 0(7)-» 0(X) is an isomorphism of lattices.

Observe that a strict embedding is always dense.   □

Note that for F0-spaces X, the sobrification mapping £: X -» X is a strict

embedding by 2.7.

4.4. Lemma. Let L be a distributive continuous lattice, and X c Spec L. Then

the following statements are equivalent:

(1) The inclusion X -» Spec L is a strict embedding (relative to the hull-

kernel topology on X);

(2) X is order generating in L.

Remark. In [5, 2.2] one finds alternative equivalent conditions for condi-

tion (2).

Proof. Condition (1) means that for all s, t £ L, the relation o(s) (~\ X =

o(t) n X implies s = t. This is equivalent to

(1') For all s, t E L, the relation |î n X = It n X implies s = t.

Since |s n X = p n X is equivalent to îs n (X u {I}) = p n (X u

{1}) we note that [5, 2.2] shows that (1') and (2) are equivalent.   □

4.5. Theorem. For a T0-space X the following statements are equivalent:

(1) X is core-compact (i.e. O(X) is a continuous lattice);

(2) [resp. (2')] X allows a strict embedding into a locally quasicompact [sober]

space;
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(3) There is a continuous distributive lattice L such that X is homeomorphic to

a subspace Y of Spec Lfor which Y is order generating in L.

(4) The soberfication X of X is locally quasicompact.

Proof. (3)=>(2'). By 3.12 Spec L is a locally quasicompact sober space.

Thus (3) implies (2') by Lemma 4.4.

(2') => (2) is trivial.
(2) => (1) follows from 3.6(b) and Definition 4.3.

(1) =* (4) follows from 3.12 since X = Spec (0(X)).

(4) => (3). Let L = 0(X). Then £: X -► Spec L = X is a strict embedding

by 2.7(h) and Definition 4.3. Thus £(X) is order-generating by Lemma 4.4.

Also since 0(X) and 0(Spec L) are isomorphic, 0(X) is continuous by 3.6.

D

4.6. Corollary. Let X be a sober space. Then the following conditions are

equivalent:

(1) 0(X) is a continuous lattice.

(2) X is locally quasicompact. Moreover, if these conditions are satisfied, then

U « V in 0(X) iff there is a quasicompact Q c X with U c Q C V.

Proof. The equivalence of (1) and (2) follows from the equivalence of (1)

and (4) in 4.5. The last statement is a result of 3.6.   □

4.7. Corollary [1], [9]. For a Hausdorff space X the lattice 0(X) is

continuous iff X is locally compact.   □

Theorem 4.5 characterizes F0-spaces X for which 0(X) is continuous

provided one understands the concept of strict dense subspaces of locally

quasicompact sober spaces or, alternatively, order generating subsets of

PRIME L for distributive continuous lattices L. As far as sober spaces are

concerned, the core-compact ones are in bijective correspondence with dis-

tributive continuous lattices by 3.12 and 4.6, and are precisely the locally

quasicompact ones. In §7 we construct an example of a core-compact space X

which is not locally quasicompact.

5. The spectra of algebraic lattices. In this section we apply the develop-

ments of the preceding sections to algebraic lattices, i.e., objects of Z. The

first theorem is an analog of Theorem 3.8.

5.1. Theorem. Let L be a complete lattice, 2 c Spec L. The following

statements are equivalent:

(1) L2 w an algebraic lattice;

(2) 2 is a T0-space with a basis of quasicompact open sets;

(3) Spec L2 is a sober space with a basis of quasicompact open sets.
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Proof. (1)=>(2). Let/» E o2(x) c 2. Since L2 is algebraic, there exists a

compact element k £ L2 such that k < x but k < /». Since & is a compact

element, fk is a Scott-open principal filter. Since 2 order generates L2,

(Irr Lx) \ {1} c 2 [5, 2.5]. Thus by 3.3(B) í¿ is 2-compatible in L2. Hence by

3.4 a2(|/t) = a2(/V) is quasicompact. Also we have/» £ ox(k) c o2(x).

(2) => (1). Note that a quasicompact open set is a compact element of the

lattice 0(2). Since the hypothesis every open set is a union of quasicompact

open sets, 0(2) is an algebraic lattice. By 2.5 L2 is isomorphic to 0(2).

