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INTERTWINING DIFFERENTIAL OPERATORS FOR

Mp(«, R) AND SU(n, «)'
BY

HANS PLESNER JAKOBSEN

Abstract. For each of the two series of groups, three series of repre-

sentations U„, D„, and H„ (n e Z) are considered. For each series of

representations there is a differential operator with the property, that raised

to the nth power (n > 0), it intertwines the representations indexed by — n

and n. The operators are generalizations of the d'Alembertian, the Dirac-

operator and a combination of the two. Unitarity of subquotients of

representations indexed by negative integers is derived from the intertwining

relations.

0. Introduction. Motivated by the aspects of the conformai group as a

physical symmetry group, as suggested by I. E. Segal [11], we recently studied,

jointly with Michèle Vergne, some representation theoretical aspects of

SU (2, 2) [5]. One result, that was obtained, was that powers of the d'Alem-

bertian

92       32        32        32

dt2      dx2      dxj      dxj

as well as powers of the Dirac operator ?(a4x4 matrix for which W2 = □)

are intertwining between two series of representations of SU (2, 2). We shall

see that a similar phenomenon takes place for Mp(w, R) and SU(n, n).

Specifically, we consider an « X « matrix D=9/8xa/3 with first order

differential operators as entries, corresponding to a parametrization of the

space of « X « symmetric (hermitian) matrices. We prove that det D as well

as

U(D)     0J'
where c(D)D' = D'c(D) = (det D)/n, are intertwining between two series U,
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and D,, / G Z, of representations of Mp(n, R) (SU(n, n)) in the sense that for

/ > 0

v2/+l

(0.1)(det D)'£/_, = U, (det D)',    (V)2I+ \D_,_, = D, (V)2

We shall refer to V as the Dirac-type operator.

For D' and det D the equations (0.1) were expected from [5, V.5.1 and

V.6.1]. However, we shall take a somewhat different approach, which has the

equations involving c(D) above as a straightforward consequence.

We remark that as a special case of algebraic results, B. Kostant [7]

obtained quasi-invariance properties of the wave-operator Q The operators

det D', (D')', and c(D)', for / £ N, were studied by L. Gârding [3], and the

Cauchy problem was solved. It was also noted that the principal formulas

involving (det D)' were invariant under the transformation x —> axa* of the

space of symmetric (hermitian) matrices, for a in SL(«, R) (SL(n, Q).

A basic observation in the proof of (0.1) is, that if s is the operator acting

on functions / from the space of symmetric n X n matrices (space of

hermitian n X n matrices) to C by (sf)(s) = sf(s), then c(D) = [(det D), s].

We use (0.1) to prove that U_¡ and D_„ for / > 0, act unitarily on quotient

spaces of functions modulo solutions to

(det D)'</> = 0   and   V2'~ '<f> = 0,

respectively. The representation D, can be written as D,+ © D¡~ where, by

(0.1), Df ando," satisfy

det D'c(D)Z):*",_, = ¿Vdet D'c(D), and

det DlD'D_,_l = D,+ det D'D'. (0.2)

We use this to study a series H¡ of representations obtained by induction

from reducible, noncomplemented representations of the maximal parabolic

subgroup. It is proved that these representations are related to the preceding

ones by

-D' H,=
Di-\

0

0

D' (0.3)

Ths study of the representations H¡ was motivated in part by the work of A.

Salam and G. Mack [10, p. 178].

The present article falls in five parts. (1) is the scalar case for Mp(/i, R),

corresponding to (det D)', and (2) is the scalar case for SU(n, n). In (3) the

Dirac-type operator for Mp(«, R) is related to representations obtained by

induction from reducible, complemented representations of the maximal

parabolic P_ in 2/i-dimensional complex vector spaces, and (4) is the corre-

sponding for SU(n, n). Finally, in (5) representations obtained by induction
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from reducible, noncomplemented representations of P_ in 2n dimensional

complex vector spaces, are proved in many cases to be unitary (and re-

ducible). The details are carried out for SU(n, n).

The first two chapters of the present paper are essentially contained in the

author's Ph.D. Thesis [6], written under the direction of I. E. Segal. The

author is indebted to Professor Segal for many helpful discussions. He is also

thankful to Michèle Vergne for friendly help and conversations.

1. The scalar case for Mp(«, R). We shall begin with some generalities

about Sp(«, R) which is covered twice by Mp(«, R).

Sp(n, R) is the subgroup of Gl(2«, R) consisting of those matrices g that

satisfy

g
0

- 1.
1„

0 g =
0

- 1.
1„

0 (1.1)

If we write g in terms of« X n blocks; g = [ac ¿], then (1.1) is equivalent to

ad' - be' = 1;    ab' = ba';    cd' = de', (1.2)

and to

a'd - c'b = 1;    a'c = c'a;    b'd = d'b, (1.3)

where (1.3) is obtained by replacing g by g-1 in (1.1). The Lie algebra of

Sp(«, R) is thus [4, p. 341]

sp(«, R) = x, arbitrary; x2 = x{; x3 = x¡ \.

We let ty = {z = x + iy\x,y real n X n matrices, x = x'; y = y'; y > 0).

60 is then a complex domain, and Sp(«, R) acts on ty by

g- z = (az + b)(cz + d)~\

We recall from [5] that if G is a group of holomorphic transformations on ty,

V a finite dimensional complex vector space, J(g, z) a continuous function

G X ßD -» GL( V) which, for each fixed g in G is holomorphic in z and

satisfies

J(glg2,z) = J(gl,g2z)J(g2,z);   7(l,z)=l, (1.4)

then a function K(z, w): ^ X tf) -» End V, holomorphic in z, anti-

holomorphic in w, is the reproducing kernel for the representation

i
(TJ(g)f)(z) = J(g-\z)-,f(g-iz)

on a space of holomorphic functions/: ^ -* V if and only if

K(z, w) = K(w, z)*,

(1.5)

(1.6)
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K(gz, gw) = J(g, z)K(z, w)J(g, w)*, and (1.7)

¿   <K(zj,zi)vi,vjy>0 (1.8)
ij-i

for ail z¡ in 6¡), v¡in V, i = 1, 2, . . . , n, and n in N. We let * denote the

complex adjoint of an operator. Thus, (x + iy)* = x' — iy '. If g = (ac bd) is in

Sp(«, R) and z, w are in 6D, we then define

/,(ír,z) = cz + ¿;       /2(*,z) = (zc' + rf')_1, (1.9)

Kx (z, w) = ((z - w*)/2iYl\        K2(z, w) = ((z - w*)/2/).    (1.10)

Then it follows easily from (1.2) and (1.3) that 7, and J2 both satisfy (1.4). By

the same relations, it also follows that for /' = 1,2

Ki(gz,gw) = y,(g, z)Kt{z, wy^g, w)*. (1.11)

We shall in this section consider the one-parameter family of actions of

Sp(«, R) on the space 0, of holomorphic functions on fy defined by, for

AGR,

(Ux(g)f)(z) = (det/.U-'.z))-^«"-"^/**-1*). (1.12)

It is easy to see that Ux is holomorphically induced from the one-dimensional

representation ta(/c) = det(/, (k, /))A+("+1)/2 0f ^ maximai compact

subgroup K (cf. [5, p. 61]).

Remark. For noninteger X's, we only get a projective representation; by

passing to the universal covering group, we get a proper representation. In the

sequel we shall mostly be interested in the cases where X is integer. In these

cases, we need only pass to the double covering group of Sp(/i, R); the

metaplectic group Mp(n, R). We shall maintain the notation Ux irrespective

of the groups.

It follows easily from (1.2) and (1.3) that

g-(z*) = (g-z)*

for all g in Sp(n, R). (Sp(n, R) also acts on the "lower half-plane".) In

particular, g leaves the Shilov boundary 3^ of ty; d6^ = S = {x + iy\y =

0), invariant, and even though the action is not globally defined, we still get

an action on measurable functions. We shall also maintain the notation UK

for this action. It can be seen that there exists a subspace Vx of C °°-functions

on S, which is invariant under this latter representation, and such that the

restriction of Ux to Vx can be imbedded into an invariant subspace of a

degenerate principal series representation (cf. [5, pp. 82-83], and below).

The space S of « X « symmetric real matrices is a real vector space of

dimension \ n(n + 1). We write elements of S as x = [xaß]"aß={ (xaß = xaß)

or just x = [xaß], and let dx denote Lebesgue measure on S corresponding to
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this parametrization. On functions from 5 to C, we define first order

differential operators aaß by

1       t)
For a* ß:aaßf= 2   -^- f. (Thus, aaß = a^. )

a      "ß (I.»)
For a = ß: aaJ = -r— /.

oxaa

We let D be the differential operator, whose (a, /?)th entry is

{D}a/J = aaß. (1.14)

We shall in this section study the nth order differential operator det D. The

Fourier transform is defined by

/(*)- Yi  f e-itrxkf(x)dx,

and the inverse Fourier transform by

g(x) = y2f eitrxkg(k)dk.
s

For suitable pairs (y,, y,), and nice functions/,/ = / = /• Since for any (real

or complex) matrix z,

(det D)eUxz = det zetTXZ, (1.15)

det D is in particular proportional to the Fourier transform of the multipli-

cation operator (/)" det k. This could of course also be taken to be the

definition of D.

We want to analyze whether powers of det D can be intertwining operators,

and if so, for which pairs of ( Ux, t/x.)'s.

We remark that if we take

"(*)-
1     x
0     1

G Sp(n, R)    for x G X,

then (det DJUx(u(x)) = C/x<t/(x))(det D)r for all (X, X') and r G N, since

det D is a constant coefficient differential operator, and {w(x)|x G S) is the

translation subgroup.

Let us return to the Lie algebra. This is generated by the subalgebras

(S 5)|-s) - {(; 2)|>

In fact, we could replace the latter by the single element (¡ %), but we shall

find it convenient to study a more general (J u).

Specifically, fix p and q and let y be the matrix in S given by
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For x G S and real /, we have

x(tyx + 1)_1= x — txyx

and

det(tyx + 1) = 1 + t tr yx

to the first order in t. Since furthermore

\XyX}aß=  XapXqß  +  XaqXpß

and

tTyx = Xqp + xpq   (=2Xqp)

we see, that if we let

n

M> =      2j       (XapXqß  +  XaqXpß)aaß
a,ß=l

with aa/J as in (1.13), and if we let Ym = x^ + xpq, then

= y0 + (x + (« + i)/2)rm. (1.17)

We now want to compute [det D, x/oyJ, and to do this, we recall some basic

facts from linear algebra.

Let {A }u be an n X n matrix. Let Cy be the determinant of the matrix My,

obtained from A by replacing the entries in the ith row and jth column by

zeros, except for a one in the (i,j)th place. Specifically,

(Mu)rs- M1 - 5<>)0 - 8Js) + M>> i1'18)

We call My the (i',y')-minor, and denote by C[f the determinant of the

{r, i)-minor of My. Then,

det .4= 2  ^Q, (1.19)
y-i

or, more generally,

n n

2 fl„Q= 2 aisCir= 5„det^,and

Cu - 2  *„C¿*- 2  *AC£- ^   +^«frqf + 6VQ.     (1.20)
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We use the above relations on the differential operator det D = det[aa/3].

We put / = i0, r = jQ. Then

det ,4=   2    a¡oJaJtíSC% (I - 8ioJJ
te-i

n n

+ 2  a, fli ,C/°/ ( -1 + & , ) + & , 2  a, /C/Y-^       'c7 7o7    'a/   V 'o7o / 'aJo *^      'aJ    'aJ
j-l 7=1

From (1.13) we get

iaJ<*> *WJ  " UK + *io/.**.)'