(1) =» (3). Note that L2 is order generated by both 2 and Spec L2 (since

Spec L2 d 2). Taking 2 = Spec L2, Spec L2 has a basis of quasicompact

open sets by the equivalence of (1) and (2). By Theorem 3.8 Spec L2 is sober.

(3) => (1) is a special case of (2) => (1) where 2 = Spec L2.   □

Note that in contrast to the more general case of L2 being a continuous

lattice, we have always that 2 is locally quasicompact if L2 is an algebraic

lattice.

5.2. Corollary. Let L be a distributive algebraic lattice. Then every strictly

embedded subspace 2 c Spec L is a T0-space with a basis of quasicompact open

sets, and a2: L —> 0(2) is an isomorphism.

We turn now to the characterization of those spaces X for which 0 (X) is

an algebraic lattice (cf. 4.5).

5.3. Theorem. For a T0-space X the following statements are equivalent:

(1) 0(X) is an algebraic lattice.

(2) X has a basis of quasicompact open sets.

(3) X admits a strict embedding into a sober space with a basis of quasicom-

pact open sets.

(4) There is a distributive algebraic lattice L such that X is homeomorphic to

a subspace Y of Spec L with Irr L \ {1} c Y.

(5) The sobrification X of X has a basis of quasicompact open sets.

Proof. By 2.7 £: X -> Spec 0(X) is a strict embedding and £(X) is

homeomorphic to X via £. Let 2 = £(Ar). By Lemma 4.4 £LY) order generates

0(X). Thus 0(X)X = O(X). The equivalence of (1), (2), and (5) then follows
from Theorem 5.1.

(5) => (3). Immediate.

(3) =» (1). Suppose /: X -» Y is a strict embedding where Y has a basis of

quasicompact open sets. By the equivalence of (1) and (2), O(Y) is an

algebraic lattice. Since O(X) is isomorphic to 0( Y), O(X) is algebraic.

(4) =» (2). Since Irr L \ {1} c Y, Y order generates L [5, 2.5]. By Lemma

4.4 Y is strictly embedded in Spec L. Thus Y has a basis of quasicompact
open sets by 5.2.
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(1) => (4). Let L = 0(X) and consider £: X -+ Spec 0(X). As above £:

X -» £(A") is a homeomorphism and £ is a strict embedding. By Lemma 4.4

£(X) is order generating and hence (Irr L) \ {1} c £(*) by [5, 2.5].   D

6. The patch topology. The patch topology is extensively used in the spectral

theory of commutative rings (see e.g. [3]). Here we study it in the context of

continuous lattices.

6.1. Definition. Let A'be a topological space. For x,y £ X we write x < v

if v E (x} "*. This is a transitive relation and a partial order if X is T0. The set

l Y (with respect to this order) is called the saturation of Y for Y c X, and Y

is saturated if Y = IY.   □

Note. If L is a complete lattice, then the partial order induced by that of L

on 2 c Spec L agrees with the one given on 2 by 6.1.

The following observations are straightforward.

6.2. Remark. All open sets of a space are saturated. The saturation of a set

Y is the intersection of all open sets containing Y. The set Y is saturated iff Y

is an intersection of open sets. The saturation of a quasicompact set is

quasicompact. A space is locally quasicompact iff every point has arbitrarily

small saturated quasicompact neighborhoods.

6.3. Proposition. Let L be a complete lattice, 2 c Spec L. Then Q c 2 is

saturated and quasicompact iff there exists a 2-compatible Scott-open filter F in

L such that Q = 2 \ F The function a2: (©f, n )->(2.6S, u ) from the

n-semilattice of 2-compatible open filters of L into the \j-semilattice of

quasicompact saturated sets in 2 defined by ox(F) = 2 \ F is an isomorphism.

In particular if L is a distributive lattice, and 2 = Spec L, then the isomorphism

a2 has domain all open filters of L.

Proof. Since by earlier remarks the partial order on 2 induced by the

hull-kernel topology agrees with that induced by L, Q is saturated means

IQ n 2 = Q. The first assertion then follows from Lemma 3.4.

The first assertion implies that the image of a2 is exactly the set of all

quasicompact saturated sets. Since o2 clearly reverses order, it remains to

verify that a2 is injective. Suppose F and G are 2-compatible open filters,

F =£ G. Then there exists x E F \ G (or vice-versa). Since G is 2-compatible,

there exists /» £ 2 \ G such that x < /». Thus /» E 2 \ G = ox(G), but /» £ 2

\ F = Oz(F).

The final assertion follows from 3.3.   □

We turn now to a purely topological concept.

6.4. Definition. Let A" be a topological space and 1 an element with 1 £ X.

The patch topology on Y — X u {1} is the topology generated by O(X) and

the collection of all Y \ Q where Q is a quasicompact saturated subset of X.

a
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6.5. Remark. If X is T0 and locally quasicompact, then Y is Hausdorff. (It

is easy to separate /> and 1. If /> =£ q, there exists U, an open set, such that

p £ U, q £ U or vice-versa. Pick a quasicompact neighborhood Q of p such

that Q c U. Then the saturation F of Q is quasicompact and contained in U.

Then int ß and Y \ P separate /» and q.)

6.6. Proposition. Let L be a continuous lattice, 2 c Spec L. Then the patch

topology on 2 u {1} is coarser than or equal to the topology induced by the

CL-topology. If 2 is locally quasicompact and L2 is a compact CL-subobject,

the two topologies agree (e.g. they agree if L is distributive and 2 = Spec L).

Proof. Suppose U E 0(2). Then U = a2(x) for some x E L. Then U = 2

D (L \ |x), an open set in the relative CL-topology. Let V be the complement

in 2 u {1} of a quasicompact saturated set ß c 2. By 3.4 we have Q = IQ

D Spec L where [Q is Scott-closed and hence CL-closed (see e.g. [10,

Theorem 13]). Thus ß is closed in the relative CL-topology. Hence V is open

in the relative CL-topology. Thus the first assertion.

Now suppose 2 is locally quasicompact. By the proposition of §1 a

subbasis for the open sets of L in the CL-topology is given by all sets of the

form {s E L: x < s) and {s £ L: x « s), x E L. But {s E L: x jÉ s) n (2

U {1}) = a2(x) is open in the hull-kernel, and hence patch topology. If

p E (2 u {1}) D {s E L: x « s}, then x </». By 3.4 and 3.10 there exists an

open filter F such that/» £ F c |x and 2 \ F is quasicompact. Since F = f F,

2 \ F is saturated. Thus F n (2 u {1}) is open in the patch topology and a

subset of [s E L: x < s) (since it is known that [s £ L: x < s) = int(|x)).

D

6.7. Theorem. Let L be a distributive continuous lattice and X = Spec L.

(Note that X is a locally quasicompact sober space and that every such space

occurs precisely in this fashion.) Then the following statements are equivalent:

((0)) (Keimel-Mislove) For all x, a, b E L, the relations x « a and x < b

imply x « ab.

(1) (Keimel-Mislove) PRIME L is closed in L.

(2) The collection of saturated quasicompact sets in X is closed under (finite)

intersections.

(3) The patch topology on X u {1} is compact.

If further L £ Z, i.e., L is an algebraic lattice, then (l)-(3) are equivalent to

(4) (Keimel-Mislove) L is an arithmetic lattice (i.e. K(L) is a sublattice of L).

Proof. ((0)) => (1). Suppose q £ PRIME L. Then there exist a, b E L such

that a £ q, b £ q, but ab < q. Pick c « a and d < b such that c A q and

d jé q. Then cd<.a and cd < b imply by hypothesis that cd <sc a.b. Let

U = [x: cd « x, c jÉ x, d £ x). By the proposition of §1, U is an open set.
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Since cd « ab < q, we have q E U. But U n PRIME L = 0 since cd < y

for ail y E U, but c JE .y and d £ y. Thus the complement of PRIME L is

open.

(1) => (2). Let ß be a saturated subset of Spec L. Then since PRIME L is

closed in the compact Hausdorff space L, Q closed in L implies ß is

compact. Thus IQ = QL is compact and hence closed. By 3.4 ß is quasicom-

pact. Conversely if ß is quasicompact by 3.4 jß is closed. Hence ß = ¿ß n

PRIME L is closed. Thus ß is quasicompact if and only if ß is closed in L.

Since any collection of closed saturated sets has closed saturated intersection,

the implication follows.

(2) => ((0)). Let x < a, b. Then o(x) « o(a), a(b) by 3.12. By Proposition

3.6 there are quasicompact saturated subsets P, Q in X with o(x) c P C a(a)

and a(x) C ß C cr(o). By (2) P n ß is quasicompact, and a(x) c P D ß C

o(a) n o(b) - a(aZ»). Thus x « ao by 3.6 and 3.12.