Finally, since by construction, [C/j, x,   ] = 0, we get

[det D, xiaJo] =   2   «VK^ + <UV)C# (1 - 5Wo)
J>-1

7=1

7=1

7=1

7-' i=1

+ K^i"1 + «,„,„) + ha^Cfâ (-1 + SiaJo)

Using the relations (1.20), this is readily seen to give

[det D, xiaJo] = \{CioJo + C,,o) = CiaJ, (1.21)
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We are now able to compute

n

[det D, Y0] =   2    [det D, Xapxqß + xaqxpß]aaß
a,ß=\

n n

=     2       (XapCqß +  CapXqß)aaß+     2       {XaqCpß +   ^aqXpß)aaß
a,ß=l a,ß=l

*■ 2  xapSqadctD+ 2   5^detDx9i8
«=1 /3=1

2I    2    Cv (á?„ + ô^ ) + 2   xaqSpa det D
a,£=l a*=l

«

+ 2   *qß det D^ - ±    2    Q,(V + W<* )
/?=1 <*,/?= 1

= 2ïmdetD-(«-l)C/)?.

By (1.21) and the above, we thus have the relations

[det D, Y0] = 2rmdet D - (n - \)Cpq,

[detD, Ym]=2Cpq,

[detD,CM]=0. (1.22)

It follows that

det D(r0 + (X + (n + l)/2)Ym) = (Y0 + (X + 2 + (n + l)/2)Ym)det D

+ (2(A + (n + l)/2) - (n - l))Cpq,

or, by induction, for r G N,

(detD)r(r0 + (A + (« + l)/2)rm)

= (Y0 + (X + (n + l)/2 + 2r)Tm)(det D)r

+ (2r(X + (n+ l)/2) + 2r(r - 1) - r(n - l))Cw(det D)r_1.    (1.23)

We see, that (det D)r is an intertwining operator exactly when À = — r. In

this case, X' = r. We shall from now on consider Ux, X G Z, as a repre-

sentation of Mp(«, R), even though this only is strictly necessary for n even.

The above analysis may thus be summarized as

Proposition 1.1. Let r G N. Then VX G sp(n, R):

(det D)rdU_r(X) = dUr (X)(det D)r. (1.24)

The point now is that the class of functions on which the equation (1.24)

can be integrated is sufficiently big to be of interest. Specifically, the vector

space V_r spanned by {(t/_r(g)det(/s:1(., w)f){x)\g G Mp(«, R), wê^D,
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a — (n + l)/2 G Z, and a > (n + l)/2 — r} is invariant under C/_r, and

each function/in V_r is the boundary value of a holomorphic function Ff,

which can be extended holomorphically across the Shilov boundary.

We remark that since the operators (det D)r are boundary values of

operators acting on the space 0, of holomorphic functions on 6Í), and since

these, by exactly the same arguments as before, satisfy exactly the same

intertwining relations, we could just integrate the relation (1.24) on

holomorphic functions on 6D. In fact, by the above properties of V_r, this

would be exactly the same as integrating it on V_r. On holomorphic

functions on 6D, however, it is rather obvious, that the relation can be

integrated. We shall therefore only give a sketch.

We first observe that the Lie algebra sp(n, R) is generated by the subal-

gebras

0     v

0     0
v G S and 0     e

-e   o
#6R

For the first algebra, the relation can easily be integrated. Thus, since

Mp(w, R) is connected, we need only consider

c^-exp^O,     ¿]). cos 9      sin 9
— sin 9    cos 9

Clearly, the map (9, z) -» c(9)z is holomorphic and hence (9, z) -»/(c(0)z) is

holomorphic, if / is a holomorphic function on tf). Since the same can be said

about the multipliers

-((n+l)/2-r)
det( — sin 9z + cos 9 )

and

-((n+l)/2 + r)
det( - sin 9z + cos 9 )

it follows by power series expansions that

(det D't/_r(c(0))/)(z) = (t/r(c(0))det D7)(z). (1.25)

Proposition 1.2 [5]. For r G N and f either a holomorphic function on ^ or

an element of V'_r we have that

(det D)rU_r(g)f = t/r(g)(det D)7,   Vg G Mp(«, R).        (1.26)

From here, we proceed as in the case of SU (2, 2) [5]. We denote the

forward light cone in S by C +, i.e.

C+ = {x G S\x >0}.

Then we know from [3] or [9] that there exists a constant kx such that for all
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a > - 1 and z G fy

f    e+,1IV detyady
Jc+

= *,(det*/i)"~(("+1)/2) ft  r(« + (i + l)/2).
/ = i

It is also known [9, §§4.5 and 4.6] that if we let

0O = {0},    0, = {x G S\x > 0, rank x = 1), . . . ,

0„_, - {x G S\x > 0, rank* - n - 1),

then there are semi-invariant measures /x, on 0,- and constants db(J), such that

/* e> **- dh(y) = <4 0)(det z/í)~J/2. (1.28)

The formula (1.27), together with (1.7), (1.8), (1.9), (1.10), and (1.11),

immediately gives that Ua is unitary for a > -1, and (1.28) shows that

t/(_rt_,)/2+7/2 for y = 0, 1, . . ., n — 1 has an invariant subspace, on which it

acts unitarily, namely the space of Fourier transforms of holomorphic

functions in L2(0y, ¡if). From (1.14) and (1.27) it also follows that there are

constants C„r such that

(det D)rdet(x + z)-«"+1)/2) = C„>rdet(x + zy^"+^2\     (L29)

for z G ^ and xES.As in the case of 51/(2, 2) [5, pp. 91-96], this is exactly

what is needed to conclude: If we define an equivalence relation on V_r by

f7g**(detD)r(f-g) = 0,

and denote the equivalence classes by [•]„ then, using the unitarity of Ur for

r > 0 and Proposition 1.2, we get

Proposition 1.3. For integers r > 0, there exists a subspace of equivalence

classes [-]r, which can be given a Hubert space structure, in which U_r acts

unitarily.