(1) <=> (3). Proposition 6.6.

((0))<=>(4). Let L be an algebraic lattice. Suppose L is arithmetic and

x < a, b. Then there exist compact elements k, I such that x < k < a and

x < / < b. Then x < kl < a6. Since W is compact, we have x < kl < &/ <

af>. Thus x < aè. Conversely if L satisfies ((0)), let a and b be compact

elements of L. Then ab < a •€. a and aZ» < ¿> « b. Hence by ((0)) ab < ab.

Thus ítT» is compact, and hence K(L) is a lattice.   □

./Vote. The equivalence of ((0)) and (4) and the implications ((0)) => (1) => (2)

hold without the hypothesis of distributivity (with the same proofs).

The equivalence of ((0)), (1), and (4) appeared in a Seminar on Continuous

Lattices (SCS) memo dated 9-30-76 by Keimel and Mislove. The equivalence

of (1) and (4) appeared in [12] and in another SCS memo by Hofmann and

Wyler.

6.8. Corollary. Let L be a continuous lattice. If L satisfies condition ((0))

(or if L is an arithmetic lattice), then Spec L u {1} is closed in L.

Proof. As remarked earlier the equivalence of ((0)) and (4) and the

implication ((0)) => (1) hold in 6.7 even if L is not distributive.   □

Hence either of the conditions of the corollary imply the case discussed in

the latter part of §3 for 2 = Spec L.

6.9. Proposition (Gierz-Keimel [2]). Let L be a distributive continuous

lattice in which the equivalent conditions of Theorem 6.7 are satisfied. Then L is

isomorphic to the lattice of open decreasing sets in the patch topology of Spec L.

The idea here is that o2: L—> 0(Spec L) is an isomorphism onto the proper

decreasing subsets of Spec L. The only work is showing o2 is onto. See [2] for

the details.
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We remark that the open decreasing sets of Spec L are anti-isomorphic to

the closed nonempty increasing sets in the compact partially ordered space

Spec L u {1}. Conversely in a compact partially ordered space with 1, the

closed increasing sets form a continuous lattice with respect to union. Hence

distributive continuous lattices L in which PRIME L is closed may be

characterized as lattices isomorphic to the set of closed increasing sets in a

compact partially ordered space with 1.

Höchster [3] calls a space spectral if it is quasicompact and sober and if the

quasicompact open subsets are closed under finite intersection and form a

basis. He proves that a space is spectral if and only if it is homeomorphic to

Spec A, the space of prime ideals, for a commutative ring A with 1. It follows

easily from 6.7 that a space is spectral if and only if it is homeomorphic to

Spec L for an arithmetic lattice L in which 1 is isolated in the set of primes.

Indeed suppose A is a commutative ring with 1. For each ideal 7, let 7* be

the intersection of all prime ideals containing 7. Define a lattice congruence

on the lattice of all ideals of A by 7 ~ J if 7* = J*. If L is the quotient

lattice, then the prime elements of L are precisely the equivalence classes of

the prime ideals in the lattice of ideals, and under this identification Spec A

and Spec L are homeomorphic.

7. An example. In §4 we investigated core-compact spaces which can be

defined as spaces X for which 0(X) is a continuous lattice. We saw that the

following conditions were equivalent: (1) X is core compact, (2) X is locally

quasicompact, and (3) X may be identified with an order generating subset of

Spec L for some distributive continuous lattice L. The following question

remained open (as far as we know first posed by A. S. Ward [11]): Is every

core-compact space necessarily locally quasicompact?

Equivalence (3) suggests looking for order generating subsets of Spec L for

a counterexample. However the results of §5 imply that our search will be

vain among algebraic lattices; there all order generating sets have a basis of

open quasicompact neighborhoods.

The answer to the question is, however, no. There is in fact a second

countable core-compact space in which every quasicompact subspace has

empty interior. The lattice L consists of all lower semicontinuous functions

from the unit interval 7 into itself. A function /: 7 -» 7 is lower semicontinu-

ous iff/is continuous when the codomain is endowed with the Scott topology

(open sets are of the form ]x, 1]). Hence since 7 with its usual topology is

locally compact and hence core-compact, it follows from Isbell's result [8]

that the set of lower semicontinuous functions is a continuous lattice.