We shall end this section with a look at noninteger r's. We do this by

Fourier transform. We consider C°° functions with compact support in the

interior of the forward light cone C +. We denote the Fourier transforms of

the operators det D, Y0, Ym, etc. by D = det D, YQ, Ym, etc. In particular

det D = det ik,   xaß = iaaß,   aaß = ixaß.
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We let ¡i G C. Then it follows from (1.20), (1.21), and (1.22) that

[det **, Y0] = 2DCpq det(-i)V(/i - l)det k^2

+ det(-/)[Â T0] M det A;^1

- 2det(-i)Cpqti(ii - l)det k*'1 + 2Ymn det k"

-det( -i)(/i- OMC^detÂ:"-1.

Also, [det **, fj = 2CM/i det A:""1 det(-/). Hence,

dtf*»(f, + ß + 0i + l)/2)?M)

= ( Y0 + (X + (n + l)/2 + 2/i)Tm)det fc"

+ detife"-1^, det(-/)(2(X + (« + l)/2)/i + 2/i(/i - 1) - (n - l)p).

In particular, the last term vanishes if and only if X = — ju. In this case,

X' = ¡i.

Remark. We let dU_jl and dU^ be the two representations of the Lie

algebra obtained by Fourier transformation. They of course extend to be

representations on all C °° functions in the interior of the forward light cone,

and since det &*1 is a bijection of C^iC*) onto itself, these modules are

infinitesimally equivalent. However, since when we took the Fourier trans-

forms, we completely neglected boundary behavior, if these in any manner

can be integrated, the result, transformed back again by the inverse Fourier

transform, will in general differ from the original Uxs by boundary terms. In

this connection we observe that if we define two C °° functions / and g in C +

to be equivalent if for each point/? on the boundary b(C+) there is an open

neighborhood Np such that det k'l{f - g) in Np n C + is the restriction of a

Cx function in Np, then dU^^ preserves equivalence classes.

We finally mention that for r real and positive, the closure of the operators

dUr(x), x G sp(n, R), are the differentials of a unitary representation Ûr in

L2(C+, det k~rdk). Then, since the map

Tr:L2(C+, det k~rdk)^L2(C+, det krdk): (Trf)(k) = ^_ f(r)

is unitary, we can define TrUrT~\ which then has generators dU_r(x),

x G sp(«, R).

2. The scalar case for SU(n, n). In view of the analysis of Mp(«, R), it is

not surprising that similar generalizations hold for SU(n, ri). Due to the

strong analogy, we shall only give a sketch.

SU{n, ri) is the subgroup of SL(2n, C) consisting of those matrices g that
satisfy

g
0      i
-i    0 g* =

0      i
-i    0
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writing ginn X n blocks, this is equivalent to

ad*-bc* = \;   ab* = ba*;   cd* = de*, (2.1)

and to

a*d - c*b= 1;    a*c = c*a;   b*d = d*b, (2.2)

where (2.2) is (2.1) for g" '. The Lie algebra is given by

Xi Xt
su(n, ri) = Im tr xx = 0; x2 = x*; x3 = x*

We let <î> = {x + iy\x = x*;y = y*;y > 0}. ,St/(/i, ri) acts on <$ by g- z =

(az + ¿>)(cz + d)~l. Similarly to the case of Mp(«, R) there are functions,

defined for g = {ac bd) and z, w G ty by

y, ( g, z) = cz + ¿,       72 ( g, z) = (zc* + d*y\ (2.3)

/:1(z,>v) = ((z->v*)/20"1,   and   /:2 (z, h>) = ((z - w*)/2i),   (2.4)

which satisfy (1.4) and (1.11):

Ji ( ̂ i Si' z) = Ji ( £i> gizVi (^2> 2) and

Kt ( gz, gw) = 7,. ( g, z)Kt (z, w)/,. ( g, w)*,    i = 1, 2. (2.5)

We shall consider the representations

(C/x(g)/)(z) = (det/1(g-|,z))"X""/(g-'4 (2-6)

for X G Z.

It follows from (2.1) and (2.2) that (gz*)* = g- z, and we can thus restrict

f7A to act on measurable functions on the Shilov boundary 3 ̂  = H of tf) ;

H= {x\x = x*}.

On functions on H, we define first order differential operators aaß to be

dual to the variables xaß in the parametrization of elements in H. Thus,

aaß(Xab) =  Saa8bß-

We let D be the differential operator whose (a, /?)th entry is

{V)a,ß= "aß> (2.7)

and we shall here consider det D. We define the Fourier transform by

f(k) = y3fe-itíxkf(x)dx,

and the inverse by

g(x) = y4f e'"xkg(k)dk.

Since

(det D)etr " = det zelT **, (2.8)
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we observe that det D is proportional to the Fourier transform of (/)" det k.

As in the case of Mp(«, R) we shall analyze for which pairs of (X, X')'s

powers of det D are intertwining operators, and exactly as in that case we are

reduced to studying the action of the subalgebra

0     0

y    0
y-y*   .

Specifically, we take {y)k, = p8pk8ql + p*Sp,8kq, for a fixed p G C. For x in H

and t in R, we then have

x(tyx + l)"'sr- txyx;    del(tyx + 1) s 1 + t tr xy.

Since {xyx}aß = px^x^ + p*xaqxpß, and tr vx = px^ + p*xpq, we see, that

if we put

and

then

n

Y0 =      2      (pXapXqß   +  P*XaqXpß)aaß>
«,/8=l

Ym   = PXqp   + P*Xpq,

«4; D)-i4l ? , = 0
= Y0 + (X + n)Ym. (2.9)

We compute [det D, xf- J, maintaining the notation from Mp(/i, R):

n

D = 2  ö, ,C. ,=i>[det D, X: , 1 = C, ,.
'—'      'aJ    >aJ      L 'a/oj 'o7o

7 = 1

detD = (2.10)

Hence,
n

[det D, Y0] =   2 [det D, px^x^ + p*xaqxpß]aaß
a,/?=I

n n

=      2 PXapCqßacß+      2       PCapXqßaaß
~ fi_ i _ a_ia,ß=l a,/8=l

n n

+      2        P*XaqCpßaaß+      2        P*CaqXpßaaß
a,ß=\ a,/8=l

n n

= 2   px^detD)^-!-   2    pC^ia^ß - 8qa)
a = \ a,ß=\

+ 2   P*xa9(detD)6;a+   2    P*Caq(aaßxpß-8pa)
a=l a,ß=\

= 2Ym(detD)-(n-l)[pCqp + p*Cpq].
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We put C = pCqp + p*Cpq. Then,

[det D, Y0] - 2Tm(det D) - (« - 1)C;

[det D, Ym] = C; [det D, C] = 0. (2.11)

Hence,

detD(Y0 + (X + n)Ym)

- (y0 + (X + n + 2)ym)det D + (X + n - (n - 1))C,

or, more generally,

(det D)r(y0 + (X + ri)Ym) = (y0 + (X + n + 2r)ym)(det D)r

+ [r(X+ n) + (r- \)r - r(n - l)]C(det D)'"1.    (2.12)

We see that in order for (det D)r to be intertwining, the last term must vanish,

i.e. X = — r. In this case, X' = r. Hence we have proved

Proposition 2.1. For integers r > 0,

(det D)rdU_r(X) = dUr(X)(det D)r   VX G su(n, n).        (2.13)

If we let V_r be the space consisting of those real analytic functions/on

H, that are boundary values of holomorphic functions on ^, and for which

U_r([2.j ¿"D/ again is such a function, then it follows easily (cf. Chapter 1)

that we have

Proposition 2.2 [5]. For r in N,/ in V_r, and g in SU{n, ri):

(detD)rt/_r(g)/= t/r(g)(detD)7. (2.14)

In this section we let C+ = {x G H\x > 0). Then it is again known from

[3] or [9] that there exists a constant k2 such that for a > — 1 and z in ^

f    <?'tr^det.ya ay = kJaetz/i)'"'" ft  T(i + a). (2.15)

Likewise, it is known [9] that on the orbits 0O = {0}, Ql = {x E H\x > 0,

rank x = 1}, . . ., 0„_, = {x G H\x > 0, rank x = n — 1} there are semi-

invariant measures ^ such that for suitable constants cb(J)

f e' "v dvj(y) = c,0)(det z)~J. (2.16)

These formulas imply that Ua is unitary for a > — 1, and that {/_, for j = 1,

2, . . . , n has an invariant subspace, on which it acts unitarily.

Finally, again parallel to the case of Mp(«, R) we conclude:

Proposition 2.3. On a space of equivalence classes of functions whose

Fourier transforms are supported by C + ; equivalence being defined by f — g <=>
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(det D)'(/ — g) = 0, one can construct a pre-Hilbert space structure, which is

preserved by U_r,for all r in N.

Remark. By taking Fourier-transforms, we can get the relation

(det Ac)"</«/_M = duldet k)",

for any ju G C, as an equation between Lie algebra representations on the

space of C °°-functions whose support is compact and contained in C + ; just

as in the case of Mp(/j, R).

3. The Dirac-type operator. The case of Mp(«, R). There exists a

distinguished operator V; a 2n X 2« matrix with differential operators as

entries, for which (V)2 = det D. Recall from [5] that the Dirac operator

associated to

n«ii__3i_li
3f2      3x2       dx¡

can be defined as V= (°(o) £), where

dx2

_3_
dt

3
3jC]

and c(o) is the co-factor of a;

+ i

_3_
3x3

3
dx-,

3
3xj

_3_
dt

dx2

3
3x,

c(o)-

_3_
3/ '

3
dx,

3
3;c->

3x,

3    +j._3_
3x,        3x2

3i       3jc,

We observe that, corresponding to (1.15), a' is proportional to the Fourier

transform of the multiplication operator (kf)(k) = k-f(k) for k G H (2).

Likewise, c(o)' is proportional to the Fourier transform of the multiplication

operator c(k), where c(k) is the co-factor of k; c(k) = (det &)&"'. These

observations clearly lead to a natural candidate for V. Finally, we make the

(key) observation, that if we promote □ to be the operator Q/1 = (^ ^)(/j) on

functions/: H{2)-+C2, and let h and c(h) be the above defined multi-

plication operators, then [5]

[O, h] = 2c(a);        [Q c(h)] - 2a.

We shall in this chapter be concerned with two series of representations of

Mp(«, R). To avoid a repetition of the technical arguments following Propo-

sition 1.1, we shall here consider the space of holomorphic functions from <$>
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to C". We define, for g" ' = (ac % X G Z, and z G <$

^(g) = /?x+(g)©^-(g).

We let D = D' be the operator from (1.13), extended in an obvious way to

functions from ^ to C", corresponding to a parametrization of ^ by

matrices z for which the (/,/)th entry ztj = z,, G C. Then all the formulas

from Chapter 1 remain unchanged. We let c(D) be the « X « matrix whose

(/',/)th entry is C0 = the determinant of My, as defined in (1.18). Thus,

C(D)' = c(D) and D c(D) = c(D) D = (det D)/„. Finally, we let -T=

QD) o5). Then (V)2r = (det D)r for r G N.