Let now L = LC(7, 7), 7 = [0, 1]. LC denotes the classically lower semi-

continuous functions. For any (a, b) £ 7 X [0, 1[ let/»(aé) E L be the lower

semicontinuous function given by p(aJ})(a) = b and = 1 otherwise. We note



DISTRIBUTIVE CONTINUOUS LATTICES 305

that L is distributive and that Spec L = {/?(a6): (a, b) E 7 X [0, 1[). If we

equip Y = [0, 1] X [0, 1[ with the topology consisting of all {(x, y)\y </(x)},

/ £ LC(7, 7), then (a, b)\->p{ab): Y -» Spec L is a homeomorphism. Notice

that Y is second countable.

We define X C Y as follows. The axiom of choice enables us to fix a subset

A Ç I with the following properties: (1) ^1 is dense in 7. (2) A n U is not

Borel for any open U ¥= 0 in 7. (We could have gotten A nowhere Lebesgue

measurable in 7.) We say (x, v) E X iff v E [0, 1[ rational for x £ A and

irrational in ]0, 1[ for x E 7 \ A. If A^ is the image of A in Spec L, then

X' u {1} clearly order generates all of Spec L and thus all of L. Hence X is

core-compact.

In order to show that each quasicompact subset of X has empty interior it

suffices to show that every saturated quasicompact subset has empty interior.

Thus let ß be a saturated quasicompact subset of X. Saturation means that

(a, b)E Q implies {a} X [0, b] G Q.

7.1. Lemma. q(x) = max{y\(x, y) £ Q) exists for all x £ pr, Q.

Proof. The collection ß n ({x} X [s - l/n, s]), n = 1, 2, ... , where s =

sup{ v|(x, v) E Q) is a filterbasis of closed subsets of the quasicompact space

ß and thus has a nonempty intersection in Q. But the only point in this

intersection is (x, s).   □

Define q: I -* I by q(x) = 0 for x £ pr, Q, and as in Lemma 7.1, other-

wise.

7.2. Lemma, q: 7-» 7 is upper semicontinuous.

Proof. Let x = lim x„ in 7 and suppose that (x, v) is a limit point of

(x„, q(x„)) in the standard topology of 7 X R. By the definition of the

topology on Y, the relation (x, v) = lim(x„, q(x„)) in the standard topology

implies that for any cluster point (x, z) (in Y) of the sequence (x„, q(xn)) we

have v < z. By the quasicompactness of ß u (7 X {0}), at least one of these

cluster points is in ß u (7 X {0}). Thus v < q(x) by the definition of q.   □

7.3. Lemma. If b: I -» 7 is a Borel function, then b~\Q +) is a Borel subset

of I, where Q + denotes the set of positive rationals.

Proof. Clear, since ß + is Borel.   □

Now q is a Borel function since it is upper semicontinuous by 7.2 above.

7.4. Lemma, (pr, Q) n A is a Borel subset of I.

Proof. By the definition of A and X we have pr, Q n A = q~\Q+).   □

If ß had a nonempty interior, then pr, ß would contain a nonempty open

subset U, whence A n U would be a Borel set contrary to the selection of A.
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After the construction of this example we found a rather similar construc-

tion given by Isbell in [9].

8. Pseudoprimes.

8.1. Definition. Let L be a complete lattice. Recall that 7 c L is a prime

ideal if 7^0, 1 = I \J I = \,I, and xv £ 7 implies x E 7 or v £ 7. An

element p £ L is called pseudoprime if /» = sup 7 for some prime ideal 7. The

set of all pseudoprimes is denoted ^ PRIME L.

Note the PRIME L c 4> PRIME L since /» = sup \,p, which is a prime

ideal if/» is prime.

We recall certain material from [7]. Let L be a continuous lattice. Let PL

denote the set of all ideals of L. Then PL is a lattice with respect to the

operations 7,72 = 7, n 72 and 7, V h — 4{a V b: a £ 7„ b £ 72}. In fact

PL is an arithmetic lattice in which the compact elements are the principal

ideals of L, i.e., sets of the form jx, x £ L. The function r: PL -^ L defined

by r(7) = sup 7 is a CL-morphism. PRIME PL consists of the prime ideals of

L. Hence /-(PRIME PL) = <// PRIME L.

Recall from [5, 1.7] that 5 E L is a weak prime if x, . . . x„ < s, then x, < s

for some i. The set of all weak primes is denoted WPRIME L.