We want to analyze the relation between odd powers of Y and the

representations Dx. We begin by investigating for what (X, X'), for a given

integer / > 0,

(det D)lDDx (g) = (D + (g))(det D)D. (3.2)

As in the scalar case, we are immediately reduced to studying the elements

(° $) of sp(«, R). We maintain the notation of Chapter 1. Then,

= yz + ( y0 + (X' + (n + l)/2) Ym )/„, and

= _ zy + ( yo + (\ + (« + 3)/2) ym )/„. (3.3)

We consider Dzy. Since {zy}rs = S^z^ + 8pszrq, we get that

iDzy}rs= 2 {Sgsarizip + 8psariziq)
i

= 2 (8qszipari + 8psziqar) + ^r— (8qs8^ + 8ps8rq).

r = 0
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Since moreover

UD> yo]L=K, y0] = 2(W^ + v,*«*)

+ 2 (Zappas + Zap8sqaar),
a

{DM„ = {YJD)„+ (8qr8ps + 8qs8pr),

and

{^DL = 2 (V«A + V*^)»

we get, using aa/8 = a^ and za/3 = zßa, that

{(det D)'d(-zv + (Y0 + (X + (n + 3)/2)Ym)ln)}^

= {(detD)yzD}ra + {(detD)'(y0 + (X + (n + 3)/2)ym)D}ra

+ (det D)'(X + (« + 3)/2 - (n + l)/2)(fi^ + Mj-)-

To compute {(det D)'yz D}„, observe that {[det D,yz]}„ = 8qrCsp + 8prCsq.

It then follows easily that

{(det D)'yz D}r= {yz(det D)'D}n + l(8qr8ps + 8pr8qs)(det D)'.

Using (1.23), we thus get

{(det D)'D(-zv + (y0 + (X + (n + 3)/2)Ym)l„)}^

= {yz(det D)'D}ra + {(Y0 + (X + 21 + (n + 3)/2)ym)(det D/d)^

+ {(2/(X + (n + 3)/2) + 21(1 - 1) - l(n - l))Cpq(det DV^'D^

+ (X + 1 + /)(det D)'(«^ + 8qs8pr). (3.4)

In particular, to have (3.2) satisfied, we must have X = — 1 — / and X' = /.

To deal with the other half of the problem, observe that if det D =

(det D)I„, then

Lemma 3.1.

C(D) =[detD,z], (3.5)

and in fact, for integers / > 0,

(/ + l)(det D)'C(D) = [(det D)/+l, z]. (3.6)

Proof. (3.6) clearly follows from (3.5) which again follows from (1.21).

To complete the investigation, we need therefore only check whether, for
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g G Mp(/z, R)

[(det D)/+1, z]Z>_V/U) = Df (g)[(det D)'+1, z]. (3.7)

This relation is trivially satisfied for g = (¿ x), x G 51, since [(det D)/+1, z] is a

constant coefficient differential operator. But these elements, together with

those that project onto \°_, ¿] G Sp(n, R) generate Sp(n, R). This means that if

we put (C0f)(z) = /( - z ~ '), then we must have

i

t(de,D»"''] „u. ,»--»<.*■*» c»

That this equation is valid follows from Proposition 1.2 since

((det D)-z - z(det D)'" ) ^ zy\\]+^)/2 Q

= (detD)/+'(detz)--^->/2C°

+ ¿(detD)/+1(detz)---<->/2C°Z

A(w+3)/2 Q(detDy+1
(det z)

+ «-},    «,,  co (det D)/+ 'z
(detz)'+("+3)/2     °V '

:-f,    ,w,  Coz(detD)'+1
(detz)/+(n+3)/2     ° V '

C0(detD)/+1z
(det z)

_z

(det z)

/ + (n+3)/2

7^71 C0[(detD)'+1,z].

We have thus brought the analysis to an end. Similarly to the scalar case we

can then state

Proposition 3.2. Let I > 0 be an integer and let f be a holomorphic function

from öD to C. Then, for all g in Mp(n, R)

3?-2'+1Z)_1_/(g)/=Z)/(g)^2'+1/.

To settle the question of unitarity, observe that it follows quite readily from

[1], [2], and [8] that there exists a constant kx such that for a > — 1 and
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z G öD:

f    e'«»c'y)(dety)ttdy
Jc*

= A:1(z//)(detz/0"a"((n+3)/2)r(a + 1) ft  T(a + (i + 3)/2),   (3.8)
i-2

and

f    e'ü zyy(det y)a dy
Jc*

- kx{z/i)-\detz/i)-a-{("+xy2)T{a + (n + 3)/2)"ft  T(a + (i + l)/2).
/-i

By (1.8), (1.9), (1.10), and (1.11) it then follows that Dx is unitary for X > -1.

We observe that since, for v G C, De,trvo = iyeiXTzyv, and c(D)e/trvc =

(í')''_1c(y)e''trz>ü, it follows from (1.27) and (3.8) by analytic continuation in

a, that for all a in R, z, w in ty and t> G C:

/ »  .-«((»+1)/2)

det D detl *     w   j ü

"      / •   .    i   \ / *  x-o-l-((n+l)/2)

= (¡rn(a + i±i)det(^)

,       _      ,     -a-((n + l)/2)

C(D)det(z    .w   J o

-(O^nJa + ̂ X^H^)  .\and
, „   .  -a-((n+l)/2)

- «(«+h1 K '-^r- y h '-^ ).'■   (39)

-a- 1 -((»+ l)/2)

-a-((n + l)/2)

)

-«-((« +3)/2)

-a-((n + l)/2)

>

-1 - *  - -a-((n+l)/2)

By comparison with (1.28), it then follows that D_, has an invariant subspace

on which it is unitary, namely the completion of the pre-Hilbert space of all

finite linear combinations of the functions (see (1.10))

z -» K{ (z, w)det K{ (z, w)-l+{i',+1)/2)vl S K2(z, w)det K2(z, w)"(("+1)/2)u2,

with w in ^, and v¡ in C for / = 1, 2, in the metric given by (1.8).

Since the co-factor of a rank r matrix for r < n — 2 is zero, a similar result

for the other orbits ©■ will only hold true for the representations

D-((„-/+1)/2). t" = 0,   1, ...,«- 2.  For  every  integer  r > 0,  we  define



330 H. P. JAKOBSEN

equivalence classes of functions /from <$ to C © C" by

[f]2r+l=[g]2r+^*2r+1(f-g)=0-

Then (cf. [5]) (3.9) together with Proposition 3.2 easily gives

Proposition 3.3. For each integer r > 0, there exists a subspace of the

equivalence classes [-]2r+1 which can be given a Hubert space structure in which

D-i-r is unitary.