8.2. Proposition. Let L be a distributive continuous lattice. Then

(PRIME L)' = WPRIME L = ^ PRIME L.

Proof. The first equality follows from the results of [5].

Suppose s E \¡/ PRIME L. Then there exists a prime ideal 7 such that

s = sup I. It is shown in [7] that J = {y: v < .$} is the smallest ideal

satisfying sup J = s. Hence J c 7. Suppose x, . . . x„ < s. Then x, . . . x„ E

J c 7. Since 7 is prime, x, £ 7 for some 7. Thus x, < s. Hence s E

WPRIME L.

Conversely since PL is arithmetic, PRIME PL is a closed order generating

subset (Theorem 6.7 and [5, 3.1]). Hence r(PRIME PL) = $ PRIME L is a

closed order generating subset of L. Hence by [5, 2.11] (PRIMEL)- c

xp PRIME L.   □

Note. The fact that «/* PRIME L is closed and that PRIME L c

4> PRIME L c WPRIME L hold without the hypothesis of distributivity.

8.3. Corollary. Let L be a distributive continuous lattice. Then the various

conditions of Theorem 6.7 are equivalent to the condition that if I is a prime

ideal of L, then sup 7 E PRIME L.

Proof. By 8.2 PRIME L is closed iff PRIME L = $ PRIME L iff for

every prime ideal 7, sup 7 £ PRIME L.   □

The results of this corollary also appear in the previously mentioned

seminar report of Keimel and Mislove.
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In general for a distributive continuous lattice \p PRIME L is a compactifi-

cation of Spec L u {1} endowed with the patch (or relative CL-) topology.

An interesting question is whether this compactification has some nice

categorical characterization, (e.g. is it the "universal" compactification in

some category).

In comparing [4] with what is done in this paper one should notice that [4]

calls Spec V what we here would have to call Spec PV. We use prime elements

as the basic ingredient while [4] uses prime ideals (equivalently, characters).

The transition between the two is guaranteed by the functor P, which was

studied in [7].

In this context we point out how the Stone duality of Boolean algebras and

Boolean spaces relates to our results. For a Boolean lattice L, the space

assigned to it is simply Spec PL. Conversely for a Boolean space X, one

associates the Boolean lattice of compact elements in the lattice of open sets,

K(0(X)).

9. Categorical considerations. Let SUP (INF) denote the category with

objects complete lattices and morphisms functions which preserve arbitrary

sups (infs). By [7] these categories are dual with respect to the functor which

is the identity on objects and assigns to a morphism its adjoint (so that the

pair form a Galois connection).

For a complete lattice L, we define a topology on L, called the INF

topology, which has as a subbasis of open sets all sets of the form L \ fx,

x E L. The SUP topology is defined analogously.

9.1. Proposition. Let f: L -> M be a function between complete lattices

satisfying fixy) = f(x)f(y) for all x, y E L and f(l)= 1. Then the following
statements are equivalent:

(l)f is continuous for the INF topologies;

(2) f preserves arbitrary infs;

(3) For each y E M, there exists x E L such that f~l(1y) = !•*•

Proof. (1) <=> (3). Easily (3) implies (1). Conversely for v £ M, A = /" '(ty)

is a subsemilattice of L and 1 E^l. Let x = inf A. Since / is continuous,

A = A ~. Hence if x £ A, there exist /,,...,/„ E L such that x £ f] "_, (L

\ pf) and A c U "=, pj- Since A is a subsemilattice A Epj for some/. But

then tj < x since x = inf A, a contradiction. Hence x £ A, and thus/_1(|v)

= fx.
(2) <=> (3). Straightforward algebra.   □

We remark that the INF-SUP duality of [7] may be viewed in the above

context as a self-duality on INF. Let 2 = (0, 1} be the two element lattice.

For a complete lattice L, let the dual of L be L = HomINF(L, 2). Then by 9.1

the dual corresponds to all principle filters on L (since/~'(1) determines/).
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This lattice (ordered by inclusion) is anti-isomorphic to L, and for f: L^> M,

the induced f:M—>L corresponds (under the natural anti-isomorphisms) to

the adjoint g: M —> L.