4. The Dirac-type operator. The case of SU(n, ri). We shall here describe

the analogue of Chapter 3 for SU(n, ri). We consider functions defined on H;

it is then straightforward to translate the results to holomorphic functions on
<$.

Let / be a measurable function from H to C, X G Z, and x G H. We

define

(XC* + d*) t eir + h \

(Pr(*)/)(*)-d.<l.^r"/tg^'    (41)
forg-' = (acd) G SU(n, ri). Finally, we put

Dx(g) = Dx+(g) ® Dx (g).

Let D' be the transpose of the matrix D in (2.5), and let c(D) be the « X «

matrix whose (/,/)th entry is Cy = Cy(D) which is nothing more than the

determinant of the matrix My obtained from D as in (1.18). Then, since

C,(D) = C„.(D'),

D'c(D) = c(D)D' = (det D)/„,

i.e. if V= (,.£,) ?"). then (Y)2r = (det D)r for r G N. Again we investigate for

what (X, X')

(det D)'D'ZV ( g) = (Z)At ( g))(det D)'D' (4.2)

for a given integer / > 0, and again we are reduced to studying the elements

(° $) of su(n, ri); y G H. We maintain the notation of Chapter 2 and get

= yx + (Y0 + (X' + n)Ym)In,-4; s))-íH(¿ ?))

= -xy + (y0 + (X + «+l)ym)/„. (4.3)
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To proceed, we observe the formulas

{D'*v}„ = 2 air{xipP8qs + xiqp*8ps),
1 = 1

{y*v}„ = 2 (pV*. + p'V>»>
i=i

{[D'>Y0]}rs=tasr>Yo]=    2     ¿»VA
0-1

n n n

+   2    PXapSSqaar +    2     P* 8rqXpßüsß +   2    P* Xaq^ar>
a=l ß=\ a=l

{[^y}„ = WA + pU)'
{[det D,,*]}„= pÄ^ + p*«,,^,

{[(det D)',y*]}ra = /(det D)'"1^,^ + P*8rqCps). (4.4)

From these formulas, together with (2.12), it then follows that

{(detD)'D'(-xy + ( YQ + (X + 1 + n)Ym)I„)}n

= {y*(det D)'D'}r + (X + 1 + /)(det D)'(p8pr8qs + p*8rq8ps)

+ {(y0 + (X + 1 + n + 2/)ym)/n(detD)'D'}rj

+ {(/(X + 1 + ») + /(/- 1) - l(n - l))C(det D)'-^}  .      (4.5)

In particular, if (4.2) is to be satisfied, then X = - / — 1 and X' = /.

The other half of the problem follows similarly to that of Chapter 3, once

we have noted

Lemma 4.1. For integers I > 0,

[(det D)/+1, jc] = (/ + l)(det D)c(D). (4.6)

Proof. This follows by induction from (2.8).

We let V_, be the space of those functions on H with values in C" © C

that are boundary values of holomorphic functions on <$), and for every x in

H can be continued across the boundary as a holomorphic function in a

neighborhood A^ of x, and which maintain this property when acted upon by

£>_,_,. We can then state, similarly to the preceding cases:

Proposition 4.2. For integers I > 0, g G SU(n, ri), andf G V_,:

Y2l+lD_l_l(g)f= D,(g)V2l+lf. (4.7)

The question of unitarity is again settled by formulas obtainable from [1],
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[2], and [8]. Specifically, there exists a constant k2 such that for a > -1 and

z G öD:

f    eiazyc(y)(dety)ady

= ^(z/Oídetíz/Op"'""!^ + a) ft  I\l + i + a),      (4.8)
i = 2

and

f    e' itzyy(detyf ay

n-\

= A:2(z/i)_1(det(z//))"a"T(« + 1 + a)   II   T{i + a).
i = i

It follows again by (1.8), (1.9), (1.10), and (1.11) that Dx is unitary for

X > — 1. It is easy to see, using det A ' = det A, that for v G C:

B'eitIxyv = iyeittxyv,

and

c(D)eitrxyv = (i)"~ic(y)eitIxyv.

It follows from these formulas, together with (2.15) and (4.8) that for a G R,

h G H, w G ^andu G C:

det D det((A - w*)/i)"""v = (/)" ft (« + '')det((A - w*)/0_"~1_V
i = i

c(D)det((Ä - w*)/i)~a~"v

= (/)""' fi  (< + a)((h - w*)/i)det{(h - w*)/i)-a'l-"v,   (4.9)
i = 2

and

D' det((A - w*)/i)'a~nv

= (0(9 + a)((/j - w*)//)_1det((A - w*)//)~a"V

By comparison with (2.16), it follows that D_x has an invariant subspace, on

which it is unitary, namely that completion of the pre-Hilbert space of all

finite linear combinations of the functions (see (2.4))

h -* K¡ (h, w)det K¡ (h, wy1+\ © K2 (h, w)det K2 (h, w)~"v2,

with w in ^D, and v¡ in C f or / = 1, 2, in the metric given by (1.8), whereas for

the other orbits 07, this only holds true for /)*(J,_J);t/ = 0, 1, . . . , n - 2. For

every integer / > 0 we define equivalence classes of functions / from H to
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C © C by

[/]2/+. = [g]2/+,^2/+1(/-g) = 0.

Again analogous to the proof for the case of 517(2, 2) in [5], we get, using

Proposition 4.2 and (4.9)

Proposition 4.3. For each integer I > 0, there eixsts a subspace of the

equivalence classes [• ]2/+, which can be given a Hubert space structure, in which

D-i-i is unitary.

5. A combination. We conclude this article with a study of a series of

representations obtained by induction from noncomplemented finite dimen-

sional representations of the maximal parabolic subgroup P_.

We shall give the details for the groups SU(n, ri), whereas the correspond-

ing results for Mp(n, R), due to the large similarity, are omitted.

For SU(n, ri),

P_ = | ( , ) det a is real and ca* = ac* },
\\c    fl*-'/| J

and hence there are some very natural representations of P_, namely

Similarly to the preceding cases, the induced representations obtained from ju,,

yield actions on measurable functions on H (see [5]) since H can be identified

with the subgroup {(¿ x)\x G H) of G (which is mapped onto an open dense

subset of G/P_). The actions H¡(g) thus obtained are

(H,(g)f)(x)

(ex + d)*

(ex + d)~l

a *i jv-(»+0 A ax + b \     ,c -.n

if g-   ' = ("c d), and if/is any measurable function from H to C2n.

We note that if z G <$ and if g = (ac bd) G G, then

det( cz + d) = det(zc* + d*). (5.3)

This fact is trivially true on the subgroup

P+ = {| a       b\\ det a is real> and a6» = batt I

and on (^ ~¿) G G. These elements generate the group, and hence, by (2.5),

the assertion follows for all g in G.
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In terms of the representations studied in Chapter 2 and Chapter 4,

"/(*)-
■c(g-l)*U,(g)    D + (g)t (5.4)

and from (5.3) it follows, that if we let 0(2«) be the space of holomorphic

functions from ^ to C2", then we can think of H, as an action on that space,

with (5.2) as boundary value. We shall do that, and omit the technicalities of

passing to the boundary. In this connection, we recall that it was observed in

the preceding chapters, that the differential operators D', c(D), and det D can

be extended to operate on holomorphic functions on ty in such a way that

the intertwining relations remain valid.

Lemma 5.5. Let I be an integer and let f be a holomorphic function from <$ to
C. Then

^357= /(-*">)
det z'+'

1
~nn-^) + (DJ0(- ')•

(5.6)detz/+"    v '      detz/+"

Proof. Since D' is a matrix with first order differential operators as entries,

and since (det z)~' is a scalar valued function, the formula will follow from

(4.7) (with / = 0), once we have proved that for any vector v G C,

D'(det z~'v) = - /z~'det z~'v. This, however, follows from (4.9).

Proposition 5.7. Let I be an integer. Then for all fin 0 (2ri) and all g in G,

Dt-i(g) 0
c(g-l)*U,(g)    D+(g)

I
-D' /

Ai.(s)
o

0

A+ (*)
/

-D' /• (5.8)

Proof. We need only check the relation for g"1 = ({ "¿). For this element,
the only nontrivial equation in (5.8) is (5.6).

In (5.8) the operator [*_& ?] is clearly invertible on 0(2«) when / ¥= 0.

Hence, by Chapter 4, one can put a Hubert space structure K¡ on a subspace

of 0 (2ri) in which H, is unitary for / > 1.

When / = 0, in addition to (5.8), we also have

0

D'

D -i

0 A>+ D'

H0 = H0

oí =r i
0

0
D'

0

0
and

D'

0

0

D-i

0 Dn (5.9)
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In this case, we see that K0+ = {(£) G 0(2«)} and K0~ = {(£) G 6(2n)\D'<pA

= 0} are invariant subspaces. The restriction of H0 to K¿ is D¿, which is

unitary on a subspace. On K$ / Kq , H0 is equivalent to the representation

DJ, in the space of solutions to D'<p = 0. Again there is a subspace on which

H0 is unitary. Finally, there is also a subspace of 6(2n)/K¿~ =

(Q(2ri)/Kq)/(Kq /Kq), where 7/0 is unitary, because H0 there is equivalent

toD0+.

As for the case — / < 0, it follows from (4.7) that any operator of the form

0 82detD'-ic(D)

has the property that

5,det D'D' 0
(5.10)

E'Ä-4    0        />+/)-(   o'     D,+-p** (5,U)

Hence, if we define, for any complex number a,

D/,« =
det D'        [det

a det D'D'        det

D',z]\

tD'    /

detD'       /detD'-'c(D)

a det D'D' detD7

then we get from (5.8) and (5.9):

Proposition 5.13. For any nonnegative integer I, and for all g in G

D,aH_,(g) = Hl(g)D,,a.

Remark. D/0 = (D, 0)'.

The trivial fact, that (¿' °) commutes with the representation

(5.12)

/Ali     o \

\  »     A+j

for any pair of complex numbers y, and y2, is, by (5.8), translated into

Corollary 5.14. Let Mxl = [xy0x_l], where x is an arbitrary complex

number. Then

Hl(g)MxJ=MxJH,(g)

for any integer I and for all g in G.

We observe that, either by using (5.8) to find the Hubert space structure K,

that makes H, unitary for / > 1, or directly from (2.1) and (2.2), it follows
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that if we define, for z and w in ^ and ß in C,

(z - w*)/2i 1/2/

-1/2/     ß((z - w*)/2iYl
Fi.ß (z> w) = det((z - w*)/2i)

(l+n)

(5.15)
and if J/(g, z) is the automorphic factor for which

(Hl(g)f)(z) = J,(g-\z)- f(g-'z),

then

Proposition 5.16. Flß(gz, gw) = J,(g, z)F,ß(z, w)J,(g, w)*.

From (4.8) and (2.15) it finally follows that there are constants K,„ such
that, for 1 > 1

Fl.ß (Z> W) =  Kl.n fJC*

(1/2)- AT1 1/2/

-1/2/       (2-ß)-k/(l + n)
detk'eitliz-w')kdk

(5.17)

and hence, since

(//2)*-' 1/2/

-1/2/     (2-ß)-k/(l+ ri)

is a positive operator (when k E C +) if and only if ß > (n + l)/4l, we get,

using (1.8),

Proposition 5.18. For I > 1 and ß > (n + I)/41, Flß is the reproducing
kernel for the representation H¡ in K¡.
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