We note also that for 2 c Spec L the hull-kernel topology on 2 is just the

restriction of the INF-topology on L to 2. If /: L —» M is a SUP-morphism

which is an identity preserving lattice morphism, then by 2.4 the left adjoint

g: M —> L carries Spec M into Spec L. Since g preserves arbitrary infs, by 9.1

it is INF-continuous, and thus restricted to Spec M is hull-kernel continuous.

Employing the results of §§2, 3, and 4, we have the following categorical

set-up.

9.2. Definition. Let CLSUP denote the category with objects continuous

lattices L for which LSpecL, the complete inf-subsemilattice generated by

Spec L in L, is a CL-subobject and with morphisms SUP-morphisms which

also are identity-preserving lattice homomorphisms. Let CTop be the category

of all topological spaces X such that O(X) is a continuous lattice and all

continuous maps. Let Spec denote the functor from CLSUP to CTop which

sends L to Spec L and f:L—>Mto Spec/: Spec M —» Spec L (where Spec/

is the restriction and corestriction of the left adjoint g: M —» L of /). Let 0

denote the functor from CTop to CLSUP which sends X to the lattice of open

sets O(X) and /: X ̂  Y to 0(f): 0(Y)->0(X) defined by 0(/)(i/) =

f~\U).   D
Recall that a mapping between Hausdorff topological spaces is called

proper if the inverse image of compact sets are compact. For non-Hausdorff

spaces we modify the definition slightly and say a mapping is proper if the

inverse images of saturated quasicompact sets are quasicompact.

9.3. Lemma. Let f: L -» M in CLSUP. If in addition f is a CLop-morphism,

then Spec(/): Spec M -» Spec L is proper.

Proof. Let ß be a saturated quasicompact set in Spec L. By 3.4 ß =

Spec L \ F for some open filter F c L. Then (Spec/)" 'ß = g~ '(Spec L\ F)

n Spec M = Spec M \ g~l(F) where g is the left adjoint of / Since / E

CLop, then g £ CL and so g~\F) is an open filter. By 3.10 we know

Spec M \ g~\F) is quasicompact.   □

9.4. Lemma. Let f: X -» Y in CTop. If Y is sober and f is proper, then 0(F)
is in CLop.

Proof. Let U «: V in 0 ( Y). Then there is a saturated quasicompact set ß

with U C Q C V (4.6 and 3.7). Then 0(f)(U) çf~\Q) Q 0(f)(V), and
/~'(ß) is quasicompact since/ is proper. Then 0(f)(U) « 0(f)(V) by 3.7.

D
We now add to the umpteen adjunction theorems in [4] another one:
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9.5. Proposition. The assignments Spec: CLSUP -> CTop and 0: CTop ->

CLSUP are contravariant functors which are adjoint on the right (i.e. Spec:

CLSUP -h> CTopop is left adjoint to 0: CTopop -* CLSUP). The adjunctions are

oL: L-> 0(Spec L) and $x: Ar—» Spec O(X). The adjunction oL is an isomor-

phism iff L is distributive and the adjunction £x is a homeomorphism iff X is

sober locally quasicompact. The functor 0 ° Spec: CLSUP-»CLSUP is an

epireflector onto the full subcategory of distributive continuous lattices, and the

functor Spec ° 0: CTop —* CTop is an epireflector onto the full subcategory of

sober locally quasicompact spaces.

Proof. The adjunction follows from THE FIFTH ADJUNCTION THEO-

REM 4.3 of [4, p. 39] and may also be verified directly. The assertions on the

adjunctions come from 2.3 and 2.7 in conjunction with 4.6. The remainder is

standard general nonsense.   □

9.6. Theorem. The category DCLSUP of distributive continuous lattices with

lattice homomorphisms preserving arbitrary sups and the category LQCS of

locally quasicompact sober spaces and continuous maps are dual under Spec and

0. Under this duality, the subcategory DCLSUP n CLop corresponds to the

subcategory LQCPprop of locally quasicompact sober spaces and proper continu-

ous maps.

This theorem is contained in the FIRST DUALITY THEOREM 4.17 on p.

46 of [4]. It adds another case to the SECOND DUALITY THEOREM 5.6

on p. 50 of [4], and this case generalizes the duality between C2 = Z and the

category K2 (= full subcategory of LQCP of spaces having a basis of

quasicompact open sets). See also Proposition 1.4 on p. 73 of [6].
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